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Abstract

Response diversity has become an important001
criterion for evaluating the quality of open-002
domain dialogue generation models. However,003
current evaluation metrics for response diver-004
sity do not capture semantic diversity of gen-005
erated responses, as they only consider lex-006
ical aspects of the responses. In this paper,007
we introduce a new automatic evaluation met-008
ric to measure the semantic diversity of gener-009
ated responses. Through human evaluation, we010
demonstrate that our proposed metric highly011
correlates to human judgments on response di-012
versity than existing lexical-level diversity met-013
rics. Furthermore, motivated by the analysis of014
an existing dialogue dataset, we propose a sim-015
ple yet effective learning method that improves016
the semantic diversity of generated responses017
through response re-weighting based on the018
semantic distribution of the training dataset.019
Through automatic and human evaluation, we020
show that our proposed learning method bet-021
ter improves both response diversity and co-022
herency compared to other baseline methods.023

1 Introduction024

Open-domain dialogue generation (Sordoni et al.,025

2015; Bordes et al., 2017) has greatly progressed026

with the development of large-scale pretrained lan-027

guage models (Radford et al.; Roller et al., 2021)028

in the last decade. However, although dialogue029

generation models can produce fluent responses030

for a given context, they are also known for fre-031

quently generating dull and uninformative generic032

responses (e.g., "I don’t know"), degrading the in-033

terestingness of responses (Serban et al., 2016; Li034

et al., 2016a). To alleviate this problem, many stud-035

ies (Zhao et al., 2017; Li et al., 2017a; Zhang et al.,036

2018) have been conducted to enhance the diversity037

of generated responses, and response diversity has038

become an important criterion for evaluating the039
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⑥ I’d prefer non-smoking roommates.
⑦ Do you want some cheese on it?
⑧ Thanks a lot.

① Yeah, I think he knows that.
② No more, really appreciate it.
③ You are most welcome.
④ Thanks a lot, sir.

Figure 1: An illustration of measuring semantic diver-
sity of generated responses. Although both Model A
and Model B generate lexically diverse responses, we
argue that the responses of Model B seem more var-
ied in human perception because they are semantically
diverse. Our proposed Sem-Ent measures semantic di-
versity based on the semantic distribution of generated
responses.

quality of generated responses.1 040

The current evaluation protocol employs lexical- 041

level evaluation metrics such as distinct-n (Dist- 042

n) (Li et al., 2016a) and entropy-n (Ent-n) (Ser- 043

ban et al., 2017; Zhang et al., 2018) to measure 044

the diversity of generated responses. However, 045

it is unclear whether lexical-level evaluation met- 046

rics can successfully capture the human judgment 047

on response diversity. For instance, in Figure 1, 048

responses generated by model A and model B 049

both show high lexical diversity, but humans in- 050

tuitively recognize that the responses of model B 051

1According to recent survey papers (Ni et al., 2021; Liang
and Li, 2021), more than thirty studies within five years have
assessed dialogue generation models from the diversity per-
spective.
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are more diverse. We argue that considering a052

semantic diversity of the generated responses is053

more important for capturing human judgment on054

response diversity. However, the lexical-level met-055

rics cannot directly capture the semantic diversity056

since responses including similar words can have057

very different semantics, and responses with dif-058

ferent words can have similar semantics (Yarats059

and Lewis, 2018). Nevertheless, most studies have060

conducted an evaluation with only the lexical-level061

evaluation metrics to measure the diversity of gen-062

erated responses because there is no alternative063

metric to measure the semantic diversity.064

To this end, we propose Sem-Ent (Semantic-065

Entropy), which is a new automatic evaluation066

metric for measuring the semantic diversity of gen-067

erated responses. Sem-Ent first maps generated068

responses into a semantic latent space using a pre-069

trained language model (e.g., DialoGPT (Zhang070

et al., 2020) and BERT (Devlin et al., 2019)).071

Then, the metric measures the semantic diversity072

of generated responses by measuring how the re-073

sponses are evenly distributed in the semantic la-074

tent space based on semantic clusters, as shown in075

Figure 1. Through human evaluation, we demon-076

strate that Sem-Ent is more highly correlated with077

human judgments on response diversity than ex-078

isting lexical-level evaluation metrics. The human079

evaluation further shows that Sem-Ent highly cor-080

relates with human judgments about how they feel081

generated responses are interesting.082

Furthermore, we observe that the semantic distri-083

bution of responses in the dialogue dataset is highly084

imbalanced. This imbalance leads the model to085

produce semantically less diverse responses. To ad-086

dress this problem, we propose a simple yet effec-087

tive learning method of dialogue generation mod-088

els. Our proposed method, DRESS (Diversifying089

RESponses Semantically), induces dialogue gener-090

ation models to learn more about responses with091

rare semantics and learn less about responses with092

frequent semantics. From this, dialogue generation093

models could produce more semantically diverse094

responses. Experiments on two benchmark datasets095

demonstrate that DRESS shows substantially bet-096

ter semantic diversity compared to state-of-the-art097

baseline methods, along with the gain in response098

coherency. Interestingly, DRESS achieves better099

performance in evaluation metrics for lexical-level100

diversity than baselines even though it focuses on101

improving the semantic diversity of generated re-102

sponses. Moreover, human evaluation results also 103

affirm the effectiveness of DRESS, where DRESS 104

outperforms all baseline methods in terms of ap- 105

propriateness and informativeness of generated re- 106

sponses. 107

Our Contributions: (1) A new automatic evalua- 108

tion metric for measuring semantic diversity (Sem- 109

Ent), which is highly correlated with human judg- 110

ment on response diversity. (2) A simple yet effec- 111

tive learning method of dialogue generation mod- 112

els (DRESS) for improving the semantic diversity 113

of generated responses. (3) Experiments on two 114

benchmark datasets, showing that DRESS outper- 115

forms the baseline methods in both semantic di- 116

versity and lexical-level diversity. (4) A Python 117

library2 of Sem-Ent, contributing to the community 118

of open-domain dialogue generation. 119

2 Related Work 120

2.1 Open-domain Dialogue Models for 121

Enhancing Response Diversity 122

Since generating dull and uninformative responses 123

is a well-known and essential problem in open- 124

domain dialogue (Vinyals and Le, 2015; Li et al., 125

2016a), numerous lines of works have been pro- 126

posed to address this issue. Li et al. (2016a) replace 127

the standard maximum likelihood objective into 128

maximum mutual information objective to penalize 129

generic responses. This new objective function has 130

been continuously adopted in subsequence works 131

to increase the specificity and diversity of gener- 132

ated responses (Li et al., 2016c; Zhang et al., 2018, 133

2020). Another line of work improves diversity 134

by modeling the one-to-many relationship of open- 135

domain dialogue using latent variables to generate 136

multiple and diverse responses (Serban et al., 2017; 137

Zhao et al., 2017; Bao et al., 2020a,b; Chen et al., 138

2019; Zhang et al., 2019; Gao et al., 2019). Some 139

methods selectively penalize frequent responses by 140

removing them from the training dataset (Csáky 141

et al., 2019) or applying negative training to fre- 142

quent responses (He and Glass, 2020). Using differ- 143

ent decoding algorithms can improve the response 144

diversity; Li et al. (2016b) and Vijayakumar et al. 145

(2018) directly modify the beam search algorithm 146

to promote the response diversity. Sampling-based 147

decoding algorithms such as top-k sampling (Fan 148

et al., 2018) and nucleus sampling (Holtzman et al., 149

2019) are known to improve the diversity of gen- 150

erated responses. Wang et al. (2021) diversify re- 151

2Link will be released after publication.
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sponses by adaptively modifying the target token152

distribution with a lightweight decoder to prevent153

the model from being over-confident.154

2.2 Metrics for Capturing Response Diversity155

Response diversity metrics for open-domain dia-156

logue generation models can mainly be categorized157

into two groups. Referenced metrics (Zhao et al.,158

2017; Gao et al., 2019) use the reference responses159

provided by human annotators to capture the re-160

sponse diversity by computing a recall value based161

on various similarity metrics such as BLEU and162

embedding similarity. On the other hand, unrefer-163

enced metrics measure the response diversity with-164

out the use of reference responses generated by165

human annotators. Therefore, unreferenced met-166

rics are more widely adopted than referenced met-167

rics because they can measure response diversity168

even in the absence of reference responses. Dist-169

n (Li et al., 2016a) measures the response diver-170

sity with the fraction of distinct n-grams over pos-171

sible n-grams in all generated responses. Ent-n172

metric (Serban et al., 2017; Zhang et al., 2018) is173

suggested to improve the Dist-n metric by taking174

the frequency difference of n-grams into account.175

LF (Li et al., 2019) calculates the frequency of176

low-frequency words in generated responses as the177

response diversity. Our work focuses on introduc-178

ing a semantic diversity metric that alleviates the179

limitation of the aforementioned unreferenced di-180

versity metrics of considering only lexical aspect181

of generated responses.182

3 Measuring Semantic Diversity183

3.1 Sem-Ent184

Let D = {(c1, r1), (c2, r2), · · · (cm, rm)} denote a185

training dataset consisting of m dialogues where186

ci and ri denote the context and its response of the187

i-th dialogue, respectively. Dialogue generation is188

to generate a response r for a given context c.189

We are motivated by recent empirical observa-190

tions that responses can be clustered by the se-191

mantic similarity between the responses (Ko et al.,192

2020; Gao et al., 2020). By following Csáky et al.193

(2019); Pillutla et al. (2021), we cluster responses194

in D by utilizing a pretrained language model.195

Here, we select DialoGPT (Zhang et al., 2020)196

as the language model. Each response ri in D is197

turned into a semantic representation e(ri) by the198

language model, and then k semantic clusters are199

formed from the semantic representations by the200

k-means algorithm (Lloyd, 1982). Let C denote a 201

set of the obtained k semantic clusters. 202

Consider a test dataset D̃ = 203

{(c̃1, r̃1), · · · , (c̃n, r̃n)} consisting of n dialogues. 204

During evaluation, a dialogue generation model M 205

generates responses RM = {rM1 , · · · , rMn } for the 206

contexts {c̃1, · · · , c̃n} in D̃, respectively. Sem-Ent 207

measures the semantic diversity of RM generated 208

by the model M . To compute Sem-Ent, we require 209

a semantic distribution P (RM ), but there is no 210

direct way to obtain the exact distribution. Thus, 211

we approximate the semantic distribution P (RM ) 212

using a distribution P̃ (C) =
[
p̃(1); · · · ; p̃(k)

]
of 213

the semantic clusters C as follows: 214

p̃(j) =
1

n

n∑
i=1

I
(
ϕC(e(r

M
i )) = j

)
, (1) 215

where ϕC(x) ∈ {1, · · · , k} is a cluster mapping 216

function that returns the cluster id of x from C. p̃(j) 217

is the probability of the j-th cluster, indicating how 218

many generated responses are assigned to the j-th 219

semantic cluster. 220

Sem-Ent is an entropy of P̃ (C), which is calcu- 221

lated with P̃ (C) approximating the semantic distri- 222

bution of RM as follows: 223

Sem-Ent(RM ) = −
k∑

j=1

p̃(j) · log p̃(j). (2) 224

Interpretation of Sem-Ent is quite straightforward: 225

Sem-Ent gets lower when the semantic distribution 226

gets more imbalanced, i.e., when models gener- 227

ate responses belonging to only several specific 228

semantic clusters. Conversely, Sem-Ent gets the 229

highest value of log k when generated responses 230

are uniformly distributed to each semantic cluster. 231

3.2 Correlation with Human judgment 232

We conduct a human evaluation to demonstrate that 233

Sem-Ent successfully captures human judgments 234

on response diversity. 235

Experimental Setup. We use a similar experi- 236

mental setup to that of Pillutla et al. (2021) for 237

analyzing the correlation between response diver- 238

sity metrics and human judgment. We prepare 239

eight inference settings from two generation mod- 240

els (Blender-90M (Roller et al., 2021) and BART- 241

large (Lewis et al., 2020)) and four decoding algo- 242

rithms (greedy, beam, top-k sampling, and nucleus 243

sampling). The generation models are fine-tuned 244

on DailyDialog (Li et al., 2017b) dataset that con- 245

sists of daily conversations about various topics. 246
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Metric Correlation Dist-3 Ent-3 LF MAUVE Sem-Ent

Diversity/BT Pearson 0.348 (0.399) 0.702 (0.052) -0.232 (0.580) 0.134 (0.750) 0.810 (0.015)
Spearman 0.381 (0.352) 0.667 (0.071) 0.000 (1.000) 0.547 (0.160) 0.762 (0.028)

Interesting/BT Pearson 0.261 (0.533) 0.671 (0.068) -0.260 (0.533) 0.098 (0.817) 0.789 (0.020)
Spearman 0.381 (0.352) 0.714 (0.047) 0.048 (0.911) 0.523 (0.182) 0.667 (0.020)

Table 1: Correlation of various diversity measures with human judgments. "BT" denotes the Bradley-Terry score for
a pair-wise human evaluation and the value inside the parenthesis indicates p-value.

Then, each inference setting is paired with other247

settings, which gives a total of 28 (8C2) pairs of248

settings.249

For every round, a human annotator is assigned250

to a set that contains ten independent contexts251

c1, ·, c10 and two sides of responses r1a, ·, r10a and252

r1b, ·, r10b generated with two different settings.253

The annotator is asked to select which side of re-254

sponses is better in two criteria; whether (1) shows255

more diversity and (2) shows more interesting and256

creative responses, using a 5-point Likert scale.257

We obtain 25 preference ratings for each pair of258

inference settings. These annotation results are259

converted into each setting’s score by using the260

Bradley-Terry model (Marden, 1996) fitted by pair-261

wise annotations. We measure the correlation be-262

tween the Bradley-Terry score and diversity met-263

rics to check how each metric correlates with the264

human judgment on each criterion. More details265

about human evaluation are included in Appendix.266

Baseline Metrics. We compare Sem-Ent with ex-267

isting lexical-level response diversity metrics: Dist-268

n (Li et al., 2016a), Ent-n (Serban et al., 2017;269

Zhang et al., 2018) and LF (Li et al., 2019). We270

also include recently proposed MAUVE (Pillutla271

et al., 2021) as a baseline metric. MAUVE shares272

some properties with Sem-Ent such that it evaluates273

the distributional property of generated responses274

with semantic latent representations. However, it275

is designed to measure the divergence of generated276

responses from human responses, not for directly277

measuring response diversity. We compare Sem-278

Ent to MAUVE to verify that our Sem-Ent is more279

suitable for measuring the response diversity in280

open-domain dialogue generation.281

Results. Table 1 shows the correlation between the282

human judgments and the different diversity met-283

rics in terms of Pearson and Spearman rank corre-284

lation. Our Sem-Ent shows the highest correlation285

(on both Pearson correlation and Spearman corre-286

lation) with human judgment on response diversity287

compared to other evaluation metrics with a sig-288

nificant margin. Especially, Dist-n, the most com-289

monly used metric for response diversity, shows a 290

much lower correlation (0.348) compared to Sem- 291

Ent (0.810). These results support that Sem-Ent is a 292

good surrogate for measuring human judgment on 293

response diversity and strongly suggest that analyz- 294

ing the semantic diversity of generated responses is 295

crucial for capturing human perception of response 296

diversity. Moreover, MAUVE shows a lower corre- 297

lation with human judgment on response diversity. 298

This result implies that a closer gap between human 299

responses and generated responses does not always 300

indicate that generated responses are diverse since 301

human responses contain many dull responses fre- 302

quently (also studied in Section 4.1 and by Csáky 303

et al. (2019)). 304

We also observe that Sem-Ent shows a high cor- 305

relation with human judgment on interestingness; 306

Sem-Ent has a similar correlation to Ent-n and 307

shows a substantially higher correlation than Dist- 308

n, LF, and MAUVE. We believe that the strong 309

correlation of Sem-Ent with human judgment on 310

response diversity leads to a high correlation with 311

a closely related model property, interestingness. 312

In Section 6, we further justify that Sem-Ent is 313

robust to a choice of configurations used for the 314

metric such as a choice of the language model for 315

extracting semantic representations of responses 316

and a number of clusters k. 317

4 DRESS: Diversifying RESponses 318

Semantically 319

4.1 Diagnosing the Semantic Distribution of 320

Dialogue Dataset 321

As shown in Section 3.2, semantic distribution 322

of responses provides a crucial clue for under- 323

standing the diversity of the responses. There- 324

fore, we analyze the semantic distribution of the 325

responses in the training dataset. Figure 2 depicts 326

the semantic distribution P̃ (R) of the responses 327

R = {r1, r2, · · · , rm} in the training data of Dai- 328

lyDialog dataset. As shown in the figure, the seman- 329

tic distribution of the training dataset D is highly 330

skewed – almost half of the responses fall into the 331
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Figure 2: Semantic distribution of the responses in the
train split of DailyDialog. Clusters are sorted in the de-
scending order of the assigned probabilities. The dashed
line indicates the uniformly distributed probability, 0.05.

Index Responses

2

· Yeah . I know .
· Thank you .
· You are most welcome .
· No more , thank you very much .
· Not yet .

13

· that sounds great . Do you know if there are any
vegetable dishes that are spicy ?
· Do you want cheese on it ?
· I agree . The colors must be soft and pleasant .
You should feel comfortable when you cook our
dinners.

18

· I bought a new mattress and some fresh bed-
clothes . I also bought a new dressing table and a
new bedside table .
· I ’ d prefer non-smoking roommates , but I guess
I ’ ll have to take what I can get !
· A single room with a front view is 100 dollars
per night , one with a rear is 80 dollars .

Table 2: Response examples of the semantic clusters.
Index column indicates the Cluster Index in Figure 2.

top five frequent clusters (head clusters). Moreover,332

the frequent clusters tend to contain more generic333

and dull responses compared to infrequent clusters334

(tail clusters), as illustrated in Table 2. Contrarily,335

responses in the infrequent clusters have a wider336

variety of topics, intents, and diverse vocabularies.337

Since the training data is skewed towards semanti-338

cally generic and dull responses, naively training339

with this data will lead to a low semantic diversity340

of generated responses.341

4.2 Improving Semantic Diversity with342

DRESS343

We introduce a simple yet effective learning344

method of generation models for improving seman-345

tic diversity, DRESS, which addresses the prob-346

lem of the imbalanced semantic distribution by re-347

weighting the instances in the training dataset. The 348

purpose of DRESS is simple: inducing generation 349

models to learn more about responses in the infre- 350

quent semantic clusters and contrarily learn less 351

about responses in the frequent semantic clusters. 352

To this end, DRESS modifies the learning objective 353

into the weighted loss function and applies Nega- 354

tive Training (He and Glass, 2020; Li et al., 2020) 355

to the modified objective. 356

A conventional dialogue generation model is 357

trained by optimizing an NLL (negative log- 358

likelihood) objective as follows: 359

LNLL(D) = −
m∑
i=1

log pθ(ri|ci), (3) 360

where θ indicates parameters of dialogue genera- 361

tion models. Instead of using vanilla NLL objec- 362

tive, we propose to utilize weighted NLL objective 363

in DRESS using weight of responses w(ri): 364

LDRESS(D) = −
m∑
i=1

w(ri) · log pθ(ri|ci). (4) 365

The goal of weighted NLL objective is to assign 366

smaller weights to the responses in frequent se- 367

mantic clusters and assign bigger weights to re- 368

sponses in infrequent semantic clusters to balance 369

the semantic distribution. To meet this condition, 370

the weighting function w(r) should satisfy the 371

constraint: if p̃(ϕc(e(ri))) ≤ p̃(ϕc(e(rj))), then 372

w(ri) ≥ w(rj). Inspired by focal loss (Lin et al., 373

2017) which is used in the long-tail classification 374

problem (Liu et al., 2019b; Hong et al., 2021), we 375

calculate w as follows: 376

w(r) =
(
1− p̃(ϕc(e(r)))

)γ
, (5) 377

where γ is a hyperparameter for controlling a de- 378

gree of re-weighting (higher γ means more intense 379

re-weighting). 380

Moreover, to penalize responses in frequent se- 381

mantic clusters intensively, we utilize Negative 382

Training (He and Glass, 2020; Li et al., 2020) 383

jointly with the weighted objective function. For 384

every epoch, the model generates responses to each 385

given context. If generated responses are included 386

in head clusters (here, the assigned probability of 387

clusters is bigger than 0.1), then those generated 388

responses are assumed as negative examples, i.e., 389

assigning w(r) = −1. 390
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5 Experiments391

5.1 Experimental Setup392

We conduct experiments to demonstrate that the393

proposed learning method successfully improves394

response diversity.395

Dataset. We conduct experiments on two English396

open-domain dialogue datasets: DailyDialog and397

OpenSubtitles (Lison and Tiedemann, 2016). Dai-398

lyDialog consists of 13K dialogues which includes399

87K context-response pairs, and we split the dia-400

logues into train/valid/test sets in 8:1:1. The test401

set of DailyDialog contains 6.7K context-response402

pairs. OpenSubtitles is a large corpus containing403

movie scripts, and we use the version released404

in 2018 with 100K context-response pairs for the405

training and validation set each. We get rid of406

context-response pairs whose response is shorter407

than five words from the original test set and ran-408

domly sample 10K pairs as test data.409

Automated Metrics. As the goal of diversity-410

promoting dialogue generation models is to gener-411

ate diverse responses without hurting the coherency412

of responses, we focus on two criteria: response413

diversity and coherency. For measuring response414

diversity, we use both lexical-level diversity metrics415

(Dist-n, Ent-n, and LF) and a semantic diversity416

metric (Sem-Ent, k = 20). For measuring response417

coherency, we employ MaUdE (Sinha et al., 2020),418

an unreferenced dialogue response evaluation met-419

ric that shows a high correlation with human judg-420

ments on the fluency of responses.421

Human Evaluation. We further conduct a pair-422

wise comparison through the human evaluation423

for evaluating generated responses since automatic424

evaluations are sometimes not trustworthy. We use425

Amazon Mechanical Turk to collect the annota-426

tions. Each annotator evaluates which model is427

better in terms of Appropriateness for measuring428

response coherency and Informativeness for evalu-429

ating whether the given response has meaningful430

information relevant to its given context. We col-431

lect annotations for 50 test cases per each model432

pair, and three annotators rate each test case to im-433

prove the robustness of the evaluation result. More434

details about evaluation protocol (e.g., interface for435

collecting annotation) are shown in Appendix.436

5.2 Baseline Methods437

MMI (Li et al., 2016a) increases response diversity438

by maximizing the mutual information between439

context and response rather than maximizing the440

likelihood as in conventional dialogue models. We 441

utilize the MMI-antiLM as our MMI baseline. 442

CVAE (Zhao et al., 2017) is a representative model 443

among dialogue generation models that utilize la- 444

tent variables to increase response diversity. CVAE 445

builds the response generation process as a condi- 446

tional variational auto-encoder of a response with 447

dialogue context as a condition. 448

EDF (Entropy-based Data Filtering) (Csáky et al., 449

2019) enhances response diversity by filtering out 450

context-response pairs that increase one-to-many 451

or many-to-one problems in the training dataset. 452

We use target side entropy to filter the pairs. 453

NT (Negative Training) (He and Glass, 2020) di- 454

rectly penalizes the generation of generic responses 455

by applying reverse direction gradient for the losses 456

of the generic responses, leading to maximizing the 457

loss rather than minimizing it. 458

AdaLabel (Wang et al., 2021) alleviates the over- 459

confidence problem of generation models to im- 460

prove response diversity by dynamically smooth- 461

ing the target token distribution with an auxiliary 462

lightweight decoder. 463

5.3 Implementation Details 464

We take two Transformer-based sequence-to- 465

sequence models: Blender-90M (Roller et al., 466

2021) and BART-large (Lewis et al., 2020) as the 467

underlying generation models to demonstrate that 468

our method widely works well on different architec- 469

tures. For DRESS, we set γ = 30 and the number 470

of clusters k = 20 in our whole experiments unless 471

otherwise specified. All models use greedy decod- 472

ing strategy, and we utilize both blocking repeated 473

n-grams (Paulus et al., 2017) (n = 3) within the gen- 474

erated response and the input sequence to prevent 475

models from repeating subsequences. Moreover, 476

we release our implementation code3 publicly to 477

help researchers reproduce the result. 478

6 Results and Analysis 479

6.1 Evaluation Results 480

Table 3 shows the automatic evaluation results. 481

Overall, DRESS achieves the best performance 482

in both semantic and lexical-level response diver- 483

sity while showing high response fluency for most 484

of the experimental setups. To be more specific, 485

as shown in the table, DRESS shows a substan- 486

tially higher semantic diversity (Sem-Ent) than all 487

other baseline models in every experimental setup. 488

3Link will be released after publication.
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Backbone Method Dist-1 Dist-2 Dist-3 Ent-1 Ent-2 Ent-3 LF MaUdE Sem-Ent

Blender-90M
(DailyDialog)

Vanilla 0.0453 0.2103 0.3881 7.1322 10.7502 12.3950 0.2234 0.8489 2.5486
MMI 0.0349 0.1677 0.3069 7.0730 10.3806 11.9808 0.2155 0.8208 2.5784
CVAE 0.0471 0.2389 0.4459 7.4074 11.2797 12.9969 0.2449 0.8552 2.6261
EDF 0.0473 0.2271 0.4226 7.2888 11.0283 12.7132 0.2402 0.8593 2.5872
NT 0.0475 0.2351 0.4422 7.3994 11.2561 13.0111 0.2467 0.8597 2.6434
AdaLabel 0.0377 0.1982 0.3915 7.1546 10.8772 12.6829 0.2158 0.8443 2.6038

DRESS(-NT) 0.0445 0.2295 0.4360 7.4560 11.3273 13.1028 0.2474 0.8460 2.7576
DRESS 0.0460 0.2404 0.4571 7.5468 11.5094 13.3060 0.2576 0.8575 2.7819

BART-large
(DailyDialog)

Vanilla 0.0462 0.2168 0.4056 7.3913 11.2075 12.8648 0.2593 0.8854 2.4251
MMI 0.0497 0.2329 0.4355 7.4748 11.4060 13.0898 0.2623 0.8787 2.4646
CVAE 0.0429 0.2416 0.5117 7.2728 11.2968 13.1643 0.2558 0.8744 2.4215
EDF 0.0597 0.2926 0.5355 7.9606 12.1776 13.8786 0.3036 0.8918 2.5842
NT 0.0571 0.2919 0.5424 8.0267 12.3098 14.0577 0.3070 0.9024 2.6690
AdaLabel 0.0482 0.2573 0.5136 7.9152 12.0968 13.9496 0.2936 0.8947 2.6336

DRESS(-NT) 0.0554 0.2909 0.5448 8.1722 12.5195 14.3244 0.3079 0.9192 2.8444
DRESS 0.0547 0.2906 0.5504 8.1821 12.5533 14.3890 0.3052 0.9153 2.8548

Blender-90M
(OpenSubtitles)

Vanilla 0.0373 0.1550 0.2698 6.5882 9.5097 10.7983 0.1758 0.8459 2.4702
MMI 0.0426 0.1660 0.2755 6.4854 9.2276 10.3364 0.2005 0.8721 2.4469
CVAE 0.0393 0.1804 0.3398 7.0092 10.5135 11.8959 0.2073 0.9214 2.5726
EDF 0.0476 0.2019 0.3536 7.0189 10.3899 11.8036 0.2161 0.8777 2.5738
NT 0.0504 0.2216 0.3969 7.3734 11.0928 12.6594 0.2480 0.8944 2.7049
AdaLabel 0.0431 0.1913 0.3573 7.0306 10.5280 12.0680 0.2063 0.8708 2.6407

DRESS(-NT) 0.0499 0.2178 0.3817 7.3316 10.8422 12.2530 0.2308 0.8927 2.7114
DRESS 0.0524 0.2351 0.4180 7.5113 11.2355 12.7612 0.2612 0.9041 2.7654

BART-large
(OpenSubtitles)

Vanilla 0.0262 0.1028 0.1806 5.8507 8.2064 9.2760 0.1532 0.7803 2.2043
MMI 0.0275 0.1094 0.1923 6.0557 8.5303 9.6961 0.1595 0.8067 2.1626
CVAE 0.0226 0.1460 0.3495 6.2232 9.7304 11.4593 0.1507 0.8600 2.3005
EDF 0.0474 0.2056 0.3572 7.0338 10.5464 11.9977 0.2209 0.8558 2.5346
NT 0.0228 0.0948 0.1594 5.5542 8.2025 9.6915 0.1165 0.8298 2.6368
AdaLabel 0.0381 0.1772 0.3316 7.0306 10.5667 12.0747 0.2030 0.8647 2.5652

DRESS(-NT) 0.0456 0.2006 0.3509 7.1669 10.6915 12.1509 0.2220 0.8618 2.6620
DRESS 0.0472 0.2178 0.3890 7.4656 11.2761 12.8601 0.2322 0.8873 2.7406

Table 3: Automatic evaluation results in terms of various diversity metrics (Dist-n, Ent-n, LF, and Sem-Ent) and
coherency metric (an average MaUdE of generated responses). Bolded value indicates the best result and underlined
value indicates the runner-up among the results. DRESS(-NT) indicates the variant version of DRESS that only
utilizes the weighted NLL without Negative Training.

Figure 3 illustrates the detailed semantic distribu-489

tion of the generated responses. While the Vanilla490

model shows a high probability on the head seman-491

tic clusters (e.g., Cluster 1, 2, 4) and low probability492

on the tail semantic clusters (e.g., Cluster 13∼20),493

DRESS effectively reduces the probabilities of the494

head semantic cluster and boosts probabilities of495

the tail clusters. It is quite intriguing that DRESS496

also achieves better performance in lexical-level497

response diversity (Dist-n, Ent-n, and LF). Fur-498

thermore, MaUdE results indicate that DRESS pre-499

serves better response coherency compared to other500

baseline methods.501

Apart from automatic evaluation, we further502

compare DRESS with baseline methods in pair-503

wise human evaluation to verify the effectiveness504

of DRESS. Table 4 shows the evaluation results,505

showing clear improvements in terms of appropri-506

ateness and informativeness from using DRESS. 507

6.2 Analysing DRESS 508

Changing Hyperparameters of DRESS. We ex- 509

amine how the automatic results change when we 510

vary the hyperparameters of DRESS: γ in Equa- 511

tion 4.2 and the number of clusters k. Table 5 512

shows the results about the effect of the hyperpa- 513

rameters. We find that increasing γ induces models 514

to produce more diverse responses, which can be 515

shown by improvement in Dist-3, Ent-3, and Sem- 516

Ent. We also observe that decreasing k induces the 517

models to generate more diverse responses. How- 518

ever, MaUdE gets degraded while response diver- 519

sity improves, which implies a trade-off between 520

response diversity and coherence. 521

Ablation Study. To verify the effect of our 522

weighted NLL, we conduct an ablation study. In 523
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Comparison (A vs. B)
Appropriateness Informativeness

A wins (%) B wins (%) Tie (%) A wins (%) B wins (%) Tie (%)

Ours vs Vanilla 35.3 24.7 40.0 36.0 28.0 36.0
Ours vs MMI 40.0 34.7 25.3 40.7 36.0 23.3
Ours vs CVAE 44.7 30.0 25.3 36.7 36.0 27.3
Ours vs EDF 35.3 24.7 40.0 32.7 23.3 44.0
Ours vs NT 28.0 25.3 46.7 37.3 26.0 36.7
Ours vs AdaLabel 28.7 24.0 47.3 32.7 31.3 36.0

Table 4: Human pair-wise comparison results in terms of appropriateness and informativeness of generated responses.
The evaluation is conducted on the test set of DailyDialog with Blender-90M using greedy decoding.

Config Dist-3 Ent-3 MaUdE Sem-Ent

γ = 1.0 0.4333 12.8968 0.8570 2.6233
γ = 5.0 0.4400 12.9989 0.8593 2.6551
γ = 10.0 0.4410 13.0670 0.8583 2.6959
γ = 30.0 0.4571 13.3060 0.8575 2.7819
γ = 100.0 0.4625 13.5839 0.8436 2.8444

k = 10 0.4748 13.7596 0.8390 2.8451
k = 20 0.4571 13.3060 0.8575 2.7819
k = 50 0.4318 13.0001 0.8513 2.7009
k = 100 0.4311 12.8857 0.8637 2.6258

Table 5: Analysing the effect of hyperparameters, γ and
k. When changing γ, we fix k to 20. When changing k,
we fix γ to 30.0.

Table 3, DRESS(-NT) indicates the variant of524

DRESS without Negative Training and only utilizes525

weighted NLL. DRESS(-NT) shows a slight degra-526

dation in Sem-Ent compared to DRESS. Nonethe-527

less, DRESS(-NT) achieves better performance in528

Sem-Ent than other baseline methods excluding529

DRESS. Moreover, DRESS(-NT) also shows a530

higher lexical-level diversity than other baseline531

methods, along with high MaUdE scores.532

6.3 Robustness of Sem-Ent on the Choice of533

Configurations534

In this section, we examine the robustness of Sem-535

Ent changing the configurations used for calcu-536

lating the metric. Several configurations can be537

changed in Sem-Ent, including the choice of lan-538

guage models for mapping responses r into a se-539

mantic representation e(r) and the number of clus-540

ters k for the k-means algorithm. Varying the con-541

figurations, we compute Sem-Ent on responses gen-542

erated by Blender-90M for the test set of DailyDia-543

log with all methods (in Table 3). We then measure544

the Spearman correlation between the computed545

Sem-Ent of different configurations.546

For the choice of language models, we compare547

three variants: DialoGPT, RoBERTa (Liu et al.,548

2019a), and GPT2-large (Radford et al.). The av-549

erage Spearman correlation between the pairs of550
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Figure 3: Probability distribution of the responses gen-
erated by Vanilla, EDF and DRESS. The dashed line
indicates the uniformly distributed probability, 0.05.

these three variants (3 pairs) is 0.8809. For the 551

number of clusters, we vary the number k with 552

values in {10, 20, 50, 100} and compare the Sem- 553

Ent rankings. The average Spearman correlation 554

between these configurations (6 pairs) is 0.9821. 555

High correlations show that Sem-Ent produces sim- 556

ilar rankings of different models regardless of dif- 557

ferent configurations, indicating that Sem-Ent is a 558

robust metric for calculating response diversity. 559

7 Conclusion 560

In this work, we argue that semantic diversity is 561

overlooked while measuring response diversity of 562

dialogue generation; thus, we present a new auto- 563

matic evaluation metric, Sem-Ent, which can mea- 564

sure the semantic diversity of generated responses. 565

Sem-Ent correlates with human judgments on re- 566

sponse diversity more than other automatic diver- 567

sity metrics and also shows a high correlation with 568

human judgments in interestingness. Moreover, 569

we introduce a new learning method, DRESS, to 570

improve the semantic diversity of dialogue genera- 571

tion. Evaluation results show that DRESS improves 572

both the semantic diversity and lexical-level diver- 573

sity of dialogue generation, along with the gain in 574

response coherency. 575
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Ethical Considerations576

Dialogue generation models can reveal some bi-577

ases and toxicities from their responses since these578

models leverage large-scale web-crawled data for579

pretraining. This is a common consideration for580

works related to dialogue generation. Moreover,581

while our paper focuses on diversifying responses582

in semantic viewpoint, the model may unintention-583

ally learn about offensive words while diversifying584

responses. We believe it will be meaningful to585

reduce potential harmful responses considering se-586

mantics in future work.587
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A Appendix859

A.1 Descriptive Statistics about Results860

Confidence Interval of MaUdE In Table 3 and861

Table 5 from the main paper, we report the aver-862

age MaUdE score of responses generated by each863

method. To provide descriptive statistics of evalua-864

tion, here we provide a 95% confidence interval of865

MaUdE in Table 6 and Table 7. Note that we only866

report confidence intervals of MaUdE since other867

diversity metrics (Dist-n, Ent-n, LF, Sem-Ent) re-868

turn a single value from a set of responses, thus can869

not calculate the confidence interval.870

Inter-Rater Reliability of Pairwise Human Eval-871

uation We calculate a Fleiss’ Kappa for pairwise872

human evaluation results to measure the annota-873

tion variance. We find that Fleiss’ Kappas are 0.09874

and 0.04 for appropriateness and informativeness,875

respectively. Although these values are not high,876

as Kulikov et al. (2019) and Wong et al. (2021)877

show on their paper, inter-rater reliability of an-878

notation results using crowd-sourced annotators879

(such as our case, using Amazon Mechanical Turk)880

can be low since annotators show high cultural881

and training variances, especially when the task is882

subjective as our case. Note that 64 annotators par-883

ticipated in our human evaluation. Also, we limited884

the number of maximum annotations that a single885

annotator can be assigned to reduce the bias, which886

might have increased inter-rater diversity.887

A.2 Human Evaluation Protocol888

Evaluation for Comparing Metrics We use Ama-889

zon Mechanical Turk for collecting assessments,890

and Figure 4 shows the instructions and the inter-891

face for the human evaluation. We mitigate the bias892

from the annotator by setting a maximum number893

of annotations per worker as 20 and randomly shuf-894

fling the order of the model and the corresponding895

response. Since our task does not require particular896

expertise in linguistics, we open the evaluations897

to non-experts. Nonetheless, to control the anno-898

tation quality, we only allow the annotators who899

satisfy the following requirements: (1) HITs ap-900

proval rate greater than 95%, (2) Location is one of901

Australia, Canada, New Zealand, United Kingdom,902

and the United States, (3) Lifetime number of HITs903

approved greater than 1000, following Kim et al.904

(2021); Han et al. (2021). We estimated that each905

HITs takes around 1.5 minutes on average (87 sec-906

onds per each HIT estimated by the 85th percentile907

of response times) and set the payment to USD 16908

per hour. Therefore, annotators are paid USD 0.40 909

per HITs. 910

Evaluation for Comparing Methods As we de- 911

scribed above, we also use Amazon Mechanical 912

Turk, and we use the same setting to mitigate the 913

bias and control the annotation quality. Figure 5 914

shows the instructions and the interface for the hu- 915

man evaluation. Here, annotators are paid USD 916

0.25 per HITs as we estimated that each HITs takes 917

around 1.4 minutes on average (84 seconds per 918

HITs estimated by the 85th percentile of response 919

times) and set the payment to USD 10.7 per hour 920

since the difficulty of the task is easier than above. 921

A.3 Evaluation Details 922

Bradley-Terry Model We use the Bradley-Terry 923

model from pairwise human evaluation results to 924

obtain the ranking of the models. Given parameters 925

θ1, ·, θn, for two items i and j, the probability of 926

the outcome i ≻ j is p(i ≻ j) = eθi/(eθi + eθj ). 927

For more details about the Bradley-Terry model, 928

please refer to choix manual. 929

Calculating Dist-n, Ent-n, LF We use 930

NLTK (Loper and Bird, 2002) package while 931

calculating Dist-n, Ent-n, and LF, particularly for 932

tokenizing sentence and preparing n-grams. When 933

calculating Low-Frequency Token Ratio (LF), we 934

choose words with an occurrence count less than 935

100 in each dataset. 936

Number of Experiments We run an experiment 937

only once since our evaluation requires a human 938

evaluation which requires an extra annotation 939

budget. 940

A.4 Additional Examples of the Semantic 941

Clusters 942

We provide additional response examples of the 943

semantic clusters in DailyDialog dataset in Table 8. 944

A.5 Analysis of the Distribution of Generated 945

Responses 946

Figure 6 illustrates the cumulative semantic prob- 947

ability distributions of the generated responses. 948

DRESS clearly shows the most similar cumulative 949

distribution to that of uniform distribution, which 950

is a distribution that achieves the highest Sem-Ent 951

value. Moreover, DRESS dramatically reduces the 952

distribution of head clusters containing generic re- 953

sponses compared to other baseline methods and 954

conversely enlarges the distribution of tail clusters. 955
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Figure 4: The interface of human evaluation for assessing how responses are (a) diverse, (b) more interesting and
creative.

A.6 Limitations of our Work956

In this section, we discuss the potential limitations957

of our methods and the experimental procedure. To958

start with, our proposed diversity metric Sem-Ent959

requires a pre-trained language model to calculate960

the result. This indicates that it requires relatively961

heavier computational resources to calculate Sem-962

Ent compared to other lexical-based diversity met-963

rics such as Dist-n and Ent-n. Moreover, extend-964

ing Sem-Ent to other languages or other domains965

could be problematic if no high-quality pre-trained966

language model is available on that language or967

domain.968

In terms of the experimental procedure, we per-969

formed the experiment once rather than running it 970

multiple times with different seeds. Since our eval- 971

uation process incorporates a human annotation, 972

which requires a payment to human annotators, we 973

were not able to perform multiple sets of experi- 974

ments due to the limitation on budget. In the same 975

perspective, we were not able to obtain a sufficient 976

number of annotations to acquire statistically sig- 977

nificant results for every pairwise comparison. We 978

run an experiment only once since our evaluation 979

requires a human evaluation which requires an ex- 980

tra annotation budget. Also, we only experimented 981

with the English dialogue dataset (DailyDialog and 982

English portion of the OpenSubtitles). Therefore 983

our results do not necessarily guarantee the same 984
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Figure 5: The interface of pairwise human evaluation for appropriateness and informativeness.

result in other languages rather than English.985

Also, we’d like to clarify that our proposed met-986

ric, Sem-Ent, only focuses on measuring generated987

responses’ diversity and does not consider the re-988

sponse coherency. Although this is our intention989

since we aimed to build an unreferenced diversity990

metric, this limitation yields a drawback that Sem-991

Ent should always be jointly used with another992

metric that measures the response coherency (e.g.,993

MaUdE). Expanding Sem-Ent to consider the co-994

herency with an input context will be an intriguing995

future direction for our research.996

A.7 Further Implementation Details997

Training Models All of our experiments are done998

using the ParlAI (Miller et al., 2017) framework.999

We leverage model weights of Blender-90M and1000

BART-large from ParlAI. Blender-90M is pre-1001

trained on Reddit corpus, and BART-large is pre-1002

trained jointly on Wikipedia and Toronto Books. 1003

Note that Blender-90M has 90M parameters, and 1004

BART-large consists of 400M parameters. All base- 1005

lines and DRESS use the initial learning rate of 1006

7e − 6 with Adam optimizer, except CVAE for 1007

Blender-90M trained on DailyDialog using 2e− 5, 1008

MMI for Blender-90M trained on OpenSubtitles 1009

using 1e− 6, and CVAE for Blender-90M trained 1010

on OpenSubtitles using 1e− 5. We search for the 1011

appropriate learning rate for those exceptions since 1012

those exceptions are not stable enough to train the 1013

model. We use a learning rate scheduler that re- 1014

duces its learning rate by multiplying 0.5 when 1015

the loss has stopped decreasing. All Blender-90M 1016

models and all BART-large models are trained us- 1017

ing batch size of 32 and 16 on single A100 GPU, 1018

respectively. Training a single model takes less 1019

than a day with these configurations. 1020

Language Model for Calculating Sem-Ent In 1021
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Backbone Method MaUdE (± 95% CI)

Blender-90M
(DailyDialog)

Vanilla 0.8489 ± 0.005
MMI 0.8208 ± 0.005
CVAE 0.8552 ± 0.005
EDF 0.8593 ± 0.005
NT 0.8597 ± 0.005
AdaLabel 0.8443 ± 0.005

DRESS(-NT) 0.8460 ± 0.005
DRESS 0.8575 ± 0.005

BART-large
(DailyDialog)

Vanilla 0.8854 ± 0.005
MMI 0.8787 ± 0.005
CVAE 0.8744 ± 0.005
EDF 0.8918 ± 0.004
NT 0.9024 ± 0.004
AdaLabel 0.8947 ± 0.004

DRESS(-NT) 0.9192 ± 0.003
DRESS 0.9153 ± 0.003

Blender-90M
(OpenSubtitles)

Vanilla 0.8459 ± 0.004
MMI 0.8721 ± 0.004
CVAE 0.9214 ± 0.003
EDF 0.8777 ± 0.004
NT 0.8944 ± 0.003
AdaLabel 0.8708 ± 0.004

DRESS(-NT) 0.8927 ± 0.003
DRESS 0.9041 ± 0.003

BART-large
(OpenSubtitles)

Vanilla 0.7803 ± 0.005
MMI 0.8067 ± 0.005
CVAE 0.8600 ± 0.004
EDF 0.8558 ± 0.004
NT 0.8298 ± 0.005
AdaLabel 0.8647 ± 0.004

DRESS(-NT) 0.8618 ± 0.004
DRESS 0.8873 ± 0.003

Table 6: MaUdE with a 95% confidence interval when automatically evaluating various methods.

this work, we test three language models to ob-1022

tain embeddings from the response: DialoGPT,1023

RoBERTa, and GPT2-large. For reproducibil-1024

ity, we utilize model weights which are pub-1025

licly opened on HuggingFace Transformers (Wolf1026

et al., 2020): microsoft/DialoGPT-large,1027

roberta-base, and gpt2-large for Di-1028

aloGPT, RoBERTa, and GPT2-large, respectively.1029

Software and Hardware We use Python 3.8, Py-1030

Torch 1.9.0 (py3.8_cuda11.1_cudnn8.0.5_0), Hug-1031

gingFace Transformers 4.6.1, and ParlAI 1.3.0. All1032

the experiments are done using NVIDIA A100-1033

40GB GPUs, along with AMD EPYC 7742 64-1034

Core Processors.1035

License The DailyDialog dataset has CC-BY-NC-1036

SA 4.0 license. OpenSubtitles dataset does not1037

specify the license on the dataset. For the pre-1038

trained models, DialoGPT, RoBERTa, and GPT-21039

large is all released with the MIT license. Since1040

CC-BY-NC-SA 4.0 and MIT license both allow the1041

utilization of the resource for research purposes,1042

the use of these scientific artifacts in this work is 1043

valid. 1044
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Config MaUdE (± 95% CI)

γ = 1.0 0.8570 ± 0.004
γ = 5.0 0.8593 ± 0.004
γ = 10.0 0.8583 ± 0.004
γ = 30.0 0.8575 ± 0.004
γ = 100.0 0.8436 ± 0.004

k = 10 0.8390 ± 0.004
k = 20 0.8575 ± 0.004
k = 50 0.8513 ± 0.004
k = 100 0.8637 ± 0.004

Table 7: MaUdE with a 95% confidence interval when analysing the effect of hyperparameters, γ and k.

Index Responses

1

· I’m going to the store .
· Oh , yes . Hi , how are you ?
· All right . Hop in , please .
· I am , sir .
· No problem . I ’ll wait for your call .

2

· Yeah . I know .
· Thank you .
· You are most welcome .
· No more , thank you very much .
· Not yet .

18

· I bought a new mattress and some fresh bedclothes . I also bought a new dressing table and a new
bedside table .
· I ’ d prefer non·smoking roommates , but I guess I ’ ll have to take what I can get !
· A single room with a front view is 100 dollars per night , one with a rear is 80 dollars .

19

· Yes . Will you also make copies and file them using both methods ?
· you should probably call the IT department and have them check your computer for virus .
· I see . Well , can I have a look at your phone ? Unfortunately , this phone can ’ t be used in the US . it
’ s not compatible with our 3G network .

20

· A driver ’s license or something showing that you live in this city .
· I want to change a new car . I like Honda best , especially the red one . But it is too expensive .
· We use a vacuum cleaner that removes all the dirt , and we throw away all of the trash that we can
find .

Table 8: Additional response examples of the semantic clusters of DailyDialog dataset. Index column indicates the
Cluster Index in Figure 2.
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Figure 6: Cumulative probability distribution of the responses generated by different methods. Uniform illustrates
the case of uniform cluster distribution.
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