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Abstract
Developmental psychologists have long-
established the importance of socio-cognitive
abilities in human intelligence. These abilities
enable us to enter, participate and benefit from
human culture. AI research on social interactive
agents mostly concerns the emergence of culture
in a multi-agent setting (often without a strong
grounding in developmental psychology). We
argue that AI research should be informed by
psychology and study socio-cognitive abilities
enabling to enter a culture too. We discuss
the theories of Michael Tomasello and Jerome
Bruner to introduce some of their concepts to
AI and outline key concepts and socio-cognitive
abilities. We present The SocialAI school - a
tool including a customizable parameterized suite
of procedurally generated environments, which
simplifies conducting experiments regarding
those concepts. We show examples of such
experiments with RL agents and Large Language
Models. The main motivation of this work is to
engage the AI community around the problem
of social intelligence informed by developmental
psychology, and to provide a tool to simplify first
steps in this direction.

1. Introduction
Our everyday life is immersed in a sociocultural world,
which we navigate using a set of sophisticated socio-
cognitive abilities. Although at first it might seem this
sociocultural world is just another product of our cognition,
decades of research in developmental psychology suggest
the opposite. Our socio-cultural world, cultural knowledge,
and our socio-cognitive abilities are the foundation of our
development and both our social and asocial intelligence
(Vygotsky & Cole, 1978; Bruner, 1990; Tomasello, 2019).

For Vygotsky, socio-cultural interactions are the main driver
for “higher-level” cognition (Vygotsky & Cole, 1978). For
him, many high-level cognitive functions first appear at the
social level, and then develop at the individual level. This

leap from interpersonal processes to intrapersonal processes
is referred to as internalization. Vygotsky’s theories influ-
enced multiple works within cognitive science (Clark, 1996;
Hutchins, 1996), primatology (Tomasello, 1999) and the de-
velopmental robotics branch of AI (Billard & Dautenhahn,
1998; Cangelosi et al., 2010; Mirolli & Parisi, 2011).

Jerome Bruner emphasized the importance of culture in
human development too. He presents a pragmatic view of
how the practical use of referencing and requesting pushes
language development through routinized social interactions
(formats), in which those abilities are necessary to achieve
various ends. He describes these interactions as scaffolded -
the caretaker gradually helps less and demands more of the
child to achieve those goals (Bruner, 1985).

Finally, Michael Tomasello’s work (Tomasello, 1999; 2019;
2020) constitutes a representative and contemporary assess-
ment of the nature and central importance of culture in hu-
man development. Tomasello outlined core social abilities
and motivations which (when combined with the relevant
experience) enable us to participate in the cumulative cul-
tural evolution (a powerful form of cultural transmission
enabling the development and perpetuation of complex cul-
tural artifacts and knowledge (Tomasello, 1999)).

Given the key role social cognition plays in human cognition
and cultural evolution, it is natural that the field of AI studies
those questions as well. A socially competent agent could
learn our culture and participate in its cultural evolution, i.e.
improve our concepts, theories, inventions, and create new
ones. A system capable of out-of-the-box thinking creative
solutions and discovering new relevant problems must learn
our values and how we see and understand the world (it
must learn our culture).

Enriching AI with those skills also has numerous more prac-
tical implications. Agents capable of online social learning
could efficiently learn novel tasks and tools. A robot that
can seamlessly infer the meaning of our gestures and ut-
terances in new contexts could be easily onboarded into
human teams, without requiring humans to adopt new con-
ventions. Furthermore, robots capable of learning human
values and moral norms will be capable of performing tasks
in the constraints defined by those values.
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AI research on interactive agents is often focused on nav-
igation and object manipulation problems, excised of any
social dimension (Mnih et al., 2015; Lillicrap et al., 2016;
Andrychowicz et al., 2017). The study of sociality is mostly
studied in Multi-Agent settings, where the main focus is of-
ten on the emergence of culture (often with only a weak
grounding in developmental psychology) (Jaques et al.,
2019; Baker et al., 2019). While we agree that those di-
rections are interesting and important, in this work we focus
on entering an already existing complex culture. And we
argue that it can be beneficial to be informed by develop-
mental psychology theories.

We do not claim The SocialAI is sufficient to reach that far
and complex goal. We only propose that being informed by
the concepts discussed in this paper is useful, and we present
SocialAI as a tool which could be used to start investigating
such questions in more details.

Following the theories of Michael Tomasello and Jerome
Bruner, this work identifies a richer set of socio-cognitive
skills than those currently considered in most of the DRL
literature. More precisely, we focus on three key aspects of
social cognition as identified by Tomasello: 1) the ability
to infer what others see and to engage in joint attention,
2) the development of referential communication through
pointing and the beginnings of conventionalized communi-
cation through language, and 3) the use of imitation and role
reversal imitation in social learning. We also outline two
concepts from Jerome Bruner’s work: formats and scaffold-
ing. Formats refer to the way in which social interactions
are structured and presented, while scaffolding refers to the
temporary support provided by a caretaker to help a learner
achieve a task that would be otherwise too difficult.

We present The SocialAI school - a tool simplifying experi-
ments studying the concepts outlined by those theories. It
includes a parameterized procedural generation engine for
social environments with various kinds of social interactions.
This tool enables simple creation, modification, and exten-
sion of those environments. In our experiments, we show
how various studies can be conducted using the SocialAI
school. We present experiments regarding the following
questions: generalization of social inferences (the pointing
gesture) to new contexts, recreating an experiment from
cognitive science (to study role reversal), and the impact of
a scaffolded environment on the agent’s learning. We con-
duct those experiments with RL agents, and also present an
additional case study with Large Language Models (LLMs).
In the appendix, we explore additional questions regard-
ing linguistic inferences, joint attention, imitation, inferring
others’ field of view, and formats. We hope to encourage
future work extending and building on this first set to study
various questions regarding social competence (ex. new
sociocultural scenarios, architectures, training regimes).

We outline the following main contributions of this work:

• An introduction to Michael Tomasello’s and Jerome
Bruner’s theories on child development and core socio-
cognitive abilities

• An outline of a set of core socio-cognitive abilities
important for current AI research

• The SocialAI school: a tool including a customizable
procedural generation suite of environments aiming
to simplify studies of socio-cognitive abilities of AI
agents

• Examples of case studies demonstrating how SocialAI
can be used to study various questions regarding socio-
cognitive abilities in AI

2. Related work
This work aims to connect DRL with developmental robotics
(Asada et al., 2009; Cangelosi & Schlesinger, 2014), a
robotics field informed by developmental psychology. De-
velopmental robotics has already argued for the importance
of social intelligence in artificial agents (Billard & Dauten-
hahn, 1999; Lindblom & Ziemke, 2003; Mirolli & Parisi,
2011). We aim to expand this to the DL community.

Inside the deep learning community, multiple works stud-
ied disembodied social understanding from videos or text.
These include classifying videos based on the nature of
shown behavior (Shu et al., 2021; 2020), inferring agents’
goals, relationships, and predicting future trajectories (Ne-
tanyahu et al., 2021). Machine learning models have also
been used to model agents’ internal states, such as goals,
beliefs, and desires (Rabinowitz et al., 2018; Baker et al.,
2011). Regarding textual tasks, social reasoning abilities
have been recently studied with LLMs. In extensive evalu-
ation, LLMs were shown to struggle on two social bench-
marks (Sap et al., 2022): SocialIQA (Sap et al., 2019), and
especially on TOMi (Le et al., 2019). In other experiments,
LLMs were evaluated on variations of false-belief tasks and
exhibited promising performance (Trott et al., 2022; Kosin-
ski, 2023). A gap with human performance was also demon-
strated on implicatures - problems which heavily rely on
inferring contextual information (Ruis et al., 2022). While
our motivation is analogous to these works, we propose to
focus on embodied and interactive agents.

DRL works studying embodied social interactions are
mostly in multi-agent settings. Various intrinsic rewards
were presented to foster cooperation between agents such as
influence over the others’ actions (Jaques et al., 2019) and
fostering joint attention (Lee et al., 2021). While multi-agent
reinforcement learning is often used to study the emergence
of culture or communication, here we study the process of
entering an already existing culture.
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Closer to our work, an RL agent was shown to adapt
(through social learning) to a new environment with an
expert (Ndousse et al., 2021). The independent RL agent
was trained in a multi-agent environment with various envi-
ronmental constraints and an auxiliary loss. Similar experi-
ments were also conducted at a larger scale (Bhoopchand
et al., 2022). The objective of the SocialAI school is to pro-
vide a tool simplifying similar studies, which could explore
socio-cognitive abilities outlined by psychology.

3. Cognitive science background
This section introduces Michael Tomasello’s and Jerome
Bruner’s theories and concepts.

3.1. M. Tomasello - The Shared Intentionality Theory

We are born into a culture filled with cultural artifacts, sym-
bols and institutions like language, social norms, tool in-
dustries, or even governments (Richerson & Boyd, 2006;
Tomasello, 2019). These artifacts are a product of a series of
modifications over many generations. Tomasello calls this
cumulative cultural evolution, and argues that it is behind
our most impressive achievements (Tomasello, 1999).

Cumulative cultural evolution is grounded in our socio-
cognitive abilities (e.g. social cognition, cultural learning,
communication), which enable us to learn, improve, and
teach our culture (Tomasello, 2019), i.e. enter a culture.
Cultural artifacts inherited through this process become the
core of our cognition. An example of this is language, which
influences our cognition in many ways. For example, it de-
fines how we categorize and construe the world, and enables
a powerful form of social learning : instructed learning
(Tomasello, 1999). This makes socio-cognitive abilities cru-
cial, as their early development bootstraps both our social
and asocial cognition (Herrmann et al., 2007).

Tomasello’s Shared intentionality theory argues that human
socio-cognitive abilities, such as communication and social
learning, are transformed by two developmental steps : the
emergence of Joint intentionality at around 9 months of age
(the 9-month revolution), and the emergence of Collective
intentionality at around 3 years of age (the objective/norma-
tive turn) (Tomasello, 2019).

Joint intentionality emerges at around 9 months of age
(Tomasello, 2019). It enables children to form a joint agent
(a dyadic “we”) - they understand that they work with a
partner towards the same joint goal. Children begin to view
dyadic social interactions through a “dual-level structure”:
a joint agent ”we” on one level, and a personal ”I” on an-
other, i.e. we both understand that we both have separate
roles (”I”), and that we work together towards the same joint
goal (”we”). This enables them to take the perspective of
others, which can also be done recursively - they are not

only both attending to the same goal, they are also both
attending to the partner’s attention to the goal, and they both
know that they both are doing so.

Collective intentionality emerges at around 3 years of age
(Tomasello, 2019). It enables children to form a cultural
group-minded “we”, which in comparison with a dyadic
”we” represents an identity for a group. For example, a child
might enforce a social norm because ”this is how we, in
this culture, do things”. Consequently, children begin to
participate in conventions and norms, and to view things
from the “objective” perspective.

These two developmental steps transform countless abilities,
motivations, and behaviors. For the purpose of this paper,
we focus on the following three developmental pathways:
social cognition (sec. 3.1.1), communication (sec. 3.1.2),
and social learning (sec. 3.1.3), as we consider them the
most relevant for AI at the moment.

3.1.1. SOCIAL COGNITION

In this section, we discuss the development of the ability to
coordinate perspectives and view things from the objective
perspective (a perspective independent from any individual)
(Tomasello, 2019). The starting point is the ability to infer
what another sees or knows. The earliest example of this
is gaze following of six-month-olds (D’Entremont et al.,
1997). Here, only one perspective is processed at the time.
Joint attention (JA) emerges at around 9 months of age.
Tomasello defines JA as consisting of two elements: trian-
gulation (two participants attending to he same referent)
and recursiveness (both participants being recursively aware
that they are both sharing attention) (Tomasello, 2019). JA
is characterized by the dual-level structure of shared atten-
tion on one level, and individual perspectives on another.
Consequently, children start to align and exchange perspec-
tives. Once children reach a sufficient level of linguistic
competence, they start sharing attention to mental content
in the form of linguistic discourse (at two to three years of
age). The presence of conflicting perspectives in linguistic
discourse pushes children to resolve those conflicts, which
they do by forming the ”objective” perspective, and coordi-
nating other perspectives with it. Refer to appendix B.1.1
for details.

3.1.2. COMMUNICATION

Communication starts with imperative gestures for self-
serving purposes. An example of such a gesture is the
child pulling the adult’s hand, requesting them to pick them
up. This gesture always has the same imperative mean-
ing, and it never refers to an external object. The 9-month
revolution brings forth referential communication - chil-
dren start to communicate triadically to external referents
through pointing and pantomiming. The pointing gesture
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is a powerful way of communicating, as the same gesture
can be used to express many different meanings in many
different scenarios, provided that the observer can correctly
infer that meaning. The ability to infer this meaning is based
on the emerging abilities of joint intentionality. Those of
joint attention and, most notably, ”recursive inference” - to
interpret a pointing gesture, we make a recursive inference
of what ”you intend for me to think”. For example, if we
are looking for a ball together, and you point to a cupboard
behind me. I should infer that you are drawing my attention
to the cupboard to communicate that I should look for the
ball in the cupboard. The next step is the appearance of
conventionalized linguistic communication. The underly-
ing principle stays the same: reference to an external entity
combined with inferring the meaning through recursive in-
ferences. The difference is that, now, the child also learns
the conventional means of referring (for example, words
and phrases). Tomasello argues that, at first, children don’t
understand language as conventional, and they use it as any
other tool. The understanding of language as conventional
follows the emergence of collective intentionality after the
third birthday, and this gives rise to a myriad of different
language uses, such as discourse or pedagogy. Refer to
section B.1.2 for more details.

3.1.3. CULTURAL LEARNING

Human culture is characterized by a powerful form of cul-
tural transmission called cumulative cultural evolution - in-
ventions quickly spread and are improved by following
generations (Tomasello, 1999). These inventions spread at
such a pace that they are rarely forgotten or lost. This is
referred to as the ratchet effect (Tomasello et al., 1993) -
inventions are iteratively improved without slippage back.
This effect is enabled by human social learning abilities (ex.
imitation, instructed learning), and motivations (to learn
from others, but also to affiliate and conform). The ear-
liest form of cultural learning is the mimicking of facial
expressions (observed even in neonates (Meltzoff & Moore,
1997)). Over the course of the first year, children begin to
imitate other’s actions and goals, and then, they begin
doing so in ways which demonstrate their understanding of
other’s as intentional agents (Meltzoff, 1995). Joint inten-
tionality brings forth a new form of cultural learning called
role reversal imitation. Children can reverse the roles of
a collaborative activity by learning about the partners role
only from playing their own. For example, children respond
to an adult tickling their arm, by tickling the adult’s arm
(instead of its own) (Carpenter et al., 2005). This is enabled
by the dual-level structure of joint intentionality through
which children understand, at the same time, the joint goal
of a dyadic interaction on one level, and the individuals’
separate roles on another. The next big step in the devel-
opment of cultural learning is learning from instructions -

instructed learning (following the emergence of collective
intentionality). It is based on the adults’ motivation to teach
children as well as on the children’s ability to understand
and learn from linguistic instructions. Children understand
knowledge acquired through instructions as objective truth,
and generalize it much better than knowledge acquired by
other means (Butler & Tomasello, 2016). In this way we
acquire the most complex knowledge and skills such as
reading or algebra. Refer to section B.1.3 for more details.

3.2. Jerome Bruner

This work is also influenced by Jerone Bruner’s theories, es-
pecially regarding the concepts of scaffolding (Wood et al.,
1976) and formats (Bruner, 1985), which were recently rein-
troduced to AI as pragmatic frames (Vollmer et al., 2016).

Formats (Pragmatic frames) (Bruner, 1985) simplify learn-
ing by providing a stable structure to social interactions.
They are regular patterns characterizing the unfolding of
possible social interactions (equivalent to an interaction pro-
tocol or a grammar of social interactions). Formats consist
of a deep structure (the static part) and a surface structure
(the varying realizations managed by some rules). An ex-
ample of a format is the common peek-a-boo game. The
deep structure refers to the appearance and the reappear-
ance of an object. The surface structure can be realized
in different ways. For example, one might hide an object
using a cloth, or hands; one might hide his face or a toy; one
might do shorter or longer pauses before making the object
reappear. We understand social interactions through such
formats, and our social interactions are based on our ability
to learn, negotiate, and use them.

Another relevant concept is scaffolding (Wood et al., 1976)
(similar to Vygotsky’s zone of proximal development (Vy-
gotsky & Cole, 1978)). Scaffolding is a process through
which an adult bootstraps the child’s learning. The adult
controls aspects of a task which are currently too hard for the
child (scaffolds the interaction). The scaffold is gradually
reduced as the child is ready to take on more aspects of the
task, until they can solve the task alone (without scaffolding).
An example is a child constructing a pyramid with the help
of an adult (Wood et al., 1976). At first, the child is not even
focusing on the task, and the adult tries to get its attention
to the task by connecting blocks and building the pyramid
in front of them. Once the child is able to focus on the task,
the adult starts passing the blocks to the child to connect. In
the next phase, the child is grabbing blocks by itself, and
the adult is helping through verbal suggestions. Then, only
verbal confirmations are needed to guide the child. Finally,
the child can construct the pyramid by itself. In summary,
the adult observes the child and gradually transfers parts of
the task (removes the scaffold) to the child. Through this
process, the caretaker enables the child to master a task they
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would not be able to master alone.

Theory of Mind (ToM) can be defined as the understand-
ing that others have intentions, desires, beliefs, perceptions,
and emotions different from one’s own and that such in-
tentions, desires, and so forth affect people’s actions and
behaviors (APA, 2023). Theories discussed here (especially
Tomasello’s) do not use this term much, rather they separate
it into more fine-grained ones. For example, the ability to
”imagine what another knows” require the processing of
only one perspective, this is only the first step which later
develops to the ability to coordinate multiple perspectives,
and finally to form the objective perspective and address
false-beliefs. Another example is the concept of recursive-
ness in JA: it is not sufficient to infer what another knows,
but also that another knows about what you know, and so
on. The socio-cognitive abilities discussed here are different
aspects of ToM. Some of these those are a clear subset of
the usual definition (ex. imagine what another knows), and
some go beyond (coordinate multiple perspectives).

4. The SocialAI school
The SocialAI school is a tool for building interactive envi-
ronments to study various questions regarding social compe-
tence, such as ”What do concepts, such as social abilities and
motivations, outlined by developmental psychology mean
in the scope of AI?”, ”How can we evaluate their presence
in different agents?”, ”What are their simplest forms and
how can agents acquire them?”

To construct SocialAI, we rely on a set of key experiments
and studies from developmental psychology, which were
used to outline the most important abilities, motivations
and developmental steps in humans. From the work of
Tomasello, we focus on developments before and around
the age of 9 months (we believe it is important to address
those before more complex ones relating to development
of 3-year-olds, see section 3.1). We study the following
developmental pathways: Social cognition (inferring other’s
perception and joint attention), Communication (referen-
tial communication through the pointing gesture and the
beginning of conventionalized communication through sim-
ple language), and Cultural Learning (imitation and role
reversal imitation). From the work of Bruner, we study the
concepts of Formats and Scaffolding (see section 3.2).

SocialAI, which is built on top of Minigrid (Chevalier-
Boisvert et al., 2018), includes a customizable parameter-
ized suite of procedurally generated environments. We im-
plement this procedural generation with a tree-based struc-
ture (the parametric tree). This makes it simple to add and
modify new environments, and control their sampling. All
the current environments are single-agent and contain a
scripted peer. The agent has to interact with the peer to

reach an apple. This setup enables a controlled and min-
imal representation of social interactions. SocialAI also
includes RL-based and LLM-based learners and evaluation
protocols.

In our experiments, we present case studies to as examples
of how SocialAI could be easily used and modified to ask
various questions and conduct diverse experiments. To fa-
cilitate future research, SocialAI was made to be very easy
to use and modify. It will be completely open sourced, and
we hope that it will be useful to the community to study the
questions of social intelligence in AI.

We do not claim that the SocialAI school is sufficient to
construct a socially competent agent as this is a very far-
reaching and complex goal. However, we believe that in
aiming for this goal, concepts from developmental psychol-
ogy can serve as signposts for AI - give directions and enable
us to define short term goals. Given that the outlined skills
are at the very core of human social and cognitive compe-
tences, artificial agents aimed at participating in and learning
from social interactions with humans are likely to require
the same core competences. We present the SocialAI school
merely as a first step towards this goal. Refer to section
C in the appendix for technical details on the environment,
agents, and the procedural generation mechanisms.

5. Experiments
We show how the SocialAI school can be used to conduct
experiments inspired by theories and studies described in
section 3. In all our case studies, except the study with
language models (sec. 5.4), we use a PPO (Schulman et al.,
2017) agents with different exploration bonuses (refer to
appendix D for technical details). We study the pointing
gesture, role reversal imitation and scaffolding, and present
a study with large language models. In appendix G we
present additional experiments regarding linguistic cues,
joint attention, in-episode imitation learning, the ability to
infer the peer’s field of view, and formats.

Figure 1. The Pointing experiments. The figure compares the
success rate (mean +/- std over 8 seeds) on the training environ-
ments with the evaluation on the testing environment. The cross
marks depict statistical significance (p = 0.05). The agent is able
to infer the meaning of a pointing gesture on the training environ-
ments, but it is not able to generalize to a new social context.
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5.1. Understanding the pointing gesture

In this experiment, we study the ability of an RL agent to un-
derstand the pointing gesture. This experiment is motivated
by a study of childrens’ ability to understand pointing ges-
tures (Behne et al., 2005) (see section B.1.2 in the appendix).
We study can an RL agent infer the meaning of a pointing
gesture, and generalize this ability to new situations (infer
the new meaning of a pointing gesture in a new context).
It is interesting to study this kind of generalization as the
power of inferring pointing gestures is based precisely on
being able to infer it’s meaning to new referents based on
new social contexts.

The environment consists of two objects (ex. boxes) and the
peer that points to the correct object. The agent then has to
interact with that object (ex. open the box) to get access to
an apple. The agent is trained on five problems each with
different objects (Boxes, Switches, Levers, Marble, Gen-
erators), and on the asocial version of the Doors problem
(only one door and no peer). Training on the asocial version
enables the agent to learn how to use a door, which is a
prerequisite for generalization of the pointing gesture to an
environment with two doors. The agent is evaluated on the
Doors problem in the social setting (two doors and a peer
pointing to the correct one) The agent needs to combine
the knowledge of how to use a door (learned on the asocial
version of that problem), with inferring the meaning of the
pointing gesture (learned on the other five problems), and
generalize that to a new scenario where the peer points to a
door. Refer to section F.1 in the appendix for details.

Figure 1 shows the success rate of the agent on the training
environments (”PPO CB train”) and its evaluation on the
evaluation environment (PPO CB(test)). We can see that
while the agent easily solves the training environments (with
the success rate of 95.2%), it fails to generalize. It reaches
the success rate of 45.2%, which corresponds to randomly
guessing the correct object. These results demonstrate that
the agent can learn to infer the meaning of a pointing gesture
in a familiar context, but cannot generalize to new social
contexts. These results motivate future research on how an
agent can be endowed with abilities for such combinatorial
generalization, a potential solution could leverage LLMs.

Appendix G.1 presents experiments in which the peer, in-
stead of pointing, provides linguistic cues for the color or
the proximity of the correct object. As in the pointing experi-
ments, we observe that while PPO agents master the training
environments, they fail to generalize to a new context.

5.2. Role reversal imitation

In this experiment, we study the role-reversal capabilities of
an RL agent - to what extent can it learn about the partner’s
role from playing its own. In doing so, we also show how a

cognitive science experiment can be recreated in the scope
of AI. In Fletcher (2012) apes and children were trained
on one role (role B), and then tested on how long it took
them to master the opposite role (role A). Results showed
that children, but not apes, master role A faster than the
control group (not pretrained). These results imply that
children learn about the opposite role just from playing
their own, i.e. they see the interaction from a bird’s eye
perspective. We study the following two questions: 1) How
much do RL agents learn about the partner’s role during a
collaborative activity? 2) Does increasing diversity in the
training (training on more tasks in both roles) enable the
agent to learn more about the partner’s role?

We conduct this study on the MarblePass task. This task
consists of two roles: one participant pushes the marble to
the right side of the environment (role A), from where the
other can push it to the a generator, which generates apples
(role B). We aim to assess how much the agent learns about
the opposite role (role A), from training in its own (role B).
Following Fletcher (2012) we measure the sample efficiency
of fine-tuning agents to the test role. Unlike in Fletcher
(2012) it is not sufficient to compare an agent pretrained
on the training role with an unpretrained agent. Even if the
agent pretrained on the training role learns nothing about the
testing role, it would still learn about environment dynamics
and one would expect it to learn faster than the unpretrained
agent. For this reason, we compare with an agent pretrained
on the asocial version of the training role. In this version,
the agent obtains reward in the same way as in the social
version, but no peer is needed - the agent and the marble are
placed on the right side of the environment and the agent has
to push the marble towards the generator. Therefore, this
agent learns all about the relevant environment dynamics,
but not about the specific collaborative activity. This agent
represents the control group in Fletcher (2012).

We conduct two experiments: single and group. In single
experiments, the agents are trained only on one task : role
B and the asocial version of the MarblePass problem. In
group experiments, both agents are also trained both roles
of all additional six collaborative problems (a total of 13
environments). In other words, we compare the agents pre-
trained in the four following ways: 1) experimental (single):
pretrained only on role B of the MarblePass problem, 2) con-
trol (single): pretrained only on the asocial version of the
MarblePass problem, 3) experimental (group): pretrained on
role B of the MarblePass problem, and on both roles of all
other problems, 4) control (group): pretrained on the asocial
version of the MarblePass problem, and on both roles of all
other problems. Refer to appendix for additional details.

How much do RL agents learn about the partner’s role
during a collaborative activity? Figure 2(a) shows the
success rate of fine-tuning to role A of the MarblePass task.
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It compares the experimental and the control conditions of
the single experiments. It is interesting to note that the agent
pretrained on the asocial version (”asocial”) masters role A
of the task slightly faster than the agent pretrained on role
B of the task (”role B”). This implies that, not only, the
agent does not learn anything useful about the peer’s role,
but pretraining on role B actually makes it harder for the
agent to learn about role A. We believe that this is because,
during training in role B, the agent learns to first wait for the
peer, while in the asocial version it pushes the marble right
away. As, in role A, the agent pushes the marble right away
too, we believe this makes it slightly easier for the asocially
pretrained agent to adapt to the new role. In other words,
from an egocentric view the asocial version is closer (than
role B) to role A. This shows that the RL agent, rather than
understanding the interaction from a bird’s-eye perspective,
finds the simplest way to solve the task.

Does training on additional problems enable the agent to
learn more about the partner’s role? Figure 2(b) shows
the success rate of fine-tuning to role A of the MarblePass
task. It compares the experimental and the control condi-
tions of the group experiments. Here we can see that there is
no significant difference in sample efficiency. We can make
two observations from this. First, as the socially pretrained
agent was less sample efficient in the single experiments,
we can conclude that pretraining on many tasks reduces
overfitting on role B. And second, as this agent is not more
sample efficient than the asocially pretrained baseline, we
can conclude that this agent does not learn anything usefull
about the peer’s role too.

These results imply an interesting avenue of research into
how agent’s attention can be directed to the partner’s role
and the birds-eye-view of the activity.

5.3. Scaffolding

In this section, we study the concept of scaffolding (see sec.
3.2 for details): Can a scaffolded environment help an agent
learn more complex interaction sequences (formats)? The
environment is similar to the one in section 5.1. However,
we evaluate on all six problems (instead of one) in the social
version, and the peer does not point until the agent per-
forms a more complex introductory sequence (establishes
eye contact and utters ”Help, please”).

We compare two types of scaffolding: ”scaf 4” and ”scaf 8”.
The agent is trained in two phases. In the first phase, the
agent is trained on environments with varying complexity
(defined by scaffolding type). After reaching a set success
rate, the training goes to the second phase in which the agent
is trained only on the six testing environments. The agent
denoted by ”scaf 4” is trained on four different introductory
sequences (requiring or not requiring eye contact and the ut-
terance). This agent is trained on 18 different environments

(a) Single experiment:
learning role A given
pretraining on role B (1
environment).

(b) Group experiment:
learning role A given pre-
training on role B and 6
other two-roles tasks (13
environments).

Figure 2. Role reversal imitation experiments. We study to what
extent is an RL agent able to transfer knowledge from one role
of a collaborative activity to another. Figure shows the success
rate of fine-tuning to role A (mean ± std over 8 seeds), the cross
marks depict statistical significance (p = 0.05). We compare a
PPO agent pretrained on role B (”role B”) to that pretrained on the
asocial version of the environment (”asocial”), which learns only
about the environment dynamics. Agents pretrained on role B do
not master role A faster than asocially pretrained agents, implying
that the RL agents do exhibit role reversal capabilities.

(six problems, four sequences). The ”scaf 8” agent is also
trained with those four different options. In addition, the
peer can help in two different ways: pointing to the object
or interacting with it and leaving the apple for the agent to
eat (36 environments). The easiest environments on which
the ”scaf 8” agent is trained do not require an introduction
and the peer leaves the apple for the agent (the agent just
goes to and eats the apple). The hardest ones require the
introduction with both the utterance and eye contact and the
peer points to the object. The agents are evaluated on those.

Figure 3 compares the success rate of the agents trained
with the two scaffolding types (”scaf 4” and ”scaf 8”) to
that of an agent trained only on the six testing environments
(”no scaf”). We can see that only the scaffolded agents
solve the testing environments, and that the agent with a
more detailed scaffolding (”scaf 8”) solves the environment
faster. These results show that scaffolding enables the agents
to learn more complex formats, and that a more thorough
scaffolding further improves the efficiency. In future work,
more advanced scaffolding could be explored, ex. based
on learning progress (Oudeyer & Kaplan, 2007) or other
surrogate objectives (Portelas et al., 2020).

5.4. Large language models as interactive agents

Large language models (LLMs) are staring to be used in
various tasks (Brown et al., 2020; Touvron et al., 2023), in-
cluding to control interactive agents (Yao et al., 2022; Carta
et al., 2023). In order to study LLMs as interactive agents,
SocialAI school enables parsing of visual grid observations
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Figure 3. The scaffolding experiment. The comparison of agents
trained on multiple environments of varying difficulty to that
trained on an unscaffolded environment. The figure show suc-
cess rates on the testing environments (mean ± std over 8 seeds)
and the cross marks depict statistical significance (p = 0.05)
with respect to the ”no scaf” baseline. Only the scaffolded agents
(”scaf 4” and ”scaf 8”) solve the environment, and the scaffolding
with eight difficulty levels is more sample efficient.

to text (this parsing can be easily modified and experimented
with). This process is depicted in figure 24 in the Appendix.

We use two environments: AsocialBox and ColorBoxes.
The AsocialBox environment contains a box, which the
agent has to open to get the apple. The ColorBoxes enviorn-
ment contains two boxes and a peer. The peer says the color
of the correct box, which the agent then has to open.

An LLM acts by continuing a prompt containing in-context
examples, observations and actions from the current episode
(last 3 steps for ColorBoxes and the full episode for Aso-
cialBox as this gave the best performance), and the action
query (”Act :”). We manually create expert trajectories for
in-context examples - 7 episodes (545 words) for the Aso-
cialBox environment, and 9 (687 words) for ColorBoxes
(the full in context examples are given in appendix G.6).
The model generates the textual continuation of this prompt
(3 tokens for GPT models, and 3 words for bloom). If one
of the available actions (”turn left”, ”turn right”, ”move
forward”, ”toggle”) is a substring of the generated text, that
action is executed, otherwise, the ”no op” action is executed
(the agent does not act this step). The executed action and
the new observation are then added to the prompt.

We compare three LLMs: bloom-560m (Scao et al., 2022),
and two GPT models (Brown et al., 2020), ada (”text-ada-
001”) and davinci-3 (”text-davinci-003”). We compare them
to a baseline that samples a random action. We evaluate on
a fixed test set of 20 environments, with 10 timesteps.

Table1 shows that, on the AsocialBox environment, the
GPT models achieve a success rate of 90%, despite only
observing seven expert trajectories. On ColorBoxes, davinci-
3 outperforms all other models with a success rate of 35%.
As this is belowe 50%, this implies that none of the models
are able to use cues from the peer. All models outperform
the random values and both GPT models outperform bloom-
560m. The environments used in this case study are much

Table 1. Comparison of large language models on two SocialAI
environments (success rate on 20 environments). The best model
(”davinci-3”) reaches the success rates of 90% and 35%. While
this performance is impressive given that the models observed
only seven (for AsocialBox) and nine (for ColorBoxes) expert
trajectories, it leaves much room for improvement.

ada davinci-3 bloom-560m rand

AsocialBox 90% 90% 75% 5%
ColorBoxes 10% 35% 10% 0%

simpler than those in other case studies (only one problem,
and no introductory sequence). Nonetheless, it impressive
that such a performance is achieved from only a few expert
trajectories: seven for AsocialBox and nine for ColorBoxes.

We are optimistic that LLM-based agents could solve these
and much more complex tasks with various improvements
such as planning (Huang et al., 2022), chain-of-thought (Wei
et al., 2022; Zhang et al., 2023), or fine-tuning (Carta et al.,
2023). As the main motivation of this case study was to
show that it is easy to study LLMs with the SocialAI school,
we leave those experiments for future work.

6. Conclusion
We highlight the importance of socio-cognitive abilities
in AI research and present an introduction to Michael
Tomasello’s and Jerome Bruner’s theories of socio-cognitive
development. Following these theories, we outlined a set
of key socio-cognitive abilities and concepts for AI: social
cognition (inferring other’s perception and joint attention),
communication (referential and early conventionalized com-
munication), cultural learning (imitation and role reversal
imitation), scaffolding, and formats.

We present the SocialAI school - a tool simplifying the
research of core socio-cognitive abilities. We show how
the SocialAI school can be used to easily create environ-
ments studying various questions inspired by developmental
psychology. With RL agents, we conduct experiments re-
garding the pointing gesture, scaffolding, and role reversal
(by recreating an experiment from developmental psychol-
ogy). We demonstrate that, by using SocialAI to parse
environments into text, Large Language Models be easily
studied too. In the appendix, we present additional studies
concerning linguistic communication, joint attention, imi-
tation learning, inferring others’ field of view, and formats.
Our experiments demonstrated the diversity of studies that
can be conducted with the SocialAI school, highlighted the
limitations of standard RL agents, and showed that while
large language models learn with high sample efficiency,
additional methods such as fine-tuning or chain-of-thought
might be needed.
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Ortega, P. A., Strouse, D., Leibo, J. Z., and de Fre-
itas, N. Social influence as intrinsic motivation for
multi-agent deep reinforcement learning. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learn-
ing, ICML 2019, volume 97, pp. 3040–3049. PMLR,
2019. URL http://proceedings.mlr.press/
v97/jaques19a.html.

Keupp, S., Behne, T., and Rakoczy, H. Why do children
overimitate? normativity is crucial. Journal of Experi-
mental Child Psychology, 116(2):392–406, 2013. ISSN
0022-0965. doi: https://doi.org/10.1016/j.jecp.2013.07.
002. URL https://www.sciencedirect.com/
science/article/pii/S0022096513001379.

Kosinski, M. Theory of mind may have spontaneously
emerged in large language models. arXiv preprint
arXiv:2302.02083, 2023.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25:
1097–1105, 2012.

Kumar, S., Correa, C. G., Dasgupta, I., Marjieh, R., Hu, M.,
Hawkins, R. D., Daw, N. D., Cohen, J. D., Narasimhan,
K., and Griffiths, T. L. Using natural language and pro-
gram abstractions to instill human inductive biases in
machines. ArXiv, abs/2205.11558, 2022.

Le, M., Boureau, Y.-L., and Nickel, M. Revisiting the
evaluation of theory of mind through question answer-
ing. In Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 5872–5877, Hong
Kong, China, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D19-1598. URL
https://aclanthology.org/D19-1598.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. Backpropaga-
tion applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

Lee, D., Jaques, N., Kew, J. C., Eck, D., Schuurmans, D.,
and Faust, A. Joint attention for multi-agent coordination
and social learning. CoRR, abs/2104.07750, 2021. URL
https://arxiv.org/abs/2104.07750.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In ICLR, 2016.

Lindblom, J. and Ziemke, T. Social situatedness of nat-
ural and artificial intelligence: Vygotsky and beyond.
Adaptive Behavior, 11(2):79–96, 2003. doi: 10.1177/
10597123030112002. URL https://doi.org/10.
1177/10597123030112002.

Lyons, D. E., Young, A. G., and Keil, F. C. The hidden
structure of overimitation. Proceedings of the National
Academy of Sciences, 104:19751 – 19756, 2007.

Meltzoff, A. N. Understanding the intentions of others:
Re-enactment of intended acts by 18-month-old children.
Developmental psychology, 31 5:838–850, 1995.

Meltzoff, A. N. and Moore, M. K. Explaining facial imita-
tion: A theoretical model. Infant and child development,
6(3-4):179–192, 1997.

Mirolli, M. and Parisi, D. Towards a vygotskyan
cognitive robotics: The role of language as a
cognitive tool. New Ideas in Psychology, 29
(3):298–311, 2011. ISSN 0732-118X. doi:
https://doi.org/10.1016/j.newideapsych.2009.07.001.
URL https://www.sciencedirect.com/
science/article/pii/S0732118X09000348.
Special Issue: Cognitive Robotics and Reevaluation of
Piaget Concept of Egocentrism.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Moll, H. and Tomasello, M. Level 1 perspective-taking
at 24 months of age. British Journal of Developmental
Psychology, 24(3):603–613, 2006.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W.,
and Abbeel, P. Overcoming exploration in reinforcement
learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 6292–
6299. IEEE, 2018.



Submission and Formatting Instructions for ToM 2023

Ndousse, K. K., Eck, D., Levine, S., and Jaques, N. Emer-
gent social learning via multi-agent reinforcement learn-
ing. In International Conference on Machine Learning,
pp. 7991–8004. PMLR, 2021.

Netanyahu, A., Shu, T., Katz, B., Barbu, A., and Tenen-
baum, J. B. PHASE: physically-grounded abstract social
events for machine social perception. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021, pp. 845–853.
AAAI Press, 2021. URL https://ojs.aaai.org/
index.php/AAAI/article/view/16167.

Oudeyer, P.-Y. and Kaplan, F. What is intrin-
sic motivation? a typology of computational ap-
proaches. Frontiers in Neurorobotics, 1, 2007.
ISSN 1662-5218. doi: 10.3389/neuro.12.006.
2007. URL https://www.frontiersin.org/
articles/10.3389/neuro.12.006.2007.

Over, H. and Carpenter, M. The social side of
imitation. Child Development Perspectives, 7(1):
6–11, 2013. doi: https://doi.org/10.1111/cdep.
12006. URL https://srcd.onlinelibrary.
wiley.com/doi/abs/10.1111/cdep.12006.

Parker-Holder, J., Jiang, M., Dennis, M., Samvelyan, M., Fo-
erster, J. N., Grefenstette, E., and Rocktaschel, T. Evolv-
ing curricula with regret-based environment design. In
International Conference on Machine Learning, 2022.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In ICML, 2017.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. C. Film: Visual reasoning with a general
conditioning layer. CoRR, abs/1709.07871, 2017. URL
http://arxiv.org/abs/1709.07871.

Portelas, R., Colas, C., Weng, L., Hofmann, K., and
Oudeyer, P. Automatic curriculum learning for deep
RL: A short survey. CoRR, abs/2003.04664, 2020. URL
https://arxiv.org/abs/2003.04664.

Rabinowitz, N. C., Perbet, F., Song, H. F., Zhang, C., Es-
lami, S. M. A., and Botvinick, M. Machine theory of
mind. In Dy, J. G. and Krause, A. (eds.), Proceed-
ings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm,
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Raileanu, R. and Rocktäschel, T. RIDE: rewarding impact-
driven exploration for procedurally-generated environ-
ments. CoRR, abs/2002.12292, 2020. URL https:
//arxiv.org/abs/2002.12292.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J.,
Razavi, A., Edwards, A. D., Heess, N. M. O., Chen, Y.,
Hadsell, R., Vinyals, O., Bordbar, M., and de Freitas, N.
A generalist agent. ArXiv, abs/2205.06175, 2022.

Richerson, P. J. and Boyd, R. Not by Genes Alone: How
Culture Transformed Human Evolution. University
Of Chicago Press, June 2006. ISBN 0226712125.
URL http://www.amazon.com/exec/obidos/
redirect?tag=citeulike07-20&path=
ASIN/0226712125.

Ruis, L., Khan, A., Biderman, S. R., Hooker, S., Rock-
taschel, T., and Grefenstette, E. Large language models
are not zero-shot communicators. ArXiv, abs/2210.14986,
2022.

Sap, M., Rashkin, H., Chen, D., Bras, R. L., and Choi,
Y. Socialiqa: Commonsense reasoning about social in-
teractions. CoRR, abs/1904.09728, 2019. URL http:
//arxiv.org/abs/1904.09728.

Sap, M., Bras, R. L., Fried, D., and Choi, Y. Neural theory-
of-mind? on the limits of social intelligence in large lms.
ArXiv, abs/2210.13312, 2022.

Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Polle-
feys, M., Lillicrap, T. P., and Gelly, S. Episodic curiosity
through reachability. ArXiv, abs/1810.02274, 2018. URL
http://arxiv.org/abs/1810.02274.

Scao, T. L., Fan, A., Akiki, C., Pavlick, E.-J., Ilić, S., Hess-
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