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ABSTRACT

Large language models (LLMs) have been shown to exhibit emergent abilities in
some downstream tasks, where performance seems to stagnate at first and then
improve sharply and unpredictably with scale beyond a threshold. By dividing
questions in the datasets according to difficulty level by average performance, we
observe U-shaped scaling for hard questions, and inverted-U scaling followed
by steady improvement for easy questions. Moreover, the emergence threshold
roughly coincides with the point at which performance on easy questions reverts
from inverse scaling to standard scaling. Capitalizing on the observable though
opposing scaling trend on easy and hard questions, we propose a simple yet effective
pipeline, called Slice-and-Sandwich, to predict both the emergence threshold and
model performance beyond the threshold.

1 INTRODUCTION

Large language models (LLMs) (Team et al., 2023; Achiam et al., 2023; Brown, 2020; Touvron et al.,
2023a;b; Workshop et al., 2022; Li et al., 2023; Jiang et al., 2024) have shown strong potential in
various downstream applications (Jumper et al., 2021; Fawzi et al., 2022; Naveed et al., 2023; Kaddour
et al., 2023). Though the training-loss scaling law has been well established (Kaplan et al., 2020;
Hoffmann et al., 2022), the literature is inconclusive regarding how performance on downstream tasks
scales. In particular, for certain downstream tasks (Srivastava et al., 2023; Lin et al., 2022a; Pilehvar
& Camacho-Collados, 2019), LLMs seem to display emergent abilities: performance is stagnant
even when model training compute scales up hundredfold, and then exhibits sharp improvement at a
seemingly unpredictable critical threshold (Wei et al., 2022; Schaeffer et al., 2024a).

Some prior work (Schaeffer et al., 2024a;b; Lu et al., 2024) has identified crude performance metrics
as a contributing factor to LLM’s apparent emergent abilities because of its inability to capture
improvements of smaller models. Hu et al. (2023) proposes the PASSUNTIL metric, according to
which models slowly improve with scale instead of stagnating. Schaeffer et al. (2024a) finds that
LLMs display emergent abilities mainly on string-match and multiple-choice tasks (Schaeffer et al.,
2024a), for which the traditional performance measure of accuracy exhibits strong discontinuity. They
propose using a continuous metric such as Brier Score (Brier, 1950) or linear metric such as token
edit distance (TED) (Schaeffer et al., 2024a) to better predict LLM’s scaling behavior for downstream
tasks. Schaeffer et al. (2024b) further ranks several performance metrics in correlation with the model
scale. On the other hand, Michaud et al. (2024) establish the quantization model of neural scaling to
explain the emergent drop of cross-entropy loss from the aspect of next-token prediction.

Another focus of prior literature is the predictability of ability emergence on traditional metrics like
accuracy, which is crucial for AI safety since a tool for task-wise emergence prediction can help us
monitor and forecast LLMs’ potential harmful capabilities, such as writing computer viruses. Firstly,
Wei et al. (2022) characterizes emergent abilities as unpredictable performance soar. Though some
studies (Ruan et al., 2024; Gadre et al., 2024; Hu et al., 2023; Owen, 2024; Ye et al., 2023) have
proposed pipelines to estimate task-specific scaling law, they usually incorporate models past the
emergence threshold into the training set to fit a Sigmoid function and do not provide an explainable
prediction of emergence abilities.

This paper contributes to both fronts of the literature’s discussion on emergent abilities, especially
for multiple-choice tasks. First, we propose a novel procedure to measure LLM’s performance
separately on groups of questions with different difficulty levels. Fig. 1 shows the evaluation result
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(c) U-Shaped and inverted-U scaling with MMLU’s questions clustered into 10 groups. Higher
levels are harder questions.

Figure 1: The accuracy, Target-Conditioned (TC) Brier Score, U-shaped and inverted-U scaling on
the MMLU benchmark (Hendrycks et al., 2021), with 56 LLMs used for evaluation and model details
being in App. A. The TC Brier Score is our proposed performance measure to capture models’ subtle
performance change, which we detail in Sec. 2.1.2.

of 56 LLMs with diverse training compute on the MMLU benchmark, whose 14042 questions are
clustered into 10 groups based on their difficulty levels, with higher levels denoting harder questions,
measured by the Target-Conditioned (TC) Brier Score, our proposed continuous metric that has a high
positive correlation with accuracy but can capture more nuanced model capability increase/decrease
detailed in Sec. 2.1.2. With TC Brier Score, as shown in Fig. 1, we observe that model performance
on hard questions exhibits U-shaped scaling (Wei et al., 2023; McKenzie et al., 2023), where it
worsens with scale at first and then reverses to improve with scale. In contrast, performance on
easy questions exhibits an inverted U-shape followed by steady improvement with scale, consistent
with the previously reported deep double descent of testing loss (Nakkiran et al., 2021). Moreover,
the point at which performance reverts from inverse to standard scaling roughly coincides with the
emergence threshold beyond which model performance begins to soar. Our observation could explain
why LLM’s performance on some multiple-choice tasks stagnates for models below the emergence
threshold: the scaling trend on easy questions offsets that on hard questions.

This observation of U-shaped and inverted-U scaling provides a basis to predict the forthcoming
sharp increase in model performance, a defining feature of emergent abilities. We propose Slice-and-
Sandwich pipeline, where we first group questions on a given downstream task by difficulty levels,
use data before the emergence threshold to fit the performance on easy and hard questions separately,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

then forecast performance on easy and hard questions separately beyond the emergence threshold.
We show that Slice-and-Sandwich captures the performance soar well.

We summarize our contributions as follows:

• We demonstrate that, for some downstream tasks previously shown to display emergent
abilities, under a proper continuous metric, LLM’s performance exhibits opposing scaling
trends: inverted-U vs. U-shape, on easy vs. hard questions below the emergence threshold,
and steadily improves beyond the emergence threshold.

• Based on the observation of inverted-U vs. U-shape on easy vs. hard questions, we propose
a simple yet effective pipeline, Slice-and-Sandwich, to forecast model performance past the
emergence threshold. Experimental results on three iconic datasets show its effectiveness.

2 SCALING TREND BY DIFFICULTY LEVEL: U-SHAPE VS. INVERTED-U

This section documents LLM’s scaling trend by question difficulty level. Sec. 2.1 defines terminolo-
gies such as log compute, emergence threshold, and our performance metrics. Sec. 2.2 describes
how we group questions by difficulty level. Sec. 2.3 presents and discusses the results of six iconic
multiple-choice tasks with ability emergence.

2.1 TERMINOLOGY

2.1.1 LOG COMPUTE AND EMERGENCE THRESHOLD

For clearer visualization, in this paper, we refer to an LLM’s log compute M as:

M = log10(
C

1021
), (1)

where C ≈ 6ND (Kaplan et al., 2020) is the total training compute (FLOPs) of an LLM, N is the
number of model parameters, and D is the number of training tokens. We then recognize and mark
the emergence threshold T manually as the log compute where the model accuracy exhibits a sharp
improvement, as illustrated in Fig. 1a.

2.1.2 CONTINUOUS PERFORMANCE METRICS

Prior work (Schaeffer et al., 2024a;b; Lu et al., 2024) has advocated for performance metrics that
distinguish finer differences. One candidate metric is the Brier Score (Brier, 1950):

Brier =
1

K

K∑
t=1

C∑
i=1

(p̂t,i − pt,i)
2
, (2)

where K is the number of samples and C is the number of classes. pt,i is 1 if the t-th sample belongs
to class i, otherwise 0. p̂t,i is the model’s predicted probability of the t-th sample being class i.

However, the Brier Score depends not only on the model’s predicted probability of the target class
(choice) but also on the predicted probability distribution of all classes. Since LLMs’ confidence
calibration is usually poor on multiple-choice questions (Li et al., 2024), we propose the Target-
Conditioned (TC) Brier Score that depends only on the target label conditioned on the probability
sum of all classes and has an opposite sign to Eq. 2 so that higher score means higher performance:

TC_Brier = − 1

K

K∑
t=1

(
p̂cont,c − 1

)2
, (3)

where p̂cont,c is the model’s output probability on t-th sample’s target class c conditional on available
classes, i.e.,

p̂cont,c =
p̂t,c∑

c′∈ all classes

p̂t,c′
, (4)

where p̂t,c is the output probability on t-th sample’s correct class c. The TC Brier Score is invariant
under the output probability distribution of non-target classes. We discuss the effect of conditionality
on the TC Brier Score in App. B.
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(c) U-Shaped and inverted-U scaling.

Figure 2: The accuracy, TC Brier Score, U-Shaped and inverted-U scaling on the Persian-QA dataset
in BIG-bench (Srivastava et al., 2023).

2.2 GROUPING QUESTIONS BY DIFFICULTY LEVELS

2.2.1 MEASURING QUESTION DIFFICULTY LEVEL

For a sample question q of a downstream task, we define its difficulty level Dq to be the average
performance on q based on the chosen performance metric (TC Brier Score in this paper) across all L
LLM models smaller than the emergence threshold T for that downstream task:

Dq =
1

L

L∑
i=1

TC_Brierqi , (5)

where TC_Brierqi is the TC Brier Score of i-th LLM on sample question q, defined by Eq. 3.

2.2.2 QUESTION SORTING AND GROUPING

Because model performance on individual questions is quite noisy, we group questions by difficulty
levels. First, we sort questions by ascending difficulty level. Then, we evenly divide the sorted
questions into G groups. Thus, each group has a different difficulty level.

2.3 U-SHAPED AND INVERTED-U SCALING

Fig. 1a–3a show the scaling trend of accuracy on the MMLU, Persian-QA, and arithmetic datasets,
with clear ability emergence demonstrated. In contrast, Fig. 1b–3b show the performance scaling
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(c) U-shaped and inverted-U scaling.

Figure 3: The accuracy, TC Brier Score, U-shaped and inverted-U scaling on the arithmetic dataset in
BIG-bench (Srivastava et al., 2023).

trend measured by the TC Brier Score. Though the scaling trend on the Persian-QA dataset is
smoother, MMLU and arithmetic still exhibit a sharp increase of the TC Brier Score past the
emergence threshold. Fig. 1c–3c show the TC Brier Score scaling trend with group number G = 10.
Implementation details and model details are in App. A. Model performance on easier questions,
such as difficulty level 1 in Fig. 1c and Fig. 2c, displays an inverted-U shape followed by steady
improvement, i.e., performance first increases and then worsens with scale, followed by a second
ascent, aligning with the previously reported deep double descent1 on testing loss (Nakkiran et al.,
2021). Moreover, the reversion from inverse scaling to standard scaling roughly coincides with the
emergence threshold T . On the contrary, performance on hard questions, such as difficulty level 10
in Fig. 2c and Fig. 3c, displays a U-shaped scaling trend (Wei et al., 2023; McKenzie et al., 2023):
model performance decreases with scale in early stage and increases with scale when M gets larger.
Besides MMLU, arithmetic, and Persian-QA, Fig. 4 shows U-shaped vs. inverted-U scaling of Hindu
knowledge, conceptual combinations, and analogical similarity datasets in Big-Bench (Srivastava
et al., 2023), totaling six datasets, with G = 3. Detailed results of the three datasets are in App. C.

Overall, the scaling trend of a group transitions from that of the easiest group (inverted-U followed
by steady ascent) to that of the hardest group (U-shape) as we move from the easiest group to the
hardest group. Because the initial scaling trends of easy questions and hard questions roughly offset
each other when aggregated across all difficulty levels, performance stagnates until the scaling trend

1The term “descent” in the original paper refers to the testing loss. Hence, for the sense of accuracy or Brier
Score, it is an “ascent” of performance.
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(f) Analogical similarity.

Figure 4: U-shaped and inverted-U scaling on 6 datasets with emergent phenomenon, with group
number G = 3. Different levels of U-shaped and inverted-U scaling trends are observed.
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Figure 5: Illustration of deep double descent (Nakkiran et al., 2021) on easy question groups and
U-shaped scaling (Wei et al., 2023) on hard question groups under the TC Brier Score.

on easy questions reverts from inverse scaling to standard scaling, followed by a sharp improvement
when performance on easy and hard questions both improve with scale. This could explain the
emergent ability phenomenon reported in previous literature (Wei et al., 2022; Schaeffer et al., 2024a;
Hu et al., 2023). More results of scaling trend on three non-emergent tasks in App. D, and U-shaped
vs. inverted-U scaling measured by accuracy are in App. E.

3 POSSIBLE EXPLANATION FOR U-SHAPED AND INVERTED-U SCALING

We provide a possible explanation for the initially opposing scaling trends (inverted-U vs. U-shaped)
on easy vs. hard questions using the AI community’s previous findings (Nakkiran et al., 2021; Wei
et al., 2023; McKenzie et al., 2023) in deep neural networks (DNNs)’ and specific LLMs’ behaviors.

3.1 SCALING TREND OF EASY QUESTION GROUPS

As discussed in Sec. 2 and shown in Fig. 1–3, for a downstream task with emergent abilities, model
performance on easy question groups first increases with scale, then decreases with scale, and finally
reverts to increasing with scale. Fig. 5a illustrates the scaling trend if we flip the sign on the TC Brier
Score so that a higher number means higher prediction loss. The pattern is then consistent with the
deep double descent phenomenon identified in Nakkiran et al. (2021). In the context of testing error
scaling law, Nakkiran et al. (2021) argues that initially, the bias-variance trade-off in the classical
statistical learning theory (Hastie et al., 2009) applies, which forms the “classical regime”: complex
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Table 1: Examples of an easy and hard question in the MMLU benchmark. The Avg. Prob. is
the average output probabilities before re-distribution over all models with log compute M < 1.5.
Answer choices (classes) are underlined. In the hard question, small models overlook the negation
“doesn’t”, giving choice C a high confidence, yet correct choice D a low confidence.

Question Description Difficulty Level Choices Avg.
Prob.

(conceptual physics, id = 44)
The second law of thermodynamics tells
us that heat doesn’t flow from

level 10
(hardest group)

A. hot to cold ever
B. cold to hot ever
C. hot to cold
without external energy
D. cold to hot
without external energy

A. 0.24
B. 0.29
C. 0.29
D. 0.18

(global facts, id = 66)
In 1935 roughly how many Americans
were in favor of Social Security act?

level 1
(easiest group)

A. 90%
B. 70%
C. 50%
D. 30%

A. 0.44
B. 0.30
C. 0.17
D. 0.09

models suffer from “overfitting” and thus, once complexity exceeds a certain threshold, models
become over-sensitive to sample noises, and the effect from such bigger variance dominates the effect
of further reducing testing error. On the other hand, once the model is big enough (the “modern
regime”), further increase in complexity allows the model to pick from more and more interpolating
models that all fit the dataset, thereby improving performance and reducing testing error to near zero.

3.2 SCALING TREND ON HARD QUESTION GROUP

In contrast to the easy question groups, performance in hard question groups exhibits U-shaped scaling.
McKenzie et al. (2023); Wei et al. (2023) have identified U-shaped scaling of LLM performance in
some downstream tasks, as illustrated in Fig. 5b. Wei et al. (2023) provides a potential explanation
for the initial inverse scaling: these tasks might contain a “distractor task” that attracts models
to learn to solve at first, and thus larger models perform worse. One such example is the NeQA
task (McKenzie et al., 2023) , which negates each multiple-choice question in the OpenBookQA
dataset (Mihaylov et al., 2018) to examine whether models would be misled by the negation. It
turns out that model performance would first decline from random guesses because of the attempt to
answer the non-negation part of the question. Table. 1 shows such a question in our hard question
group in the MMLU benchmark. For the question “The second law of thermodynamics tells us that
heat doesn’t flow from”, small models (log compute M < 1.5) on average assign high confidence to
choice C and lowest confidence to the correct choice D, and the former is the answer if removing
negation “doesn’t” from the original question.

4 SLICE-AND-SANDWICH

4.1 PROBLEM FORMULATION

We aim to predict the performance soar of traditional metrics before it happens. Specifically, we want
to use only data before the emergent threshold to forecast the incidence of emergent abilities and
the scaling trend past the emergent threshold. We compare the performance of our pipeline with the
current iconic baseline of Sigmoid-based task-specific scaling law (Ye et al., 2023), which uses the
Sigmoid function to regress accuracy on models’ log compute M .

4.2 PIPELINE OVERVIEW

Fig. 6 shows the overall pipeline of Slice-and-Sandwich. We use models smaller than the emergence
threshold T as the training set. As performance no longer stagnates with scale once we group
questions by difficulty level, we fit the scaling trend of a continuous metric (TC Brier score in this

7
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Figure 6: The overall pipeline of Slice-and-Sandwich. We group questions into different difficulty
levels, fit each group’s scaling trend, sandwich the overall performance to construct the scaling law
on the linear metric, and finally project the scaling law back to the traditional metric.

paper) on the easiest question group and hardest question group separately and use the fitted scaling
trend to forecast performance (measured in TC Brier Score) on easy and hard questions past T . We
also use the training set to regress accuracy on the TC Brier Score and then use this estimated relation
to convert the predicted TC Brier Score into predicted accuracy for models past the T .

4.3 PREDICTING EMERGENT ABILITY

4.3.1 QUESTION GROUPING

To reduce data noise, we group questions into G = 3 difficulty levels, as in Fig. 4, for Slice-and-
Sandwich and denote the level 1, 2 and 3 questions as easy, medium, and hard question groups. The
medium group’s pattern is close to aggregating the scaling trend between easier and harder groups.

4.3.2 FITTING AND FORECASTING SCALING TREND OF EASY VS. HARD QUESTIONS

We use simple polynomial regression to fit the scaling trend of the TC Brier Score of the easy and
hard question groups separately, using models before the emergence threshold T . We denote by
F c
e (x) and F c

h(x) the fitted scaling trend of the easy and hard question groups, respectively, where x
is the log compute. We then use F c

e (x) and F c
h(x) to forecast performance (measured in TC Brier

Score) on the easy and the hard question groups of models with log compute x above T .

We use the average of performance on the easy group and the hard group to forecast aggregated
performance measured in TC Brier Score:

F c(x) =
1

2
(F c

e (x) + F c
h(x)), (6)

as aggregate performance is sandwiched between performances in the easy and hard groups.

4.3.3 OBTAINING SCALING TREND IN TRADITIONAL METRIC

Since what people usually care about ultimately are those traditional metrics such as accuracy (Hu
et al., 2023), our last step is to project the forecast scaling trend in TC Brier Score, F c(x), back to
scaling trend in accuracy, denoted by F t(x). One can replace TC Brier Score with other continuous
metrics and accuracy with other traditional metrics. Specifically, we first estimate the relation between
the continuous metric (TC Brier Score) and the traditional metric (accuracy) using models with log
computes smaller than the emergent threshold T as the training set. We denote the estimated mapping

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

1.0

0.8

0.6

0.4

0.2

0.0

TC
 B

rie
r S

co
re

easy training split
easy testing split
easy polynomial regression
hard training split
hard testing split
hard polynomial regression

(a) MMLU.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

1.0

0.8

0.6

0.4

0.2

0.0

TC
 B

rie
r S

co
re easy training split

easy testing split
easy polynomial regression
hard training split
hard testing split
hard polynomial regression

(b) Arithmetic.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

1.0

0.8

0.6

0.4

0.2

0.0

TC
 B

rie
r S

co
re

easy training split
easy testing split
easy polynomial regression
hard training split
hard testing split
hard polynomial regression

(c) Persian-QA.

Figure 7: Data and polynomial fit for the easy and hard question groups on the MMLU, arithmetic,
and Persian-QA datasets. The fitted trends encapsulate the actual trends.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

1.0

0.8

0.6

0.4

0.2

0.0

TC
 B

rie
r S

co
re

training split
testing split
ours

(a) MMLU.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

1.0

0.8

0.6

0.4

0.2

0.0

TC
 B

rie
r S

co
re

training split
testing split
ours

(b) Arithmetic.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

1.0

0.8

0.6

0.4

0.2

0.0

TC
 B

rie
r S

co
re

training split
testing split
ours

(c) Persian-QA.

Figure 8: The TC-Brier-Score-based scaling law on the MMLU, arithmetic, and Persian-QA datasets
acquired by taking the average of fitted trends of easy and hard question groups in Fig. 7.

from TC Brier Score to accuracy as G(·). Our forecast of scaling trend of accuracy is given by:

F t(x) = G(F c(x)) + C, (7)

where C is a constant such that the average predicted accuracy of F t(x) on the training set is the
same as the average true accuracy of all models in the training set.

5 EXPERIMENTS

5.1 FITTING SCALING TREND OF EASY GROUP AND HARD GROUP

We adopt polynomial degree=2 and 5 for hard and easy questions, respectively, in response to our
observation of U-shaped vs. inverted-U scaling. This parameter selection is based on our prior
belief of polynomial regression’s fitting powers to fit the deep double descent and U-shaped scaling.
Experimental results on parameter robustness are in App. F.

Fig. 7 shows the fitted scaling trend of the easy and hard question groups on the MMLU, arithmetic,
and Persian-QA datasets. Empirically, fitted trends on hard questions are either precise or underesti-
mated, e.g., hard group of MMLU (Fig. 7a) and arithmetic (Fig. 7b), due to lower fitting power of
degree 2; fitted trends on easy questions are precise or overestimated, e.g., easy group of MMLU
(Fig. 7a), due to a more considerable fitting power of degree 5. However, they still encapsulate the
overall trend. Therefore, as shown in Fig. 8, taking their average can decrease the deviation and still
lead to a precise prediction of the actual scaling trend.

5.2 RELATION BETWEEN ACCURACY AND TARGET-CONDITIONED (TC) BRIER SCORE

Fig. 9 shows the close and almost linear relation between accuracy and TC Brier Score. As a result,
simple ordinary least squares (OLS) regression using only models before the emergence threshold
yields a precise mapping G(·) from TC Brier Score to accuracy.
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Figure 9: The relation between accuracy and the TC Brier Score on the MMLU, arithmetic, and
Persian-QA datasets. The mapping function G(x) from the TC Brier Score to accuracy can be
well-modeled using small models as the training set.
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Figure 10: The accuracy-based scaling law on the MMLU, arithmetic, and Persian-QA datasets
acquired by projecting the TC-Brier-Score-based scaling law back to accuracy-based scaling law by
G(x). Baseline is the Sigmoid-based regression (Owen, 2024).

5.3 FORECASTING SCALING TREND IN ACCURACY

Finally, Fig. 10 shows the accuracy-based scaling trend, F t(x), obtained through Eq. 7 with G(·),
together with the baseline of fitting performance measured in accuracy on the Sigmoid function (Owen,
2024; Ruan et al., 2024). Compared with the baseline that assumes the monotone Sigmoid scaling
trend, our Slice-and-Sandwich better predicts and estimates the soaring performance by baking in
more priors of the observed U-shaped and inverted-U scaling. For the MMLU benchmark, our
approach captures the forthcoming soaring trend, whereas the baseline approach does not. For the
arithmetic dataset, though the baseline provides a seemingly decent forecast, it does not capture
the sharp increase in the improvement speed at all, whereas our approach does. In short, our Slice-
and-Sandwich approach could be more explainable and capable of capturing the soaring trends of
emergent abilities. A simple alternative method of Slice-and-Sandwich and its experimental results
are in App. F.

6 CONCLUSIONS AND LIMITATIONS

This work proposes to separately analyze LLM’s task-specific scaling trends by question grouping
based on difficulty level. For six multiple-choice tasks with emergent abilities, we demonstrate
U-shaped scaling for hard questions and inverted-U scaling followed by steady improvement for
easy questions. These findings provide insights into the potential causes of ability emergence. We
then introduce the Slice-and-Sandwich pipeline to predict the ability emergence and forecast scaling
trends thereafter. However, since emergent phenomena have been widely reported across current
LLM benchmarks and tasks, it might be hard to claim all of them must exhibit clear U-shaped vs.
inverted-U scaling. Furthermore, this study primarily focuses on multiple-choice tasks. Applying
our method to string-matching tasks requires identifying a continuous metric that differentiates easy
questions from hard questions and is highly correlated with the traditional metric people are ultimately
interested in. We demonstrate this point in our preliminary analysis for string-matching tasks in
App. G, believing it a valuable avenue for future work.
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A IMPLEMENTATION DETAILS

A.1 LLM EVALUATION

We evaluate all datasets in this paper on the LM Evaluation Harness (Gao et al., 2024) platform.
We adopt 56 models, including Gemma (Team et al., 2024), Llama (Touvron et al., 2023a), Llama-
2 (Touvron et al., 2023b), RedPajama-INCITE (Computer, 2023), Yi (Young et al., 2024), Sta-
bleLM (Stability-AI, 2023), MPT (Team, 2023), Falcon (Almazrouei et al., 2023), Pythia (Biderman
et al., 2023), AMBER (Liu et al., 2023), Qwen (Bai et al., 2023), Qwen-1.5 (Bai et al., 2023),
BLOOM (Workshop et al., 2022), DeepSeekMoE (Dai et al., 2024), OPT (Zhang et al., 2022),
GPT-Neo (Black et al., 2021), Codegen (Nijkamp et al., 2023), XGLM (Lin et al., 2022b), and
OpenLLaMA (Geng & Liu, 2023) families under FP16 precision. The evaluation time of each task
varies from several hours to several days on 2 NVIDIA RTX A6000, depending on the question
numbers and formats. We obtain each model’s log compute through the released data by Ruan et al.
(2024). We use T = 1.5, 1.8, and 2.3 as the emergence threshold for the MMLU, arithmetic, and
Persian-QA dataset, respectively. We calculate question difficulty level qd using models smaller than
these thresholds. We adopt a 5-shot inference on the MMLU benchmark and a 2-shot inference on
the arithmetic and Persian-QA datasets.

A.2 SLICE-AND-SANDWICH

We examine Slice-and-Sandwich on MMLU, arithmetic, and Persian-QA datasets with group number
G = 3. Models smaller than T = 1.5, 1.8, and 2.3 in the MMLU, arithmetic, and Persian-QA
datasets are the training set; other larger models are the testing set. We adopt polynomial regression
to fit easy and hard question groups. Specifically, we adopt the polynomial order=5 and 2 for the easy
and hard question groups, respectively.
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(c) Persian-QA.

Figure A11: The un-conditionalized TC Brier Score vs. log compute (M) on the MMLU, arithmetic,
and Persian-QA datasets.

0.3 0.4 0.5 0.6 0.7
accuracy

0.6

0.5

0.4

0.3

0.2

TC
 B

rie
r S

co
re

training split
testing split
OLS

(a) MMLU.

0.2 0.4 0.6 0.8
accuracy

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

TC
 B

rie
r S

co
re

training split
testing split
OLS

(b) Arithmetic.

0.2 0.3 0.4
accuracy

0.7

0.6

0.5

0.4

TC
 B

rie
r S

co
re

training split
testing split
OLS

(c) Persian-QA.

Figure A12: The relation between accuracy and un-conditionalized TC Brier Score on the MMLU,
arithmetic, and Persian-QA datasets.

B MORE DISCUSSIONS ON BRIER SCORE

In the main paper, we use the model’s predicted probability of the correct class conditional on
all classes to calculate the TC Brier Score (see Eq. 4). This section discusses the effect of such
conditionalization. This section refers to the un-conditionalized TC Brier Score as the one without
re-distributing output probabilities to all classes.

Fig. A11 shows the relationship between un-conditionalized TC Brier Score and log compute M
on all three datasets. For the MMLU dataset, model performance still exhibits flat scaling before
the emergence threshold and sharp improvement past the emergence threshold. For the arithmetic
and Persian-QA datasets, the scaling trend does not show a sharp increase and is easier to forecast
performance under the un-conditionalized TC Brier Score past the emergence threshold. This is
consistent with the finding of (Schaeffer et al., 2024b) that the un-conditionalized measure is more
correlated with the training compute than conditionalized ones. However, Fig. A12 shows that the
un-conditionalized TC Brier Score is not as closely related to accuracy as the normal TC Brier Score
for the arithmetic and especially the Persian-QA dataset. Table A2 corroborates this assertion by
showing the correlation coefficient between accuracy and the normal/un-conditionalized TC Brier
Score.

Table A2: Comparison of correlation coefficients between accuracy and TC Brier Score with and
without conditionality on the MMLU, arithmetic, and Persian-QA datasets. “P.”, “S.”, and “K.” stands
for Pearson, Spearman, and Kendall, respectively. The TC Brier Score with conditionality, i.e., the
one we adopt in the main paper, has a consistently stronger correlation with accuracy.

MMLU ARITHMETIC PERSIAN-QA

CORRELATION COEFFICIENT P. S. K. P. S. K. P. S. K.

UN-CONDITIONALIZED TC BRIER SCORE 0.96 0.87 0.73 0.93 0.93 0.79 0.60 0.52 0.37
TC BRIER SCORE 0.99 0.91 0.79 1.00 0.97 0.88 0.88 0.68 0.52
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Figure A13: The U-shaped and inverted-U scaling with questions grouped and performances measured
by the un-conditionalized TC Brier Score on the MMLU, arithmetic, and Persian-QA daatasets.

Fig. A13 shows the scaling trend by difficulty level for the un-conditionalized TC Brier Score. For
the arithmetic and Persian-QA datasets, we no longer see inverse scaling on any intervals of log
compute M . In fact, for both the arithmetic and the Persian-QA datasets, performance hovers around
−1 on the hardest group, corresponding to the near-zero predicted probability of the correct class. For
hard questions, the model’s predicted probability on all classes is close to zero. Therefore, without
conditionalizing on all classes, we cannot differentiate between an initial random guess and the
distracted phase at larger model log computes where the model places a higher probability on an
available incorrect class relative to the correct class, which yields the U-shaped scaling of normal TC
Brier Score as discussed in the main paper.
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C SCALING TREND BY QUESTION DIFFICULTY LEVEL FOR OTHER
EMERGENT TASKS

This section demonstrates U-shaped and inverted-U scaling on three more tasks with emergent
abilities, besides the MMLU, arithmetic, and Persian-QA datasets in the main paper. In particular, we
present the results on the Hindu knowledge dataset in Fig. A14, conceptual combinations dataset in
Fig. A15, and analogical similarity dataset in Fig. A17. These datasets are all in BIG-bench (Srivastava
et al., 2023).

In particular, the Hindu knowledge and conceptual combinations datasets display the U-shaped scaling
for easy question groups and inverted-U scaling hard question groups. The analogical similarity
dataset also shows U-shaped scaling, albeit very mild, for hard question groups, and inverted-U
scaling for easy question groups. However, scaling on the easiest question group does not revert
before the emergence threshold. Scaling on the second easiest and the third easiest group reverts
from inverse scaling to standard scaling way before the emergence threshold. The overall scaling
trend for accuracy (see Fig. A17a) actually declines slightly with scale. However, Fig. A16 shows
that, though a bit overestimated, we can still predict the forthcoming of emergent abilities using
Slice-and-Sandwich, whereas the Sigmoid-based regression yields a flat line.
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Figure A14: The accuracy, TC Brier Score, U-Shaped and inverted-U scaling on the Hindu knowledge
dataset in BIG-bench (Srivastava et al., 2023).
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(b) TC Brier Score vs. log compute (M).
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Figure A15: The accuracy, TC Brier Score, U-Shaped and inverted-U scaling on the conceptual
combinations dataset in BIG-bench (Srivastava et al., 2023).
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Figure A16: The accuracy-based scaling law on the analogical similarity dataset in BIG-bench (Sri-
vastava et al., 2023).
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Figure A17: The accuracy, TC Brier Score, U-Shaped and inverted-U scaling on the analogical
similarity dataset in BIG-bench (Srivastava et al., 2023).
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D SCALING TREND BY QUESTION DIFFICULTY LEVEL FOR NON-EMERGENT
TASKS

We apply the same procedure as in Sec. 2 to several multiple-choice tasks without emergent abilities,
i.e., tasks for which performance improves consistently with scale. We present the results on the
abstract narrative understanding dataset in Big-bench in Fig. A18, ARC dataset (Clark et al., 2018)
in Fig. A19, and HellaSwag dataset (Zellers et al., 2019) in Fig. A20. Interestingly, we do not
observe the U-shaped and inverted-U scaling as in the MMLU, arithmetic, and Persian-QA datasets.
Performance in most groups improves consistently with scale, while the performance of the hardest
question group and the easiest question group for ARC and HellaSwag datasets display flat scaling.
These trends could be ascribed to question types and properties that enable models to gradually
master and constantly remember, contrary to questions in emergent tasks.
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Figure A18: The accuracy, TC Brier Score, and scaling trend on the abstract narrative understanding
dataset in BIG-bench (Srivastava et al., 2023).
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Figure A19: The accuracy, TC Brier Score, and scaling trend on the ARC dataset (Clark et al., 2018).
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(c) Scaling trend.

Figure A20: The accuracy, TC Brier Score, and scaling trend on the HellaSwag dataset (Zellers et al.,
2019).
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Figure A21: The U-shaped and inverted-U scaling of accuracy with group number G = 10.

E SCALING TREND BY QUESTION DIFFICULTY LEVEL ON ACCURACY

We apply the same procedure as in Sec. 2 with accuracy as the performance measure instead of
the TC Brier Score. Specifically, we calculate question difficulty level using average accuracy over
models before the emergence threshold and plot the scaling trend on accuracy for each difficulty
group, as shown in Fig. A21. We still observe clear inverted-U scaling for the easiest question group
followed by steady improvement after the emergence threshold. However, U-shaped scaling for
the hard question groups becomes unclear. Specifically, the accuracy performance of hard question
groups tends to stagnate after the initial performance drop. For instance, all three datasets’ hardest
hard question groups consistently stuck at near-zero accuracy, lower than the random guess. The
worse-than-random performance can be explained by distracting questions, as discussed in Sec. 3.2.
On the other hand, the mitigated U-shaped scaling might be due to the fact that accuracy does not
directly capture the target class’ confidence values. In other words, the accuracy-based procedure
cannot demonstrate the models’ learning process of first being distracted by questions and gradually
overcoming the distraction, where the models’ accuracies are all around zero.
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Figure A22: Data and polynomial fit of different degrees for easy and hard groups.

F MORE DISCUSSIONS ON SLICE-AND-SANDWICH

F.1 ROBUSTNESS ANALYSIS

We present the robustness analysis of Slice-and-Sandwich regarding (1) the choice of order, (2) lower
model log compute cutoff for the training set, and (3) group number G.

F.1.1 EFFECT OF POLYNOMIAL DEGREE

Fig. A22 shows the polynomial fit of TC Brier Score for the easy group with degree=3, 5, and
7, and for the hard group with degree=2, 4, and 6. Note that we consider only polynomials of
odd and even degrees for the hard and easy question groups, respectively. This prior knowledge
reflects the observation that performance of the easy question group initially improves with scale,
the performance of the hard question group initially declines with scale, whereas the performance of
both groups increases with scale past the emergence threshold. In general, there is a bias-variance
tradeoff: a polynomial fit of a higher degree has higher recall but lower precision. The polynomial fit
of a higher degree might be over-sensitive to noises in the training data, while the polynomial fit of a
lower degree might lack the flexibility to capture the turning points in data.

In Fig. A22, we find that the polynomial fit of degree 3 and 5 forecast the scaling trend of the
easy question group well except polynomial fit of degree 3 for the Persian-QA dataset, while the
polynomial fit of degree 2 forecasts the scaling trend of the hard question group well. On the other
hand, polynomial fit of higher degrees, in particular, degree 7 for the easy question group and degrees
4 and 6 for the hard question group, do not forecast the scaling trend well. We leave it for future
work to explore better functional forms to model U-shaped scaling for the hard group and inverted-U
scaling with steady improvement (deep double descent) for the easy group.

F.1.2 EFFECT OF LOG COMPUTE THRESHOLD FOR TRAIN-TEST SPLIT

Fig. A23 shows the fitted scaling trend using different train-test splitting thresholds. For the hard
question group, we use a polynomial fit of degree 2. For the easy question group, the polynomial fit
of degree 3 is represented by a black solid line, and the polynomial fit of degree 5 is represented by a
black dashed line.

The forecast is reasonably robust to the train-test split. All capture the trend and display a similar
shape to our original choice of train-test split threshold except for the case where threshold= 1.3 and
degree= 5 for the MMLU dataset. The polynomial fit of degree 3 for Persian QA is too flat compared
to data for all three thresholds and gets flatter as the threshold goes down. We leave it to future work
to provide better guidelines as to the least upper bound of training data model log compute that still
allows us to confidently predict the onset of emergent abilities.

F.1.3 EFFECT OF GROUP NUMBER

Fig. A24 shows the fitted scaling trends when splitting questions into different numbers of groups.
We show group number G = 3, 5, and 7. Following the same procedure and degree parameter in the
main paper, easier question groups, such as the groups of difficulty level 1 to 3 for G = 7, are fitted
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(a) MMLU. Train-test split threshold being 1.5, 1.3, and 1.1.
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(b) Arithmetic. Train-test split threshold being 1.8, 1.6, and 1.4.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

0.25

0.30

0.35

0.40

0.45

0.50

ac
cu

ra
cy

training split
testing split
ours, order=3
ours, order=5
baseline

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

ac
cu

ra
cy

training split
testing split
ours, order=3
ours, order=5
baseline

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

ac
cu

ra
cy

training split
testing split
ours, order=3
ours, order=5
baseline

(c) Persian-QA. Train-test split threshold being 2.3, 2.1, and 1.9.

Figure A23: Slice-and-Sandwich’s results of accuracy-based scaling law under different train-test
split thresholds. Solid lines are when order=3 is used for easy question fitting, and dashed lines are
when order=5 is used.

by polynomial regression of degree=5 due to observed inverted-U scaling; harder question groups are
fitted by degree=2 due to U-shaped scaling. Then Eq. 6 is modified to take the average of Brier-based
fitting trends of all but the medium group and project the acquired Brier-based scaling law to the
accuracy-based one. Slice-and-Sandwich shows its robustness under G. The robustness comes from
similar fitting results among the same scaling types, such as inverted-U scaling, resulting in a similar
final scaling law after taking their averages.

F.2 HARD LIFT - A SIMPLE ALTERNATIVE PIPELINE

As an alternative to Slice-and-Sandwich, we provide an even simpler pipeline called Hard-Lift.
Specifically, we take the polynomial fit of degree 2 on TC Brier Score for the hard question group
from Slice-and-Sandwich and lift it by a constant so the fitted TC Brier Score at the training set model
log compute upper bound is equal to the true average. We use this to forecast the TC Brier Score
of models past the emergence threshold. We then transform this predicted TC Brier Score back to
predicted accuracy via the G(·) function as in Slice-and-Sandwich.

Fig. A25 shows the results of Hard-Lift under different log compute thresholds for train-test split as
in Sec. F.1.2. Hard-Lift performs better than the baseline for MMLU (Fig. A25a) and Persian-QA
(Fig. A25c) datasets, but worse than baseline for the arithmetic dataset. We believe this result
reinforces our claim that analyzing difficulty-stratified scaling trends enables more explainable
prediction of emergent abilities.
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(a) MMLU with group number G being 3, 5, and 7.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

training split
testing split
ours
baseline

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

training split
testing split
ours
baseline

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

training split
testing split
ours
baseline

(b) Arithmetic with group number G being 3, 5, and 7.
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(c) Persian-QA with group number G being 3, 5, and 7.

Figure A24: Slice-and-Sandwich’s results of accuracy-based scaling law under different group
numbers G.
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(a) MMLU. Train-test split threshold being 1.5, 1.3, and 1.1.
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(b) Arithmetic. Train-test split threshold being 1.8, 1.6, and 1.4.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

0.20

0.25

0.30

0.35

0.40

0.45

ac
cu

ra
cy

training split
testing split
ours
baseline

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

ac
cu

ra
cy

training split
testing split
ours
baseline

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log compute (M)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

ac
cu

ra
cy

training split
testing split
ours
baseline

(c) Persian-QA. Train-test split threshold being 2.3, 2.1, and 1.9.

Figure A25: Hard-Lift’s results of accuracy-based scaling law under different train-test split
thresholds.Hard-Lift uses order=2 for fitting hard question groups.
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(b) Token edit distance vs. log compute (M).
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(c) token edit distance vs. log compute (M) with group
number G = 3.
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(d) Modified cosine similarity vs. log compute (M)
with group number G = 3.

Figure A26: The exact match accuracy, token edit distance (TED), and cosine similarity score vs. log
compute (M) on the word unscramble dataset in BIG-bench (Srivastava et al., 2023).
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(a) Relation between token edit distance and exact
match.
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(b) Relation between modified cosine similarity and
exact match.

Figure A27: Relations between token edit distance/modified cosine similarity and exact match on the
word unscramble dataset in BIG-bench (Srivastava et al., 2023).

G PRELIMINARY ANALYSIS FOR STRING-MATCH TASKS

This section provides the preliminary analysis for the exact string match tasks.

Fig. A26a shows that the word unscramble dataset in BIG-bench (Srivastava et al., 2023) exhibits
emergent abilities under the traditional metric: exact match accuracy. On the other hand, Fig. A26b
shows that model performance measured by token edit distance (TED) as discussed in Schaeffer et al.
(2024a) improves with scale steadily at first and then exhibit flat scaling.
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We argue that TED is not a good measure of progress on a string match task. (1) It does not
differentiate between easy and hard questions well. Fig. A26c shows that performance measured by
TED on all three question groups is close for all model log computes above 0.5. A harder group’s
TED may be higher or lower than an easier group’s. (2) It is not very correlated with exact match, the
traditional metric that people are probably ultimately interested in ( A27a).

One idea is to measure performance by modified cosine similarity (MCS):

MCS =
F (s1) · F (s2)

∥F (s1)∥∥F (s2)∥
· I(s1 ⊆ s2), (8)

where s1 is the model’s output string, s2 is the answer string, F (x) is CLIP (Radford et al., 2021)’s
text encoder to project the string to the vector space, and I(x) is an indicator function having 1 if
every single character of s1 is contained in s2, otherwise 0. MCS takes values in the interval [−1, 1]
and is good at differentiating questions by difficulty levels. Fig. A26d shows that MCS scaling curves
of the easy, medium, and hard question groups are clearly ordered.

Interestingly, performance measured by MCS for all question groups exhibits inverted-U scaling
followed by steady improvement. The only differences are the model log compute at which scaling
reverts from inverse scaling to standard scaling and also how fast performance goes up/down.
However, Fig. A27b shows that MCS is also poorly correlated with the exact match. Even if we can
precisely predict the MCS of models above the emergence threshold, conversion back to exact match
accuracy will be too noisy to be useful. We hope this section illustrates potential avenues for future
work.

H BROADER IMPACT

H.1 POTENTIAL POSITIVE IMPACTS

This work identifies U-shaped and inverted-U Scaling of LLM performance once we group questions
by difficulty level. We believe this observation can provide the AI community with a deeper
understanding of emergent abilities. We also present a forecasting pipeline utilizing the above
observation to detect the forthcoming performance soar, the ability of which we believe is crucial in
preventing deployment in offensive applications.

H.2 POTENTIAL NEGATIVE IMPACTS

Given the limitations discussed in Sec. 6, we do not suggest predicting the forthcoming emergent
abilities based on merely one of the methods we discuss. Multiple techniques should be used in
parallel to prevent possible false positives or false negatives.
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