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ABSTRACT

Video quality assessment (VQA) plays a critical role in optimizing video delivery
systems. While numerous objective metrics have been proposed to approximate
human perception, the perceived quality strongly depends on viewing conditions
and display characteristics. Factors such as ambient lighting, display brightness,
and resolution significantly influence the visibility of distortions. In this work,
we address the question of the multu-screen quality assessment on mobile de-
vices, as this area still tends to be undercovered. We introduce a large-scale sub-
jective dataset collected across more than 200 Android devices, accompanied by
metadata on viewing conditions and display properties. We propose a strategy
for aggregated score extraction and adaptation of VQA models to device-specific
quality estimation. Our results demonstrate that incorporating device and context
information enables more accurate and flexible quality prediction, offering new
opportunities for fine-grained optimization in streaming services. We view de-
vice and condition variability as a form of natural distributions, and our approach
provides a pathway to more robust perceptual quality prediction. Ultimately, this
work advances the development of perceptual quality models that bridge the gap
between laboratory evaluations and the diverse conditions of real-world media
consumption.

1 INTRODUCTION

Objective video quality assessment (VQA) is a critical task in video processing, with applica-
tions in compression, streaming, and content delivery. The goal of VQA models is to estimate
human-perceived video quality using algorithmic predictions. To train and evaluate these models,
researchers rely on benchmark datasets that contain subjective human scores, typically collected in
controlled lab environments or through crowdsourced studies.

A key challenge in this domain is that human perception of video quality is not invariant—it varies
significantly depending on viewing conditions and display characteristics, such as screen size, reso-
lution, brightness, and ambient lighting. For example, in Barman et al. (2023), a parallel subjective
test was conducted on a phone, tablet, and television. The results showed substantial differences in
Mean Opinion Scores (MOS) obtained across the different devices. However, most existing datasets
and VQA models either neglect these contextual factors or assume a uniform viewing environment.
As a result, objective metrics that perform well in one setting may fail to generalize across diverse
real-world conditions. This issue is particularly pronounced in the case of banding metrics, since
banding artifacts appear differently depending on screen brightness. As shown in Safonov et al.
(2024), current banding metrics demonstrate very low reliability. For the same reason, the devel-
opers of the state-of-the-art Netflix VMAF metric provide different models separately for TVs and
mobile phones.

While numerous VQA models have been proposed in recent years, they typically evaluate perfor-
mance on datasets with limited variability in device types and viewing environments. This limits
their applicability to real-world use cases, particularly for mobile users and diverse consumer de-
vices. While mobile devices often share similar characteristics in terms of screen size and resolu-
tion, the actual viewing conditions for mobile users can vary significantly. For instance, watching
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the same video scene outdoors in bright sunlight may result in a drastically different perceptual ex-
perience compared to viewing it in a dark room. Additionally, many users deliberately reduce screen
brightness to conserve battery life, further affecting visual quality. In recent years, a noticeable gap
has emerged between HDR-capable and SDR-only mobile devices. Modern flagship smartphones
are equipped with HDR displays capable of peak brightness levels exceeding 2500 nits, offering en-
hanced visibility in bright environments and more accurate rendering of dark scenes. Although the
present work focuses exclusively on SDR content, a detailed analysis of how SDR and HDR content
is perceived on HDR-enabled displays is provided in Ebenezer et al. (2024), highlighting additional
complexities introduced by display capabilities when assessing visual quality. Without account-
ing for such contextual differences, VQA models risk producing misleading predictions, which can
hinder user experience optimization for content providers and device manufacturers.

In this work, we address the problem of multi-screen quality assessment. First off all we collect a
large-scale, crowd-sourced multi-screen video quality dataset designed to bridge this realism gap.
The dataset comprises pairwise preference judgments on 200+ unique Android devices, enriched
with detailed metadata: screen technology, diagonal size, peak brightness, applied brightness setting
and measured ambient light. The dataset also includes pairwise comparison judgments and reference
scores collected on high-resolution desktop monitors. The Figure 1 demonstrates the impact of the
votes collection in different viewing conditions distributions.

On this dataset, we evaluate existing learning-based IQA and VQA models and show their limited
ability to preserve correct quality orderings across different viewing conditions. To address this,
we propose a training strategy and a vote aggregation framework that generalize VQA metrics for
improved performance under diverse device-specific conditions. To the best of our knowledge, this
is the first framework that explicitly trains quality metrics to account for viewing-device character-
istics. Our findings show that incorporating device and context information substantially improves
prediction accuracy and robustness across viewing conditions that can serve as a foundation for new
generations of adaptive streaming solutions.

2 RELATED WORKS

The diversity of modern display mobile devices has important implications across many areas of
video processing. However, in this work, we focus specifically on video compression, which remains
one of the most fundamental and widespread applications where perceptual video quality plays a
critical role. Another broad category of subjective datasets involves in-the-wild distortions, typically
captured by non-professionals and characterized by artifacts such as shaking, blurring, and faded
colors. These distortions are primarily related to the aesthetic aspects of content and may require
separate quality assessment approaches, as shown in Wu et al. (2023). Notably, the perceived quality
in such cases tends to remain relatively consistent across different display screens. Consequently,
we concentrate our comparisons on compression-oriented and general quality video quality datasets
and benchmarks. A summary of relevant datasets is provided in Table 1.

Numerous datasets have been proposed to support the development and evaluation of perceptual
video quality metrics, particularly in the context of video compression and streaming. Large-scale
JND-based datasets such as VideoSet Wang et al. (2016b) and MCL-JCV Wang et al. (2016a) en-
able fine-grained analysis of compression artifacts, while classic datasets like the H.264/AVC video
database Nuutinen et al. (2016) provide foundational resources for benchmarking quality metrics.
Recent efforts have also introduced compression-oriented benchmarks tailored to learning-based
approaches, as seen in the Video Compression Dataset and Benchmark Antsiferova et al. (2022).
To address streaming-specific challenges, MCL-V simulates bitrate fluctuations and stalling, and
GamingVideoSet Barman et al. (2018) along with related machine learning approaches Barman
et al. (2019) focus on passive gaming video quality estimation. Similarly, user-generated content
(UGC) and its perceptual variability are examined in UGC-Video Li et al. (2020b), which highlights
the aesthetic and artifact-rich nature of such content. Other works investigate factors influencing
subjective perception beyond compression, including the impact of audiovisual interplay Seshadri-
nathan & Bovik (2011), temporal effects on video quality of experience Seshadrinathan et al. (2010),
and Quality of Service parameters Fiedler et al. (2010). High-quality reference datasets such as the
TUM HD Video Datasets Keimel et al. (2011) provide additional controlled material for model
development and evaluation.
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Table 1: Summary of subjective compressed video quality datasets including multi-screen and the
proposed dataset.

Dataset Content Orig. Dist. Device number Subjective Framework Subj. Ans.

General

MCL-JCV (2016) Wang et al. (2016a) Video 30 1,560 - In-lab 150 78K
VideoSet (2017) Wang et al. (2017) Video 220 45,760 - In-lab 800 -
SJTU-4K (2017) Zhu et al. (2016) Video 20 200 - In-lab 30 6K
GamingVSET (2018) Barman et al. (2018) Video 24 576 - In-lab 25 -
NFLX (2016) Li et al. (2016) Video 12 300 - In-lab 54 9K
KUGVD (2019) Barman et al. (2019) Video 6 144 - In-lab 17 -
UGC-VIDEO (2020) Li et al. (2020b) Video 50 550 - In-lab 30 16.5K
AVT-VQDB (2019) Rao et al. (2019) Video 15 300 - In-lab 50 15K
TGV (2022) Wen et al. (2022) Video 150 1,143 - In-lab 19 -
CVQAD (2022) Antsiferova et al. (2022) Video 36 1,022 - Crowd. 10,800 320K
LEHA-CVQAD (2025) Gushchin et al. (2025) Video 59 6,240 - Crowd. 11,000 400K

Multi-screen
MSVSA (2023) Barman et al. (2023) Video 4 36 3 In-lab 26 -
MS-Banding (2024) Safonov et al. (2024) Video 15 120 3 In-lab 186 9,000
Proposed Video 20 500 200+ Crowd. 10,000 200K

In Barman et al. (2023), a small-scale dataset was collected using three display devices: tablet,
phone, and TV viewed in parallel. The dataset includes Mean Opinion Scores (MOS) for each device
type, revealing notable differences in perceived quality across screens. In Safonov et al. (2024),
the authors investigate the performance of banding metrics across three domains: TV, MacBook,
and crowdsourcing platforms. To support this analysis, they introduce a dataset comprising MOS
scores for 120 distorted video variants. However, the dataset in Safonov et al. (2024) is distortion-
specific, with a strong emphasis on videos containing flat regions, which are particularly susceptible
to banding artifacts.

Existing datasets, regardless of distortion type, typically assume controlled viewing conditions or
focus on a single device type. As such, they are not well-suited for exploring the impact of device
diversity and ambient conditions on perceived quality. Our work fills this gap by introducing a
large-scale, multi-device dataset with associated viewing metadata, allowing for more representative
evaluation of compression quality under realistic usage scenarios.

3 DATASET

Figure 1: Top row: Bradley–Terry Bradley & Terry (1952) aggregated scores for subsets of devices
grouped by screen size (the smallest quarter, the two middle quarters, and the largest quarter) and
comparing them with aggregated scores obtained on desktop devices with large screens by Pearson
(PLCC), Spearman (SROCC) and Kendall (KROCC) correlations;
Bottom row: correlations separately for LED and LCD displays.
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3.1 DATASET CONSTRUCTION

We constructed a compression dedicated dataset exhibiting diverse compression artifacts. For reli-
able evaluation, reference videos must be of sufficiently high quality to avoid confounding recom-
pression effects. We therefore sampled from over 18,000 high-bitrate open-source videos available
on Vimeo under appropriate licenses. Only videos with a minimum bitrate of 20 Mbps were retained,
resulting in a collection with an average bitrate of 130 Mbps.

To ensure representative coverage of spatial and temporal complexities, we performed clustering
in the complexity space. Spatial complexity was measured as the average size of x264-encoded
I-frames normalized by uncompressed frame size, while temporal complexity was defined as the
ratio of average P-frame to I-frame sizes. The source videos were selected via clustering in the
spatial–temporal complexity space. We introduced compression artifacts by encoding them with
five encoders spanning different standards (HEVC, VVC, and AV1).

3.2 SUBJECTIVE TESTING

To collect pairwise preference annotations across a wide range of devices and viewing conditions,
we relied on crowdsourcing. To ensure precise control over device characteristics and viewing en-
vironments, we developed an Android application that automatically recorded the device model,
screen specifications, and contextual information such as brightness, ambient luminance, and ori-
entation. Participants recruited via a crowdsourcing platform were asked to install the application,
which both launched the video quality assessment interface and continuously logged relevant meta-
data. Screen brightness and ambient light levels were sampled every second using system APIs and
the device’s light sensor, when available. By default, participants used their own brightness settings;
however, the application also supported enforced brightness levels. Using this feature, we collected
additional subsets with brightness fixed to maximum and minimum values.

Our subjective study followed a pairwise comparison protocol, where for each source video we
generated all possible pairs of its compressed versions. The reference source video itself was also
included in the pool. Participants watched the pairs sequentially in full-screen mode and indicated
which video exhibited better visual quality, or selected an “equal quality” option. They were allowed
to replay the videos before making a choice. Each participant completed 12 comparisons, two of
which were control pairs with an obvious quality difference; responses from participants who failed
these checks were discarded. To improve the robustness of the results, a minimum of 15 judgments
was collected for every pair. In total, the study yielded 200,000 valid annotations from nearly 10,000
contributors. Dataset parameters are summarized in Table 1. It may be noted that LCD displays
correlate with the desktop scores much better than LED displays. This could be explained by the fact
that most desktop monitors also use LCD matrices, which, for example, perform worse in rendering
dark colors.

4 BLADE-CHEST MODEL

Different models can be applied to aggregate pairwise preference votes. The most commonly used
approach is the Bradley–Terry Bradley & Terry (1952) model, which has been employed in large-
scale datasets such as Antsiferova et al. (2022) and Gushchin et al. (2025). An alternative is the Elo
rating system Elo (1978), which estimates latent scores through iterative updates after each compar-
ison. However, such models do not account for the viewing conditions under which comparisons are
made, even though these conditions can significantly influence the results. Figure 1 illustrates this
effect by showing Bradley–Terry Bradley & Terry (1952) aggregated scores for subsets of devices
grouped by screen size (the smallest quarter, the two middle quarters, and the largest quarter) and
comparing them with aggregated scores obtained on desktop devices with large screens by Pearson
(PLCC), Spearman (SROCC) and Kendall (KROCC) correlations. The correlations steadily increase
from the smallest to the largest screen groups. Figure 1 also reports correlations separately for LED
and LCD displays.

The Blade-Chest model Chen & Joachims (2016) leverages this limitations and makes possible to
encounter conditions under which each pair were compared, as it proposes learning two vectors for
each player qi, namely qblade

i and qchest
i . The probability of qi defeating xj is then determined by
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comparing the distances between these representations: if qblade
i is closer to qchest

j than qblade
j is to

qchest
i , player qi is predicted to win. The use of the “blade” and “chest” embeddings provides an

intuitive interpretation of the underlying model.

Therefore, we adopt the Blade–Chest model Chen & Joachims (2016) for our task, as it naturally
incorporates information about the viewing conditions into the score aggregation process. To obtain
rank scores from pairwise votes, we assumed that the probability of video i being preferred over
video j in the viewing conditions z is given by:

P (i ≻ j, z) = σ(||fc(qi, z)− fb(qj , z)||2 − ||fc(qj , z)− fb(qi, z)||2) (1)

where qi and qj are the desired subjective score estimates of videos i and j, σ(·) denotes the sigmoid
function, while fc(·) and fb(·) are transformation functions conditioned on the subjective score es-
timates and viewing conditions. These functions output qchest

i and qblade
j , respectively. The functions

fc(·) and fb(·) can take different forms; however, in this work we initialize them as fully connected
neural networks, parameterized by θ and ψ, respectively. For the activation functions we use tanh,
in order to avoid purely linear behavior. Our experiments have shown that, due to the dominant
influence of qi over z, the networks tend to degenerate into linear mappings without nonlinear acti-
vations. The vector z was defined as a five-dimensional representation containing information about
the display’s physical size, pixel resolution, brightness, surrounding luminance, and display type.

To estimate the latent values qi and the network parameters θ and ψ, we employed a two-step opti-
mization procedure based on the expectation–maximization approach. In our formulation, the latent
subjective quality scores qi cannot be directly observed, while the available supervision comes only
from the pairwise preference votes D = {(i, j, z)}. We therefore treat qi as latent variables and
optimise them jointly with the network parameters θ and ψ via the Expectation–Maximisation (EM)
algorithm.

The complete-data likelihood of observing a pairwise vote (i ≻ j, z) can be expressed as:

Lc(q, θ, ψ | D) =
∏

(i,j,z)∈D

P (i ≻ j, z | q, θ, ψ). (2)

Taking the logarithm, the complete-data log-likelihood becomes:

logLc(q, θ, ψ) =
∑

(i,j,z)∈D

log σ
(
||fc(qi, z; θ)− fb(qj , z;ψ)||2 − ||fc(qj , z; θ)− fb(qi, z;ψ)||2

)
.

(3)

Thus, the EM procedure allows us to jointly infer the latent subjective quality scores qi and opti-
mise the transformation networks fc(·) and fb(·) under varying viewing conditions. A more detailed
derivation of the update rules and implementation details of the optimisation procedure are provided
in Appendix A.1. The obtained subjective scores exhibit a high correlation with those derived us-
ing the Bradley–Terry model on both the mobile and desktop datasets, indicating that the learned
representation is consistent and logically grounded.

5 CONDITIONS ADAPTATION

Although we obtained subjective scores qi, these values alone are of limited interest, since it is
nontrivial to interpret or compare absolute score levels directly. We also trained fully connected
neural networks, fc(·) and fb(·), which operate on score pairs; however, this formulation is not well
suited for VQA applications, where it is often necessary to estimate the quality of a single video.
Therefore, we treat the extraction of subjective scores as an intermediate step in adapting VQA
metrics for quality prediction under varying viewing conditions.

The goal of VQA model adaptation is to enable predictions of relevant quality labels under specific
viewing conditions. This is particularly useful for streaming platforms, which often optimize com-
pression strategies for certain device types and have access to user distributions and profiles, yet
still rely on standard VQA models that may under- or over-estimate the quality perceived by the end
users. Modern learning-based models, both deep and traditional (e.g., VMAF), are typically trained

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: The training framework scheme: from the video set a random pair is sampled, and viewing
conditions are selected from a distribution. The video quality metric predictions for the selected
videos and the viewing conditions are processed through the adaptation module, while the estimated
subjective scores together with the viewing conditions are processed through the match function
using fc(·) and fb(·).

on large-scale datasets, so retraining them directly on our proposed dataset may be not sufficient,
even when targeting condition-dependent prediction. To address this, we fine-tune the models by
passing their predictions to a condition adaptation module.

The adaptation module is a lightweight fully connected neural network trained separately for each
VQA model. It takes as input the model prediction together with the target viewing conditions z, and
outputs a single value representing the predicted video quality under these conditions. The training
samples are drawn from the proposed dataset. For training, the viewing conditions z are generated
by randomly sampling parameters from a uniform distribution, subject to hand-picked physically
motivated constraints.

Now, when we have obtained subjective scores qi and trained the networks fc(·) and fb(·) on the real
predictions, we can use their combination to expand the training set with simulated samples. Since
the set of videos is fixed and new videos cannot be added without additional human judgments, we
instead simulate new viewing conditions. Conditions z are sampled from a uniform distribution and
passed to fc(·) and fb(·) together with a randomly selected pair of distorted versions of the same
source video. This yields the probability that video i is of higher quality than video j under the
given conditions z.

So the training framework is as follows: from the video set a random pair is sampled, and viewing
conditions are selected from a uniform distribution. The video quality metric predictions for the
selected videos and the conditions are processed through the adaptation module, while the estimated
subjective scores together with the viewing conditions are processed through the match function
using fc(·) and fb(·). The overall framework is illustrated in Figure 5.

In most experiments, the adaptation network was implemented as a fully connected neural network
of depth four, with hidden layers of size 64. We used tanh activations in the hidden layers to avoid
linearity and applied a sigmoid activation at the output to constrain predictions to the [0, 1] range.

As a result, the adaptation module is able to predict video quality based on both the metric predic-
tions and the viewing conditions. We trained separate adaptation modules for each of the considered
metrics. In addition, we conducted experiments where the adaptation module was used as a fusion
mechanism across multiple metrics.
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Figure 3: Relationship between the estimated quality of the VMAF adaptation module and the
viewing conditions, predictions for several fixed VMAF levels with varying the screen diagonal (all
other parameters are held constant).

6 EVALUATION

For evaluating the performance of VQA models, correlations with subjective quality scores are
commonly employed. Pearson and Spearman correlations are appropriate when aggregated sub-
jective scores (e.g., MOS, Bradley–Terry estimates) are available. However, in our dataset each
crowdsourcing assessor evaluated only a small portion of the content. Consequently, the number of
samples collected under identical viewing conditions is insufficient to construct reliable subjective
scores for a fixed screen setup. In contrast, Kendall’s rank correlation relies on the proportion of
correctly ordered pairs. Since the subjective annotations in our dataset consist of pairwise prefer-
ence selections under different measured viewing conditions, Kendall’s rank correlation provides
a natural criterion for assessing whether a VQA metric preserves the quality ordering implied by
human judgments. Therefore, we adopt Kendall’s rank correlation as the primary evaluation metric.

Five source videos, along with all their distorted versions, were held out as the testing set. We first
applied both classical and modern neural network–based image and video quality metrics to these
videos. For each participant’s vote, we derived the predicted ordering from the metric outputs and
then computed Kendall’s rank correlation with the subjective preference. Subsequently, we trained
an adaptation fully connected network separately for each of the evaluated metrics on the training
portion of the dataset and also tested by Kendall’s rank. Table 2 reports the Kendall rank correlations
for the original metrics and their adapted counterparts.

It can be observed that even state-of-the-art metrics exhibit relatively low correlations on the raw
vote data compared to the aggregated scores. This is expected, as the raw annotations are inherently
noisy: for the same video under identical conditions, different participants may prefer different ver-
sions. Moreover, individual differences such as prior viewing experience or eye health can further
contribute to variability. Another important factor is the viewing condition, which strongly influ-
ences perceived quality but is not explicitly modeled by existing metrics. Nevertheless, the adapted
versions of the metrics substantially improve performance. While adaptation consistently enhances
correlations, the remaining label noise limits performance.

Since the adaptation module employs a sigmoid activation function, the predicted scores are scaled
between 0 and 1, which makes the model’s outputs fairly interpretable. To illustrate the relationship
between the estimated quality of the VMAF adaptation module and the viewing conditions, we
plot predictions for several fixed VMAF levels while varying only the screen diagonal (all other
parameters are held constant). Figure 3 shows this dependency. As expected, the perceived quality
decreases as the screen size increases. It should also be noted that beyond the observed range (our
dataset includes only a limited number of devices with diagonals larger than 8 inches), the predicted
curves become less reliable.
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Table 2: Kendall rank correlations for the original metrics and their adapted counterparts. Gain
represents how score improved after metric training (red = positive, blue = negative).

Metric KROCC KROCC
(adapted) Gain

Full-reference

LPIPS Zhang et al. (2018) 0.326 0.555 +0.229
DISTS Ding et al. (2020) 0.382 0.553 +0.171
VMAF Li et al. (2016) 0.440 0.603 +0.163
AVQT Sodhani (2021) 0.454 0.615 +0.161
FSIM Zhang et al. (2011) 0.447 0.604 +0.157
SSIMULACRA Sneyers (2023) 0.451 0.552 +0.101
HAARPSI Kastryulin et al. (2019) 0.451 0.549 +0.098
VMAF NEG 0.454 0.539 +0.085
VIF Sheikh & Bovik (2006) 0.456 0.503 +0.047
PSNR 0.448 0.458 +0.010
MS - SSIM Wang et al. (2003) 0.448 0.449 +0.001
SSIM 0.454 0.453 -0.001
NLPD Laparra et al. (2017) 0.453 0.450 -0.003
TOPIQ Chen et al. (2024) 0.441 0.430 -0.011

No-reference

CLIP-IQA-PLUS Wang et al. (2023b) 0.437 0.594 +0.157
LI2022 Li et al. (2022) 0.393 0.535 +0.142
UNIQUE Zhang et al. (2021) 0.424 0.545 +0.121
DBCNN Zhang et al. (2020) 0.405 0.521 +0.116
COMPRESSED - VQA Sun et al. (2021) 0.404 0.519 +0.115
DOVER Wu et al. (2023) 0.412 0.521 +0.109
VIDEVAL Tu et al. (2021) 0.236 0.313 +0.077
MDTVSFA Li et al. (2021) 0.426 0.500 +0.074
PAQ2PIQ Ying et al. (2020) 0.434 0.505 +0.071
NIQE 0.208 0.278 +0.070
RANK - IQA Liu et al. (2017) 0.402 0.464 +0.062
TOPIQ - NR Chen et al. (2024) 0.425 0.484 +0.059
KONCEPT Hosu et al. (2020) 0.410 0.442 +0.032
BRISQUE Mittal et al. (2012) 0.226 0.244 +0.018
LINEARITY Li et al. (2020a) 0.419 0.433 +0.014
MUSIQ Chen et al. (2024) 0.371 0.360 -0.011
VSFA Li et al. (2019) 0.395 0.355 -0.040
CLIP-IQA Wang et al. (2023a) 0.297 0.222 -0.075

7 CONCLUSION

We created a new diverse dataset containing videos compressed by various encoding standards,
including HEVC, AV1, and VVC, and enriched with information about labeling conditions such as
screen size, screen brightness, and ambient luminance. The labels were collected on more than 200
different devices. We used this dataset to analyze how both classical and modern learning-based
objective quality metrics predict video ordering across different devices. Our analysis revealed
that, due to human factor annotation noise and the strong dependence of pairwise preferences on
viewing conditions, existing metrics achieve only limited accuracy in predicting quality orderings.
To address this limitation, we proposed a training strategy for adapting and generalizing metrics to
specific viewing conditions, which results in a clear improvement in ordering quality.

The proposed dataset will be valuable for researchers and practitioners developing image- and video-
quality metrics aimed at evaluating compression artifacts and optimizing solutions for diverse de-
vices. It can be used to train models that assess video compression quality with higher accuracy
and viewing condition specific precision, bringing more flexible encoders optimization. In future
work, we plan to further expand the dataset by increasing the number of original source videos,
incorporating additional encoders and devices.
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8 LIMITATIONS

In this work, we did not retrain the evaluated metrics on the proposed dataset; instead, we applied
the adaptation module to the outputs of pre-trained models without tuning their internal parameters.
While this approach demonstrates the feasibility of condition-aware adaptation, it may limit the
full potential of the underlying metrics. Future work will therefore include retraining or fine-tuning
metrics directly on subsets of the dataset to achieve further improvements. Another limitation is that,
in the current design, the adaptation module must be inferences separately for each target device,
which may be inefficient when scaling to a large number of devices. As a next step, we plan to
explore direct mappings from device distributions to score distributions, enabling more efficient and
unified adaptation across diverse viewing conditions.
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A APPENDIX

A.1 OPTIMISATION PROCEDURE

In this appendix, we provide a detailed derivation of the Expectation–Maximisation (EM) procedure
used to jointly infer the latent subjective scores {qi} and optimise the parameters of the transforma-
tion networks fc(·) and fb(·).

A.1.1 COMPLETE-DATA LIKELIHOOD

Let D = {(i, j, z)} denote the set of observed pairwise preference votes under viewing condition z,
where (i ≻ j, z) indicates that video iwas preferred over video j. The probability of this observation
under our model is

P (i ≻ j, z | q, θ, ψ) = σ
(
∥fc(qi, z; θ)− fb(qj , z;ψ)∥2 − ∥fc(qj , z; θ)− fb(qi, z;ψ)∥2

)
, (4)

where σ(·) is the sigmoid function, and θ and ψ are the parameters of fc and fb, respectively.

The complete-data likelihood is then

Lc(q, θ, ψ | D) =
∏

(i,j,z)∈D

P (i ≻ j, z | q, θ, ψ), (5)

and the corresponding log-likelihood is

logLc(q, θ, ψ) =
∑

(i,j,z)∈D

log σ
(
∆ij(z; q, θ, ψ)

)
, (6)

where

∆ij(z; q, θ, ψ) = ∥fc(qi, z; θ)− fb(qj , z;ψ)∥2 − ∥fc(qj , z; θ)− fb(qi, z;ψ)∥2. (7)

A.1.2 E-STEP

In the E-step, we compute the expected log-likelihood with respect to the posterior of the latent
variables q, given the current parameter estimates (θ(t), ψ(t)):

Q(q, θ, ψ | θ(t), ψ(t)) = Eq|D,θ(t),ψ(t) [logLc(q, θ, ψ)] . (8)

In practice, this expectation is approximated by point estimates of the latent scores {qi} obtained
from the previous iteration, i.e. we set

q(t) = argmax
q

logLc(q, θ(t), ψ(t)). (9)

A.1.3 M-STEP

In the M-step, we maximise the surrogate function Q with respect to both the latent scores and
network parameters:

(q(t+1), θ(t+1), ψ(t+1)) = argmax
q,θ,ψ

Q(q, θ, ψ | θ(t), ψ(t)). (10)

This reduces to gradient-based optimisation of the log-likelihood. Specifically, the gradients are
given by

∇qi logLc =
∑

(i,j,z)∈D

(1− σ(∆ij)) ∇qi∆ij(z; q, θ, ψ), (11)

∇θ logLc =
∑

(i,j,z)∈D

(1− σ(∆ij)) ∇θ∆ij(z; q, θ, ψ), (12)

∇ψ logLc =
∑

(i,j,z)∈D

(1− σ(∆ij)) ∇ψ∆ij(z; q, θ, ψ). (13)

The terms ∇qi∆ij , ∇θ∆ij , and ∇ψ∆ij can be computed via automatic differentiation since fc(·)
and fb(·) are implemented as neural networks.
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A.1.4 REGULARISATION AND IDENTIFIABILITY

Since the latent scores {qi} are only identifiable up to affine transformations, we impose constraints
to avoid degeneracy:

1

N

N∑
i=1

qi = 0,
1

N

N∑
i=1

q2i = 1. (14)

These constraints normalise the latent quality scale, ensuring that the scores are comparable across
training runs.

A.1.5 SUMMARY

The EM optimisation alternates between:

1. Updating the latent quality scores {qi} based on the current network parameters (E-step),
2. Updating the network parameters (θ, ψ) by maximising the surrogate log-likelihood (M-

step),

until convergence. In practice, we implement both steps jointly using stochastic gradient descent,
with normalisation of {qi} applied after each iteration to enforce identifiability.
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