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ABSTRACT

One of the main problems in cross-modal translation, such as Speech Transla-
tion or OCR Image Translation, is the mismatches among different modalities.
The second problem, scarcity of parallel data covering multiple modalities, means
that the end-to-end multi-modal neural network models tend to perform worse
than cascade models, although there are exceptions under favorable conditions.
To address these problems, we present an end-to-end zero-shot translation model,
connecting two pre-trained uni-modality modules in a trainable way. We adopt
the Word Rotator’s Distance loss using the Optimal Transport approach, which
effectively handles the multi-modal discrepancy. Furthermore, the approach natu-
rally enables zero-shot multi-modal training, reducing the dependence of end-to-
end models on large amounts of data, and at the same time allowing end-to-end
training when data do become available. Our comprehensive experiments on the
MuSTC benchmarks show that our end-to-end zero-shot approach performs better
than or as well as those of the CTC-based cascade models, and that our end-to-end
model with supervised training matches the latest state-of-the-art results.

1 INTRODUCTION

To make full of the prodigious amounts of voice, image, video, and many other types of data that
are produced every day, it is essential to transfer knowledge among different modalities. However,
models more often than not perform worse on cross-modal tasks. A typical example is Speech
Translation (ST). The traditional ST method is a cascade approach that first uses automatic speech
recognition (ASR) system to transcribe the speech into text and then uses a text machine translation
(MT) model. Recent end-to-end (e2e) trainable models remove the need for an explicit ASR. End-
to-end ST has several practical advantages over the cascade models such as reduced latency, reduced
error propagation, and shorter pipeline.

However, e2e ST models are less competitive than cascade models (Sperber & Paulik, 2020; Dinh,
2021) because end-to-end data are an order of magnitude less than those for ASR or MT. Solutions
have been proposed to combat this data problem. For example, one way is to utilize transfer learning
to improve ST via large quantities of ASR and MT data. A common drawback in this direction is
that the two main modules, ASR and MT, are not always pre-trained jointly. In other words, the
framework as a whole is unable to better benefit from the big pre-training data. In (Liu et al., 2020;
Xu et al., 2021), an adapter with additional parameters is used during fine-tuning to combine the
two pre-trained models. The new module, however, only learns from ST data, which is of a greatly
reduced quantity. The second issue is the information loss in building cross-modal representations.
Speech and text representations are mismatched because they have different lengths. Some solutions
deal with this problem through fixed-size representations (Reimers & Gurevych, 2019; Feng et al.,
2020; Han et al., 2021; Duquenne et al., 2022). Others focus on computing the differences between
the two representations, for example, as the squared error of mean-pool over time (Pham et al., 2019;
Dinh et al., 2022). Although these solutions have achieved significant improvements in several tasks,
they will suffer from information loss when representations are compressed or constrained.

In order to overcome both the data and the length problems, we propose an end-to-end zero-shot
translation model that connects two pre-trained modules, which could be interpreted as a differen-
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tiable cascade system. Specifically, we adopt a popular cross-modal ST architecture (Escolano et al.,
2021; Xu et al., 2021), which includes a cross-modal encoder, an adapter, a semantic encoder and
a semantic decoder. Our training strategy is to first pre-train the semantic encoder and decoder as
in a regular MT model, and then pre-train the cross-modal encoder and the alignment adapter in the
connectionist temporal classification (CTC) framework (Graves et al., 2006), which is widely used
in an ASR or an optical character recognition (OCR) model. For the alignment adapter, we employ
as loss the Word Rotator’s Distance (WRD) (Yokoi et al., 2020) adapted with an Optimal Transport
(OT) (Monge, 1781; Kantorovich, 1960; Peyré et al., 2019) approach. This way, the adapter learns
to promote the cross-modal representations that match in the space of the semantic encoder. Unlike
previous works, this strategy allows us to pre-train the adapter. Meanwhile, instead of mapping to
a fixed length, the CTC module is used to adjust the length of the source modality representation
dynamically. This step can guarantee the cross-modal representations becomes the features with a
similar but not exactly the same length, then our proposed WRD objective with OT solver can align
them properly.

The contributions of this paper are as follows:
(1) We suggest a pre-train strategy with the WRD loss and the shrink mechanism to facilitate adap-
tations among different modalities, achieving zero-shot translation without end-to-end labeled data.
(2) End-to-end training is also allowed in our framework if supervised data is available.
(3) Experimental results on the MuST-C demonstrate that our end-to-end zero-shot model can match
or be slightly better than the CTC-based cascade model (without intermediate ASR post-processing
modules). The results of our end-to-end training can match the current state-of-the-art methods.

2 PRELIMINARY

2.1 REVISITING THE WORD ROTATOR’S DISTANCE the pressThe President greets

Obama speaks in Illinois

Figure 1: Word Rotator’s Distance.

Word Rotator’s Distance (Yokoi et al., 2020), used to mea-
sure textual similarity, can be parameterized in terms of the
solution to an optimal transport (OT) problem (Monge, 1781;
Kantorovich, 1960; Peyré et al., 2019). An OT problem aims to
find a transport plan that minimizes the expected cost of trans-
portation between two distributions or two sets of weighted
objects. For two sequences of vector representations of dif-
ferent lengths, the “transportation” cost can be thought of as
covering the distance between them.

Concretely, given two sentences representations s1 =
{t11, . . . , t1n} and s2 = {t21, , . . . , t2m} with n,m encoded to-
kens and t·i ∈ Rd, it is supposed to generate two distribu-
tions as normalized weight vectors p = [p1, . . . , pn]

⊤ and
q = [q1, . . . , qm]⊤. We follow Yokoi et al. (2020) to employ the norm of a word vector as an
indicator of its importance to the overall meaning of the sentence.

pi =
∥t1i ∥2∑n
i=1 ∥t1i ∥2

, qj =
∥t2j∥2∑m
j=1 ∥t2j∥2

(1)

Then we can define the Word Rotator’s Distance (WRD) between s1 and s2 as follows.
DWRD(s1, s2) = ⟨C,T∗⟩, Ci,j = 1− cos(t1i , t

2
j ) (2)

where ⟨·, ·⟩ denotes the Frobenius dot-product and cos(·, ·) is the cosine similarity between two
vectors. T∗ in (2) is the optimal transport plan from the solution of the following OT problem.

T∗ = argmin
T≥0

⟨C,T⟩ s.t., T1m = p, T⊤1n = q (3)

where 1· represents a vector of all ones. As shown in Figure 1, WRD emphasizes the semantic
similarity between two sentences or token sequences better than Euclidean distance. Additionally,
WRD applies the cosine distance to measure the dissimilarity between tokens from different se-
quences, making it a type of edit distance. However, this “smoothed” edit distance is directionless.
(”boys”, ”girls”) and (“girls”, ”boys”) have the same WRD values. We, therefore, as is common in
transformer-based methods, add position embedding to tokens to enrich the sequential order infor-
mation.
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2.2 DIFFERENTIABLE WORD ROTATOR’S DISTANCE

Unfortunately, solving WRD (i.e., an OT problem) is a Linear Programming problem that is compu-
tationally intractable (Arjovsky et al., 2017) and unable to back-propagate when training end-to-end
deep neural networks. It is indispensable to make the optimal transport plan T∗ differentiable.
The common solution is to implement the Inexact Proximal point method for Optimal Transport
(IPOT) algorithm (Xie et al., 2020b) or the Sinkhorn algorithm (Cuturi, 2013). Both algorithms
iteratively converge to the exact optimal transport plan and have pros and cons. Sinkhorn algorithm
contains a direct way to compute the Jacobian matrix of T∗ (Xie et al., 2020a; Zhang et al., 2020),
while IPOT often has a higher convergence rate and numerical stability in practice. In our experi-
ments, we choose IPOT because of its numerical stability. IPOT replaces the Bregman divergence
Dh(x,y) =

∑n
i=1 xi log

xi

yi
−
∑n

i=1 xi+
∑n

i=1 yi with the proximal point iteration, i.e., substitutes
the following iterative update for the optimization problem in Eq. (3).

T(t+1) = argmin
T≥0

⟨C,T⟩+ β(t)Dh(T,T(t)) (4)

Algorithm 1 in Appendix shows the detailed implementation of WRD based IPOT.

3 MAIN METHOD

We adopt an encoder-decoder framework as shown in Figure 2(a). It has two main modules: a cross-
modal encoder with a shrink adapter and a semantic encoder/decoder pack. The semantic encoder
and decoder are pre-trained as in a traditional transformer MT model (Vaswani et al., 2017). Then,
the cross-modal encoder and the shrink adapter are pre-trained together in the CTC framework as in
an ASR or an OCR model, depending on whether the task is speech or image translation. Note that
the cross-modal encoder pre-training requires the previous pre-trained semantic encoder to provide
information for cross-modal alignment via an additional WRD OT loss. Finally, during the end-to-
end training, we fine-tune the overall architecture, achieving better results than the cascade models.

3.1 SEMANTIC ENCODER-DECODER TRAINING

In the first phase, the semantic encoder and decoder (Figure 2(c)) are pre-trained to learn text-to-
text translation. Given a machine translation corpus DMT = {(xt,yt)}, our aim is to obtain a
semantic encoder Encodert(Etxt) = ht and a semantic decoder Decodert(ht) = P (yt|ht), where
ht is the output of the encoder and P (yt|ht) is the translation probability computed by the decoder.
Et ∈ Rd×|Bs| is the source embedding matrix where Bs is the vocabulary of the source language
and d the hidden dimension. The objective of the translation task is defined as the cross entropy loss
LMT = − logP (yt|ht).

3.2 ZERO-SHOT TRANSLATION TRAINING

In this phase, we train a zero-shot translation model by training the cross-modal encoder alone.
Although the cross-modal encoder plays a similar role to an ASR/OCR model, they are not the
same. Besides the regular recognition task, we use WRD to supervise the encoder to generate
encoding results with less discrepancy across different modalities, e.g., speech and text, or image
and text. It is worth emphasizing that only pairwise parallel data (speech-text or image-text paired
data) are used for training the cross-modal encoder. Triplet data, (audio or image, source text, target
text), are not needed. Specifically, let Dmultimodal = {(zs,xs)} denote audio-text or image-text
data, we adopt an architecture that combines stacked self-attention layers with CTC module. The
former is the encoder for representing the speech or the image hs = Encoders(zs) and the latter for
recognition by optimizing the CTC loss LCTC(xs,hs).

We expect to align different modalities in the space of the semantic encoder, allowing the seamless
transition between the cross-modal encoder and the semantic decoder and benefiting the downstream
translation task. To minimize the distance between the two modalities, we measure the dissimilarity
between the cross-modal encoder and the pre-trained semantic encoder via WRD. To be precise,
once we obtain the CTC distribution dc = softmax(Wchs), where Wc ∈ R|Bs|×d is a trainable
weight matrix, a light-weight shrink adapter integrates the hidden feature hs and CTC distribution
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Figure 2: Overview of our proposed framework. (a) The overall model contains two main parts,
including a cross-modal encoder and a semantic encoder and decoder. (b) The upper panel shows
the data usage in zero-shot setting, while the lower panel shows the possible supervised data. The
three bottom figures reveal our training strategy. (c) The semantic encoder and decoder are trained
via MT parallel data. (d) Only the cross-modal encoder is trained with ASR data or OCR data, where
the pre-trained semantic encoder in (c) is freezing, and it drives the encoder to gain the ability with
respect to zero-shot translation. (e) The model is allowed to be further fine-tuned utilizing triplet
data, e.g. ST data.

dc. The shrink mechanism (Yi et al., 2019; Tian et al., 2020; Gaido et al., 2021) shrinks the length of
the output from the cross-modal encoder, which contains blank and repeated tokens, almost always
incompatible with text. Thus, we consider using the CTC path via efficient argmax as guidance
to remove the blank tokens and average the representations of consecutively duplicated tokens, as
shown in Figure 2(a).

In the traditional cascade models, results from the upstream task, ASR or OCR, are explicitly text
whose errors are not easy to rectify. To reduce error propagation, we merge the representations from
both before and after the CTC module. That is, the combination in the adapter contains not only the
representations dc produced by the CTC module, but also the implicit representations from the self-
attention layer, hs that capture the information in the speech input. Specifically, let h̃s be the shrunk
hidden state and d̃c the shrunk CTC distribution (see Appendix for the proof of a valid distribution),
the adapter output as:

ha = Etd̃c +W⊤
a h̃s, (5)

where Et is the source embedding matrix in the semantic encoder, and Wa ∈ R|B|×d defines a
linear layer including the trainable parameters in the adapter. The first term encodes the shrunk CTC
distribution like the embedding layer in the semantic encoder but in a soft way. The second term
represents the speech representation before the CTC layer, ensuring information retention in the
adapter. ha can be regarded as the final text embedding which is ready to be fed into the pre-trained
semantic encoder. Soft representations (i.e., d̃c) are friendly to back-propagation. Moreover, we
can mimic the cascade model by applying argmax to obtain the one-hot vector d̂c (see more details
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in Appendix and submitted code). This won’t harm the model because the second term can still
contribute more stable gradients for the back-propagation.

To alleviate the problem of cross-modal mismatch, we optimize the WRD loss function as
LWRD = DWRD(Encodert(ha),Encodert(Etxs)). (6)

Because of CTC prediction errors, it is possible that ha has a different sequence length from that
of the xs, but the loss LWRD can circumvent the length discrepancy in cross-modal representa-
tion matching. Previous works (Han et al., 2021; Duquenne et al., 2022) attempt the matching via
Euclidean Distance or similar ones that require the features to be mapped to the same length. Com-
bining (16) and (6), the final loss function of the cross-modal training is

LASR/OCR = λctcLCTC + λwrdLWRD (7)
where λctc and λwrd are hyper-parameters. The training procedure is shown in Figure 2(d). To keep
the semantic encoding intact, the semantic encoder including the embedding matrix is frozen during
optimization, leading to a zero-shot translation system naturally from the ASR or OCR training.

3.3 END-TO-END TRANSLATION TRAINING

In the fine-tuning phase, we utilize speech translation datasets to improve the pre-trained modules
previously. The training procedure is shown in Figure 2(e). Different from MT samples or ASR sam-
ples, a speech translation corpus usually consists of speech-transcription-translation triplets denoted
as DST = {(z,x,y)}. Note that the shrink adapter has already connected the cross-modal encoder
with the semantic encoder and decoder. All parameters in the whole model are pre-trained in advance
on DMT and DASR. We can directly train the end-to-end model LST with the speech-translation
pairs. However, to fully utilize the transcription data, we can adopt Knowledge Distillation (KD)
to further improve the performance of the model in the end-to-end training phase. By minimizing
the cross-entropy loss between the pre-trained teacher MT model and the student ST model, the ST
model could preserve the knowledge from the MT model during training (Liu et al., 2019). Since
the zero-shot training loss is still valid in this phase, we can integrate it into the final end-to-end
training objective function.

L = LST (z,y) + λkdLKD(z,x,y) + λctcLCTC(z,x) + λwrdLWRD(z,x) (8)

4 EXPERIMENTS ON SPEECH TRANSLATION

In this section, we evaluate our approach on both zero-shot and supervised end-to-end ST and com-
pare it with recent SOTA methods.

4.1 DATASETS AND SETTINGS

ST MuST-C (Cattoni et al., 2021) is a multilingual speech translation corpus including several hun-
dred hours of English audio recordings from TED Talks. It has been a benchmark ST dataset to
facilitate the training of end-to-end systems from English into several languages in the speech-
transcription-translation triplet format. We conduct our experiments on the three popular language
pairs: English-German (En–De), English-French (En–Fr), and English-Spanish (En–Es). For each
language pair, model selection is based on the dev-set, and the final results are reported on the tst-
COMMON and tst-HE test sets. Note that there are two versions of En-De datasets where version 2
is annotated with higher quality. We evaluate our approach on both versions.

ASR The open-sourced LibriSpeech English ASR dataset (Panayotov et al., 2015) comes from
audio-books and contains 960 hours of speech samples and the corresponding transcriptions. This
data is used for pre-training the ASR in the zero-shot training stage.

MT For each language pair, we use WMT parallel data to pre-train the machine translation model.
For En-De and En-Fr, we collect the WMT 2014 data with about 4.5M and 36M parallel sentences
respectively as in Vaswani et al. (2017). For En-Es, we collect the WMT 2013 data of size 28M.

Model Details The audio inputs are pre-processed as 80-channel log Mel filterbank coefficients
computed every 10ms with a 25ms window as fairseq1. The cross-model encoder contains two 1D

1https://github.com/facebookresearch/fairseq/tree/main/examples/speech to text
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Training Data En-De v2 En-De En-Fr En-Es
common he common he common he common he

WMT 28.59 27.45 28.62 27.44 40.79 37.54 32.38 38.14
WMT + MuST-C 33.13 31.99 32.99 31.90 44.14 39.97 36.96 42.04

Table 1: Performance of MT on MuST-C testset (BLEU↑). The input is the ground truth of the
source transcription. These results could be the upper bound of our zero-shot ST.

Model En-De v2 En-De En-Fr En-Es Average
common he common he common he common he Gap

MultiSLT cascade / / 17.30 / 27.15 / 21.29 / -13.79zero-shot / / 6.77 / 10.85 / 6.75 /
Chimera zero-shot / / 13.5 / 22.2 / 15.3 / /

Ours cascade 22.85 22.27 22.45 22.30 32.60 31.65 26.14 31.55 +0.79zero-shot 24.00 23.04 23.41 22.94 33.65 32.25 26.48 32.32
Pseudo Zero-Shot ST. MT is trained on WMT and MuST-C parallel corpus.

Tight cascade / / 25.9 25.0 / / 30.2 37.6 -1.325Integrated† p. zero-shot / / 25.1 24.4 / / 28.7 35.2

Ours cascade 26.43 25.14 25.21 25.32 34.53 32.63 29.15 34.68 +0.78p. zero-shot 27.39 26.46 26.52 25.46 35.34 33.66 29.46 35.05

Table 2: Zero-Shot ST on MuST-C (BLEU↑). MT is trained on WMT data alone. †Tight Integrated
extends our ASR data to 2300 hours, and it used 27M En-De and 48M En-Es MT data.

convolutional subsampler layers (Synnaeve et al., 2019) and 12 transformer encoder layers with
hidden dimension 512. The MT model is a standard transformer-based architecture (Vaswani et al.,
2017) with 6 layers for both the encoder and the decoder. For each language, an individual vocab-
ulary including 10K sub-word units is learned by SentencePiece (Kudo & Richardson, 2018). The
CTC prediction shares the same vocabulary with the semantic encoder (i.e., English vocabulary) but
different weights. The embedding layer in the adapter shares the weights with the source embedding
in the semantic encoder. All hyper-parameters are tuned on En-De v2 and directly applied to other
datasets. Additional training and implementation details can refer to the Appendix.

4.2 ZERO-SHOT ST

Recent work (Dinh, 2021; Escolano et al., 2021) indicates that when large amounts of ASR and MT
data dominate the training, the cascaded ST is better than the direct end-to-end ST. How to leverage
more from the potentials of ASR and MT data in end-to-end zero-shot ST is still under-explored. In
our proposed second phase, the desired ASR training can easily facilitate the building of a zero-shot
ST model. In our first experiment, we pre-train the MT model with the WMT data alone, preventing
the model from accessing the in-domain data of MuST-C. The MT results are presented in Table 1.
For the ASR training, we combine the Librispeech data and the speech-transcription pairs in MuST-
C to give a comparable amount of ASR data as in the practical cascade system. In our ASR loss
Eq. (7), we set λctc = 1 and λwrd = 10.

Our main results of zero-shot ST are illustrated in Table 2. We compare our model with the pio-
neering zero-shot ST method MultiSLT (Escolano et al., 2021), achieving the zero-shot translation
via ASR training with an adapter as well. Their MT model is also pre-trained on WMT data. In
the MultiSLT system, the zero-shot models trail the cascade system by -13.79 BLEU points. In our
system, the end-to-end zero-shot model on average performs +0.79 higher than that of the cascade
system. We compare to another cross-modal alignment method Chimera (Han et al., 2021), which
is initially designed for supervised ST training. Chimera leverages the pre-trained Wav2Vec2.0 on
Librispeech dataset to extract the speech features and map them to fixed-length vectors. Once the
features of the transcriptions have the same length, the cross-modality alignment can be readily
achieved via contrastive learning. This method can then be directly applied to end-to-end zero-shot
ST by separating out the supervised triplet end-to-end data from the ASR and the MT data. With
the open-source repository, we produce the Chimera results in zero-shot setups, shown in Table
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Figure 3: Leftmost panel: BLEU of zero-shot ST v.s. WRD for each sentence. Right two panels:
The performance of the ASR as zero-shot ST systems.

Model Num. En-De v2 En-De En-Fr En-Es
Params common he common he common he common he

MTL† (Tang et al., 2021b) 31M / / 23.9 / 33.1 / 28.6 /
FAT-ST (Zheng et al., 2021) 58M / / 25.5 / / / 30.8 /
JT-S-MT∗ (Tang et al., 2021a) 74M / / 26.8 / 37.4 / 31.0 /
Chimera (Han et al., 2021) 165M / / 27.1 / 35.6 / 30.6 /
XSTNET (Ye et al., 2021b) 155M / / 27.8 / 38.0 / 30.8 /
STEMM (Fang et al., 2022) 155M / / 28.7 / 37.4 / 31.0 /
zero-shot 95M 24.00 23.04 23.41 22.94 33.65 32.25 26.48 32.32
FT from zero-shot 95M 29.22 29.07 28.22 28.22 39.00 37.06 31.96 38.83
Pseudo zero-shot 95M 27.39 26.46 26.52 25.46 35.34 33.66 29.46 35.05
FT from pseudo zero-shot 95M 29.12 29.74 28.17 28.19 39.05 37.21 32.03 38.89

Table 3: Supervised ST on MuST-C (BLEU↑ with beam=5) with additional datasets Librispeech
and WMT data. † MTL uses the hidden dimension 256. ∗ JT-S-MT only uses WMT data.

2. The fixed-length feature matching improves the zero-shot translation over the adapter method of
MultiSLT, though not as much as what we propose here.

We also conduct a pseudo zero-shot ST experiment. The ASR training data remains the same as the
regular zero-shot training, whereas the first phase MT is pre-trained on both WMT and MuST-C text
parallel corpus. The MT performance is greatly improved as shown in Table 1. In this setup, even
though each training phase doesn’t directly consume any speech-translation pairs, the overlapped
MuST-C transcription data could be seen by both ASR and MT models. The BLEU scores of both
the cascade and zero-shot ST increase by a large margin. However, the gap between them remains
virtually unchanged (+0.79 becomes +0.78). It is an indication of the stability of our approach to
bridging the modality gap. We then plot the relation between BLEU and WRD for each sentence
in the tst-CMMON set of En-De v2 (Figure 3). The overall trend indicates the BLEU decreases
with increasing WRD. This setup has also been discussed by Tight Integrated Dalmia et al. (2021);
Bahar et al. (2021). Because it uses more ASR and MT data, its cascade model performs better. In
contrast, our end-to-end model has a special adaptor to support better performance.

Recall that the original objective of the second phase is ASR training. In Figure 3, we plot the
histogram of the WER for different ASR systems. The ASR of the cascade system (i.e., trained with
CTC loss only and without semantic encoder) has a clearly higher WER than our proposed ASR
training with additional WRD loss. However, the in-domain MuST-C data do not appear to make a
significant difference as indicated by the orange and the green bars in Figure 3.

4.3 SUPERVISED ST

Since our zero-shot speech translation is essentially a differentiable end-to-end cascade model, we
can leverage the supervised ST data to fine-tune all the parameters. In this experiment, we evaluate
the performance of our third training phase where we set the loss weights in Eq. (8), where we set the
loss weights of each additional task as λkd = 0.8, λctc = 0.3 and λwrd = 10. Since our models are
pre-trained with Librispeech ASR data and WMT parallel corpus, we compare our approach only
in the unconstrained scenario with the latest SOTA methods that used similar datasets. The results
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Figure 4: Left Panel: the performance of OCR and zero-shot image translation over different
weights λwrd. Right Panel: an example of the visualization of transport plan T∗.

are summarized in Table 3. Among the three language pairs, our approach achieves 1+ BLEU
improvement over the previous SOTA on En-Fr (XSTNET) and En-Es (JT-S-MT and STEMM), and
scores second on En-DE. As stated in section 4.1, we tune our hyper-parameters on En-De v2 while
other methods tune on En-De. This could be the contributing reason why our En-De ST performs
slightly worse.

We also include the results of zero-shot ST in Table 3, and we see our zero-shot ST almost matches
the small-sized supervised model MTL, and the pseudo zero-shot ST also matches some regular-
sized supervised models. We notice that fine-tuning after pseudo zero-shot (the rows with the ini-
tialism FT) does not bring large benefits over the regular zero-shot. This phenomenon could indicate
that for low-resource languages where the supervised ST data are likely to be more scarce or even
unavailable, an end-to-end ST model could still be built with ASR and MT data alone.

5 ZERO-SHOT IMAGE TRANSLATION

We also conduct experiments on zero-shot Image Translation using only OCR data and NMT data
to further test the effectiveness of our framework.

Datasets The NMT model (i.e. the semantic encoder and decoder) is pre-trained on the WMT 2018
Zh-En data which contains about 20M parallel sentences in the news domain. We use 2M Chinese
e-commerce images2 and 2M Chinese text line images3 for our OCR task. The test set contains 2000
e-commerce images with Chinese transcriptions and English translations by human annotations. The
BLEU score of the pre-trained NMT model on the test set is 15.87.

Model Details For image inputs, we make two modifications. First, the hidden dimension of the
whole architecture is set to 256. Second, the two-layer 1D convolution subsampler is replaced
with the patch embedding layer in Vision Transformer (Dosovitskiy et al., 2020), which is a 2D
convolution layer with the same height as images and a width of 4. We use SentencePiece (Kudo &
Richardson, 2018) to obtain a Chinese vocabulary of size 7K most of which are characters and the
rest sub-words, and an English vocabulary of size 12K. For batch training, all images are resized to
a fixed height of 32 pixels.

We use a small hidden dimension for fast verification. In particular, we set different weights λwrd =
0, 1, 5, 10, 20, 50 to investigate the effectiveness of the WRD loss, where the model with λwrd = 0
reduces to a cascade model. The results of the zero-shot Image Translation are shown in the left
panel of Figure 4. By increasing the weight of the WRD loss, the model improves both in WER and
BLEU. However, when the weight is too large, the system deteriorates (e.g. when λwrd = 20, 50).
In the right panel of Figure 4, we visualize the transport plan T∗ of a testing example between
the character level images and the transcription tokens, and present corresponding cost matrix C in

2https://taobao.com
3https://github.com/YCG09/chinese ocr
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the Appendix. More examples in the Appendix also show that the WRD with OT solver can align
cross-modal features with different lengths.

6 RELATED WORKS

Optimal Transport Optimal Transport has been applied to machine learning, especially in computer
vision (Rubner et al., 2000; Xie et al., 2020a; Zhang et al., 2020) and in natural language processing
tasks. In natural language processing, Kusner et al. (2015) proposes Word Mover’s Distance for
Document (WMD) to measure document distances. Yokoi et al. (2020) proposed Word Rotator’s
Distance based on WMD by considering the norm of a word vector and the angle between word
vectors. Chen et al. (2019; 2020) adopt it in sequence-to-sequence learning and cross-modal align-
ment. But WRD is not used on intermediate representations. Instead, fixed-length representations
are used to resolve the conflict between different modalities.

End-to-end ST Since Bérard et al. (2016) proposed proof of the potential of end-to-end ST (with-
out using intermediate representations explicitly), the concept has been investigated often in recent
years, for example (Bansal et al., 2018; Inaguma et al., 2020). To overcome the scarcity of ST data,
multi-task training and pre-training are proposed to incorporate ASR and MT data (Weiss et al.,
2017; Bérard et al., 2018; Alinejad & Sarkar, 2020; Le et al., 2020; Vydana et al., 2021; Ye et al.,
2021a). Especially, Wang et al. (2020); Xu et al. (2021); Fang et al. (2022) attempt to construct
end-to-end trainable cascade systems that rely on transcriptions and are optimized in part during
end-to-end training. Liu et al. (2020); Papi et al. (2021); Zeng et al. (2021) also adopt the CTC
module as shrinking guidance. Other techniques such as data augmentation (Jia et al., 2019; Pino
et al., 2020), knowledge distillation (Liu et al., 2019; Xu et al., 2021), and meta-learning (Indurthi
et al., 2020) were widely exploited for ASR and MT data.

Zero-shot ST Zero-shot ST trains models only on non-overlapping ASR and MT data and performs
ST tasks during inference. Jia et al. (2019) proposes the pseudo labeling as a data augmentation trick
to construct end-to-end supervised data. Dinh (2021) shares ASR encoder layers and NMT encoder
layers with an auxiliary loss function to minimize the difference between intermediate representa-
tions of text and audio. Escolano et al. (2021) proposed an encoder-adapter-decoder architecture
where the speech encoder is compatible with the text decoder. Duquenne et al. (2022) adopt a sim-
ilar framework, but with joint representations. It tries to show that the single vector representation
is efficient to decode various languages. In our study, we employ an encoder-adapter-MT frame-
work but pay special attention to the adapter connecting different encoder modules, leading to an
architecture that is feasible both as a cascade and an end-to-end zero-shot ST system.

End-to-end Image Translation (Salesky et al., 2021) proposed a text-image-text framework to
achieve robust text translation by constructing pseudo text-line images from the source sentences.
Recently, a few works on directly translating source text in real images into a foreign language
have been proposed (Chen et al., 2021; Hinami et al., 2021; Shekar et al., 2021). The availability
of triplet image data is severely more limited than in Speech Translation. It is at the present not
possible to train a supervised end-to-end image translation model. To look for data, Chen et al.
(2021) collected Chinese-English bilingual movie subtitle images. Unfortunately, these images are
far different from real images in many aspects such as font, variety, size, and content. Thus in our
work, we experiment with zero-shot Text Image Translation with only OCR and MT data which is
more common in real-world applications.

7 CONCLUSION

In this paper, we present an end-to-end zero-shot architecture that takes better advantage of cascade
models, bridging the gap between cascade and end-to-end translation models. With the proposed
differentiable shrink adapter and differentiable WRD loss, our approach is a direct end-to-end ST
model in the zero-shot setup that matches the performance of the cascade system without additional
post-processing, e.g., rescoring via an additional language model. Moreover, our zero-shot transla-
tion model is end-to-end trainable, allowing further training on supervised data if they are available.
Experiments show that we achieve comparable results as recent SOTA methods. We hope that our
work can further the research on cross-modality translation and representation learning.
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A APPENDIX

A.1 WRD BASED IPOT

Algorithm 1 WRD based IPOT
Input: Maximum iterations T = 50,
encoded sequences {t1i }ni=1, {t2j}mj=1.

1: Initialize p and q as Eq. (1).
2: Initialize C as Eq. (2).
3: Initialize T = 1n1

⊤
m.

4: σ = 1
m1m, Gi,j = e−Ci,j .

5: for t = 1, 2, . . . , T do
6: Q = G⊙T
7: δ = p

Qσ , σ = q
Q⊤δ

8: T = diag(δ)Qdiag(σ)
9: end for

10: return ⟨C,T⟩

Algorithm 1 shows the detailed implementation of
IPOT, where diag(δ) represents the diagonal ma-
trix with δi as its i-th diagonal element, and ⊙ and
(·)
(·) denote the element-wise matrix multiplication
and division respectively. The algorithm outlines
the forward-propagation steps only. Since each it-
eration of the algorithm only involves differentiable
operators, we can utilize the automatic differentia-
tion packages (e.g., PyTorch) to back-propagate
the gradients like an unrolled RNN. The correspond-
ing implementation can refer to the submitted soft-
ware.

A.2 DIFFERENTIABLE
SHRINKING MECHANISM

For the CTC distribution dc ∈ R|Bs|×l where each
column is a categorical distribution, we can derive
the corresponding best CTC path via column-wise
argmax. This step is not differentiable, but the path π is merely used to direct the shrinking.

π = argmaxdc (9)

where |π| = l. In general, π represents the token indexes and should be in the following format.

π = (ϵ, ..., ϵ, π1, ..., π1, ϵ, ..., ϵ, π2, ..., π2, ..., ..., πl̃, ..., πl̃, ϵ, ..., ϵ, ) (10)

where ϵ, ..., ϵ means 0 or more blank tokens, and πi, ..., πi means 1 or more consecutive duplicated
tokens. The two types of tokens are interleaved in the path.

First, we will average the columns in dc that correspond to the same token, including blank token.
The resulting averaged CTC distribution actually meets the requirement that each column is a valid
distribution. Suppose the first k elements in π are the same token, the corresponding columns in the
CTC distribution are dc[:, : k]. The averaged column is

d̄c[:, : k] =
1

k

k∑
i=1

dc[:, i] ∈ R|Bs| (11)

Because by definition ∀i,
∑|Bs|

j=1 dc[j, i] = 1, then we have

|Bs|∑
j=1

d̄c[j, : k] =

|Bs|∑
j=1

1

k

k∑
i=1

dc[j, i] =
1

k

k∑
i=1

|Bs|∑
j=1

dc[j, i] = 1 (12)

Therefore, it means after the averaging, the averaged CTC distribution d̄c is still a column-wise
distribution. In addition, this step only involves averaging operation, which is differentiable. The
resulted d̄c corresponds to the following path.

π̄ = (ϵ, π1, ϵ, π2, ..., πl̃, ϵ) (13)

where ϵ means 0 or 1 blank token, and πi means exactly 1 transcription token.

Second, we will remove the columns in d̄c that correspond to blank tokens. This step can be effi-
ciently implemented via gather operation in most deep learning packages, which is also differen-
tiable. Eventually, we will obtain the shrunk CTC distribution d̃c, corresponding to the final path
π̃ = (π1, π2, ..., πl̃).

Similarly, we can shrink the speech features hs ∈ Rd×l by repeating above two steps and obtain the
shrunk speech features h̃s.
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Then we can design the adapter as Eq. (5) ha = Etd̃c + W⊤
a h̃s, which can be decoupled as an

embedding layer and a linear layer. As discussed, the shrunk matrix d̃c and h̃s are both differen-
tiable, allowing smooth model training. However, the embedding layer in the adapter cannot exactly
match the real embedding layer in the semantic encoder which is actually an indexing operation. To
better mimic the embedding layer, we can also define a one-hot vector d̂c derived from the index
argmax d̃c. Then the adapter output Eq. (5) becomes the following equation.

ha = Etd̂c +W⊤
a h̃s (14)

In this way, the adapter is not fully differentiable due to the first term. To solve this problem, we can
implement the straight through trick Bengio et al. (2013) as follows.

d̂c = stop grad(d̂c − d̃c) + d̃c (15)

A.2.1 BATCH LEVEL IMPLEMENTATION

Our implementation is based on fairseq (Ott et al., 2019). The main code is located in the folder
examples/dcm of the submitted software zip file, including the differentiable shrinking mech-
anism (examples/dcm/models/s2t dcm.py) and the differentiable WRD OT loss function
(examples/dcm/criterions/text guide cross entropy with ctc.py).

A.3 TRAINING DETAILS OF ST

A.3.1 ADDITIONAL LOSS FUNCTIONS

The CTC loss can be defined as follows.

LCTC(xs,hs) = − log
∑

π∈A(xs)

P (π|hs), (16)

where P (π|hs) =
∑

t P (πt|hs) defines the probability of the CTC path π, and A(xs) represents all
possible paths that result in the transcription xs. The definition the KD loss function is as follows.

LKD = −
|y|∑
t=1

|Bt|∑
n=1

P (yt|x;θMT )× logP (yt|z;θST ) (17)

where P (·,θST ) is the student model and and P (·,θMT ) is the teacher model.

A.3.2 HYPER-PARAMETERS

All training and evaluation hyper-parameters can refer to the training bash scripts (*.sh) in the
submitted code, including the optimizer, learning rate, batch size, beam size (5 by default), etc.
Particularly, we use SacreBLEU in fairseq as evaluation metrics.

A.3.3 DATASETS IN PHASE 3

For the third phase supervised ST training, we have multiple tasks in the final objective. For the ST
task LST , some previous works that may leverage the MT model and the Librispeech transcription
to construct pseudo translation sentences. However, we only use the audio and translation pairs from
MuST-C. For the ASR task LCTC , we only use the audios and transcriptions from MuST-C. For the
MT task LMT , we optimize it on both the MuST-C parallel corpus and WMT data, making the
decoder a better language model. En-De WMT only has 4.5M sentence pairs and the entire training
is still manageable. However, for En-Fr/Es, optimizing the large end-to-end ST model with huge
amount trainable parameters will be cumbersome because the size of WMT data overwhelmingly
slows down the training. Therefore, we randomly sample 10M corpus from the original WMT En-
Fr/Es data to train the final supervised loss. For the knowledge distillation loss LKD, we use the
audio-transcription-translation triplet data from MuST-C.

A.4 MORE EXPERIMENTAL RESULTS
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Figure 5: BLEU evaluation of each sentence on En-De v2 tst-COMMON. For zero-shot setting,
cascade system has more sentences in BLEU interval [0, 10], while almost in all other intervals,
our proposed model has more sentences. For pseudo zero-shot setting, cascade system tends to
have more examples on low BLEU intervals, and our approach has more examples on higher BLEU
intervals.

Supervised Training Loss En-De v2
ST CTC† WRD KD common
✓ ✓ ✓ ✓ 29.22
✓ ✓ ✓ 28.94
✓ ✓ ✓ 28.86
✓ ✓ ✓ 28.36

Table 4: Ablation study on the supervised loss Eq. (8). All models are fine-tuned from the zero-
shot ST model with BLEU 24.00 in Table 2. †The CTC loss cannot be directly removed, because
our shrinking adaptor depends on the CTC results. So we freeze the pre-trained acoustic encoder
including CTC layer. The results indicates the acoustic encoder is well-trained in zero-shot phrase,
and the freezing has almost no impact when fine-tuning.

Model Module En-De v2
Acoustic Encoder† Adaptor Semantic Enc/Dec∗ common

trainable trainable trainable 29.22
trainable trainable frozen 25.14
frozen trainable trainable 28.94

Table 5: Ablation study on the model parameters for supervised training phrase. All models are
fine-tuned from the zero-shot ST model with BLEU 24.00 in Table 2. †Acoustic encoder includes
the CTC layer. ∗The result becomes much worse if semantic encoder/decoer are frozen. The main
reason we hypothesize is that since the NMT teacher is frozen, the in-domain MT data is not used.
So it’s difficult for the NMT decoder to adapt for the supervised ST data, i.e., the decoder is not a
good language model.
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Figure 6: Left Column: visualization of transport plan T∗. Right Column: visualization of cost
matrix C. The WRD with OT solver can align cross-modal features with different lengths. y-axis
represents the shrunk features, and x-axis represents the transcription features. Since the actual
shrunk tokens only represents a 4-pixel wide part of an image, we cut images along blank tokens as
a schematic representation. The real shrunk tokens usually in the middle of the images on y-axis.
For the cost matrix, the smaller elements are mainly distributed on the diagonal block regions. It
could be the incorrect shrinking segments sometimes aligning with more than one characters. For
transport plan matrix, the larger elements are mainly distributed on the diagonal. In this way, their
products will remain small.
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SRC: If you have something to give, give it now. 
REF: Wenn Sie etwas zu geben haben, geben Sie es jetzt.
ASR: If you have something to give, give it no. 
Cascade: Wenn Sie etwas zu geben haben, geben Sie es nein.
E2E: Wenn Sie etwas zu geben, geben Sie es jetzt.

SRC: So get in the game. Save the shoes.
REF: Also legen Sie los; retten Sie die Schuhe.
ASR: So get in the game, Sa the shoes..
Cascade: Also im Spiel, Sa die Schuhe..
E2E: So bekommen Sie im Spiel, speichern Sie die Schuhe.

SRC: Yet, in this land of violence and chaos, you can hear hidden laughter swaying the 
trees.
REF: Und doch, in diesem Land von Gewalt und Chaos kann man ein verborgenes
Lachen hören, dass die Bäume erschüttert.
ASR: Yet, in this land, of violence and chaoss, you can hear hidden laughter sewing the 
trees.
Cascade: Doch in diesem Land, in dem Gewalt und Chaos herrscht, kann man verborgenes
Lachen hören, das die Bäume näht.
E2E: Doch in diesem Land, in dem Gewalt und Chaos herrscht, kann man verborgenes
Lachen hören, das die Bäume schwingt.

SRC: And when you watch bonobo play, you're seeing the very evolutionary roots of 
human laughter, dance and ritual.
REF: Und wenn man Bonobos beim Spiel beobachtet, sieht man die evolutionären
Ursprünge menschlichen Lachens, Tanzes und von Ritualen.
ASR: And when you watch a below airplane, you're seeing the very evolutionary roots 
of human laughter, dance and ritual.
Cascade: Und wenn man ein Flugzeug unter sich sieht, sieht man die sehr evolutionären
Wurzeln des menschlichen Lachens, Tanzens und Rituals.
E2E: Und wenn man unter dem Spiel zusieht, sieht man die sehr evolutionäre Wurzel 
menschlichen Lachens, Tanz und Ritual.

SRC: Play is the glue that binds us together.
REF: Spiel ist der Kitt, der uns beieinanderhält.
ASR: Play is the glue that bis us together.
Cascade: Spielen ist der Leim, der uns bis zusammen.
E2E: Spielen ist der Klebstoff, der uns zusammen brennen.

Figure 7: Case Study of zero-shot ST. From the first 50 examples in En-De v2 tst-COMMON testset,
we select 5 examples that have critical ASR errors but have tiny BLEU difference between cascade
and end-to-end systems. For cascade system, the ASR errors (in red font) will be firmly passed
into the MT model, leading to obvious (non-sense) mistakes in the translation. Instead, our end-
to-end zero-shot ST with the adaptor alignment can sometimes prevent such errors and translate
with synonyms. For the 5th example, the end-to-end model also made an error where “brennen”
means ”burn”. We guess the model is confused by the representations (including both speech and
semantic information) of “binds” and “burns”. However, “burns us together” is more fluent than
“bis us together” and closer to the original the semantic meaning “binds us together”.
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