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Abstract

AI-assisted drug discovery has revolutionized healthcare by accelerating virtual1

screening methods as compared to traditional processes. Many advanced AI mod-2

els have been developed to predict and generate drug candidates, with potential3

applications across various diseases. However, challenges still remain in apply-4

ing AI models in clinical settings. These include the lack of heterogeneity and5

insufficient consideration of patient-specific treatment plans. To mitigate these6

challenges, we propose PanRX, a cell-line-specific pancreatic cancer drug effect7

model using multi-modal knowledge graphs. It aims at achieving a personalized8

drug discovery framework by incorporating rich genetic and chemical information.9

We first construct a multi-modal knowledge graph dataset PanCan-DrugsGenes. It10

extracts textual genetic information from NCBI, mutation status from the Genomics11

of Drug Sensitivity in Cancer (GDSC) dataset, textual descriptions of drugs from12

PubChem, and chemical geometry from the PM6 dataset. Then, PanRX utilizes a13

geometric model to learn chemical conformation, a language model to learn textual14

description, and a graph neural network to fuse all information and predict the15

target drug effects. We verify the effectiveness of PanRX by achieving the general-16

ization performance with very low MSE (< 0.0000) and MAE (0.0009). This17

work emphasizes the potential of merging knowledge graphs and deep learning in18

the fields of genomics and medicine, enriching the intersection of human biological19

expertise and AI in drug discovery and design tasks.20

1 Introduction21

Personalized medicine is becoming the pillar of modern medicine because it considers varying22

phenotypes of diseases as a result of differences in genetic information. Genetic information,23

including gene and copy number alterations (CNA) mutation status, gene regulatory networks, gene24

function, and gene location are critical information that collectively determine the wellbeing of25

individuals [1, 2]. Considering these factors is essential to understanding cancer mechanisms and26

therapeutic requirements in addition to the chemical/medicinal properties of various drugs. Databases27

∗Equal advising author

Foundation Models for Science Workshop,38th Conference on Neural Information Processing Systems (NeurIPS
2024).



like GDSC [3] have collected drug effect experiments and genomic association tests on over 1,00028

cancer cell lines. However, predicting drug effects given genetic information is still limited by data29

insufficiency and a lack of insights into the genetic circuit. Nevertheless, deep learning (DL) tools30

can integrate multi-modal information from all human knowledge and are expected to generalize to31

unseen tasks. They can be adapted to uncover hidden relationships of the genetic circuit to generalize32

partial data and offer robust predictions efficiently compared to human methods.33

Recent breakthroughs in deep learning have accelerated the drug discovery process due to its ability for34

pattern recognition. Among these, conventional (transductive) knowledge graphs (KG) gained wide35

attraction in computational biology due to their network-oriented structure [4, 5, 6]. Transductive KG36

works with a fixed set of nodes and edges. In the biological context, transductive KG is constructed37

only with known entities (e.g. genes, proteins, diseases) and their interactions (e.g. genetic pathways,38

gene-protein interactions, gene-disease associations). Existing DL pipelines for drug discovery39

predominantly use SMILES, 2D molecular graphs, and conformation data of chemical compounds40

[7]. However, the complexity of the interactions within the living systems due to biophysical41

conditions necessitates a more advanced method of drug effect predictions. Recent advancements42

in geometric learning further popularized drug effect prediction, catalyzing state-of-the-art models43

to capture these complex biological interactions. For instance, B. Kuenzi et al predicted the drug44

response of human cancer cells using chemical structure data, genomics data, drug sensitivity data,45

and protein activity data [8]. However, the choice of 2D structure instead of 3D topology and a46

lack of comprehensive gene descriptions/networks limit the model’s ability to fully capture complex47

interactions of drugs and intricate biological pathways. In addition, drug response is often heavily48

influenced by one’s genetic makeup. The gene regulatory network poses a great challenge for49

researchers in this field because of the hidden interactions and a lack of biological understanding of50

this subject. To address these challenges, this research implements multi-modal data frameworks that51

are descriptive (geometric/textual information) and relationship-focused.52

1.1 Preliminaries: Drug Discovery Process53

Drug discovery involves five main phases; 1) the pre-discovery stage where disease mechanisms are54

explored; 2) the discovery stage where scientists search for appropriate small-molecule therapeutics55

that interfere with the disease mechanism; 3) the preclinical stage where drug candidates are tested56

for their efficacy on various in-vitro or in-vivo models; 4) the clinical stage for human testing; 5)57

the post-market reviewing and approval of this drug [9]. Our ML pipeline aims to optimize the58

pre-clinical phase by predicting in-vitro drug effects on various cell lines.59

Traditional Preclinical Development60

Extensive in vitro tests are performed during preclinical development. These experiments test61

potential drug efficacy before proceeding to in-vivo studies and clinical trials. IC50, AUC, and62

Z-score are some of the most informative metrics that shed light on different aspects of the drug’s63

behavior. The IC50 value measures the drug’s potency. It shows the concentration needed to inhibit a64

biological or biochemical function by 50% [10]. The AUC is derived from a dose-response curve that65

represents the effect of various drug concentrations on each cell line. This value summarizes the drug66

efficacy across a range of concentrations [11]. The Z-score compares an IC50 value with those from67

other cell lines, showcasing the effectiveness of a drug in comparison to the average response, and68

highlighting whether the drug is more or less potent in a specific cell line relative to others.69

Traditionally, screening these values costs hundreds of millions of dollars and requires years of70

clinical testing [12]. On average, out of 10,000 molecules screened, only one may eventually lead to71

the market. Due to the immense efforts of validating one drug molecule, there is limited flexibility in72

the traditional pipeline. Such inefficiencies pose an economic barrier to drug development for serious73

diseases like cancer. Consequently, companies place a lower priority on these endeavors and often74

shift their focus toward more cost-effective avenues, potentially delaying the development of critical75

treatments for diseases like cancer.76

AI-Assisted Preclinical Development77

Artificial Intelligence (AI) is revolutionizing the drug discovery process. The power of AI can be78

hugely manifested in medicine due to its ability to recognize patterns in vast amounts of data with79

varying modalities, personalize treatment plans, and predict patient outcomes [13]. For instance,80

supervised learning is heavily used for the prediction of molecular properties, pharmacokinetics,81

2



chemical synthesis, etc [14, 15]. However, the biggest challenge lies in the complexity of data. This82

arises from the diversity of data types, the complexity of chemical interactions in biological systems,83

and the difficulty of accurately encoding this information into an ML pipeline.84

1.2 Our contributions.85

We introduce PanRX, a deep-learning model designed to predict drug effects by integrating multi-86

modal drug and genetic information through a transductive KG. We leverage the extensive training87

capabilities of language models and geometric models with the relational structure of KGs to capture88

complex interactions between drug molecules and cell lines. On the drug side, we incorporate89

3D geometric information such as atomic numbers, bonding details, and 3D coordinates of atomic90

positions as well as SMILES string representation of molecular topology. Also, textual information91

(including drug summaries, pharmacodynamics, indications, and mechanism of action) and numeric92

data (including charge, enthalpy, and free energy) further enrich the model. On the genetic side,93

PanRX integrates gene-related textual data including gene summaries, expression patterns, cellular94

locations, interactions, and binary mutation status for genes and copy number alterations. This95

multi-modal fusion of 3D geometry and comprehensive genomic descriptions within a KG framework96

emphasizes extensive biological relationships, providing a nuanced understanding of drug-cell line97

interactions. Therefore, PanRX bridges the gap between current models and real-world biological98

complexities, offering improved predictive accuracy and possibility in drug discovery.99

To verify the effectiveness of PanRX, we created PanCan-DrugsGenes, a dataset specifically designed100

for pancreatic cancer research. PanCan-DrugsGenes is a Lightning Memory-Mapped Database101

(LMDB) with 204 pancreatic cancer drugs and 142 genes that are highly correlated with the disease.102

Each drug or gene has multi-modal data that conveys rich information. Each KG is constructed from103

the outputs of this dataset. For evaluation of PanRX, we utilize IC50, AUC, and Z-Score values to104

measure the confidence of predicted drug effects.105

To the best of our knowledge, PanRX is the first to combine 3D drug chemical structures with106

genetic information to enhance personalized drug design. In addition, PanRX emphasizes complex107

interactions within biological networks, labeling each connection to provide detailed information108

about the nature of these relationships. This structure prepares for future downstream applications109

such as entity/relationship predictions. Extensive experiments on clinical datasets were conducted.110

The results show powerful drug effect predictive capabilities for pancreatic cancer.111

2 Related Work112

Multi-Modal Modeling on Small Molecules. In existing ML for the drug discovery community,113

there are multiple modalities describing molecules, and they can be roughly divided into two venues:114

internal chemical structure and external functional description [16]. For internal chemical structures,115

GraphMVP [17] initiates the molecule pretraining by utilizing the 2D topology and 3D geometry.116

Follow-up works like MoleculeSDE [18] extend this line by proposing a more advanced geometric117

pretraining algorithm, and MoleculeJAE [19] utilizes the molecular dynamics for pretrianing. On118

the other hand, MolT5 [20] and MoleculeSTM [21] are the first two works to align both the internal119

chemical structures and the external functional description for molecule design and editing.120

Multi-Modal Modeling on Genomes. Genomic information is organized in various ways depending121

on the research objective. FASTA formats are used to represent sequences (DNA, RNA, protein)122

and are predominantly used for gene function prediction or drug-target interactions [22]. FASTA123

provides efficient storing of biological sequence strings that allows for straightforward retrieval and124

analysis. Feature tables gained popularity due to their ability to map genomic regions to biological125

functions, assisting the understanding of gene regulation and expression under various conditions.126

Sparse matrices are used to handle high-dimensional gene expression data used during drug response127

prediction tasks [23]. Sparse matrices are also computationally efficient due to the majority of128

elements being zero.129

This research team utilizes textual descriptions of the genome (genes and CNAs) because text130

descriptions can encapsulate information that is represented by any other types of genomic data131

structures. Textual data can effectively represent nuanced information such as genomic interactions,132

regulatory mechanisms, and expression conditions. By integrating these descriptions that are often lost133
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Figure 1: An illustration of the pancreatic cancer drug prediction (PanRX) pipeline. (a) The bioassays
(IC50, AUC, Z-Score) of each drug on diseased cell lines is extracted from GDSC. In addition, the
mutation status of key genes and CNAs are recorded. (b) Drug and genetic features were extracted
from open-access databases like PM6, PubChem, NCBI, and PTEx. (c) Textual and geometric data
are encoded by SciBERT and PaiNN respectively. (d) Multi-modal knowledge graphs are constructed
for each pair of drug-cell line interactions. (e) The bioassays (IC50, AUC, Z-Score) are predicted.

in purely numeric data modalities, we enhance the application of genomic information in personalized134

medicine.135

Multi-Modal Modeling on Knowledge Graph. In this work, we are merging the multi-modal infor-136

mation of small molecules and genomes using a knowledge graph. Existing knowledge graph papers137

use either single-modal information on small molecules [24, 25, 26] or single-modal information on138

genomes [27, 28]. More recent works have started to merge the information of different entities, such139

as small molecules and proteins [29]. However, as illustrated in recent benchmark works [30], the140

geometric information has been more informative for molecule representation.141

3 Methods142

In drug development, performing precise drug effect predictions on specific cancer cell lines is crucial143

yet challenging. Genetic variations such as gene and copy number alteration (CNA) mutation status144

pose extreme obstacles to anticipating drug performance in different biological contexts. Traditional145

approaches rely on time-consuming procedures, significantly delaying the drug delivery pipeline.146

Predicting drug effects in pancreatic cancer is a multi-dimensional barrier involving integrating147

various levels of knowledge such as molecular properties, genetic information, and relevant bioassays.148

Unique genetic profiles like the variation of copy number alternations (CNA) and mutation statuses149

remain the root cause of this challenge. Traditional methods rely on repetitive in vitro tests and linear150

models which lack insights against complex biological interactions that define pancreatic cancer drug151

responses.152

This paper aims to build a predictive pipeline that captures the interaction between drugs and153

pancreatic cancer cell lines. We focus on genetic variations across cell lines by leveraging cell-line154

genetic characteristics and chemical properties. Specifically, we utilize numerical data to represent155

drug characteristics, including charge, dipole moment, energy, and enthalpy, alongside bioassay156

measurements such as IC50, AUC, and Z-score Additionally, we incorporate binary data to capture157

the mutation status of genes and copy number alterations (CNA) within each cell line. By constructing158

a multi-modal knowledge graph with other chemical and genetic features, the problem is now framed159

as an edge prediction task a multi-modal knowledge graph where the aim is to predict drug-cell line160

interaction outcomes (IC50, AUC, Z-Score).161
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Our approach involves the construction of knowledge graphs where nodes represent drugs, genes,162

and their inherent features to emphasize variability. This task requires multi-modal data including163

textual descriptions, chemical structures, and numerical data.164

3.1 Problem Formulation165

Our model can be described by p(x, y, z | KG), where x, y, and z represent the IC50, AUC, and Z-166

Score values, respectively, and KG refers to the multi-modal knowledge graphs we constructed. We167

use graph neural networks (GNN) to fuse the multi-modal information discussed above. Leveraging168

graph structure, we encode drug molecules (geometric data) and cell line genetic information (textual169

data) as nodes and relationships between these entities as edges. This multi-modal approach enables170

the model to learn from diverse data types of the biological network that are critical to predicting171

drug responses. In this project, we consider two architects of the GNN to perform such fusion: graph172

convolutional networks (GCNs) and graph attention networks (GATs).173

Geometric Modeling on Conformation. In our study, we employ a geometric model to represent174

3D drug conformations to further investigate their interactions with biological targets. The chemical175

geometry is described using the PaiNN model fg = PaiNN(a, r), where a is atom types and r is176

atom coordinates in the molecule [31]. By leveraging a geometrically pre-trained PaiNN [18], our177

method assures all drug spatial configurations are precisely represented. This approach facilitates178

improved accuracy interaction and effect prediction.179

Language Model on Functional Description. On the other hand, we leverage the BERT architecture180

by utilizing SciBERT to effectively capture the existing single-modal data. Specifically, drug181

textual descriptions include drug summaries, pharmacodynamics, drug mechanisms, and indications.182

Genetic textual descriptions include Gene functions, locations, processes, summary, interactions, and183

expression. The model has a representation of ft = SciBERT(wt), where wt is the textual description184

for each chemical/gene feature node. These embeddings capture intricate details contained within185

textual descriptions, improving the overall model with an extra layer of biological context.186

3.2 Multi-modal Fusion187

Graph convolution network (GCN). Our proposed GCN model consists of six convolutional layers188

(GCNConv), each followed by an Exponential Linear Unit (ELU) activation to capture non-linear189

relationships. To prevent overfitting, a dropout rate of 0.3 is applied after each layer. These layers190

aggregate node features on a global level based on node connectivity, allowing the convolutional layers191

to propagate node feature embeddings across the graph, with each layer adjusting the embeddings192

by considering adjacent nodes. A layer normalization is applied after the final convolutional layer193

to ensure stable learning dynamics. The model is trained using the Adam optimizer with a learning194

rate of 0.00001 and a weight decay of 0.0001. Performance is evaluated using Mean Squared Error195

(MSE), Mean Absolute Error (MAE), and the coefficient of determination (R2).196

Graph attention network (GAT). The GAT setup builds upon the GCN architecture by integrating197

attention mechanisms to dynamically assess the significance of neighboring nodes during the aggre-198

gation phase. The model comprises six GAT layers, each employing multi-head attention to explore199

various facets of a node’s vicinity. The initial five layers utilize four attention heads each, while the200

final layer uses a single head to achieve dimensionality reduction of the embedding. This approach201

permits selective integration of neighboring information, fostering a context-sensitive aggregation202

compared to the GCN. The GAT model utilizes the ELU activation function and a dropout rate of203

0.3. The optimization is performed using the Adam optimizer with a learning rate of 0.00001 and a204

weight decay of 0.0001. The evaluation metrics are consistent with those used in the GCN model,205

including MSE, MAE, and R2.206

4 Experiments207

4.1 Data Acquisition and Feature Extraction208

Our primary data source was the GDSC dataset [3]. To evaluate the effectiveness of multi-modal209

knowledge graphs, we compiled a set of 5014 pancreatic cancer drug-cell line pairs from GDSC.210

Descriptive features of drugs and cell lines are pulled from public databases. For drugs, we extracted211
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3D geometry, compound charge, dipole moment, energy, and enthalpy from PM6 [32], and pharma-212

codynamics, drug mechanisms, medical information, and drug indication from PubChem. For each213

cell line, GDSC provides the mutation status of key genes and copy number alterations (CNA). We214

extract descriptive information about each gene from NCBI, Biopython, and GTEx such as function,215

location, process, summary, interactions, and expression level.216

GDSC dataset provides comprehensive drug response information on various cell lines. We build217

a knowledge graph for each drug-cell pair and extract supporting descriptive features of the drug218

and related genes from public databases like PubChem, PM6, and NCBI. By feeding them into a219

deep learning pipeline, we assess the accuracy of drug effect predictions and graph relationship220

predictions. We selected graph attention networks (GAT) and graph convolution networks (GCN) as221

our deep learning architects because they can process graph-structured data and capture local and222

global dependencies. Both architects are designed for edge attribute predictions within the graph data,223

emphasizing the edge attributes that connect nodes 0 and 1 (IC50, AUC, Z-score).224

4.2 Data Pre-Processing and Integration225

We built an automated pipeline that streamlines the extraction process of relevant drug and gene226

information systematically. Firstly, this pipeline extracts data from our primary sources and stores227

them in the appropriate format in a Lightning Memory-Mapped Database (LMDB) to ensure efficient228

access to large-scale genomic and pharmacological data of various modalities. Then, we implemented229

a custom heterogeneous data loader in which each output instance contains a specific drug and230

the complete set of genes required for constructing a corresponding knowledge graph representing231

the interaction between a drug and a cell line. Data of various modalities are encoded using the232

models described in section 4.3 before they are assembled into nodes and organized into a knowledge233

graph structure. Appropriate edges are included to represent relationships that enhance the logical234

connectivity of each graph. It is critical to note that the connection between node 0 (drug) and node 1235

(cell line) is characterized by three edges each representing a different bioassay measurement - IC50,236

AUC, Z-Score.237

4.3 Experimental Setup238

The objective of this experiment is to predict edge attributes between the drug node (node 0) and the239

cell line node (node 1). These edge attributes represent bioassays, namely IC50, AUC, and Z-score240

values. Our models were trained at 500 epochs with a batch size of 400 to ensure sufficient stability.241

To evaluate model performances, we split the dataset into training, validation, and testing sets of242

80/10/10 and 50/25/25 ratios. Training, validation, and testing results (MSE, MAE, and R2) are243

reported. On average, training out models (GAT and GCN) with the current parameters requires244

approximately 10 hours.245

Hardware All experiments were run on the Nvidia 4090 GPU with 24GB of GDDR6X RAM and246

16,384 CUDA cores. We utilized the Windows operating system with Python version 3.12.1 for all247

computations.248

4.4 Results249

Table 1: Regression Analysis of Predicted Bioassay Values (80/10/10 split)

GAT (500 epochs)

Test Set R2 MSE MAE

Training 0.3327 0.0482 0.0184
Validation 0.3330 0.0002 0.0090
Testing 0.3331 0.0002 0.0089

GCN (500 epochs)

Test Set R2 MSE MAE

Training 0.3253 0.0348 0.0152
Validation 0.3321 0.0009 0.0171
Testing 0.3325 0.0009 0.0169

As depicted in Table 1 and Table 2, both the GAT and GCN architectures performed consistently across250

the 80/10/10 and 50/25/25 splits, with R2 at approximately 0.333 across the training, validation, and251

testing sets, highlighting its stable predictive performance. Also, the MSE was notably low across both252

architects and splits. For instance, in the 80/10/10 split, the GAT model achieved an MSE of 0.0002253
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Table 2: Regression Analysis of Predicted Bioassay Values (50/25/25 split)

GAT (500 epochs)

Test Set R2 MSE MAE

Training 0.3332 0.0049 0.0070
Validation 0.3333 0.0000 0.0010
Testing 0.3333 0.0000 0.0009

GCN (500 epochs)

Test Set R2 MSE MAE

Training 0.3332 0.0052 0.0073
Validation 0.3333 0.0000 0.0028
Testing 0.3333 0.0000 0.0025

during validation and testing, while the GCN exhibited a slightly higher MSE of 0.0009. Additionally,254

in the 50/25/25 split, the MSE of both the GAT and GCN showed 0.0000 across these phases.255

On the other hand, the GAT consistently achieved lower values relative to GCN in terms of MAE.256

In the 80/10/10 split, the GAT had an MAE of 0.0090 during validation and 0.0089 during testing257

compared to the GCN’s higher values of 0.0171 and 0.0169. Similarly, in the 50/25/25 split, the GAT258

maintained MAE values of 0.0010 and 0.0009 for validation and testing, while the GCN resulted in259

slightly higher values of 0.0028 and 0.0025.260

We conducted experiments using multiple training batch configurations, and the results demonstrated261

an exceptional degree of similarity across the different settings. These results demonstrate the262

outstanding performance of both models, with GAT exhibiting a slightly enhanced performance in263

error minimization.264

5 Conclusion265

In this paper, we proposed PanRX, a novel multi-modal deep-learning pipeline for prediction of266

pancreatic cancer drug effects. Unlike previous work that used 2D molecular representations, we267

combined 3D molecular topology with textual information to comprehensively capture each pair of268

drugs, cell line information, and relationships. Specifically, embeddings were created via the PaiNN269

model for geometric data, the SciBERT model for textual data, and direct encoding for numerical270

data. We then constructed a multi-modal knowledge graph for 5014 drug-cell line pairs and employed271

a GAT and GCN model to predict IC50, AUC, and Z-scores. Preliminary experiments show that272

PanRX achieves high accuracies on both GNN architects, showcasing the importance of heterogeneity273

of modalities with the addition of 3D molecular conformation.274

However, our model requires further consideration before advancing to the clinical level. Firstly,275

GDSC performed in vitro experiments which drastically differ from in vivo physiological conditions276

within an organism. In addition, mutation status is not necessarily binary due to the continuous277

spectrum of functional consequences. Lastly, PanRX is currently only trained and experimented on278

pancreatic cancer data which cannot be generalized to other diseases. To overcome these challenges,279

we plan to further our research with the following points: 1) Train and experiment our model with280

other cancer types found in the GDSC dataset to validate the effectiveness of multi-model knowledge281

graphs. 2) Transition to a large language model (LLM) due to its improved efficiency for handling282

large texts, as it can represent the same information conveyed by knowledge graphs in pure text form.283

3) Verify the model with clinicians on the patient level.284
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