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Abstract

Learning locomotion skills on dynamic terrains allows creating realistic animations
without recording motion capture data. The simulated character is trained to
navigate varying terrains avoiding obstacles with balance and agility. Model-
free reinforcement learning has been used to develop such skills for simulated
characters. In particular, a mixture of actor-critic experts (MACE) was recently
shown to enable learning of such complex skills by promoting specialization and
incorporating human knowledge. However, this approach still requires access to a
very large number of training interactions and explorations with a computationally
expensive simulator. We demonstrate how to accelerate model-free reinforcement
learning to acquire terrain-adaptive locomotion skills, as well as decrease the
need for large-scale exploration. We first generalize model-based value expansion
(MVE) to a mixture of actor-critic experts, showing the conditions under which the
method accelerates learning in this generalized setting. This motivates combining
MACE with MVE resulting in the MACE-MVE algorithm. We then propose
learning to predict future terrains, character states, rewards, and the probability of
falling down via convolutional networks to speed-up learning using generalized
MVE. We analyze our approach empirically showing that it can substantially speed-
up learning of such challenging skills. Finally, we study the effect of various design
choices to control for uncertainty and manage dynamics fidelity.

1 Introduction

Agile legged locomotion and its adaptation to varying terrains require dynamically responding to
foot-contact transitions under uncertainty due to variable terrain and sensorimotor errors. In nature,
animals precisely control their limbs to move on dynamic terrains while avoiding collisions and falls.
In computer animation, such movement is typically created by a domain expert, or using motion
capture data [24]. In recent years, model-free deep reinforcement learning combined with access to a
simulator has provided a simple approach to learn novel skills on new types of terrains [21, 22, 19, 2].
In this case, we formulate the problem as a sequential decision making process, where an agent
takes an action given a current state, and observes a new state and a reward as a result. The agent
learns a policy, typically represented as a deep neural network, that maximizes the expected sum
of discounted rewards received. This allows learning a control policy that operates directly on the
high-dimensional character, action and terrain representations, without the need for hand-crafting
features, or relying on domain knowledge.

Despite its appealing advantages, the sample complexity of such model-free learning of terrain-
adaptive locomotion skills tends to be large, particularly due to the high dimensional states, as well
as the rich function approximators that are much needed to process them; see [25]. Furthermore,
high-fidelity physics simulation required to collect data can be very expensive [21]. Thus, learning
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typically requires a very large number of interactions with a computationally intensive simulator
to explore and acquire new locomotion skills. To improve the sample complexity and reduce the
exploration needed, one direct approach is to design sparse character and terrain descriptors which can
make learning more efficient. This, however, requires domain knowledge and provides no guarantee
that the designed representations will not lose critical information.

A mixture of actor-critic experts (MACE) significantly improves learning of terrain-adaptive lo-
comotion skills compared to other model-free reinforcement learning algorithms [21], without
hand-crafting sparse representations, as it promotes specialization and makes learning easier for this
class of challenging problems. Namely, MACE develops a set of individual control actors, with their
associated value functions. Each actor specializes in a particular regime of the overall motion using
an actor bias. After learning is done, the actor associated with the highest value function gets to
execute its action. Despite its appealing advantages, the sample complexity of MACE remains to be
large.

One way to improve the sample complexity is through learning a dynamics model that provides
imagined data to model-free value estimation algorithms [28]. In particular, model-based value
expansion (MVE) [7] is a recently proposed technique used to improve the quality of state-action
value functions by providing more reliable target values to learn from. MVE was originally proposed
for a single actor-critic and was shown to improve the sample complexity. However, it is not obvious
if the theoretical guarantees and practical performance hold with the general case where a mixture of
actor-critic experts is used, as in MACE. This calls for a generalization of MVE for the case where an
actor is selected at each time step if its corresponding critic gives the maximum value.

In this paper, we generalize MVE to a mixture of actor-critic experts, showing that similar error
bounds still hold in the general case. In addition, we demonstrate the conditions under which the
method accelerates learning in this generalized setting. Motivated by the theoretical results, we
combine MACE with MVE resulting in the MACE-MVE algorithm. We then propose a system
that accelerates model-free deep reinforcement learning of terrain-adaptive locomotion skills using
MACE-MVE, by learning to imagine future experiences that are utilized to speed up training. In
particular, we propose to learn prediction models represented as deep convolutional networks [14]
to imagine future experiences without relying on the simulator. We design the prediction models to
imagine future states observed by applying actions to current states, as well as future rewards, and
the probability of falling down that stops the simulation. We use the imagined states and rewards to
improve the quality of the multiple state-action value functions used by the mixture of actor-critic
experts via generalized MVE.

In addition, we demonstrate empirically that MACE-MVE substantially decreases the sample com-
plexity, accelerating MACE by 19% to 43% on different terrains and characters, and decreases the
need for large-scale exploration. This leads to acquiring better terrain-adaptive locomotion skills
significantly faster than MACE. Our trained simulated characters demonstrate impressive agility
and is capable of traveling for longer distances on very challenging and dynamic terrains compared
to previous work. Furthermore, we conduct an ablation study for various hyper parameters and
design choices. In particular, we show the importance of utilizing shorter imagination horizons that
better control for uncertainty, and smaller replay buffers that create more local models. We also
report that the best results are gotten when MVE is disabled after a certain number of iterations, at
which dynamics fidelity becomes more crucial during later learning stages. Moreover, we experiment
with utilizing the imaginary tuples for actor updates, in addition to critic updates. We show that the
imaginary tuples are better used for critic updates only. Finally, in the supplementary material, we
provide a video illustrating the skill acquisition progression, and the final trained policies using the
proposed approach, successfully navigating challenging environments with walls, steps, gaps and
slopes.

2 RELATED WORK

Most of the approaches developing motion from first principles have been focused on locomotion
of various characters on flat terrain, e.g. [10, 26, 4, 15, 13, 6]. These methods typically rely on
model-free approaches where a controller is designed and some of its parameters are optimized. We
will build on previous work where the action parameters are predesigned but the controller is learned.
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When the system dynamics are not known, policy gradient methods [23] and value function learning
with function approximation are typically used [27]. Off-policy algorithms tend to achieve better
sample complexity [18].

In [21], deep reinforcement learning was used to learn how to move a character with agility on
varying terrains. Multiple tricks were used to stabilize and accelerate learning. An initial set of good
actions were hard-coded to bootstrap learning by initializing the replay buffers. In addition, a mixture
of actor-critic experts was utilized, each of which is encouraged to specialize in an action: running,
slowing, and jumping, through an actor bias added to each actor output. We found these tricks to be
effective, but the number of interactions with the simulator required to learn useful policies is still
substantially large.

To accelerate learning, guided policy search has been used for bipedal walking for planar characters;
e.g. [17, 16], which use trajectory optimization in a contact-invariant fashion. Model-based tech-
niques [1, 12, 5] exhibit efficient learning but their asymptotic performance on complex tasks typically
lag behind model-free methods, except with a careful control of uncertainty [3]. Model-free tech-
niques, however, can learn challenging skills, but require a much larger number of interactions with
the simualtor. In this paper, we seek to reduce the sample complexity of model-free reinforcement
learning of locomotion skills on varying terrains.

Prior work has incorporated dynamics models into model-free reinforcement learning. In [9], a model
is used to improve credit assignment from real trajectories. The idea of providing imagined data
to model-free value estimation algorithms can be rooted back to [28]. Follow-up ideas have been
proposed such as [8] where additional training data were used for a parameterized value network.
In [11], imaginary rollouts were used with an inaccurate model, and a notion of uncertainty was
introduced, to make use of artificial data only in cases of high uncertainty.

Model-based value expansion (MVE) [7] controls for uncertainty by only allowing imagination to a
fixed depth. This improves value estimation which reduces the sample complexity needed to learn.
However, MVE was originally proposed for a single actor-critic. In this paper, we generalize the
theoretical analysis to a mixture of actor-critic experts to motivate equipping MACE with MVE. One
key insight of our work is that for learning terrain-adaptive locomotion skills using a mixture of
actor-critic experts, the bottleneck lies in learning high quality Q-values, which we tackle by training
prediction models that are used to improve the quality of the Q-values while learning.

3 APPROACH

In reinforcement learning, the goal is to learn a policy π(s) that maps a state s ∈ S to an action
a ∈ A. At each time step t ∈ [0, T ], the agent executes an action at = π(st) in the environment
and experience a new state st+1 and a reward r(st, at, st+1). The goal is to learn a policy that
maximizes the expected sum of discounted future rewards from a random initial state S0: V(s0) =
r0+γr1+ · · ·+γT rT where ri = r(si, ai, si+1) and γ < 1 to ensure the sum of discounted rewards
is bounded for cases where T → ∞. We rewrite as: V(s0) = r0 + γ

∑T
i=1 γ

i−1ri = r0 + γV(s1).
The expected discounted return V can be optimized using different reinforcement learning algorithms.
To learn locomotion skills of characters with varying terrains, deep reinforcement learning has been
used to process raw high-dimensional states.

3.1 MACE

We first review the MACE [21] approach which we build upon in our work. MACE uses a mixture of
actor-critic experts that exhibit specialization. Each actor proposes an action represented as a vector
of continuous values, whereas its corresponding critic evaluates the value of executing such action
from the current state, which is called the Q-value. After the policy is learned, the actor associated
with the highest Q-value executes its action.

During training, each transition is stored as a tuple (si, ai, ri, si+1, µi), where µi indicates the index
of the active actor. A tuple is stored in one of two replay buffers used for learning the actors and critics,
respectively. In particular, tuples with added exploration noise are used to train the actors, whereas
the remaining tuples train the critics. During a critic update, a mini batch is sampled to perform a
Bellman backup, by computing targets: yi = ri+γmaxµQµ(si+1|θ), whereQµ(s|θ) is theQ-value
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Figure 1: The model architecture used to predict a future quantity (e.g. next state as shown in the
figure, reward, probability of falling), given a state represented by the terrain T , the character state
C, and the action A. We use conv and fc to describe a convolutional and a fully connected layer,
respectively. The same architecture is repeated to predict each quantity, with the output layers and
loss functions being different. For the networks predicting future states and rewards, we use the mean
squared error (MSE) as the loss function. For the network predicting the probability of falling, we use
a sigmoid cross-entropy loss. The usage of different networks allows each to specialize on its task.

predicted by the critic corresponding to executing the action from Actor Aµ. After that, the targets

yi are used to update the network parameters θ: θ ← θ + α
(

1
n

∑
i(yi −Qµi(si|θ))

∂Qµi (si|θ)
∂θ

)
.

The actors are also updated by sampling a mini batch of tuples and using a CACLA-style [29]
update, by first computing: δj = yj −maxµQµ(sj |θ) where yj is computed using an exploratory
action aj . If δj > 0, which indicates a room for improving the actor, an update is performed:

θ ← θ + α
(

1
n (aj −Aµj (sj |θ))

∂Aµj (sj |θ)
∂θ

)
.

3.2 Accelerating MACE

To improve the sample efficiency of MACE, we propose training three separate convolutional neural
networks. The first one takes the current state as an input which includes the current terrain description
within a certain distance from the agent and the character state, and outputs the next terrain and
character state, given an action A. The second and the third networks take the same input and have
similar architectures, but output a prediction for the reward and the probability of falling, respectively.

Figure 1 shows the model architecture when used to predict the next terrain and character state. For
each neural network, we used a sequence of convolutional layers and a fully connected layer to
process the current train, which outputs a terrain embedding. The character state, action, and terrain
embedding are then concatenated before being processed by fully connected layers. We used the
mean squared error loss to learn future states and rewards, and the sigmoid cross-entropy loss to learn
the probability of falling down. Furthermore, we train the models simultaneously, with the deep RL
MACE iterations, and use them to speed-up the learning of the Q-values, using a technique known
as model-based value expansion [7]. In particular, when we perform the bellman backup, we do:
yi = ri +

∑H−1
t=1 γtr̂i+t + γH maxµQµ(ŝi+H |θ), where r̂i+1 . . . r̂i+H−1 and ŝi+H are gotten by

applying the prediction models via the current policy, to predict the next states and rewards. If the
character is predicted to fall, we assume no future states are visited in this episode. The length of the
expansion H reflects the confidence in the model, and allows us to limit the noise added to targets yi
due to prediction errors. In our experiments, we found that a length H ≤ 3 to be effective for this
application.

Algorithm 1 describes the MACE-MVE training procedure. Similar to [21], we use separate replay
buffers to train actors and critics, which are initialized using a random policy. The prediction models
are utilized to train the critics, and are being updated with each reinforcement learning iteration.
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Algorithm 1 MACE-MVE
θ ← random weights
Initialize Dc and Da with tuples from a random policy.
while not done do

for step = 1, . . . ,m do
Using the simulator, add a tuple to one of the replay buffers as in MACE.

Update Critics:
Sample minibatch of tuples τi = (si, ai, ri, si+1, µi) from Dc

Apply the prediction models k times
yi ← ri +

∑H−1
t=1 γtr̂i+t + γH maxµQµ(ŝi+H |θ)

θ ← θ + α
(

1
n

∑
i(yi −Qµi(si|θ))

∂Qµi (si|θ)
∂θ

)
Update Actors:
Sample minibatch of tuples τj = (sj , aj , rj , sj+1, µj) from Da

for each τj do
yj ← rj + γmaxµQµ(sj+1|θ) δj ← yj −maxµQµ(sj |θ)
if δj > 0 then

θ ← θ + α
(

1
n (aj −Aµj (sj |θ))

∂Aµj (sj |θ)
∂θ

)
Update Predictors:
for step = 1, . . . , s do

Sample a mini batch of tuples from Da and Dc

Train the prediction networks via the batches.

3.3 MACE-MVE Analysis

We generalize the analysis in [7] to the case where the Q-values are gotten as a maximization of
an ensemble of critics. In particular, we describe the conditions under which the MACE-MVE
estimates are better than the vanilla MACE version, with respect to the mean squared error, defined
as: MSEν(maxµQµ) = ES∼ν

[
(maxµQµ(S)−maxµQµπ(S))2

]
, where ν is the distribution of

states in the environment, and maxµQµπ(S) is the maximization of the ensemble of critics under
the current policy π.

To simplify the notation, let: maxµQµ(S) = T (S). We first assume that the dynamics, reward, and
falling models are perfect. Consider T̂ H(s0) to be the estimate while using MVE for a horizon H ,
we then have: T̂ H(s0)− T π(s0) = γH

(
T̂ (sH)− T π(sH)

)
. As the dynamics model is assumed

to be perfect, the rewards up to H cancel out, resulting in an MSE for MACE-MVE equivalent to:
MSEν(T̂ H) = γ2H MSE(fπ)Hν(T̂ ) , where (fπ)Hν denotes the state visitation distribution after
the forward dynamics model is used H times starting from random states.

We now show that a similar condition holds in the case where the prediction models are not perfect.
In particular, we generalize the model-based value expansion error theorem [7] to the ensemble of
critics case to apply it to MACE.

Theorem 3.1 (MACE Model-Based Expansion Error) Let st, at, rt be the states, actions, and
rewards gotten by rolling out π under the true system, whereas ŝt, ât, r̂t be those gotten from the
learned prediction models. The reward function r be Lr-Lipschitz and the value function Qπ be
LQ-Lipschitz. If the learned dynamics model error is bounded: maxt∈[H] E

[
‖ŝt − st‖2

]
≤ ε2,

and the dynamics model error is less than that of the ensemble of critics up to a constant α:

ε < α

√
E(T̂ (ŝH)− T π(ŝH))2. We then have: MSEν(T̂ H) ≤ k21ε

2 + γHk2 MSE(f̂π)Hν(T̂ )
where k21 = c21 + 2γHc1LQ + γ2HLQ

2 and k2 = 2αc1
√
(1 + c) + γH(1 + c).

Proof: We generalize the model-based value expansion proof [7] to the case where an ensemble of
critics is used. We first have: T̂ H(s0) =

∑H−1
t=0 γtr̂t + γH T̂ (ŝH)
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Thus, (T̂ H(s0) − T π(s0))2 can be rewritten as:
((
M̂ −M

)
− γH

(
T̂ (ŝH)− T π(sH)

))2
where M̂ =

∑H−1
t=0 γtr̂t and M =

∑H−1
t=0 γtrt. Using Cauchy-Schwarz inequality, we have:

MSE
ν

(T̂ H) ≤ E(M̂ −M)2

+ 2γH
√
E(M̂ −M)2 E(T̂ (ŝH)− T π(sH))2

+ γ2H E(T̂ (ŝH)− T π(sH))2

Furthermore, using Hölder’s inequality, where i, j are each over [H] − 1: E(M̂ − M)2 ≤∑
i,j γ

(i+j)

√
E (r̂i − ri)2 E (r̂j − rj)2. In addition, assuming: ‖r̂i − ri‖ ≤ Lr ‖ŝi − si‖, we

then have: E (r̂i − ri)2 ≤ L2
r E ‖ŝi − si‖

2 which gives: E (r̂i − ri)2 ≤ L2
rε

2. Thus, we have
E(M̂ −M)2 ≤ c21ε2 where c1 is linear in Lr.

Note that:
∑
i,j γ

(i+j) = (1 − γ)−2 for γ < 1. Furthermore: T̂ (ŝH) − T π(sH) = (T̂ (ŝH) −
T π(ŝH))− (T π(sH)− T π(ŝH)). Similar to [7], using Cauchy-Schwarz:

E(T̂ (ŝH)− T π(sH))2

≤ E(T̂ (ŝH)− T π(ŝH))2

+ 2

√
E(T̂ (ŝH)− T π(ŝH))2 E(T π(ŝH)− T π(sH))2

+ E(T π(ŝH)− T π(sH))2.

In addition, we have: E(T̂ (ŝH)−T π(ŝH))2 = MSE(f̂π)Hν(T̂ ). Recall that: T (S) = maxµQµ(S).
We use the property that the maximum of Lipschitz functions is Lipschitz, to generalize to the
maximum of critics case: E(T π(ŝH)− T π(sH))2 ≤ L2

Qε
2

We then have: E(T̂ (ŝH)− T π(sH))2 ≤ MSE(f̂π)Hν(T̂ ) + 2LQε
√
MSE(f̂π)Hν(T̂ ) + L2

Qε
2

and since: ε < α

√
E(T̂ (ŝH)− T π(ŝH))2, we have:

E(T̂ (ŝH)− T π(sH))2 ≤ MSE(f̂π)Hν(T̂ ) + 2LQαMSE(f̂π)Hν(T̂ ) + L2
Qε

2.

E(T̂ (ŝH)− T π(sH))2 ≤ (1 + c)MSE(f̂π)Hν(T̂ ) + L2
Qε

2 where c = 2LQα.

In addition:

2γH
√

E(M̂ −M)2 E(T̂ (ŝH)− T π(sH))2 ≤ 2γHc1ε

√
E(T̂ (ŝH)− T π(sH))2

2γH
√
E(M̂ −M)2 E(T̂ (ŝH)− T π(sH))2 ≤ 2γHc1ε

(√
(1 + c)MSE(f̂π)Hν(T̂ ) +

√
L2
Qε

2
)

2γH
√

E(M̂ −M)2 E(T̂ (ŝH)− T π(sH))2 ≤ 2γH
(
αc1
√
(1 + c)MSE(f̂π)Hν(T̂ ) + c1LQε

2
)

MSE
ν

(T̂ H) ≤ c21ε2 + 2γH

(
αc1
√

(1 + c) MSE
(f̂π)Hν

(T̂ ) + c1LQε
2

)

+ γ2H

(
(1 + c) MSE

(f̂π)Hν
(T̂ ) + L2

Qε
2

)

MSEν(T̂ H) ≤ k21ε2 + γHk2 MSE(f̂π)Hν(T̂ )

where k21 = c21 + 2γHc1LQ + γ2HLQ
2 and k2 = 2αc1

√
(1 + c) + γH(1 + c)
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Figure 2: A comparison showing the performance of different approaches with the number of learning
iterations, which is measured as distance traveled by the character using the learned policies over 100
runs. Two characters are used: Dog and Raptor, and environments are randomly generated from three
environment types: Narrow Gaps, Slopes Mixed, and Mixed.

4 EXPERIMENTAL RESULTS

In this section, we test the benefit of the proposed approach (MACE-MVE) in accelerating the
acquisition of terrain-adaptive locomotion skills. In particular, we test the following hypotheses:
1) MACE-MVE results in learned policies that can travel for longer distances than MACE, when
run for the same number of iterations. 2) MACE-MVE would require less exploration than MACE,
as the prediction models can help imagine unexplored states. Less exploration can take the form
of decreasing the need for bootstrapping large replay buffers with tuples from a random policy, as
well as decreasing the need for exploration while learning. Furthermore, we study the effect of
different hyper parameters on MACE-MVE, such as: 1) imagination horizon, 2) replay buffer size, 3)
activating MVE for a variable number of iterations, and 4) using imaginary tuples for actor updates;
and show some qualitative results.

Experimental Setup: as in [21], we use 3 actor-critic experts for all policies. Separate policies are
learned for each combination of character and terrain type. To evaluate the performance of a policy,
we measure the distance traveled by the character averaged over 100 random runs. Given the terrain
type, the actual terrain in each run is randomly generated based on predefined parameters, same as
in [21]. We use the MACE implementation, which is available at [20], and modify it to implement
the proposed approach. We compare MACE [21] against MACE-MVE, which combines the MACE
approach with model-based value expansion to speed-up the learning of the Q-values. Namely,
MACE-MVE can be viewed as an accelerated version of MACE, which relies on the prediction
networks shown in Figure 1 to speed-up learning. The prediction models are trained simultaneously
with the MACE reinforcement learning iterations.

We simulate two characters: Dog and Raptor, and generate random environments from three types
of terrains: Narrow Gaps, Mixed and Slopes Mixed. The Narrow Gaps terrain contains frequent
gaps. The Mixed terrain contains walls, steps, and gaps, whereas the Slopes Mixed terrain contains
slopes in addition; see Figure 4 for examples of these terrains. A character can see 10 meters ahead,
and, therefore, gets to perceive an environment gradually as they traverse which requires agility to
surprises, such as walls or gaps. We emphasize that while the steps, walls and gaps are randomly
placed, there is a value from learning to predict future terrains, as a small portion of the obstacle in
sight could be used to infer the entire obstacle. To be able to learn such skills, reinforcement learning
algorithms typically require a very large number of interactions with the environment. We run both
approaches for 300k iterations on an AMD Ryzen 9 3900X (24 threads on 12 cores). For MVE, we
used H = 3, batch size of 32, and a dynamics replay buffer of 10k.

Accelerating MACE: we found that MACE-MVE decreases the sample complexity required to
achieve a certain character performance, characterized by traveled distance, accelerating MACE by
19% to 43% on different terrains and characters. As a result, after a certain number of iterations,
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Figure 3: The average distance traveled by the dog on a mixed terrain while varying different design
choices: a) various rollout steps (H). b) different replay buffer sizes used to learn the dynamics model
(RBS). c) various number of iterations where MVE is enabled, i.e. iterations where model-based
updates take place (MBU). d) different methods for utilizing the dynamics models. In all studies,
each point is an average over 100 runs.

the character trained with MACE-MVE typically travels for longer distances than that trained with
MACE, as shown in Figure 2. This agrees with the hypothesis that the prediction models help speed
up learning by improving the quality of theQ-values. In addition, for MACE-MVE, we initialized the
actor and critic replay buffers with just 1k tuples, as opposed to 50k which was required by MACE
to bootstrap training. Furthermore, in MACE, the parameters used to control exploration had to be
linearly annealed over 50k iterations to enable learning. In MACE-MVE, we managed to do the
same annealing at a much faster rate over 2k iterations. We otherwise used the same MACE hyper
parameters of [21]. This shows that MACE-MVE requires much less exploration than MACE, and
still gets better policies. Finally, we disable the MVE updates after 2k iterations, which we discuss in
the ablation study.

Execution Time: The execution time of an iteration is dominated by the expensive simulator, and
therefore learning in fewer iterations automatically translates into a similar reduction in wall time.
Moreover, the prediction neural networks described in Figure 1 are essentially modest in size, and run
very efficiently on a GPU. We therefore report the distance traveled by the character using the learned
policies with respect to iterations, rather than time. The wall time for MACE was in the order of days
which is problematic and expensive, given the large number of hyper parameters to experiment with.

Imagination Horizon: To study the effect of the imagination horizon used, we experimented with
MACE-MVE to train the dog on the mixed terrain while varying the imagination horizon used. We
found that shorter horizons H ′ ≤ 4 lead to faster learning, where H ′ is the imagination horizon used
by MVE: H ′ = H − 1. On the other hand, a larger H ′ ≥ 8 degrades performance after learning for a
large number of iterations, when model fidelity becomes crucial. This shows the necessity to control
for the uncertainty through shorter horizons when MVE is used [7]. In Figure 3a, we show distance
traveled with H ′ set to 2 and 8 only for clarity. H ′ = 1 and 4 showed comparable performance to 2.

Replay Buffer Size: Furthermore, we varied the size of the replay buffer used to learn the dynamics
model. A smaller replay buffer emphasizes the importance of more recent tuples, and therefore
creates a more local model. We found that a large replay buffer of size 5× 104 examples can degrade
performance. This agrees with insights from [8], where local refitted models proved effective in
accelerating learning. Figure 3b illustrates distance traveled while using a replay buffer of size 5×104
and 103. We note that buffer sizes of 5× 103 and 104 showed comparable performance to 103 and
are omitted for clarity.

MVE Lifetime: We experimented with running MVE for a variable number of iterations, and turning
it off after that. We found that enabling MVE for ≥ 54× 103 iterations degrades performance. We
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Figure 4: Qualitative examples of the simulated characters successfully traversing different terrains
with policies trained using MACE-MVE.

hypothesize that the reason could be that as theQ-function becomes more accurate, dynamics fidelity
becomes more crucial during learning, which agrees with insights in [8]. Figure 3c shows distance
traveled with MVE enabled for 2k and 54k iterations. Enabling MVE for 6k and 18k iterations
showed comparable performance to 2k, and are omitted for clarity. Interestingly, the speed-up effect
of MVE appears to last beyond its lifetime, as shown in Figure 2 (i.e. after 2k iterations with MVE
enabled). Namely, MACE-MVE continues to learn faster than MACE even after MVE is disabled.
This underscores the importance of early iterations in the learning procedure.

Imaginary Tuples Usage: Finally, we used the dynamics models to train the actors on imaginary
tuples. We call this approach MA for model-based actor update. In brief, we applied random
perturbations to actions and utilized the prediction models to create imaginary tuples that are added
to the actor replay buffer. We combined MA with MVE resulting in MA-MVE. In all approaches, we
used MACE and equipped it with each of MVE, MA and MA-MVE. We found that MVE by itself
achieves the best results as shown in Figure 3d. This shows that the imagined tuples are best used to
improve the critics rather than the actors.

Qualitative Results: In Figure 4, we show qualitative examples of the simulated characters traversing
challenging terrains, while being controlled with the MACE-MVE policy. We provide a video in the
supplementary material showing the skill acquisition progression, and the final trained policies.

5 CONCLUSIONS

We demonstrated how to accelerate deep RL for acquiring locomotion skills on highly dynamic and
challenging terrains. Our approach relies on learning to predict the future and utilizing imaginary
tuples. To achieve this, we first generalized model-based value expansion (MVE) analysis to
an ensemble of critics, demonstrating that the MVE error bounds still hold in the general case.
Motivated by the theoretical results, we equipped MACE with generalized MVE and investigated
how to accelerate learning of locomotion skills on dynamic terrains. Our system utilizes efficient
convolutional networks and can accelerate learning by 19% to 43% resulting in policies that can
travel for longer distances compared to previous work. Furthermore, we showed that our approach
requires much less exploration. The computational time of an iteration is dominated by the expensive
physics simulator, and therefore decreasing the sample complexity leads to a corresponding decrease
in training time. In addition, we demonstrated the necessity for using shorter imagination horizons
and smaller replay buffers, as well as turning off MVE in later learning stages when dynamics fidelity
becomes crucial. Finally, we reported qualitative results showing the impressive agility of the learned
policies.
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