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Abstract

Out-of-distribution (OOD) detection is essential for ensuring the reliability and
safety of machine learning systems. In recent years, it has received increasing
attention, particularly through post-hoc detection and training-based methods. In
this paper, we focus on post-hoc OOD detection, which enables identifying OOD
samples without altering the model’s training procedure or objective. Our primary
goal is to investigate the relationship between model capacity and its OOD detec-
tion performance. Specifically, we aim to answer the following question: Does the
Double Descent phenomenon manifest in post-hoc OOD detection? This question
is crucial, as it can reveal whether overparameterization, which is already known
to benefit generalization, can also enhance OOD detection. Despite the growing
interest in these topics by the classic supervised machine learning community, this
intersection remains unexplored for OOD detection. We empirically demonstrate
that the Double Descent effect does indeed appear in post-hoc OOD detection.
Furthermore, we provide theoretical insights to explain why this phenomenon
emerges in such setting. Finally, we show that the overparameterized regime does
not yield superior results consistently, and we propose a method to identify the
optimal regime for OOD detection based on our observations. Code available here

1 Introduction

Since the breakthrough of AlexNet in 2012 (Krizhevsky et al., 2012), deep learning has seen rapid
progress and has become the foundation for solving a wide variety of complex tasks across domains
such as vision, language, and robotics (LeCun et al., 2015; Bengio, 2009). While Occam’s Razor
suggests favoring simpler models with fewer parameters (Blumer et al., 1987), deep neural networks
(DNNs) with massive overparameterization have nonetheless demonstrated remarkable generalization
ability in practice.

Traditionally, generalization performance has been characterized by a U-shaped test error curve
with respect to model complexity (Geman et al., 1992; Hastie, 2009), recommending a “sweet
spot” where the model is expressive enough to avoid underfitting but not so complex that it over-
fits. However, this classical view has been challenged in 2019 by the emergence of the double
descent phenomenon (Belkin et al., 2019), which reveals a second descent in test error after the
interpolation threshold. This insight has reshaped our understanding of the generalization behavior of
overparameterized models.

Generalization typically refers to in-distribution (ID) performance—where test data are assumed
to be drawn i.i.d. from the same distribution as training data. However, this closed-world assump-
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tion (Scheirer et al., 2012) rarely holds in real-world scenarios. In open-world settings (Bendale
& Boult, 2016; Drummond & Shearer, 2006), models frequently encounter out-of-distribution
(OOD) inputs that differ significantly from training data, either due to semantic shift (e.g., new
classes) (Hendrycks & Gimpel, 2017) or covariate shift (e.g., domain changes) (Ben-David et al.,
2010; Wang & Deng, 2018; Li et al., 2017).

In this work, we focus on OOD detection under semantic shifts as defined in Yang et al. (2024),
where the goal is to identify inputs from unseen classes. More precisely, we investigate post-hoc
OOD detection methods (DeVries & Taylor, 2018; Liu et al., 2020; Sun et al., 2021), which operate
on top of a pretrained classifier without altering its training process. These methods are widely used
due to their practicality and modularity.

Our central research question is: How does model capacity affect the effectiveness of post-hoc
OOD detection? While double descent has been studied in the context of ID generalization, its role
in OOD detection remains unexplored. We empirically demonstrate that post-hoc OOD detection
also exhibits a double descent curve with respect to model complexity. This observation is important
as it suggests that overparameterization is not universally beneficial for OOD detection.

We conduct extensive experiments across different architectures (CNNs, ResNets, ViTs, Swin)
and post-hoc detection methods to confirm this trend. Furthermore, under a simplified Gaussian
mixture model, we derive theoretical insights using tools from random matrix theory that mirror
the empirical findings. Surprisingly, we also observe cases where the underparameterized regime
achieves better OOD detection performance, prompting us to investigate these cases through the lens
of Neural Collapse (Papyan et al., 2020), which provides a geometric interpretation of the learned
representations near convergence.

Contributions. We advance the theoretical and empirical understanding of model complexity in
post-hoc OOD detection:

1. We are the first to empirically highlight a double descent phenomenon in OOD detection
across both CNN and transformer architectures.

2. We provide theoretical insight using random matrix theory, showing that both ID and OOD
risks peak at the interpolation threshold.

3. We show that overparameterization is not always optimal for OOD detection, and propose a
Neural Collapse-based criterion to detect when simpler models may perform better.

2 Related work
OOD Detection. OOD detection research focuses on two primary directions: Training-based and
post-hoc methods. We will focus on latter ones. These can be categorized based on the essential
feature used for the scoring function. First, logit- or confidence-based methods leverage network
logits to derive a confidence measure used as an OOD scoring metric (Hendrycks & Gimpel, 2017;
DeVries & Taylor, 2018; Liu et al., 2020; Huang & Li, 2021; Hendrycks et al., 2022). A common
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Figure 1: Illustration of the double descent phenomenon in a Random ReLU Feature model as a
function of model width (log scale). (a) Evolution of the in-distribution (ID) Mean-Squared Error
(MSE) and OOD detection risk. (b) Confidence-based OOD score defined in equation 14. (c)
Three-dimensional t-SNE projection of the input space, visualizing the separation between ID and
OOD samples. The ID samples (n = 1,000) are drawn from a Gaussian Mixture Model (GMM)
fitted to a subset of CIFAR-10, while OOD samples are drawn from an independent GMM.
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baseline for this methods is the softmax score (Hendrycks & Gimpel, 2017), which simply uses the
model softmax prediction as the OOD score. Then, Energy (Liu et al., 2020) elaborates on it by
computing the LogSumExp on the logits, thus offering empirical and theoretical advantages over
the Softmax confidence score. Second, feature-based and hybrid methods (Lee et al., 2018b; Wang
et al., 2022; Sun et al., 2022; Ming et al., 2023; Djurisic et al., 2023; Ammar et al., 2024) exploit
the model’s final representation to derive the scoring function. Hybrid methods further augments the
scoring metrics defined on the features using logits as weighting factors. Mahalanobis (Lee et al.,
2018b) estimates density on ID training samples using a mixture of class-conditional Gaussians.
NECO (Ammar et al., 2024), on the contrary, leverages the geometric properties of Neural Collapse
to construct a scoring function based on the relative norm of a sample within the subspace defined by
the ID data. Besides OOD detection methods, Fang et al. (2024) have used risk formulations closely
related to the one we use in this work to study PAC bounds for OOD detection.

Double Descent. The double descent risk curve was introduced by Belkin et al. (2019) to explain
the good performance observed in practice by overparameterized models (Zhang et al., 2021; Belkin
et al., 2018; Nakkiran et al., 2021) and to bridge the gap between the classical bias-variance trade-off
theory and modern practices. Theoretical investigation into this phenomenon mainly focuses on
various linear models in both regression and classification problems through the Random Matrix
Theory (Louart et al., 2018; Liao et al., 2020; Jacot et al., 2020; Dereziński et al., 2020; Kini &
Thrampoulidis, 2020; Mei & Montanari, 2022; Deng et al., 2022; Bach, 2024; Brellmann et al.,
2024), techniques from statistical mechanics (D’Ascoli et al., 2020; Canatar et al., 2021), the VC
theory (Lee & Cherkassky, 2022; Cherkassky & Lee, 2024), or novel bias-variance decomposition in
deep neural networks (Yang et al., 2020). The double descent phenomenon has also been observed in
experiments with popular neural network architectures (Belkin et al., 2019; Nakkiran et al., 2021).
In addition to depending on the model complexity, the double descent phenomenon also depends
on other dimensions such as the level of regularization (Liao et al., 2020; Mei & Montanari, 2022),
the number of epochs (Nakkiran et al., 2021; Stephenson & Lee, 2021; Olmin & Lindsten, 2024),
or the data eigen-profile (Liu et al., 2021a). Finally, the theoretical background on double descent
and benign overparametrization developed by Bartlett et al. (2020) inspired subsequent works that
focused on generalization under dataset shifts (Tripuraneni et al., 2021b; Hao et al., 2024; Kausik
et al., 2024; Hao & Zhang, 2024). It is important to note that these dataset shifts concern scenarios
where the model can generalize, e.g., the class labels are the same as in the training. These studies do
not address OOD detection.

3 Preliminaries

Notations. For a real vector v, we denote by ∥v∥2 the Euclidean norm of v. When the matrix
A is full rank, we denote by A+ the Moore-Penrose inverse of A. We depict by [d] := {1, . . . , d}
the set of the d first natural integers. For a subset T ⊆ [d], we denote by T c := [d] \ T its
complement set. For a subset T ⊆ [d], a d-dimensional vector v ∈ Rd and a n × d matrix
A =

[
a(1)| . . . |a(n)

]T ∈ Rn×d, we use vT = [vj : j ∈ T ] to denote its |T |-dimensional subvector

of entries from T and AT =
[
a
(1)
T | . . . |a(n)

T
]T

to denote the n× |T | design matrix with variables
from T . For a subset T ⊆ [d], we define Rd(T ) :=

{
x ∈ Rd | xT c = 0d−|T |

}
. We use λmin(A)

and λmax(A) to depict the min and max eigenvalues of A, respectively. N (0d, Id) denotes the
standard multivariate Gaussian distribution of d random variables.

Supervised Learning Problems. In supervised learning, we use training dataset D :={
(x1, y1), · · · , (xn, yn)

}
of n independent and identically distributed (i.i.d.) samples drawn from

an unknown distribution PX ,Y over X × Y . Using samples from the dataset D, the objective is to
find a predictor f̂ : X → Y among a class of functions F to predict the target y ∈ Y of a new sample
x ∈ X . In particular, given a loss function ℓ : Y ×Y → R, the objective is to minimize the expected
risk (or loss) defined, for all f̂ ∈ F , as:

R(f̂) = E(x,y)∼PX ,Y

[
ℓ
(
f̂(x), y

)]
. (1)

Typically, we choose the mean-squared loss ℓ(f̂(x), y) =
(
f̂(x)− y

)2
for regression problems or

the zero-one loss ℓ(f̂(x), y) = 1f̂(x)̸=y for classification problems. We denote the optimal predictor
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by f∗ := argminf∈F R(f). Since the distribution PX ,Y is unknown in practice, we instead try to
minimize an empirical version of the expected risk based on the dataset D :=

{
(xi, yi)

}n

i=1
:

Remp(f̂) =
1
n

n∑
i=1

ℓ
(
f̂(xi), yi

)
. (2)

Out-of-Distribution Detection. In machine learning problems, we usually assume that the test data
distribution is similar to the training data distribution (the closed-world assumption). As this is not
the case in real-world applications, the Out-of-Distribution (OOD) detection (Yang et al., 2024) aims
to flag inputs that significantly deviate from the training data to prevent unreliable predictions. In the
following, we denote by POOD

X ,Y a distribution over X × Y that differs from the training distribution
PX ,Y . As proposed in (Yang et al., 2024) we consider OOD that involves a semantic shift and
represent concepts or labels not seen during training. A popular class of OOD detection techniques
relies on the definition of a scoring function s(· ; f̂) = f̂(·), which uses the probability predictions
of the classifier f̂(·) as scores to flag an instance x as OOD when the score probability prediction
is below a certain threshold λ. For example, a common approach is to use the Maximum Softmax
Probability (MSP) (Hendrycks & Gimpel, 2017) that returns the higher softmax probabilities of the
predictor f̂(·) as a scoring function to measure the prediction confidence.

4 Insights on the Double Descent for the Binary Classification in Gaussian
Covariate Model

In this section, we introduce the expected OOD risk metric and we present our main theoretical results
on binary least-squares classifiers applied to Gaussian data. We assume that X ⊆ Rd and Y := [0, 1].
Let ϕ : R → Y be a mapping, we denote by Fd :=

{
f : X → Y,x 7→ ϕ(xTw) |w ∈ Rd

}
the class

of functions considered in this study.

4.1 System Model

Gaussian Covariate Model & Binary Classification. Let w∗ ∈ Rd and let f∗ : x 7→ ϕ(xTw∗)

be an optimal binary classifier. We assume we have a training dataset D :=
{
(xi, yi)

}n

i=1
of n i.i.d

samples drawn from a Gaussian covariate model, i.e., from a distribution PX ,Y over X × Y; where
xi ∼ N (0d, Id) and yi = ϕ(zi) = ϕ(xT

i w
∗ + ϵi) is the noisy response of xi with respect to f∗(·)

in which ϵi ∼ N (0, σ2) is a noise capturing approximation errors on logits zi with σ > 0. In binary
classification problems, the objective is to find a classifier f̂(·) ∈ Fd that fits f∗(·) using the training
dataset D. Although simple, the Gaussian covariate model is also considered in the double descent
literature to provide theoretical insights (Belkin et al., 2020; Mei & Montanari, 2022).

Least-Squares Binary Classifiers. In this section, we consider least-squares binary classifiers to
approximate logits of the optimal binary classifier f∗(·). Specifically, we define the least-squares
binary classifier f̂ : x 7→ ϕ(xT ŵ) in which ŵ is obtained by analytically solving:

ŵ = argmin
w

Remp(w) = 1
n

n∑
i=1

(
xT
i w − zi

)2
= 1

n∥Xw − z∥22, (3)

were X = [x1, . . . ,xn]
T ∈ Rn×d is the data matrix containing the n samples xi ∈ Rd and

z = [z1, . . . ,zn]
T ∈ Rn is the target vector of noisy logits. We consider a particular subset of

least-squares binary classifier f̂T ∈ Fd that uses a subset T ⊆ [d] of p features that fits coefficients
ŵ ∈ Rd(T ) as

ŵT = X+
T z and ŵT c = 0d−p. (4)

Out-of-Distribution Risk. To measure the ability of binary classifiers f̂(·) ∈ Fd to provide
prediction confidence on samples drawn from both the training distribution PX ,Y and the OOD
distribution POOD

X ,Y , we introduce an expected OOD risk function similar to the expected risk defined
in equation 3. Let fOOD : x 7→ ϕ(xTwOOD) ∈ Fd be an optimal classifier such that fOOD(x) is
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close to 0.5 when the sample x is more likely drawn from the POOD
X ,Y and close to f∗(x) when x is

more likely drawn from PX ,Y . We define the expected OOD risk ROOD : Fd → R as:

ROOD(f̂) = E(x,·)∼PX ,Y

[(
f̂(x) − fOOD(x)

)2]
+ E(x,·)∼POOD

X ,Y

[(
f̂(x) − fOOD(x)

)2]
, (5)

which depicts the expected risk of the binary classifier f̂(·) on the loss function ℓ : (ŷ, y) 7→ (ŷ− y)2

and distributions PX ,Y and POOD
X ,Y .

Remark 4.1. A low value for ROOD(f̂) indicates two aspects: (i) the classifier f̂(·) is confident on
predictions over the distribution PX ,Y , which corresponds to a low E(x,·)∼PX ,Y

[(
f̂(x)−fOOD(x)

)2]
;

and/or (ii) f̂(·) is not confident on predictions over the distribution POOD
X ,Y , which is reflected by a low

E(x,·)∼POOD
X ,Y

[(
f̂(x)− fOOD(x)

)2]
. In particular, ROOD(f̂) is minimized when logits are maximally

confident on ID samples (only one logit is non-zero) and uniformly distributed on OOD samples.

Remark 4.2. Note that the expected OOD risk defined in equation 5 can be extended to multi-class
classifiers f̂(·) using the softmax function with

ROOD(f̂) = E(x,·)∼PX ,Y

[(
∥f̂(x)∥∞−∥fOOD(x)∥∞

)2]
+E(x,·)∼POOD

X ,Y

[(
∥f̂(x)∥∞−∥fOOD(x)∥∞

)2]
,

where fOOD(x) is close to 1/C when the sample x is more likely drawn from the POOD
X ,Y , C depicts

the number of classes, and ∥·∥∞ denotes the infinity norm.

In order to use the Random Matrix Theory, we make the following assumptions.

Assumption 4.1. The activation function ϕ(·) is strictly monotonically increasing. Furthermore, its
derivative ϕ′(·) is strictly positive and bounded.

Remark 4.3. This assumption holds for many of the activation functions traditionally considered in
neural networks, such as sigmoid functions.

Assumption 4.2. Let Σ,ΣOOD ∈ Rd×d defined as

Σ = E(x,·)∼PX ,Y

[(
ϕ(xT ŵ)−ϕ(xTwOOD)

xT ŵ−xTwOOD

)2

xxT

]
and ΣOOD = E(x,·)∼POOD

X ,Y

[(
ϕ(xT ŵ)−ϕ(xTwOOD)

xT ŵ−xTwOOD

)2

xxT

]
.

We assume that

argmin
a∈Rd

aTΣa
aTa

̸∈ Rd(T ) and argmin
a∈Rd

aTΣOODa
aTa

̸∈ Rd(T ).

4.2 Out-Of-Distribution Risk

Leveraging the Random Matrix Theory and extending the Theorem 1 in Belkin et al. (2020), we
can derive bounds for the expected risk (Appendix A.1) and for the expected OOD risk (proof in
Appendix A.2) of the subset of classifiers defined with equation 4:

Theorem 1. Let (p, q) ∈ [d]2 such that p + q = d, T ⊆ [d] with |T | = p an arbitrary subset
of the d first natural integers, and T c := [d] \ T its complement set. Let ŵ ∈ Rd(T ) such that
ŵT = X+

T z ∈ Rp and ŵT c = 0q ∈ Rq . Under Assumptions 4.1-4.2, the expected OOD risk on the
predictor f̂T : x 7→ ϕ(xT ŵ) satisfies

c c(n, p) ≤ EX

[
ROOD(f̂)

]
≤ C c(n, p),

where c, C > 0 and

c(n, p) =


p

n−p−1

(
∥wOOD

T c ∥22 + σ2
)
+ ∥wOOD

T c ∥22 if p ≤ n− 2,

+∞ if n− 1 ≤ p ≤ n+ 1,(
1− n

p

)∥∥wOOD
T

∥∥2
2
+ n

p−n−1

(
∥wOOD

T c ∥22 + σ2
)
+ ∥wOOD

T c ∥22 if p ≥ n+ 2.

(6)
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Remark 4.4. While our theoretical insights are inspired by Theorem 1 in Belkin et al. (2020), we
extend the framework to classification and OOD data. This extension is non-trivial, as the original
result solely focuses on classical supervised regression. Notably, Theorem 1 derives inequalities for
the expected OOD risk unlike the equalities found in Belkin et al. (2019) original formulation.

Remark 4.5. We find EX

[
ROOD(f̂)

]
= ∞ around p = n, which is characteristic of a double

descent phenomenon. This result suggests that OOD scoring functions based on the prediction
confidence of binary classifiers f̂(·) exhibit a double descent phenomenon similar to what has been
reported for the expected risk (see Appendix A.1). Like the expected risk in the double descent
literature (Mei & Montanari, 2022; Louart et al., 2018; Liao et al., 2020; Bach, 2024), this result
identifies the ratio p/n as the complexity of a linear model to describe an under- (p/n < 1) and an
over- (p/n > 1) parameterized regimes for the expected OOD risk with a phase transition around
p/n = 1 characterized by a peak.

5 Empirical Evidence: Double Descent in Practice

In this section, we provide an empirical evaluation of different OOD detection methods with respect
to the model width across multiple neural network architectures.

5.1 Toy Example : Gaussian Covariate Model & OOD Detection

We investigate the double descent phenomenon in both generalization and OOD detection using the
Gaussian covariate model introduced in Section 4.1. The data is generated from a binary Gaussian
Mixture Model (GMM), as illustrated in Figure 1. Our model employs Random ReLU Features
(RRF): inputs are mapped to a high-dimensional space via random projections followed by a ReLU
activation, and then classified using a linear binary classifier. The OOD samples are drawn from a
distinct Gaussian distribution, as described in Section 4.1. By varying the model width, we observe
that both the in-distribution Mean-Squared Error (MSE) and the expected OOD risk exhibit double
descent behavior, peaking near the interpolation threshold (Figure 1). These results show a concrete
empirical manifestation of the theoretical Gaussian setup. Full details are in Appendix D.1.

5.2 Setup of the real case

General Setup. We perform experiments on multiple DNN architectures: ResNet-18 (He et al.,
2016), ResNet-34 (Appendix D.4), a 4-block convolutional neural network (CNN), Vision Transform-
ers (ViTs) (Dosovitskiy et al., 2021) and Swin Transformers (Liu et al., 2021b).

Model Setup. To replicate double descent, we follow the experimental setup from Nakkiran et al.
(2021), which uses ResNet-18 as the baseline architecture. We apply a similar setup to the 4-block
CNN model, ViTs and Swin. We vary the model capacity by altering the hidden dimension (denoted
as k) per layer, with values ranging from k = 1 to k = 128. ResNet-18, which uses a hidden
dimension of 64 channels, operates within the overparameterized regime. The depth of the models is
kept constant to isolate the effects of width (effective model complexity). The convolutional models
are trained using the cross-entropy loss function, with a learning rate of 10−4 and the Adam optimizer
for 4 000 epochs. This extended training regime ensures that models converge for all explored model
widths. Moreover, each experiment is conducted five times (with different random seeds). Further
details on the experimental setup for the Transformers are given in the Appendix B.2.

Label Noise. To observe the double descent effect, we introduce label noise into the training set by
randomly swapping 20% of the labels. This setup simulates real-world scenarios, in which noisy data
is common. The models are trained on this noisy dataset but evaluated on a clean test set. Random
data augmentations, including random cropping and horizontal flipping, are applied during training.
Experiments on the noiseless case are presented in D.6 and OOD risk curves are presented in D.5.

5.3 Evaluation Metrics

We evaluate both generalization and OOD detection using multiple metrics:

• Generalization: We report the test accuracy for in-distribution (ID) classification tasks.
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• OOD Detection: We measure OOD detection performance using the area under the receiver
operating characteristic curve (AUC), which is threshold-free and widely adopted in OOD
detection research. A higher AUC indicates better performance.

• Neural Collapse: We report NC metrics, which, as noted in Ammar et al. (2024); Haas et al.
(2023); Zhao & Cao (2023), are associated with certain aspects of OOD detection.

5.4 OOD Datasets

For OOD detection, we evaluate each model using six well-established OOD benchmark datasets:
Textures (Cimpoi et al., 2014), Places365 (Zhou et al., 2017), iNaturalist (Van Horn et al., 2018), a
10 000 image subset from (Huang & Li, 2021), ImageNet-O (Hendrycks et al., 2021) and SUN (Xiao
et al., 2010). For experiments where CIFAR-10 (or CIFAR-100) is the in-distribution dataset, we
also include CIFAR-100 (or CIFAR-10) as an additional OOD benchmark. CIFAR-10/100 contains
50 000 training images and 10 000 test images.

5.5 OOD Detection Methods

In order to have a discussion that generalizes across different OOD detection methods, we evaluate
several state-of-the-art methods, categorized by the information they rely on:

• Logit-based methods: Maximum Softmax Probability (MSP) (Hendrycks & Gimpel,
2017), Energy scores (Liu et al., 2020), React (Sun et al., 2021), MaxLogit and KL-
Matching (Hendrycks et al., 2022),

• Feature-based methods: Mahalanobis (Lee et al., 2018b) and Residual (Wang et al., 2022).

• Hybrid methods: ViM (Wang et al., 2022), ASH (Djurisic et al., 2023) and NECO (Ammar
et al., 2024).

Although the double descent effect is observed in all of our experiments, results from only a few rep-
resentative methods are presented in the main paper. Additional results can be found in Appendix D.

5.6 OOD Detection and Double Descent

Double Descent & OOD Detection. The primary question addressed in this section is whether
the double descent phenomenon extends to OOD detection, as suggested by our theoretical insights.
We conduct experiments on CIFAR-10 and CIFAR-100 as ID datasets, and assess OOD detection
as a function of model widths. In particular, Figure 2 depicts the evolution of generalization error
and OOD detection performance (AUC) for a challenging covariate shift scenario between CIFAR-10
and CIFAR-100. Refer to Appendix D for more results on multiple OOD datasets. Figure 2 shows
a double descent phenomenon in all models, with logit-based and hybrid OOD detection methods
exhibiting a similar behavior. Experiments evaluating the OOD risk derived from Theorem 1 are
provided in Appendix D.5. As shown in the appendix, the OOD risk function also exhibits a double
descent phenomenon. This alignment between our theoretical insights and experimental results
further reinforces the validity of our analysis.

Feature-Based Techniques & Interpolation Threshold. In some cases, no double descent curve
is observed for feature-based techniques. This result suggests that the double descent depends either
on the used architecture or the data, as discussed in Appendix E.3. Furthermore, we observe that the
interpolation threshold is not always perfectly consistent across OOD datasets or techniques. Those
observations are consistent with the Nakkiran et al. (2021)’s results on the CIFAR-10 and CIFAR-100
datasets. Those results suggest that the effective model complexity (EMC) framework (Nakkiran
et al., 2021) defined for the generalization error can be extended to OOD detection.

Smaller Models for OOD Detection. Interestingly, in many cases, smaller models are very good
OOD detectors. This is particularly relevant for applications with limited computational resources.
While techniques such as pruning (Frankle & Carbin, 2019) and quantization (Gholami et al., 2022)
can also be used to reduce model size, our study focuses specifically on the impact of model
complexity. We believe this behavior may be due to smaller models utilizing their parameters more
efficiently. This raises the question of when a lower-complexity model might be more advantageous

7



than a deep model for OOD detection. The conditions under which this choice becomes optimal will
be discussed in Section 5.7.
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Figure 2: Accuracy and AUC OOD detection metric versus model width. Experiments performed on
CNN, ResNet-18, ViT and Swin architectures with CIFAR10 and CIFAR100 as ID and OOD datasets.

Discussion on OOD Methods. OOD detection depends on two key factors: (i) the quality of
learned representations, and (ii) the reliability of the confidence score. Logit-based methods rely
mainly on model output logits, which are sensitive to model size and complexity (Hendrycks &
Gimpel, 2017; Liang et al., 2018), making them closely aligned with the double descent behavior.
These methods often show smoother double descent trends. In contrast, feature-based methods
depend on how well the model separates ID and OOD data in latent space, which may not always be
affected by double descent in the same way.

Discussion on Architectures. Architectural biases significantly affect representation quality and
OOD performance (Hein et al., 2019; Tripuraneni et al., 2021a). While all models show double
descent, their performance differs: ResNet-18 and Swin improve in the overparameterized regime,
CNN performs similarly across regimes, and ViT suffers from poor generalization when overparame-
terized. To better understand this, we analyze the latent representations using the Neural Collapse
framework (Papyan et al., 2020).

5.7 Overparameterization vs. Underparameterization through the Lens of Neural Collapse

From Double Descent to Neural Collapse. We analyze how representation geometry affects the
double descent phenomenon in OOD detection. While increased model complexity often improves
performance beyond the interpolation threshold, this trend is not universal (Fig. 2). Some models
perform better in the underparameterized regime. To explain this, we use the Neural Collapse (NC)
framework (Papyan et al., 2020; Ming et al., 2023; Haas et al., 2023; Ammar et al., 2024), which
describes how deep models’ final-layer features converge to a structured configuration where samples
collapse around their respective class centroids.

NC1 Metric for Analyzing Overparameterization. We use the NC1 metric to measure the

clustering quality of representations: NC1 = Tr
[ΣWΣ+

B

C

]
, where ΣW and ΣB are the intra- and

inter-class covariances, and C is the number of classes. Lower NC1 values indicate better class
separation. To quantify the effect of overparameterization, we compute the ratio:

NC1u/o = NC1u
NC1o

, (7)

8



where NC1u and NC1o are the NC1 values in the under- and overparameterized regimes optimums,
respectively. Higher NC1u/o implies better separation with increased capacity.

Empirical Insights. As shown in Table 1, NC1u/o aligns with OOD performance trends. Overpa-
rameterized models with improved NC1u/o > 1 typically detect OOD better on the overparamatrized
regime. Except the CNN architecture, most architectures seem to show improved performance in the
overparamatrized regime. These findings suggest that representation collapse, as captured by NC1,
might indicate OOD detection quality in complex models. Further studies on broader datasets are
needed to generalize this insight.

Table 1: Models performance in terms of AUC in the underparametrized local minima (AUCu) and the
overparametrized maximum width (AUCo), w.r.t NC1u/o value. Best is highlighted in green when
AUCo is higher, red when AUCu is higher and blue if both AUC are within standard deviation range.
The highest AUC value per-dataset and per-architecture is highlighted in bold.

Model NC1u/o Method SUN Places365 CIFAR-100
AUCu ↑ AUCo ↑ AUCu ↑ AUCo ↑ AUCu ↑ AUCo ↑

CNN 0.88

Softmax score 76.09±0.96 75.08±0.75 75.95±0.76 74.59±0.45 74.33±0.32 72.68±0.31
MaxLogit 72.98±2.22 60.13±0.35 73.33±2.17 61.25±0.42 73.38±0.39 70.37±0.34
Energy 68.08±3.66 59.73±0.36 69.00±3.56 60.90±0.43 70.78±0.73 70.24±0.35
Energy+ReAct 59.12±4.73 47.49±0.58 60.79±4.53 49.45±0.52 66.00±1.58 63.57±0.51
NECO 70.43±2.53 64.22±1.36 71.20±2.59 63.59±0.98 72.40±0.95 70.17±0.76
ViM 59.94±2.01 59.77±0.66 61.88±1.89 60.93±0.40 69.23±0.78 70.25±0.35
ASH-P 68.60±3.59 60.36±0.37 69.35±3.50 61.48±0.43 71.11±0.53 70.45±0.41

ResNet 1.96

Softmax score 71.18±0.93 75.82±0.89 71.22±0.93 75.52±0.88 71.21±0.48 75.37±0.42
MaxLogit 70.64±1.53 72.51±1.03 70.69±1.29 72.64±0.94 69.76±0.39 73.65±0.38
Energy 69.11±2.49 72.46±1.03 69.19±2.08 72.59±0.94 67.58±0.46 73.61±0.39
Energy+ReAct 69.57±2.35 71.83±0.88 69.63±1.93 71.97±0.78 67.25±0.91 72.63±0.45
NECO 70.39±2.30 75.60±1.56 70.46±1.85 75.20±1.42 69.92±0.36 75.28±0.50
ViM 66.54±1.99 74.44±0.65 65.38±1.99 73.42±0.65 64.61±0.47 71.54±0.44
ASH-P 69.11±2.49 71.73 ±1.09 69.19±2.08 71.85±0.98 67.58±0.46 72.89±0.35

Swin 1.70

Softmax score 58.82±2.98 67.91±0.69 59.01±2.90 67.66±0.59 61.89±1.42 65.44±0.62
MaxLogit 59.91±3.11 70.75±0.45 59.84±3.40 70.46±0.46 61.79±1.73 66.95±0.53
Energy 60.12±3.68 70.79±0.42 58.77±3.98 70.50±0.44 55.52±2.10 66.92±0.51
Energy+ReAct 60.16±3.79 71.15±0.44 58.85±4.03 70.83±0.48 55.53±2.10 67.27±0.52
NECO 64.26±3.20 73.29±0.75 63.88±3.37 72.38±0.66 62.62±2.10 68.13±0.76
ViM 60.68±2.61 71.69±0.19 58.34±2.60 71.39±0.15 55.95±0.77 68.89±0.51
ASH-P 59.49±4.21 70.74±0.44 58.15±4.42 70.42±0.40 55.10±2.28 66.89±0.55

ViT 2.32

Softmax score 66.28±0.19 64.87±0.27 66.26±0.36 64.61±0.26 65.18±0.38 62.96±0.33
MaxLogit 66.09±1.48 70.30±0.46 66.13±1.50 69.79±0.26 64.60±0.35 66.69±0.39
Energy 64.79±2.81 70.50±0.48 64.86±2.65 69.98±0.26 63.08±0.44 66.79±038
Energy+ReAct 64.51±2.93 70.51±0.49 64.65±2.75 69.97±0.26 62.86±0.58 66.78±039
NECO 67.61±1.61 75.89±0.47 67.47±1.68 74.29±0.29 66.28±0.54 67.40±0.27
ViM 63.14±3.54 72.25±0.37 63.30±3.36 71.41±0.15 64.81±0.65 66.34±0.30
ASH-P 64.79±2.81 70.27±0.50 64.86±2.65 69.79±0.25 63.08±0.44 66.61±0.36

Empirical Evidence of Depth-Wise Double Descent. We also investigate the influence of model
depth and assess OOD detection and accuracy as functions of model depth with fixed width in
Appendix F. Our results highlight similar double descent patterns in both ID generalization and
post-hoc OOD detection. To the best of our knowledge, these are the first results illustrating a
depth-wise double descent.

6 Conclusion

In this paper, we presented empirical and theoretical insight that the double descent phenomenon
also impacts OOD detection across architectures. Using Random Matrix Theory we showed that
both prediction and OOD risks peak at the interpolation threshold for least-squares classifiers on
Gaussian data. We have studied the double descent phenomenon across various architectures and
OOD detection algorithms. Additionally, we provided insights into why the overparameterized
regime can perform better or worse than the underparameterized one. These observations emphasize
the critical role of latent representations in OOD detection under different levels of model complexity.
While our theoretical analysis relies on simplified settings (e.g., linear models and Gaussian inputs),
future works may investigate more complex systems and include additional factors such as training
dynamics, or regularization.

Limitations: Finally, our study is limited to post-hoc out-of-distribution (OOD) detection; exploring
alternative OOD detection paradigms could be a valuable direction for future research.
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A Proof of Theorems

While our theoretical insights are inspired by Theorem 1 in Belkin et al. (2020), we extend the
framework to classification and OOD data.

A.1 Proof for the Expected Risk

Leveraging the Random Matrix Theory and extending the Theorem 1 in Belkin et al. (2020), we
derive bounds in Theorem 2 for the expected risk of the subset of classifiers defined in F̂d with
equation 4. This section is dedicated to the proof of Theorem 2 and follows the same line of arguments
of Theorem 1 in Belkin et al. (2020).
Theorem 2. Let (p, q) ∈ [d]2 such that p + q = d, T ⊆ [d] with |T | = p an arbitrary subset
of the d first natural integers, and T c := [d] \ T its complement set. Let ŵ ∈ Rd(T ) such that
ŵT = X+

T z ∈ Rp and ŵT c = 0q ∈ Rq . Under Assumptions 4.1-4.2, the expected risk with respect
to the loss function ℓ : (ŷ, y) 7→ (ŷ − y)2 of the predictor f̂T : x 7→ ϕ(xT ŵ) satisfies

c c(n, p) ≤ EX

[
R(f̂T )

]
≤ C c(n, p),

where c, C > 0 and

c(n, p) =


p

n−p−1

(
∥w∗

T c∥22 + σ2
)
+ ∥w∗

T c∥22 if p ≤ n− 2,

+∞ if n− 1 ≤ p ≤ n+ 1,(
1− n

p

)∥∥w∗
T
∥∥2
2
+ n

p−n−1

(
∥w∗

T c∥22 + σ2
)
+ ∥w∗

T c∥22 if p ≥ n+ 2.

(8)

Remark A.1. Theorem 1 in Belkin et al. (2020) constitutes a special case of Theorem 2 for ϕ : x 7→ x,
which corresponds to the case where Σ = Id.

Remark A.2. From Theorem 2, we have EX

[
R(f̂T )

]
= ∞ around p = n. The expected risk

decreases again as p increases beyond n and highlights a double descent phenomenon. This result
is consistent with the literature of double descent (Mei & Montanari, 2022; Louart et al., 2018;
Liao et al., 2020; Bach, 2024), which identifies the ratio p/n as the complexity of a linear model to
describe an under- (p/n < 1) and an over- (p/n > 1) parameterized regimes for the expected risk
with a phase transition around p/n = 1 characterized by a peak.

Proof. Let x ∈ X and
∆w = ŵ −w∗.

We have

f̂T (x) = ϕ(xT ŵ) = ϕ(xTw∗) + xT∆wϕ′(c(x, ŵ,w∗)
)
.

From the mean-value theorem, there exists

c(x, ŵ,w∗) ∈
(
min(xT ŵ,xTw∗),max(xT ŵ,xTw∗)

)
,

such that

ϕ
(
xT (w∗ +∆w)

)
= ϕ(xTw∗) + xT∆wϕ′(c(x, ŵ,w∗)

)
.

We have thus

EX

[
R(f̂T )

]
= Ex,X

[(
f̂(x)− f∗(x)

)2]
= Ex,X

[(
ϕ(xT ŵ)− ϕ(xTw∗)

)2]
= Ex,X

[(
xT∆wϕ′(c(x, ŵ,w∗)

))2]
= Ex,X

[
∆T

wxxT∆wϕ′(c(x, ŵ,w∗)
)2]

= Tr
(
Ex,X

[
ϕ′(c(x, ŵ,w∗)

)2
xxT∆w∆T

w

])
= Tr

(
EX

[
Ex

[
ϕ′(c(x, ŵ,w∗)

)2
xxT

]
∆w∆T

w

])
= Tr

(
EX

[
Σ∆w∆T

w

])
= EX

[
∆T

wΣ∆w

]
,
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where

Σ = Ex

[
ϕ′(c(x, ŵ,w∗)

)2
xxT

]
= Ex

[(
ϕ(xT ŵ)−ϕ(xTw∗)

xT ŵ−xTw∗

)2

xxT

]
.

From the min-max theorem, we have

EX

[
λmin(Σ)∆T

w∆w

]
≤ EX

[
∆T

wΣ∆w

]
≤ EX

[
λmax(Σ)∆T

w∆w

]
.

From Lemma 1.1, there exists c, C > 0 independent of ŵ (and thus X) such that

c EX

[
∆T

w∆w

]
≤ EX

[
∆T

wΣ∆w

]
≤ C EX

[
∆T

w∆w

]
.

For EX

[
∆T

w∆w

]
, we have

EX

[
∆T

w∆w

]
= EX

[
∥ŵ −w∗∥22

]
= EX

[
∥ŵT −w∗

T ∥22
]
+ EX

[
∥ŵT c −w∗

T c∥22
]

= EX

[
∥ŵT −w∗

T ∥22
]
+ ∥w∗

T c∥22.

From Lemma 1.2, we have

EX

[
∥ŵT −w∗

T ∥22
]
=


p

n−p−1

(
∥w∗

T c∥22 + σ2
)

if p ≤ n− 2,

+∞ if n− 1 ≤ p ≤ n+ 1,(
1− n

p

)∥∥w∗
T
∥∥2
2
+ n

p−n−1

(
∥w∗

T c∥22 + σ2
)

if p ≥ n+ 2,

which concludes the proof.

A.2 Proof for the Expected OOD Risk (Theorem 1 )

This section is dedicated to the proof of Theorem 1.
Theorem 1. Let (p, q) ∈ [d]2 such that p + q = d, T ⊆ [d] with |T | = p an arbitrary subset
of the d first natural integers, and T c := [d] \ T its complement set. Let ŵ ∈ Rd(T ) such that
ŵT = X+

T z ∈ Rp and ŵT c = 0q ∈ Rq . Under Assumptions 4.1-4.2, the expected OOD risk on the
predictor f̂T : x 7→ ϕ(xT ŵ) satisfies

c c(n, p) ≤ EX

[
ROOD(f̂)

]
≤ C c(n, p),

where c, C > 0 and

c(n, p) =


p

n−p−1

(
∥wOOD

T c ∥22 + σ2
)
+ ∥wOOD

T c ∥22 if p ≤ n− 2,

+∞ if n− 1 ≤ p ≤ n+ 1,(
1− n

p

)∥∥wOOD
T

∥∥2
2
+ n

p−n−1

(
∥wOOD

T c ∥22 + σ2
)
+ ∥wOOD

T c ∥22 if p ≥ n+ 2.

Proof. The layout of the proof is similar to the proof of Theorem 2. Let x ∈ X and

∆w = ŵ −wOOD.

From the mean-value theorem, there exists

c(x, ŵ,wOOD) ∈
(
min(xT ŵ,xTwOOD),max(xT ŵ,xTwOOD)

)
,

such that

f̂T (x) = ϕ(xT ŵ) = ϕ
(
xT (wOOD +∆w)

)
= ϕ(xTwOOD) + xT∆wϕ′(c(x, ŵ,wOOD)

)
.
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We have

EX

[
ROOD(f̂)

]
= E(x,·)∼PX ,Y ,X

[(
f̂(x)− fOOD(x)

)2]
+ E(x,·)∼POOD

X ,Y ,X

[(
f̂(x)− fOOD(x)

)2]
= Ex∼PX ,Y ,X

[(
ϕ(xT ŵ)− ϕ(xTwOOD)

)2]
+ Ex∼POOD

X ,Y ,X

[(
ϕ(xT ŵ)− ϕ(xTwOOD)

)2]
= Ex∼PX ,Y ,X

[(
xT∆wϕ′(c(x, ŵ,wOOD)

))2]
+ Ex∼POOD

X ,Y ,X

[(
xT∆wϕ′(c(x, ŵ,wOOD)

))2]
= Ex∼PX ,Y ,X

[
∆T

wxxT∆wϕ′(c(x, ŵ,wOOD)
)2]

+ Ex∼POOD
X ,Y ,X

[
∆T

wxxT∆wϕ′(c(x, ŵ,wOOD)
)2]

= Tr
(
EX

[[
Ex∼PX ,Y

[
ϕ′(c(x, ŵ,wOOD)

)2
xxT

]
+ Ex∼POOD

X ,Y

[
ϕ′(c(x, ŵ,wOOD)

)2
xxT

]]
∆w∆T

w

])
= Tr

(
EX

[[
Σ+ΣOOD]∆w∆T

w

])
= EX

[
∆T

wΣ∆w

]
+ EX

[
∆T

wΣOOD∆w

]
,

where

Σ = Ex∼PX ,Y

[
ϕ′(c(x, ŵ,wOOD)

)2
xxT

]
= Ex∼PX ,Y

[(
ϕ(xT ŵ)−ϕ(xTwOOD)

xT ŵ−xTwOOD

)2

xxT

]
and

ΣOOD = Ex∼POOD
X ,Y

[
ϕ′(c(x, ŵ,wOOD)

)2
xxT

]
= Ex∼POOD

X ,Y

[(
ϕ(xT ŵ)−ϕ(xTwOOD)

xT ŵ−xTwOOD

)2

xxT

]
.

From the min-max theorem, we have

EX

[
∆T

wΣ∆w

]
+ EX

[
∆T

wΣOOD∆w

]
≥ EX

[(
λmin(Σ) + λmin(Σ

OOD)
)
∆T

w∆w

]
and

EX

[
∆T

wΣ∆w

]
+ EX

[
∆T

wΣOOD∆w

]
≤ EX

[(
λmax(Σ) + λmax(Σ

OOD)
)
∆T

w∆w

]
.

From Lemma 1.1, there exists c, C > 0 independent of ŵ (and thus X) such that

c EX

[
∆T

w∆w

]
≤ EX

[
∆T

wΣ∆w

]
+ EX

[
∆T

wΣOOD∆w

]
≤ C EX

[
∆T

w∆w

]
.

For EX

[
∆T

w∆w

]
, we have

EX

[
∆T

w∆w

]
= EX

[
∥ŵ −wOOD∥22

]
= EX

[
∥ŵT −wOOD

T ∥22
]
+ EX

[
∥ŵT c −wOOD

T c ∥22
]

= EX

[
∥ŵT −wOOD

T ∥22
]
+ ∥wOOD

T c ∥22.

From Lemma 1.2, we have

EX

[
∥ŵT −wOOD

T ∥22
]
=


p

n−p−1

(
∥wOOD

T c ∥22 + σ2
)

if p ≤ n− 2,

+∞ if n− 1 ≤ p ≤ n+ 1,(
1− n

p

)∥∥wOOD
T

∥∥2
2
+ n

p−n−1

(
∥wOOD

T c ∥22 + σ2
)

if p ≥ n+ 2,

which concludes the proof.

Lemma 1.1. Let Σ,ΣOOD ∈ Rd×d defined as

Σ = Ex∼PX ,Y

[(
ϕ(xT ŵ)−ϕ(xTwOOD)

xT ŵ−xTwOOD

)2

xxT

]
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and

ΣOOD = Ex∼POOD
X ,Y

[(
ϕ(xT ŵ)−ϕ(xTwOOD)

xT ŵ−xTwOOD

)2

xxT

]
.

Under Assumption 4.1-4.2, the matrices Σ and ΣOOD are positive-definite. Furthermore, there exists
c1, C1 > 0 and c2, C2 > 0 independent of ŵ such that

λmin(Σ) ≥ c1 and λmax(Σ) ≤ C1

and
λmin(Σ

OOD) ≥ c2 and λmax(Σ
OOD) ≤ C2.

Proof. From the mean-value theorem, there exists

c(x, ŵ,wOOD) ∈
(
min(xT ŵ,xTwOOD),max(xT ŵ,xTwOOD)

)
,

such that

ϕ′(c(x, ŵ,wOOD)
)
= ϕ(xT ŵ)−ϕ(xTwOOD)

xT ŵ−xTwOOD .

Using c(x, ŵ,wOOD), we rewrite the matrix Σ as

Σ = E(x,·)∼PX ,Y

[
ϕ′(c(x, ŵ,wOOD)

)2
xxT

]
.

The matrix Σ is semi-positive-definite. Let µ(·) denotes the probability density function of PX ,Y .
Let u = argmina∈Rd\{0d}

aTΣa
aTa

. From the min-max theorem, we have

λmin

(
Σ
)
= uTΣu

uTu
.

Since the derivative of ϕ(·) is strictly positive, we have

λmin

(
Σ
)
= uTΣu

uTu
= 1

uTu
uTE(x,·)∼PX ,Y

[
ϕ′(c(x, ŵ,wOOD)

)2
xxT

]
u

= 1
uTu

∫
Rd

ϕ′(c(x, ŵ,wOOD)
)2
(uTx)2µ(x)dx

≥ 1
uTu

∫
Rd(T c)

ϕ′(c(x, ŵ,wOOD)
)2
(uTx)2µ(x)dx︸ ︷︷ ︸

=c

.

Note that for all x ∈ Rd(T c), we have

ŵTx = ŵT
T xT + ŵT

T CxT C = ŵT
T 0p + 0T

d−pxT C = 0.

We deduce that c is independent of ŵ since

c(x, ŵ,wOOD) ∈
(
min(0,xTwOOD),max(0,xTwOOD)

)
, ∀x ∈ Rd(T c).

Furthermore, c > 0 since x 7→ ϕ′(c(x, ŵ,wOOD)
)2
(uTx)2 is nonnegative and is not the zero map

on Rd(T ) as u ̸∈ Rd(T ) (Assumption 4.2). We conclude there exists c > 0 independant of ŵ such
that λmin

(
Σ
)
≥ c.

Next, we are going to show that there exists C > 0 independant of ŵ such that λmax

(
Σ
)
≤ C. From

Assumption 4.1, we know there exists K ′ > 0 such that for all x ∈ R we have

ϕ′(x) ≤ K ′.

Let K > K ′ and M = K2E(x,·)∼PX ,Y

[
xxT

]
−Σ. M is a symmetric matrix. From the min-max

theorem M is semi positive-definite if for all a ∈ Rd\{0d}, we have

aTMa ≥ 0.
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Let a ∈ Rd\{0d}, we have

aTMa = aT
[
K2E(x,·)∼PX ,Y

[
xxT

]
−Σ

]
a

= aT
[
E(x,·)∼PX ,Y

[
K2xxT

]
− E(x,·)∼PX ,Y

[
ϕ′(c(x, ŵ,wOOD)

)2
xxT

]]
a

= E(x,·)∼PX ,Y

[(
K2 − ϕ′(c(x, ŵ,wOOD)

)2︸ ︷︷ ︸
>0

)
(aTx)2︸ ︷︷ ︸

≥0

]
≥ 0.

We deduce that M ⪰ 0. Therefore, Σ ⪯ K2E(x,·)∼PX ,Y

[
xxT

]
and we have

λmax

(
Σ
)
≤ K2λmax

(
E(x,·)∼PX ,Y

[
xxT

])︸ ︷︷ ︸
=C

.

C is independent of ŵ. With a similar proof, we can derive a result for ΣOOD.

Lemma 1.2. Let (p, q) ∈ [d]2 such that p+ q = d, T ⊆ [d] an arbitrary subset of the d first natural
integers, and T c := [d] \ T its complement set. Let ŵ ∈ Rd such that ŵT = X+

T z ∈ Rp and
ŵT c = 0q ∈ Rq . We have

EX

[
∥ŵT −wOOD

T ∥22
]
=


p

n−p−1

(
∥wOOD

T c ∥22 + σ2
)

if p ≤ n− 2,

+∞ if n− 1 ≤ p ≤ n+ 1,(
1− n

p

)∥∥wOOD
T

∥∥2
2
+ n

p−n−1

(
∥wOOD

T c ∥22 + σ2
)

if p ≥ n+ 2.

Proof. Let η = z−XT w
OOD
T . Since ŵT = X+

T z, we have ŵT = X+
T (η+XT w

OOD
T ). Therefore,

EX

[
∥wOOD

T − ŵT ∥22
]
= EX

[∥∥(Ip −X+
T XT )w

OOD
T −X+

T η
∥∥2
2

]
= EX

[∥∥(Ip −X+
T XT )w

OOD
T

∥∥2
2
+
∥∥X+

T η
∥∥2
2
− 2

〈(
Ip −X+

T XT

)
wOOD

T ,X+
T η

〉]
.

Since (X+
T XT )

T = X+
T XT and (X+

T XT )
TX+

T = X+
T , we have〈

(Ip −X+
T XT )w

OOD
T ,X+

T η
〉
2
=

(
(Ip −X+

T XT )w
OOD
T

)T
X+

T η

= [wOOD
T ]T (Ip −X+

T XT )
TX+

T η

= [wOOD
T ]TX+

T η − [wOOD
T ]T (X+

T XT )X
+
T η

= [wOOD
T ]TX+

T η − [wOOD
T ]TX+

T η

= 0.

(Ip −X+
T XT )w

OOD
T and X+

T η are thus orthogonal. We deduce that

EX

[∥∥ŵT −wOOD
T

∥∥2
2

]
= EX

[∥∥(Ip −X+
T XT

)
wOOD

T
∥∥2
2
+

∥∥X+
T η

∥∥2
2

]
= EX

[∥∥(Ip −X+
T XT

)
wOOD

T
∥∥2
2

]
+ EX

[∥∥X+
T η

∥∥2
2

]
.

(9)

Leveraging the same arguments used by Belkin et al. (2020) to prove the existence of the double
descent phenomenon in the regression problem, we distinguish two cases depending on n and p to
derive equation 9.

Classical Regime (p < n). Breiman & Freedman (1983) studied this regime for the regression
problem and found:

EX

[∥∥ŵT −wOOD
T

∥∥2
2

]
= p

n−p−1

(
∥wOOD

T c ∥22 + σ2
)
.
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Interpolating Regime (p ≥ n). The interpolating regime has been considered in Belkin et al.
(2020) for the regression problem. We can observe that:

wOOD
T = (Ip −X+

T XT )w
OOD
T +X+

T XT w
OOD
T

and〈
(Ip −X+

T XT )w
OOD
T ,X+

T XT w
OOD
T

〉
=

(
Ip −X+

T XT )w
OOD
T

)T
(X+

T XT w
OOD
T )

= [wOOD
T ]T

(
X+

T XT − (X+
T XT )(X

+
T XT )

)
wOOD

T

= 0.

Since (Ip −X+
T XT )w

OOD
T and X+

T XT w
OOD
T are orthogonal, we have∥∥wOOD

T
∥∥2
2
=

∥∥(Ip −X+
T XT )w

OOD
T

∥∥2
2
+
∥∥X+

T XT w
OOD
T

∥∥2
2

(Pythagorean theorem)

and thus ∥∥(Ip −X+
T XT )w

OOD
T

∥∥2
2
=

∥∥wOOD
T

∥∥2
2
−

∥∥X+
T XT w

OOD
T

∥∥2
2
.

Putting the equation above into equation 9, we obtain

EX

[∥∥ŵT −wOOD
T

∥∥2
2

]
= EX

[∥∥wOOD
T

∥∥2
2

]
− EX

[∥∥X+
T XT w

OOD
T

∥∥2
2

]
+ EX

[∥∥X+
T η

∥∥2
2

]
. (10)

Note that ΠT = X+
T XT = XT

T (XT X
T
T )

−1XT is the orthogonal projection matrix for the row
space of XT . We can thus write X+

T XT wT = ΠT w
OOD
T as a linear combination of rows of XT .

Then, using the fact that the xi in X are i.i.d. and drawn from a standard normal distribution and by
rotational symmetry of the standard normal distribution, it follows:

EX

[∥∥X+
T XT w

OOD
T

∥∥2
2

]
= n

p

∥∥wOOD
T

∥∥2
2
.

Putting equation above in equation 10 into, we obtain

EX

[∥∥ŵT −wOOD
T

∥∥2
2

]
=

∥∥wOOD
T

∥∥2
2

(
1− n

p

)
+ EX

[∥∥X+
T η

∥∥2
2

]
.

We are going to evaluate EX

[∥∥X+
T η

∥∥2
2

]
. First, we observe that

η = z −XT w
OOD
T

= XT w
OOD
T +XT cwOOD

T c + ϵ−XT w
OOD
T

= XT cwOOD
T c + ϵ,

(11)

where ϵ = [ϵ1, . . . , ϵn]
T . Because XT w

OOD
T and XT cwOOD

T c + ϵ are both uncorrelated, we have

EX

[∥∥X+
T η

∥∥2
2

]
= Tr

(
EX

[
X+T

T X+
T
]
EX

[
ηηT

])
.

As p > n, we have X+
T = XT

T (XT X
T
T )

−1 and thus

EX

[
X+T

T X+
T
]
= EX

[
(XT X

T
T )

−1
]

XT X
T
T follows a Wishart distribution: XT X

T
T ∼ Wn(p, In), and (XT X

T
T )

−1 follows an inverse
Wishart distribution: (XT X

T
T )

−1 ∼ W−1
n (p, In). Its expectation is given by:

E[(XT X
T
T )

−1] = In
p−n−1 .

We have

EX

[∥∥X+
T η

∥∥2
2

]
= 1

p−n−1EX

[
ηTη

]
.

From equation 11, we have

EX

[
ηTη

]
= EX

[(
z −XT w

OOD
T

)T (
z −XT w

OOD
T

)]
= EX

[(
XT cwOOD

T c + ϵ
)T (

XT cwOOD
T c + ϵ

)]
= [wOOD

T c ]TEX

[
XT

T cXT c

]
wOOD

T c + EX

[
ϵT

]︸ ︷︷ ︸
=0

EX

[
XT c

]︸ ︷︷ ︸
=0

wOOD
T c + [wOOD

T c ]T EX

[
XT

T c

]︸ ︷︷ ︸
=0

EX

[
ϵ
]︸ ︷︷ ︸

=0

+EX

[
ϵT ϵ

]
.
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XT
T cXT c follows a Wishart distribution, i.e., XT

T cXT c ∼ Wq(n, Iq). We obtain thus

EX

[
ηTη

]
= n[wOOD

T c ]TwOOD
T c + nσ2

= n∥wOOD
T c ∥22 + nσ2.

(12)

From equation 12, we deduce that

EX

[∥∥X+
T η

∥∥2
2

]
= n

p−n−1

(
∥wOOD

T c ∥22 + σ2
)
.

and
EX

[∥∥ŵT −wOOD
T

∥∥2
2

]
=

∥∥wOOD
T

∥∥2
2

(
1− n

p

)
+ n

p−n−1

(
∥wOOD

T c ∥22 + σ2
)
.

B Details about Baselines and Architecture Implementations

B.1 Baseline OOD Methods

In this section, we present an overview of the baseline methods used in our experiments. We describe
the principles behind these baselines, and the chosen hyperparameters. It is worth noting that extensive
hyperparameter search for each method were not performed to maintain stability. Hence, once the
final model is selected, hybrid methods like ViM, ASH and NECO performance may increase if such
task is performed.

Softmax Score. This score uses the maximum softmax probability (MSP) of the model as an OOD
scoring function (Hendrycks & Gimpel, 2017).

Energy. Liu et al. (2020) proposes using the energy score for OOD detection, where the energy
function maps the logit outputs to a scalar. To maintain the convention that lower scores correspond
to in-distribution (ID) data, (Liu et al., 2020) uses the negative energy as the OOD score.

ReAct. Sun et al. (2021) propose clipping extreme-valued activations. The original paper found
that clipping activations at the 90th percentile of ID data was optimal. Moreover, as the authors
propose, we employ the ReAct+Energy configuration.

KL-Matching & MaxLogit. KL-Matching computes the class-wise average probability using
the entire training dataset. Consistent with the approach outlined in (Hendrycks et al., 2022), this
calculation is based on the predicted class rather than the ground-truth labels. MaxLogit employs the
maximum logit value of the model as an OOD scoring function.

Mahalanobis. This score leverages the feature vector from the layer preceding the final classifica-
tion layer (Lee et al., 2018a). To estimate the precision matrix and the class-wise mean vector, we
used the entire training dataset. It’s important to note that we incorporated ground-truth labels during
this computation process.

ViM & Residual. Wang et al. (2022) decomposes the latent space into a principal space P and a
null space P⊥. The ViM score is calculated by projecting the features onto the null space to create a
virtual logit, which is then combined with the logits using the norm of this projection. To enhance
performance, they calibrate this norm with a constant which is determined by dividing the sum of the
maximum logits by the sum of the norms of the null space projections, both measured on the training
set. The Residual score is derived by computing the norm of the latent vector’s projection onto the
null space. We followed the author’s suggestions for the null space, by setting it to half the size of the
full feature vector, adapted to each model width.

ASH. Djurisic et al. (2023) employs activation pruning at the penultimate layer, just before the
application of the DNN classifier. This pruning threshold is determined on a per-sample basis,
eliminating the need for pre-computation of ID data statistics. The original paper presents three
different post-hoc scoring functions, with the only distinction among them being the imputation
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method applied after pruning. We employ ASH-P in our experiments as it performed the best, in
which the clipped values are replaced with zeros. As specified in the original paper, we fix the pruning
threshold value to 90%.

NECO. Ammar et al. (2024) leverages the geometric properties of Neural Collapse, measuring the
relative norm of a sample within the subspace defined by the ETF to identify OOD samples. NC
typically involves a collapse in the variability of class representations, leading to a more structured and
simplified feature space. It is hypothesized that this collapse also impacts OOD detection, particularly
through the emerging orthogonality between ID and OOD data. NECO utilizes this orthogonality to
effectively distinguish between ID and OOD data by measuring the relative norm of each data point
within the approximated ETF space scaled by the maximum logit value as the OOD score. We use a
dimension d = c to approximate the ETF sub-space for all architectures, with c being the number of
classes.

B.2 Experiments Setup

ViT Experimental Setup. For all experiments, we trained a set of ViT models with hidden
dimensions [4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 60, 80, 100, 120, 160, 200, 240, 280, 320, 360, 400,
480, 520, 600, 680, 760, 800]. This hidden dimension serve as the dimension of the output layer after
the linear transformation (the class-token size). The dimension of the FeedForward layer is the width
multiplied by 4. The input size is set to 32 and the patch size to 8, no dropout is used and we use
4 heads with 4 Transformer blocks. The ViT models are first randomly initialized and then trained
on CIFAR-10 using stochastic gradient descent with CE loss. The weights are fine-tuned for 60 000
steps, with no warm-up steps, 1 024 batch size, 0.9 momentum, and a learning rate of 0.03.

Swin Experimental Setup. We used a standard 4 block Swin architecture, with a downscaling
factor of (2,2,2,1) for each block respectively. The width ranges from 1 to 100, with a window size of
4, an input size of 32, and a filter size of 4. The model is randomly initialized and then optimized
using an Adam optimizer with CE loss for a 1 000 epoch using a batch size of 1 024. The initial
learning rate is 0.0001.

CNN Experimental Setup. Similar to Nakkiran et al. (2021), we define a standard family CNN
models formed by 4 convolutional stages of controlled base width [k, 2k, 4k, 8k], for k in the range
of [1, 128], with a fully connected layer as classifier. The MaxPool is set to [2, 2, 2, 4] for the four
blocks respectively. For all the convolution layers, the kernel size is set to 3, stride and padding to 1.

C Details about Neural Collapse

For overparametrised model trained through the terminal phase of training (TPT), Neural Collapse
(NC) phenomenon emerges, particularly in the penultimate layer and in the linear classifier of DNNs
(Papyan et al., 2020; Ammar et al., 2024). NC is characterized by five main properties:

1. Variability Collapse (NC1): the within-class variation in activations becomes negligible as
each activation collapses toward its respective class mean.

2. Convergence to Simplex ETF (NC2): the class-mean vectors converge to having equal
lengths, as well as having equal-sized angles between any pair of class means. This
configuration corresponds to a Simplex Equiangular Tight Frame (ETF).

3. Convergence to Self-Duality (NC3): in the limit of an ideal classifier, the class means and
linear classifiers of a neural network converge to each other up to rescaling, implying that
the decision regions become geometrically similar and that the class means lie at the centers
of their respective regions.

4. Simplification to Nearest Class-Center (NC4): The network classifier progressively tends
to select the class with the nearest class mean for a given activation, typically based on
standard Euclidean distance.

5. ID/OOD Orthogonality (NC5): As the training procedure advances, OOD and ID data
tend to become increasingly more orthogonal to each other. In other words, the clusters of
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OOD data become more perpendicular to the configuration adopted by ID data (i.e., the
Simplex ETF).

These NC properties provide valuable insights into DNNs learned representation structure and
properties, which allows for a considerable simplification. Additionally, the convergence of NC can
be linked to OOD detection Ammar et al. (2024); Haas et al. (2023); Zhao & Cao (2023); Zhang et al.
(2024). For further details refer to (Papyan et al., 2020; Ammar et al., 2024)

D Complementary Results on Double Descent and OOD Detection

D.1 ReLU Random Feature Model Experimental Setting

ReLU Random Feature (RRF) models (Rahimi & Recht, 2007) offer a class of simple yet expressive
models. These models approximate two-layer neural networks by fixing the first-layer weights
randomly and learning linear output weights. Formally, the model is defined as:

RRF (x) =

m∑
i=1

ai ϕ(w
⊤
i x+ bi), where ϕ(z) = max(0, z), (13)

with wi ∼ Dw, bi ∼ Db drawn i.i.d. from fixed distributions, and the output weights ai ∈ R learned
via linear regression on the transformed data. At their core, these models perform a randomized
nonlinear projection followed by a linear mapping, offering a computationally tractable means of
studying nonlinear learning behaviors.

We stack a sigmoid activation function on the model outputs, which aligns with the theoretical setting
underlying Theorem 1 and Theorem 2:

f(x) = ϕ′(RRF (x)), where ϕ′(z) =
1

1 + e−z
,

This allows us to closely mirror the binary classification setting.

We vary the model width (i.e., the number of random features) from 2 to 10 000 and train each model
for 600 epochs. For training and evaluation, we generate two datasets of 1 000 samples each by
selecting two CIFAR-10 classes (class 0 and class 1) and fitting Gaussian Mixture Models (GMMs)
to this data. These GMMs then serve as generative sources for the training and test samples. Out-of-
distribution (OOD) data is generated by sampling 1 000 inputs from a distinct Gaussian distribution
with the same shape as CIFAR-10 images.

To evaluate OOD detection, we employ the following score, which is tailored to the binary classifica-
tion context:

g(x) =
|ŷ − 0.5|

0.5
(14)

where ŷ denotes the model’s prediction. This score reflects our OOD detection risk proxy defined in
equation 5, capturing the model’s confidence by penalizing under-confident predictions (a sigmoid
value close to 0.5). Interestingly, the AUC drops to around 50% at the interpolation threshold,
indicating behavior no better than random guessing. To better understand how the OOD score
evolves across the double descent curve, Figure 3 shows the distribution of g(x) from equation 14
across different model complexities—specifically in underparameterized, overparameterized, and
interpolation-threshold regimes. At the interpolation threshold, the distribution is notably heavy-
tailed, revealing that the model is producing extreme and unjustified confident outputs, often close to
0 or 1 for all inputs. This overconfidence, applied indiscriminately to both ID and OOD samples,
explains the poor AUC for the defined OOD score in equation 14. In contrast, models outside the
interpolation region exhibit more informative score distributions: OOD samples tend to receive low
scores, while ID scores are more uniformly spread, enabling better separation. However, as model
complexity approaches the interpolation threshold from either side (width of value 500 and 5 000),
score separability start diminishing, primarily because OOD samples begin receiving increasingly
higher confidence scores.

D.2 CIFAR-10 Additional Results

To further show the consistency of double descent for OOD detection, Figures 4, 5 6, 7 and 8 show
the OOD detection metrics performance on six more semantic-shift OOD datasets. To illustrate the
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performance of other OOD-methods while maintaining visibility, we show two different methods at
each dataset alongside the better-performing and most stable three: MSP, NECO, and ASH.

D.3 CIFAR-100 Results

In this section, we present results for the CIFAR-100 dataset as ID for a ResNet-18 model. Figure 9
illustrates the OOD detection metrics performance, Figure 10 shows the accuracy and eigenvalues
distribution (see section E.1 for discussion about eigenvalues). We can observe similar behaviors
between the ResNet-18 trained on CIFAR-10, and this current configuration on a harder dataset
(CIFAR-100).

Table 2 illustrates the evolution of AUC between the underparametrized and overparametrized regime
and its correlation with the NC1u/o for the remaining OOD datasets. As the CNN’s NC1u/o < 1,
its performance stagnates or deteriorates with overparametrization, while the other models improve.
Additionally, we can see how the hybrid-based methods improve considerably and become competitive
with logit-methods when NC1u/o > 1.

Table 2: Models performance in terms of AUC in the underparametrized local minima (AUCu) and the
overparametrized maximum width (AUCo), w.r.t NC1u/o value. Best is highlighted in green when
AUCu is higher, red when AUCu is higher and blue if both AUC are within standard deviation range.
The highest AUC value per-dataset and per-architecture is highlighted in bold.

Model NC1u/o Method ImageNet-O Textures iNaturalist
AUCu ↑ AUCo ↑ AUCu ↑ AUCo ↑ AUCu ↑ AUCo ↑

CNN 0.88

Softmax score 71.60+0.37 71.78±0.57 70.76±0.99 74.80±0.78 66.19±1.27 72.07±1.56
MaxLogit 68.91±0.96 65.94±0.51 62.01±3.75 45.56±1.06 63.38±1.89 61.58±2.07
Energy 65.06±1.57 65.76 ±0.51 53.62±5.87 45.07±1.04 60.11±2.32 61.32±2.05
Energy+ReAct 59.06±2.60 58.08±0.80 42.80±7.54 32.67±0.86 51.17±2.82 49.41±2.47
NECO 67.45±1.14 68.89±0.35 56.54±3.83 55.75±3.63 59.79±1.96 68.52±3.60
ViM 67.13±1.61 65.76±0.51 49.84±3.59 45.09±0.79 51.58±2.82 61.37±1.96
ASH-P 66.20±1.48 66.26±0.57 56.07±5.94 46.23±1.07 60.73±2.83 61.52±2.11

ResNet 1.96

Softmax score 70.90±0.52 75.91±0.49 68.03±0.75 72.78 ±1.14 65.79±2.16 74.85±1.39
MaxLogit 69.45±0.88 72.50±0.88 65.06±1.80 64.43±2.04 63.88±3.47 72.82±2.32
Energy 67.36±1.26 72.44±0.89 62.28±2.55 64.35±1.84 61.73±4.97 72.77±2.33
Energy+ReAct 68.02±1.41 72.00±0.81 64.15±2.68 66.13±1.20 61.68±6.83 71.85±2.60
NECO 70.42±0.83 76.11±1.42 67.56±1.84 73.18±3.20 64.50±3.51 75.12±2.21
ViM 70.94±1.54 75.03±0.62 77.88±1.66 81.02±1.42 62.56±4.91 67.12±2.44
ASH-P 67.36±1.26 71.57±0.94 62.28±2.55 62.96±2.11 61.73±4.97 71.72±2.28

Swin 1.70

Softmax score 56.62±3.15 64.78±1.48 49.71±3.38 63.51±0.33 49.10±6.81 60.26±2.08
MaxLogit 55.86±3.95 64.70±2.07 49.47±4.18 60.29±0.38 49.22±5.07 58.91±1.81
Energy 49.58±5.48 64.56±2.05 49.49±6.73 59.96±0.46 51.61±7.96 58.73±1.75
Energy+ReAct 49.81±5.51 65.43±2.09 50.66±6.07 62.38±0.24 51.87±7.51 59.39±1.83
NECO 57.63±4.14 68.19±2.71 56.50±3.64 68.06±0.66 49.09±5.14 62.58±2.21
ViM 65.18±1.83 73.45±2.25 84.47±1.46 78.67±1.65 67.86±2.44 63.83±2.63
ASH-P 49.46±5.66 64.48±2.11 48.96±7.85 59.90±0.48 51.33±10.79 58.69±1.99

ViT 2.32

Softmax score 64.17±0.64 63.64±0.80 67.73±1.82 70.27±0.36 52.79±0.77 58.23±0.51
MaxLogit 63.15±0.88 68.87±0.52 67.22±2.25 79.25±0.38 51.90±1.95 61.28±0.94
Energy 61.24±1.08 69.10±0.50 65.59±2.78 79.68±0.38 51.11±3.04 61.40±0.97
Energy+ReAct 61.30±1.21 69.09±0.49 65.64±2.86 79.68±0.38 51.63±4.61 61.39±0.98
NECO 65.83±1.35 69.95±0.37 69.41±2.16 77.32±0.49 52.50±2.05 62.96±0.89
ViM 68.76±1.52 67.82±0.55 65.58±2.69 74.13±0.38 56.41±3.81 60.42±0.90
ASH-P 61.24±1.08 68.96±0.48 65.59±2.78 79.39±0.42 51.11±3.04 61.28±0.99

D.4 ResNet-34 Results

In this section, we present the results for the ResNet-34 architecture, a deeper version of the ResNet
family. Results include both CIFAR-10 and CIFAR-100 datasets as ID. Figure 12 shows the accuracy
curve and Figure 11 depicts the OOD detection metrics performance. We observe a similar curve to
that of ResNet-18 for both datasets and for all OOD methods, with slightly higher performances. We
highlight that the interpolation threshold occurs at a smaller width for ResNet-34 (k=8), compared to
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ResNet-18 (k=10) for the CIFAR-10 case. This higher complexity also contributes to its lower NC1
values in Figure 22.

D.5 Out-of-Distribution Risk Experiments

In Section 4.1, we introduced ROOD(f̂) as a metric for OOD detection. Figures 13, 14, 15, 16, and 17
show the expected OOD risk as a function of the model width and highlight a similar double descent
phenomenon across all OOD datasets.

D.6 Experiments Without Label-Noise Results

Like experiments depicted in Nakkiran et al. (2021), our experimental results in Section 5 consider
noisy labels. In this section, we consider a noiseless setting with Figure 18 that depicts the model ac-
curacy as a function of the model width in a noiseless setup. Instead of a double descent phenomenon,
a plateau or stagnation appears near the interpolation threshold. Similarly, Figure 19 features the
OOD detection performance with respect to the model width under this setup. The curves exhibit a
similar behavior than for the model accuracy. Moreover, we observe that removing label noise makes
the learning task easier with better performance, e.g., ResNet-18 max accuracy rising from 83.40%
to 94.48% with a similar rise observed for AUC.

E Model representations and Neural Collapse Analysis

E.1 Structure of the Model Representation

Convergence towards Neural Collapse can be an indicator of improved model representation, as
defined by the ETF structure. As such, the model eigenvalues distribution can be seen as describing
how much the model representation aligns with this structured manifold. The properties of the ETF
implies that the top c eigenvalues will be equally prominent, as they represent the top c eigenvectors
that constructs the ETF subspace (Papyan et al., 2020; Ammar et al., 2024). The remaining eigenvalues
should be less influential, as the ID the data lies essentially in the c-dimensional ETF subspace. Figure
20 shows the distribution of each model eigenvalues at the overparametrized regime. It is worth
noting that it seems that for all architectures, all overparametrized model widths show similar curves.
From Figure 20 we can see that ResNet-18 and Swin models follow the expected NC pattern, with a
steep drop in importance at the cth eigenvalue indicating the limit of the ETF. However, Figure 20 also
shows that ViT and CNN exhibit a slowly decaying curve, which indicates a lack of clear separation
in the model representation between highly important ID information and noisy features. This lack of
a global structure in their representation results in both models failing to reliably outperform their
underparametrized minima.

This highlights the importance of the ETF structure and NC convergence in enhancing representation
stability, which can be useful for improving ID classification and OOD detection tasks.

E.2 Evolution of NC1

In this section, we further analyze the evolution of NC1 and the model’s learned representation with
overparametrization, to further show their correlation. Our analysis will focus primarily on the ResNet
and CNN models, due to their similarities. To compare the NC convergence across architectures,
we include the overparametrized and underparametrized NC1 value of each architecture in Table 3.
We will not address the transformer-based models whose performance, especially for generalization,
were lower than those of ResNet or CNN. This is because transformers typically require extensive
pre-training, particularly for small datasets, and this was not the case for our experiments.

In order to visualize the variability collapse predicted by NC1, Figure 21 shows the last-layer
activations for both models at their optimal underparameterized and overparameterized widths.
In ResNet, transitioning to overparameterized models leads to significant improvements in the
compactness and separation of ID clusters, as well as enhanced orthogonality with OOD points. In
contrast, the CNN model does not show clear improvements in ID compactness or OOD separation,
making it difficult to determine which representation is better.
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Figure 22 shows NC1 metric against the model widths for both ResNets and CNN. While both
models exhibit a double descent pattern, CNN barely matches its underparameterized metric value,
whereas ResNet continuously improves with added complexity. This discrepancy in NC convergence
with overparametrization explains why only ResNet benefits from increased complexity, suggesting
that without improvement in NC, increasing model complexity provides no benefits for the learned
representations.

Table 3: Comparison of NC1 values for different architectures in under- and over-parameterized
regimes.

Architecture NC1 (Under-parameterized) NC1 (Over-parameterized)
ResNet-18 1.35 ± 0.04 0.687 ± 0.03
ResNet-34 1.29 ± 0.02 0.64 ± 0.02
CNN 2.37 ± 0.08 2.71 ± 0.03
Swin 35.08 ± 3.53 20.65 ± 1.88
ViT 29.52 ± 2.17 12.71 ± 0.74
ResNet (Depth) 1.53 ± 0.02 1.57 ± 0.09

E.3 Mahalanobis and Residual Joint Performance

We noticed that for all architectures, and on all OOD datasets, Mahalanobis and Residual follow
the same evolution curve, with usually slightly higher AUC in favor of Mahalanobis. This behavior
is intriguing, due to the fact that each method relies on different types of information. While
Mahalanobis models the ID distribution, i.e., the principal space, Residual relies on computing the
null space norm, which is orthogonal to the principal space.

We associate this behavior with the noise isolation in each architecture, which is specific to the double
descent training paradigm. Indeed, in order for models to be able to perfectly interpolate all the
training data and achieve (almost) zero training error, noisy samples must be represented closer to
their assigned (noisy) label, rather than to their true label. This will cause the train class clusters
(using the true labels) to be less compact and separable, making their high-likelihood region to span
almost the entire principal space, in which the ID data is represented. Hence, to separate ID from
OOD, learning the Mahalanobis GMM (fitted on the train data) becomes equivalent to separating the
principal and null space, which is the same reasoning behind the Residual score.

This overfitting occurs at the interpolation threshold, which causes the learned distributions by
Mahalanobis to be sparse and not robust to OOD data, impeding its improvement as we transition
towards overparametrization. It is important to note also that both of these methods are usually below,
or struggle to surpass the random choice threshold of 0.5 AUC in the overparametrized regime (with
the exception of texture dataset on ResNet-18 case).

Interestingly, both of these methods suffer much less from this behavior under the Transformer based
architecture, and even exhibit a double descent curve on most datasets. This can be explained by
the fact that even the most overparametrized Transformer variant have a training error higher than
4%. In comparison, convolutional models consistently achieve a training error lower than 0.01%.
Hence, Transformers suffer less from this effect because they have not interpolated the noise in the
training data perfectly. It is worth noting that interpolating the noise is desirable, as it is necessary for
Generalization in this setup (Bartlett et al., 2020). Transformer-based architectures require extensive
pre-training to generalize well, especially for small scale dataset, which was not performed in our
experiments. This inability of transformers to perfectly interpolate the training data contributes to
their lower performance in terms of Generalization in the overparametrized regime, especially in the
ViT case.

F Depth-Wise Double Descent

In this section, we investigate how the model depth affects ID generalization and post-hoc OOD
detection performance. Most works on the double descent phenomenon focus on varying the network
width rather than depth (Belkin et al., 2020; Couillet & Liao, 2022; Bach, 2024; Nakkiran et al.,
2021). A primary reason stems from challenges in modifying network depth within both empirical
and theoretical frameworks. From an empirical perspective, increasing depth often introduces
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training instabilities and requires hyperparameter adjustments (e.g., learning rates) that complicate
comparative analyses. From a theoretical perspective, studies typically rely on frameworks like
Random Matrix Theory (RMT) or statistical physics, which often model networks as linear systems
with random features. Increasing the depth also increases nonlinear interactions and hierarchical
dependencies, which may limit the applicability of these mathematical tools.

F.1 Experimental Setup

We conduct experiments on ResNet-like architectures composed of four residual blocks, with CIFAR-
10 as the ID dataset. The width of the network is fixed (at k = 10), while the model complexity is
controlled by modifying the model depth. In particular, the model depth is defined as the total number
of residual layers across all four blocks. Starting with shallow configurations, we incrementally
increase the number of layers per block, focusing on deepening of the blocks with the fewest layers
first. For instance, the sequence of architectures progresses as follows:

1, 1, 1, 1 → 2, 1, 1, 1 → 2, 2, 1, 1 → 2, 2, 2, 2 → 3, 2, 2, 2 → · · · → 10, 10, 10, 10,

where each tuple denotes the number of residual layers in each block, respectively. In Figure 23, the
x-axis depicts the total depth, i.e. the sum of the four block values. To obtain architectures with depth
less than 4, we replace residual blocks with MaxPooling layers to maintain a constant overall width
across all models. The training protocol follows the same setup as the width-wise experiments (see
Section 5.2). Furthermore, the same set of metrics is considered: test accuracy, OOD detection AUC,
Neural Collapse, and the OOD risk defined in equation 5.

F.2 Results

Figure 23 depicts a similar double descent phenomenon for model depth as observed for model
width. Furthermore, Table 4 shows a correlation between the NC1u/o metric and OOD detection
performance, which may suggest an alignement between the NC1u/o and OOD performance.

Table 4: Models performance in terms of AUC in the underparametrized local minima (AUCu) and the
overparametrized maximum width (AUCo), w.r.t NC1u/o value. Best is highlighted in green when
AUCo is higher, red when AUCu is higher and blue if both AUC are within standard deviation range.
The highest AUC value per-dataset and per-architecture is highlighted in bold.

Model NC1u/o Method SUN Places365 CIFAR-100
AUCu ↑ AUCo ↑ AUCu ↑ AUCo ↑ AUCu ↑ AUCo ↑

Depth 0.97

Softmax 72.45±0.99 69.23±2.66 72.47±0.86 69.01±0.97 71.62±0.65 68.84±1.39
MaxLogit 72.57±0.72 71.00±2.86 72.57±1.15 70.76±1.93 70.66±0.74 70.82±2.16
Energy 71.81±0.70 70.98±2.87 71.83±1.24 70.74±1.92 69.43±0.80 70.81±2.17
ReAct 71.83±1.58 71.56±2.99 71.89±1.83 71.30±2.04 70.13±1.32 70.71±2.28
NECO 72.83±0.89 71.24± 2.12 72.74±1.03 70.77±1.99 70.85±0.76 69.54±1.07
ViM 71.86±2.11 70.32±4.91 71.07±1.70 69.46±3.92 71.14±1.31 67.29±1.70
ASH-P 71.78±0.66 70.50±3.29 71.79±1.27 70.19±2.40 69.40±0.87 70.34±2.45

F.3 Connection to Width-Wise Experiments.

Although the depth-wise experiments also exhibit a double descent phenomenon, it differs in important
ways from the width-wise case observed in ResNet-18 and ResNet-34. Notably, the best models in
both the underparameterized and overparameterized regimes achieve comparable performance. This
distinct behavior is reflected in the ratio NC1u/o = 0.97 < 1, indicating that feature collapse did not
improve with increased depth.

These findings emphasize that out-of-distribution (OOD) performance is influenced not only by
architectural biases but also by the specific training dynamics and representational geometry induced
by scaling along different dimensions. It is important to note that at very large depths, additional
complexities such as optimization instabilities and slower convergence emerge.
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(a) Underparameterized models
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(b) Interpolation threshold model
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(c) Overparameterized models

Figure 3: Distribution of the values of the OOD scoring function g(x) defined in equation 14,
evaluated on Random ReLU Feature (RRF) models with varying widths. (a) Score distributions for
underparameterized models with widths, from left to right, of 100 and 500 respectively. (b) Score
distribution at the interpolation threshold (width = 1 000), where performance degrades sharply.
(c) Score distributions for overparameterized models with widths, from left to right, of 5 000 and
10 000 respectively.
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Figure 4: OOD detection (AUC) metric versus model width. Experiments performed on CNN,
ResNet-18, ViT, and Swin with CIFAR10 as ID dataset and ImageNet-O as OOD dataset.
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Figure 5: OOD detection (AUC) metric versus model width. Experiments performed on CNN,
ResNet-18, ViT and Swin with CIFAR10 as ID dataset and Texture as OOD dataset.
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Figure 6: OOD detection (AUC) metric versus model width. Experiments performed on CNN,
ResNet-18, ViT, and Swin with CIFAR10 as ID dataset and iNaturalist as OOD dataset.
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Figure 7: OOD detection (AUC) metric versus model width. Experiments performed on CNN,
ResNet-18, ViT, and Swin with CIFAR10 as ID dataset and SUN as OOD dataset.
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Figure 8: OOD detection (AUC) metric versus model width. Experiments performed on CNN,
ResNet-18, ViT, and Swin with CIFAR10 as ID dataset and places365 as OOD dataset.
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Figure 9: OOD detection (AUC) metric versus model width. Experiments performed on ResNet-18
with CIFAR100 as ID dataset and CIFAR-10, ImageNet-O, Texture, iNaturalist, SUN and places365
as OOD dataset.
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Figure 10: Accuracy versus model width (left) of ResNet-18 model on CIFAR-100. Explained
variance versus eigenvalues (right) in the overparametrized regime for ResNet-18 (width 64) on
CIFAR-100. The black line depicts the 100th eigenvalue.
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Figure 11: OOD detection (AUC) metric versus model width. Experiments performed on ResNet-34
with CIFAR10 (left) and CIFAR-100 (right) as ID dataset and CIFAR-100 (right), CIFAR-10 (left),
ImageNet-O, iNaturalist, places365, SUN and Textures as OOD dataset (from top to bottom).
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Figure 12: Accuracy versus model width. Experiments performed on CNN, ResNet-34 with CIFAR10
(left) and CIFAR100 (right) as ID datasets.
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Figure 13: OOD risk metric versus model width. Experiments performed on ResNet-18 with
CIFAR10 as ID dataset and CIFAR100 (left) and ImageNet-O (right) as OOD datasets.
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Figure 14: OOD risk metric versus model width. Experiments performed on CNN with CIFAR10 as
ID dataset and iNaturalist (left) and Textures (right) as OOD datasets.
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Figure 15: OOD risk metric versus model width. Experiments performed on ResNet-34 with
CIFAR10 as ID dataset and iNaturalist (left) and ImageNet-O (right) as OOD datasets.
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Figure 16: OOD risk metric versus model width. Experiments performed on ViT with CIFAR10 as
ID dataset and Places365 (left) and ImageNet-O (right) as OOD datasets.
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Figure 17: OOD risk metric versus model width. Experiments performed on Swin with CIFAR10 as
ID dataset and SUN (left) and ImageNet-O (right) as OOD datasets.
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Figure 18: Accuracy versus model width. Experiments performed on CNN (top left), ResNet-18 (top
right), ViT (bottom left) and Swin (bottom right) with CIFAR10 as ID dataset in the noiseless setting.
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Figure 19: OOD detection (AUC) metric versus model width. Experiments performed on CNN,
ResNet-18, ViT and Swin with CIFAR10 as ID dataset and CIFAR-100 (left) and ImageNet-O as
(right) OOD datasets in the noiseless setting.

37



100 101 102

Eigenvalues (Log Scale)
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ex
pl

ai
ne

d 
va

ria
nc

e

Top-c components (ETF)
Average explained variance

100 101 102

Eigenvalues (Log Scale)
0.00

0.01

0.02

0.03

0.04

0.05

Ex
pl

ai
ne

d 
va

ria
nc

e

Top-c components (ETF)
Average explained variance

100 101 102

Eigenvalues (Log Scale)
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ex
pl

ai
ne

d 
va

ria
nc

e

Average explained variance

100 101 102

Eigenvalues (Log Scale)
0.00

0.05

0.10

0.15

0.20

Ex
pl

ai
ne

d 
va

ria
nc

e

Average explained variance

Figure 20: Explained variance versus eigenvalues in the overparametrized region for CNN (width 64),
ResNet-18 (width 64), ViT (width 400) and Swin (width 50) with CIFAR-10 as ID dataset. Black
line depicts the 10th eigenvalue.

Figure 21: Visualization of the last-layer activations on the test set for ResNet and CNN in
the underparametrized local minima and the overparametrized width 128 model, with cifar10 as
ID and cifar100 as OOD datasets. ID points are shown in colors and OOD in black. ResNet
underparamterized (top right), ResNet overparametrized (bottom right), CNN underparametrized (top
left) CNN overparametrized (bottom left).
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Figure 22: NC1 metrics evolution (Log scale) versus model width. ResNet-18 is shown in blue,
ResNet-34 in green CNN in red. Dashed lines represent the interpolation thresholds for each model
with matching color.
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Figure 23: OOD detection (AUC) metric versus model depth (total number of residual layers across
four blocks), with width fixed to 10. Experiments performed ResNet type models, with CIFAR10 as
ID dataset and CIFAR100 (left), ImageNet-o (middle), and SUN (right) as OOD dataset.
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Figure 24: OOD risk metric versus model depth. Experiments performed on a ResNet with CIFAR10
as ID dataset and CIFAR100 (left), ImageNet-o (middle), and SUN (right) as OOD datasets.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The empirical investigation of double descent occurrence in Post-hoc OOD
detection is detailed in Section 5. Theoretical insights explaining this occurrence are
provided in Section 4. Section 5.7 details the suggested method to identify whether simpler
models are better for OOD detection.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in our conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide the correct and complete proofs for each theoretical result, which
are illustrated in detail in the Appendix A.1 and A.2. The full set of assumptions are provided
in Section 4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Datasets, models, and hyperparameters used are all described in details. See
Section 5 and Appendix B.2, Appendix D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will provide the code to reproduce the experimental results in the paper
upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All necessary hyperparameters to understand our results are detailed in Sec-
tion 5 and Appendix B.2, Appendix D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We plot the statistical variance across many seeds in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Due to the nature of our study—exploring double descent and out-of-
distribution (OOD) detection across a wide range of model architectures, dataset sizes,
and OOD detection methods—we trained and evaluated a large number of models under
varying conditions. Because of this variability and the exploratory scope, we did not report
exact compute details (e.g., runtime, memory, or hardware) for each configuration. However,
all experiments were conducted using standard GPU-equipped machines, and we aim to
release code and configurations to support reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is conducted with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in the paper are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper made no such use of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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