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ABSTRACT

Adapting pretrained image-based diffusion models to generate temporally con-
sistent videos has become an impactful generative modeling research direction.
Training-free noise-space manipulation has proven to be an effective technique,
where the challenge is to preserve the Gaussian white noise distribution while
adding in temporal consistency. Recently, Chang et al. (2024) formulated this
problem using an integral noise representation with distribution-preserving guar-
antees, and proposed an upsampling-based algorithm to compute it. However,
while their mathematical formulation is advantageous, the algorithm incurs a high
computational cost. Through analyzing the limiting-case behavior of their algo-
rithm as the upsampling resolution goes to infinity, we develop an alternative algo-
rithm that, by gathering increments of multiple Brownian bridges, achieves their
infinite-resolution accuracy while simultaneously reducing the computational cost
by orders of magnitude. We prove and experimentally validate our theoretical
claims, and demonstrate our method’s effectiveness in real-world applications.
We further show that our method readily extends to the 3-dimensional space.

1 INTRODUCTION

The success of diffusion models in image generation and editing (Rombach et al., 2022; Nichol et al.,
2021; Ho et al., 2020; Zhang et al., 2023a) has spurred significant interest in lifting these capacities
to the video domain (Singer et al., 2022; Durrett, 2019; Gupta et al., 2023; Blattmann et al., 2023; Ho
et al., 2022; Guo et al., 2024). While training video diffusion models directly on spatiotemporal data
is a natural idea, practical concerns such as limited availability of large-scale video data and high
computational cost have motivated investigations into training-free alternatives. One such approach
is to use pre-trained image models to directly generate video frames, and utilize techniques such as
cross-frame attention, feature injection and hierarchical sampling to promote temporal consistency
across frames (Ceylan et al., 2023; Zhang et al., 2023b; Khachatryan et al., 2023; Cong et al., 2023).

Among these techniques, the controlled initialization of noise has been consistently shown to be
an important one (Ceylan et al., 2023; Khachatryan et al., 2023; Cai et al., 2024). However, most
existing approaches for noise manipulation either compromise the noise Gaussianity (which intro-
duces a domain gap at inference time), or are restricted to simple manipulations such as filtering
and blending which are insufficient for capturing complex temporal correlations. Recently, Chang
et al. (2024) proposed a method that both preserves Gaussian white noise distribution and captures
temporal correlations via integral noise warping: each warped noise pixel integrates a continuous
noise field over a polygonal deformed pixel region, which is computed by summing subpixels of an
upsampled noise image. However, this method’s theoretical soundness and effectiveness are ensued
by its demanding computational cost in both memory and time, which not only incurs a significant
overhead at inference time but also limits its useability in novel applications (Kwak et al., 2024).

In this paper, we introduce a new noise-warping algorithm that drastically cuts down the cost of
Chang et al. (2024) while fully retaining its virtues. Our key insight for achieving this is that,
when adopting an Eulerian perspective (as opposed to the original Lagrangian one), the limiting-

1



Published as a conference paper at ICLR 2025

Figure 1: When the image grid deforms, the Lagrangian view tracks a deformed pixel region, while
the Eulerian view tracks the undeformed pixel square as it gets partitioned into multiple regions.
On the right, we leverage the exchangeability of upsampled subpixels to convert the Lagrangian
gathering procedure into scattering noise subpixels to overlapped deformed pixel regions.

case algorithm of Chang et al. (2024) for computing a warped noise pixel reduces to summing over
increments from multiple Brownian bridges (Durrett, 2019, Section 8.4). In place of the costly
upsampling procedure, sampling the increments of a Brownian bridge can be done efficiently in an
autoregressive manner (2). We build upon this to devise the infinite-resolution integral noise warping
algorithm (1) which directly resolves noise transport in the continuous space, when given an oracle
that returns the overlapping area between a pixel square and a deformed pixel region (Section 2.2).

We propose two concrete ways to compute this oracle, leading to a grid-based and a particle-based
variant of our method. Similar to Chang et al. (2024), the grid-based variant (Algorithm 2) com-
putes the area by explicitly constructing per-pixel deformed polygons, and is exactly equivalent to
the existing approach (Chang et al., 2024) with an infinite upsampling resolution, while running
8.0× to 19.7× faster and using 9.22× less memory1. Inspired by hybrid Eulerian-Lagrangian fluid
simulation (Brackbill et al., 1988), our novel particle-based variant (Algorithm 3) computes area in
a fuzzy manner, which not only offers a further 5.21× speed-up over our grid-based variant, but
is also agnostic to non-injective maps. In real-world scenarios, the particle-based variant shows no
compromise in generation quality compared to the grid-based one (see video results), while offering
superior robustness, efficiency, simplicity, and extensibility to higher dimensions.

In summary, we propose a new noise-warping method to facilitate video generation by lifting image
diffusion models. Through analyzing the limiting case of the current state-of-the-art method (Chang
et al., 2024) with an infinite upsampling resolution, we derive its continuous-space analogy, which
fully retains its distribution-preserving and temporally coherent properties, while achieving orders-
of-magnitude speed-up, warping 1024×1024 noise images in∼ 0.045s (grid variant) and∼ 0.0086s
(particle variant) using a laptop with an Nvidia RTX 3070 Ti GPU.

2 METHODOLOGY

In this section, we introduce our method as follows:

• We present an equivalent Eulerian interpretation (Figure 1) of the method by Chang et al.
(2024), which was originally described from a Lagrangian viewpoint.

• We show that the limiting algorithm of the Eulerian formulation as the upsampling level
goes to infinity is equivalent to sampling increments of Brownian bridges.

• We present our main algorithm (1) which, given a partition record that returns the over-
lapping area between a pixel square and a deformed pixel region, samples increments of
Brownian bridges and scatters the increments to form the warped noise image.

• We propose two concrete algorithms for computing the overlap areas. The grid-based
Algorithm 2 extends Chang et al. (2024) to infinite resolution without the overhead of
upsampling. The particle-based Algorithm 3 departs from grid-based discretization and
uses particles instead, resulting in a simpler algorithm that is robust to degenerate maps.

1Since the official code of Chang et al. (2024) is not available, performance is compared using our reimple-
mentation in Taichi (Hu et al., 2019), which we find to be faster than as reported in the original paper.
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Given a D ×D prior noise image IW ∈ RD×D2 and a deformation map ψ : [0, 1]2 → [0, 1]2, the
noise-warping algorithm (Chang et al., 2024) computes the warped noise image ĨW ∈ RD×D with
upsampling level N ∈ Z≥1 as follows:

1. For i, j = 1, . . . , D, upsample noise pixel [IW ]i,j to anN×N subimage [ÎW ]i,j ∈ RN×N :

[ÎW ]i,j =
[IW ]i,j
N2

+
1

N

(
Z− S

N2

)
, with Z ∼ N (0, I) and S =

∑N2

k=1
Zk. (1)

The subimage for each pixel assembles into an ND ×ND upsampled noise image ÎW .

2. For i, j = 1, . . . , D, the pixel square Ai,j := [ i−1
D , i

D ]× [ j−1
D , j

D ] is warped to a deformed
pixel region Ãi,j := ψ(Ai,j), and the warped noise pixel [ĨW ]i,j is set to be the sum of

all subpixels in ÎW covered by Ãi,j divided by
√
|Ãi,j |, where |A| denotes the Lebesgue

measure of a Borel set A ⊂ R2.

We describe an alternative but equivalent procedure by making the following two observations,
which are illustrated in Figure 1.

Gathering Noise→ Scattering Noise. While the original procedure computes the warped noise im-
age by gathering the upsampled noise subpixels in each deformed pixel region Ãi,j in a Lagrangian
fashion, we can instead use an alternative procedure by scattering the upsampled noise subpixels in
each pixel square Ai,j to overlapping deformed pixel regions. This new Eulerian procedure does
not change the output, but it yields new insights in conjunction with our second observation.

Scattering Noise → Counting Overlapping Subpixels. Observe that the N × N subpixels in
[ÎW ]i,j , for every i, j, are correlated only through their sum S when conditioning on [IW ]i,j (1), so
they are exchangeable. Hence, when scattering these upsampled noise subpixels to deformed pixel
regions, the order of scattering does not matter, and we only need to count the number of subpixels
covered by each deformed pixel region.

Alternative Eulerian Procedure. Putting both observations together, we now describe an alterna-
tive procedure to Chang et al. (2024) with unaltered output:

1. For each noise image pixel [IW ]i,j , draw an upsampled subimage, now represented as a
1D vector X ∈ RN2

using (1). Then, compute a prefix sum vector Hi,j via [Hi,j ]k :=∑k
q=1Xq for k = 1, . . . , N2.

2. Warp each pixel square and compute deformed pixel regions Ãi,j as before.
3. For each Ai,j , let M denote the number of deformed pixel regions that overlap with Ai,j .

With index k = 1, . . . ,M , we use lk,mk to denote the coordinates of the kth overlap, whose
pixel region is Ãℓk,mk

and pixel value [ĨW ]ℓk,mk
. Form L ∈ ZM

≥0 where Lk represents the
number of upsampled subpixels covered by Ãℓk,mk

. Then, compute a prefix sum [Ci,j ]k :=∑k
q=1 Lq . For k = 1, . . . ,M , accrue [Hi,j ][Ci,j ]k − [Hi,j ][Ci,j ]k−1

to [ĨW ]ℓk,mk
.

4. Divide each warped noise pixel [ĨW ]i,j by
√
|Ãi,j |.

Discussion. Compared to the original procedure by Chang et al. (2024), this alternative but equiva-
lent algorithm highlights how the upsampled subpixels of [IW ]i,j are scattered to form the warped
noise pixels. In particular, each warped noise pixel receives the sum of a segment of X , which
is computed by taking the difference of two entries of Hi,j . Since Hi,j represents summations of
weakly correlated and exchangeable subpixels, once conditioned on [IW ]i,j , can we avoid explicitly
instantiating every single subpixel, but instead model the sum of these weakly correlated subpixels?

The key insight of this paper is that when the upsampling resolution N → ∞, the scaling limit of
the prefix sumHi,j (with proper interpolation and time scaling to a continuous function) is precisely
the Brownian bridge (Durrett, 2019, Section 8.4) conditioned on [IW ]i,j . Once this connection is
established, it is easy to progressively sample increments of the Brownian bridge, resulting in a clean
and efficient noise-warping algorithm that bypasses the need for upsampling in Chang et al. (2024).

2Here we assume that the noise image is square and has a single channel only to simplify notation. In
practice, the noise image can have arbitrary aspect ratio and number of independent channels.
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Figure 2: Connection between Eulerian noise warping (scattering) and increments of a Brownian
bridge for a fixed prior noise pixel [IW ]i,j . The overlapping area with each warped pixel region
becomes the “time increments” — sampling the Brownian bridge at these “times” and taking con-
secutive differences yields the integral noise that is accrued to each warped noise pixel.

2.1 INFINITE-RESOLUTION NOISE SCATTERING

In this section, we first derive a scaling limit result to Brownian bridges. We then illustrate that the
limiting version of the Eulerian procedure from the previous section matches precisely this scaling
limit result. Lastly, we describe an autoregressive way to sample increments of a Brownian bridge
that is linear in runtime in terms of the number of increments.

Theorem 1 (Scaling limit to Brownian bridge). Let {Zn} be a sequence of i.i.d. random variables
with finite variance that are normalized such that E[Zn] = 0 and Var(Zn) = 1. For c ∈ R, define

Sn :=

n∑
i=1

Zi, Xi,n :=
c

n
+

1√
n

(
Zi −

Sn

n

)
.

Consider the sequence of random continuous functions {Hn(t)} ⊂ C[0, 1] defined as

Hn(t) :=

⌊nt⌋∑
i=1

Xi,n + (nt− ⌊nt⌋)X⌊nt⌋+1,n.

Then the sequence {Hn} converges in distribution under the sup-norm metric on C[0, 1] toBc(t) :=
W (t) − tW (1) + tc, the Brownian bridge ending at c, where W (t) is standard Brownian motion.
Moreover, in distribution, we have Bc(t)

d
= (W (t) | W (1) = c), where (W (t) | W (1) = c) is the

disintegrated measure (Pachl, 1978) of W (t) on W (1) = c.

We prove Theorem 1 in Appendix A. To connect the Eulerian procedure with the setup in Theorem 1,
let us fix a pixel [IW ]i,j , and let B := B[IW ]i,j , H := Hi,j , C := Ci,j to simplify the notation. By
setting n = N2 and c = [IW ]i,j , the sequence {Xk,n} from the theorem has exactly the same
law as the upsampled subpixels in [ÎW ]i,j . Moreover, Hnt = Hn(t) when nt ∈ Z≥1. By taking
N →∞, implying n→∞, for any t1, . . . , tM ∈ [0, 1], we have the convergence in distribution of(
H⌊nt1⌋, . . . ,H⌊ntM⌋

) d→ (B(t1), . . . , B(tM )). Recall in the Eulerian procedure, we only need to
access the prefix sum H at indices {Ck}Mk=1, where Ck counts the number of upsampled subpixels
covered by the first k overlaps. This suggests that if we choose

tk = lim
N→∞

Ck

N2
=

k∑
k′=1

∣∣∣Ai,j ∩ Ãℓk′ ,mk′

∣∣∣ ,
and use B(tk) in place of Hk, then we just need to sample from B at times t1, . . . , tM — precisely
the limiting algorithm of the Eulerian procedure. We illustrate this connection in Figure 2.
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Figure 3: The grid-based variant (left) computes the overlapping areas by explicitly constructing
the polygon for the deformed pixel region. The particle-based variant (middle) approximates these
areas with a weighting kernel. With degenerate maps (right), the fixed topology of the grid-based
variant can lead to problems, while the connectivity-free, particle-based variant remains stable.

Autoregressive Sampling of Brownian Bridges. Since a Brownian bridge is a Markov process
(Oksendal, 2013, Exercise 5.11), we can sample the vector (Bc(t1), . . . , Bc(tM )) in an autoregres-
sive fashion, each time sampling Bc(tk+1) conditioned on Bc(tk):

(Bc(tk+1) | Bc(tk) = q)
d
= N

(
1− tk+1

1− tk
q +

tk+1 − tk
1− tk

c,
(tk+1 − tk)(1− tk+1)

1− tk

)
. (2)

Once the Brownian bridge at times tk is sampled, we just need to accrue the increments Bc(tk) −
Bc(tk−1) to [ĨW ]ℓk,mk

, the kth overlapped warped noise pixel. This allows us to present Algo-
rithm 1. Compared to the discrete procedures described earlier, we no longer need upsampling.
In addition, we exploited the autoregressive nature of Brownian bridges to bring down the time
complexity to linear in the number of overlapping warped pixel regions.

Algorithm 1 Infinite-Resolution Integral Noise Warp
Input: prior noise image IW ∈ RD×D, deformation map ψ : [0, 1]→ [0, 1]

Output: warped noise image ĨW ∈ RD×D

Build a partition record P from ψ (Section 2.2)
Initialize Ai,j ← 0 for all i, j = 1, . . . , D ▷ Ai,j will contain the area of Ãi,j

parallel for each u, v = 1, . . . , D do
t, q,M ← 0, 0, |Pu,v|
for k = 1, . . . ,M do

(a, i, j)← [Pu,v]k ▷ a is the overlapping area between Ai,j and Ãu,v

Sample q′ ∼ (Bc(t+ a)|Bc(t) = q) by (2) with c = [IW ]u,v
[ĨW ]i,j ← [ĨW ]i,j + (q′ − q)
Ai,j ← Ai,j + a
q, t← q′, t+ a

Normalize [ĨW ]i,j ← Ai,j
− 1

2 [ĨW ]i,j for all i, j = 1, . . . , D

return ĨW

Preservation of Gaussian White Noise. A central desideratum of noise warping is that the resulting
warped noise image ĨW needs to have pixels that are i.i.d. standard Gaussians when the prior noise
image IW is Gaussian white noise. This ensures that the warped noise is in-distribution for a pre-
trained diffusion model. Our algorithm automatically guarantees this preservation of Gaussianity, as
long as the warping function ψ is injective. To see this, the injectivity of ψ implies that the warped
pixel regions are non-overlapping in the square [0, 1]2. For each Ai,j , since [IW ]i,j

d
= N (0, 1)

d
=

W (1), by the conditional interpretation of Brownian bridges (1), when marginalizing out [IW ]i,j ,
the Brownian bridge B[IW ]i,j reduces to standard Brownian motion. Since the increments of the
Brownian motion are independent Gaussians, the contribution to a deformed pixel region is simply
a zero-mean Gaussian with variance equal to the overlapping area. Therefore, each deformed pixel
region will receive the sum of a number of independent Gaussians whose variances sum to the area
of the region. The scaling by the inverse square root of the area in Algorithm 1 thus makes each
warped noise pixel an i.i.d. standard Gaussian.
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2.2 BUILDING PARTITION RECORDS

To compute Algorithm 1, we need a method to compute the partition record P which specifies how
each pixel square is partitioned by multiple deformed pixel regions. In this section, we present one
grid-based (Algorithm 2) and one particle-based (Algorithm 3) method for building P . In particular,
for each pixel square with indices (u, v), we compute Pu,v as a list of 3-tuples (a, i, j), where (i, j)
identifies the overlapped deformed pixel region and a represents the overlapping area.

Algorithm 2 Grid-based Partition
Input: Deformation map ψ
Output: Partition record P
1: parallel for each i, j do
2: A∗ ← DiscretizeSquare(Ai,j)
3: S ← ψ(A∗)
4: u−, u+, v−, v+ ← AABB(S)
5: for u ∈ [u−, u+] do
6: for v ∈ [v−, v+] do
7: a← PolygonArea(Clip(S, u, v))
8: Pu,v ← Pu,v + [(a, i, j)]

9: return P

Algorithm 3 Particle-based Partition
Input: Deformation map ψ
Output: Partition record P
1: parallel for each i, j do
2: (x, y)← ψ( i+0.5

D
, j+0.5

D
)

3: α0,0, α0,1, α1,0, α1,1 ← BilinearWeights(X)
4: for s, t ∈ [0, 1] do
5: u, v ← ⌊x⌋+ s, ⌊y⌋+ t
6: Pu,v ← Pu,v + [(αs,t, i, j)]
7: parallel for each u, v do
8: Normalize total area of Pu,v to D−2

9: return P

As illustrated in Figure 3, our grid-based method (left) follows Chang et al. (2024) by modeling
each deformed pixel region as an octagon and computes overlapping areas by clipping it against
undeformed pixel squares; our particle-based method (middle) borrows from the grid-to-particle
techniques in fluid particle-in-cell methods (Brackbill et al., 1988), where we treat each deformed
pixel region as a particle and each undeformed pixel square as a grid cell. Each particle requests
area from nearby cells based on distance; upon receiving requests, each cell normalizes the requests
to ensure partition-of-unity, and distributes its area to contacting particles.

Discussion. Conceptually, our grid and particle-based methods correspond to two different inter-
pretations of ψ when provided as discrete samples (e.g., an optical flow image). The grid-based
method implicitly reconstructs the continuous ψ field by linear interpolation, whereas the particle-
based method assumes ψ is only known point-wise. The implication is that when ψ is smooth, linear
interpolation works well and the grid-based method will yield a higher-quality warp as seen in Fig-
ure B.3. But when ψ is non-smooth, which is commonly the case in real world, linear interpolation
can lead to degenerate polygons as illustrated on the right of Figure 3. The spurious overlaps be-
tween the degenerate polygons will lead to spatial correlation in the warped noise image. Although
both Chang et al. (2024) and our grid-based method implement fail-safes3 to avoid noise sharing and
maintain spatial independence in practice, they suffer from the intrinsic ambiguity caused by these
overlaps. On the other hand, the particle-based method circumvents such overlaps to begin with.

In addition, we highlight the simplicity and parallelizability of the particle-based method, as it boils
down the computation of P to evaluating one bilinear kernel per pixel. Leveraging this fact, we can
very conveniently and efficiently extend our noise warping algorithm to higher spatial dimensions
by replacing the bilinear kernel to its higher-dimensional counterparts, as shown in Figure 8.

3 RESULTS

We verify our theoretical claims by showing that both variants of our method preserve Gaussian
white noise distribution, and that Chang et al. (2024) (HIWYN) converges to our grid-based variant
as N increases. We analyze the behaviors of our grid and particle-based variants under diffeomor-
phic and non-diffeomorphic deformations. We then apply our method to video generation tasks and
benchmark against existing methods (Ge et al., 2023; Chen et al., 2023; Chang et al., 2024). Finally,
we extend our method to warping volumetric noise and demonstrate a use case in 3D graphics.

Gaussian White Noise Preservation. In Figure 4, we iteratively warp a noise image by the same
deformation map for 50 timesteps. We gauge the output noise’s resemblance to Gaussian white noise
through 1) measuring normality using one-sample Kolmogorov-Smirnov (K-S) test, and 2) detecting

3In our case, we clamp the input tk+1 to 1 before sampling by 2. Intuitively, this means that when an
undeformed pixel has assigned its entire pixel region to deformed pixels, later noise requests will be neglected.
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Distribution Preservation Metrics
Method Ours, grid-based Ours, particle-based HIWYN, N=8 Bilinear Bicubic Nearest Neighbor

Moran’s I 5.103e-4 / 0.849 -1.995e-3 / 0.475 3.215e-3 / 0.243 0.612 / 0 0.983 / 0 2.974e-2 / 6.103e-27
K-S Test 3.410e-3 / 0.430 3.023e-3 / 0.586 3.274e-3 / 0.482 0.366 / 0 0.422 / 0 9.806e-3 / 6.681e-06

Figure 4: Preservation of Gaussian white noise achieved by different warping methods. We report
scores and p-values for both Moran’s I (spatial correlation) and K-S test (normality). Under these
metrics, the results from our method (both variants) and HIWYN are indistinguishable from white
Gaussian noise, while generic, interpolation-based warping methods lead to corrupted noise.

WN for Varying Values of N
N mean WN max WN N mean WN max WN

2 2.072e-1 7.253e-1 32 4.320e-3 1.391e-2
4 5.394e-2 2.962e-1 64 3.236e-3 8.325e-3
8 1.881e-2 8.310e-2 128 3.616e-3 8.134e-3

16 6.792e-3 2.361e-2 256 3.387e-3 8.228e-3

Figure 5: Convergence of HIWYN to our method as N increases. Top left: experimental setup with
prior noise and deformation map. Top middle: 2-Wasserstein distance WN between the output of
HIWYN and ours. Top right: statistics table. Bottom: WN difference image between the output of
HIWYN and ours as N increases. WN becomes statistically insignificant for N ≥ 64.

spatial correlation using Moran’s I . Our results show that both HIWYN and our method generate
warped noise images that are indistinguishable from Gaussian white noise under these metrics, while
interpolation-based baselines deviate significantly from the desired distribution.

Convergence of Chang et al. (2024). We validate that our method is the limiting case of HIWYN.
Starting with an 8×8 prior noise image and a flow map (Figure 5, top left), we run our method along
with HIWYN forN ∈ {2, 4, 8, . . . , 256} for 100,000 independent runs to estimate the distribution of
the warped noise image. For each upsampling resolution N , we compute the 2-Wasserstein distance
WN between the output of HIWYN and that of our method. The results in Figure 5 demonstrate
the convergence of HIWYN to our method as N increase, and reveal that N =8 (recommended by
Chang et al. (2024)) is not yet in the converged phase to yield a negligible WN .

Performance Comparison. For our methods and HIWYN with upsampling levels N ∈ {2, 4, 8},
we perform 100 independent runs on a 1024 × 1024 image. We report the kernel time with CPU
and GPU backends (Figure 6) as well as the memory usage. The runtime and memory usage of our
methods are largely comparable with those of HIWYN with N = 2. Compared to HIWYN with
N = 8, both variants of our method offer order-of-magnitude improvements in runtime and mem-
ory usage. Specifically, our grid-based method achieves infinite upsampling resolution while being
19.7× faster on CPU and 8.0× faster on GPU, using 9.22× less memory, and our particle-based
method, albeit not strictly equivalent to HIWYN at N =∞, achieves a 41.7× speedup on GPU.
In the following sections, we show that the particle-based version consistently achieves comparable
quality to the grid-based version in real-world scenarios.

Comparison between Grid-Based and Particle-Based Variants. In Figure B.3, we compare both
variants when the deformation map is diffeomorphic under different levels of distortion. Visually,
the difference between the two variants is negligible at frame 25 and becomes noticeable in frame
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Comparison of Time and Memory Costs
Method Time (CPU) Time (GPU) Memory

N = 2 (HIWYN) 19.30s 2.597s 293.7MB
N = 4 (HIWYN) 75.33s 9.247s 746.6MB
N = 8 (HIWYN) 398.3s 35.91s 2147MB
N =∞ (ours, grid) 20.16s 4.491s 232.9MB

N =∞ (ours, particle) 15.68s 0.862s 320.9MB

Figure 6: Runtime and memory usage of our method versus HIWYN with N=2, 4, 8. We compare
total allocated memory and kernel time on a CPU/GPU. The computation is done on a laptop with
Intel i7-12700H and Nvidia RTX 3070 Ti.

Figure 7: Comparison of grid-based versus particle-based variants under non-diffeomorphic optical
flow. Pixels with area contention are colored in orange. Further results are given in Figure B.5.

100. We measure this difference by comparing the deformed regions for each pixel in terms of
IoU and weighted Chamfer distance. We additionally compare the particle-based result with that of
an identity-map baseline (right column in Figure B.3), which shows that the gap between the two
variants remains small even under large distortion. In Figure 7, we stress test both variants under
non-diffeomorphic maps obtained using optical flow (Teed & Deng, 2020) on a real-world video
(Brox & Malik, 2011). In panels 3 and 4, we see that the real-world flow map induces inverted
meshes for the grid-based variant and clustered particles for the particle-based variant. While clus-
tered particles are always assigned disjoint regions due to the continuous nature of our algorithm,
mesh inversions cause area contention issues (non-injectivity) due to overlaps. In panels 5 and 6, we
mark the grid cells with area contention in orange, which occurs in the grid-based version but not in
the particle-based version.

Video Super-resolution with I2SB. We integrate our method with I2SB (Liu et al., 2023) and adapt
its pre-trained image 4× super-resolution model (bicubic) to perform video super-resolution. We
show our results in Figures 9 and B.1, and refer to our supplementary video for better visualization
of these results. Since I2SB is an image-to-image bridge model, it well preserves the low-frequency
structures of the input images regardless of noise scheme. But as seen in our video, without noise
warping, the results either show strong flickering in the high-frequency details (random noise) or
sticking artifacts (fixed noise). Noise warping allows high-frequency details to transport with the
optical flow, making the result significantly more consistent. We also validate that both our variants
yield visual quality on par with HIWYN across all tested scenarios while being much more efficient.

Conditional Video Generation with SDEdit. We apply our method to conditional video genera-
tion by adapting SDEdit (Meng et al., 2021), a conditional image generation method, to producing
consistent video frames. We apply Perturbed-Attention Guidance (Ahn et al., 2024) to the uncondi-
tional models with a scale of 3.0. Our two inputs are a conditioning video (generated by applying
a median filter to real-world videos similar to (Chen et al., 2023)) and an optical flow field (Teed
& Deng, 2020). Without noise manipulation, if we run SDEdit independently frame-by-frame (Fig-
ure B.6, random), the high-frequency details display significant flickering. By warping the noise
using the optical flow, the temporal consistency is much improved, and we observe that our method
(both variants) and HIWYN yield comparable visual qualities. Full experimental results with com-
parisons to Control-A-Video (Chen et al., 2023), PYoCo (Ge et al., 2023) and additional baselines
are provided in Figures B.6 and B.7 with quantitative statistics reported in Table 1. Further results
that additionally integrate cross-frame attention (Ceylan et al., 2023) (anchored every 3 frames) are
shown in Figure 10 and B.2. We refer to our supplementary video for better visualization.
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Figure 9: Video 4× super-resolution by integrating our method (particle) with I2SB. Top row shows
the low resolution input video; bottom row shows the output video. Additional results are shown in
Figure B.1. We refer to our supplementary video for better visualization of these results.

Figure 10: Conditional video generation results by integrating our method (particle) with SDEdit
and cross-frame attention (Ceylan et al., 2023). Top row shows the input video prompt in a stroke
painted style which is converted into a video of photorealistic style (bottom). Additional results are
shown in Figure B.2. We refer to our supplementary video for better visualization of these results.

Figure 8: 3D noise
warped by our method.

3D Noise Warp. We extend our particle-based algorithm to 3D by re-
placing the bilinear kernel with the trilinear kernel in Algorithm 3 and
apply it to GaussianCube (Zhang et al., 2024), which denoises a dense
3D noise grid to reconstruct 3D Gaussians. We adapt it to perform condi-
tional generation a la SDEdit. Starting with a 3D pickup truck generated
unconditionally, we condition the model to generate vehicles with smaller
and larger cabins by deforming the truck with a horizontal shear velocity
field. We compare the results obtained by using random noise to those us-
ing noise warped with our particle-based method. We show the results in
Figure B.4 and refer to our supplementary video for better visualization.

4 RELATED WORKS

Noise in Diffusion Models. Diffusion models generate images from input noise, and noise can thus
be considered the counterpart to the latent codes utilized in GAN models. As such, the outputs
of diffusion models have dependencies and correlations to the initial input noise, making noise a
useful handle to control temporal consistency (Khachatryan et al., 2023). In addition to Chang
et al. (2024) which this work was inspired by and improves upon, there are various other temporal
noise manipulation techniques that do not preserve Gaussian noise distribution– some methods (Ma
et al. (2024); Ren et al. (2024)) blend high frequency Gaussian noise with low frequency motion,
while others (Mokady et al. (2022); Wallace et al. (2022)) rely on approximating the inversion of
noise from temporally coherent image sequences. Pandey et al. (2024) goes one step further and
manipulates inverted noise in 3D space. These approaches are flexible but degrade the output of the
diffusion model due to the domain gap between inference time noise and training time noise, and
as such, have occasionally been accompanied by mitigation strategies such as anisotropic diffusion
(Yu et al. (2024)). Noise manipulation is also not limited to the generation and stylization of videos,
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but has various applications in image editing (Hou et al. (2024); Pandey et al. (2024)) and 3D mesh
texturing (Richardson et al. (2023)) as well.

Noise in Computer Graphics. While our noise warping work draws main inspiration from simula-
tion techniques, spatial noise manipulation has been extensively studied in the graphics community
through applications in animation and rendering. Works like (Kass & Pesare, 2011; Burley et al.,
2024) present 2D noise manipulation techniques that add a stylized organic hand-drawn look to
computer-generated animation via dynamic noise textures (Perlin, 1985). In order to make sure the
stylization is temporally consistent and visually pleasing, noise textures are deformed in a way that
makes them consistent with the underlying animation, but little emphasis is given to the preserva-
tion/rigor of the noise distribution. On the other hand, properties of 2D spatial noise have been
extensively and rigorously studied in rasterization and raytracing literature (Cook, 1986; Lagae &
Dutré, 2008), originating from the idea of using dithering to reduce banding and quantization arti-
facts in image signal processing (Roberts, 1962). In particular, the lack of low frequency details and
clumping in blue noise as opposed to white Gaussian noise has made it the choice of foundational
antialiasing methods such as Poisson disc sampling (McCool & Fiume, 1992), and recent progress
made in this line of antialiasing research has close ties with our methodology. For example, Wolfe
et al. (2022) look at accelerating rendering tasks by extending spatial blue noise to the temporal
domain, while Huang et al. (2024) show promising results in supplementing white noise with blue
noise during diffusion model training.

5 DISCUSSION AND CONCLUSION

We presented infinite-resolution integral noise warping, a novel algorithm for computing temporally
coherent, distribution-preserving noise transport to guide diffusion models to produce consistent re-
sults. By deriving a continuous-space analogy to the existing upsampling-based strategy (Chang
et al., 2024), our method not only further improves the accuracy by effectively raising the upsam-
pling resolution to infinity, but also drastically reduces the computational cost.

Usability of Noise Warping We highlight that the noise warping problem that we address is a
recurring subtask in generative modeling, and our method is hence a general-purpose tool that can
be integrated in a variety of ways that extend well beyond the ones we showcase in the paper.
First, noise warping, which excels at controlling high-frequency details, is orthogonal and thus com-
binable with feature-level, structure-preserving techniques (e.g. Ceylan et al. (2023); Cong et al.
(2023)) to achieve consistency across the frequency spectrum. Our drastic cost-saving makes noise
warping an affordable and harm-free add-on to all such existing and future techniques. In addition,
the concurrent work by Daras et al. (2024) shows that noise warping can be combined with equiv-
ariance guidance to gain further consistency and integrate with latent diffusion models like SDXL
(Podell et al., 2023). Beyond video generation, Kwak et al. (2024) showcases the usefulness of noise
warping in 3D generation by combining with score distillation sampling (SDS). The advanced noise
warping algorithm that we propose presents itself as a desirable candidate across these diverse tasks.

Significance of Our Speed-up We argue that the drastic speed-up our method offers has profound
practical significance. While the standard denoising diffusion setting requires only a single noise
warp operation per image, there exist many use cases that require noise warping to be computed
more intensively, which renders our speed-up critical. For example, the combination with bridge
models (e.g. I2SB) requires one noise warp per iteration. With its reported> 0.6s time cost per warp,
preparing the noise using HIWYN would cost ∼ 4× the time to actually run the image generation
model, increasing the total inference time from ∼ 24 minutes to ∼ 2 hours. In comparison, our
method (particle) prepares the noise in 40.6s (wall time), effectively making the overhead negligible.
Similarly, combining noise warping with SDS also requires one noise warp per iteration, which
makes HIWYN computationally intractable (Kwak et al., 2024) and our improvements called for.
Our speed-up hence makes integral noise warping deployable in a much broader class of problems.

We identify a few directions for future work. First, our particle-based variant currently does not cap-
ture area contraction or expansion which may be addressed in the future with Voronoi partitioning.
Secondly, our method can be readily combined with other map types such as UV maps to facilitate
multi-view consistency. Furthermore, since our method relies on the consistency and quality of the
deformation map, it can benefit from future advancements in flow extraction techniques. Finally, the
effectiveness of warped volumetric noise in 3D generation and editing remains to be studied.
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A PROOF OF THEOREM 1

Proof. By unrolling the definitions, for t ∈ [0, 1], we have

Hn(t) = S∗
n(t)− tS∗

n(1) + tc, S∗
n(t) :=

1√
n

⌊nt⌋∑
i=1

Zi + (nt− ⌊nt⌋)Z⌊nt⌋+1

 .

By Mörters & Peres (2010, Theorem 5.22), {S∗
n}n∈Z≥1

converges in distribution to W (t) under the
sup-norm metric of C[0, 1]. To lift this convergence to the sequence {Hn}n∈Z≥1

, observe that the
function g : C[0, 1]→ C[0, 1] defined by

g(x(t)) := x(t)− tx(1) + tc

is continuous under the sup-norm metric. To verify this, suppose limn→∞ fn = f for
{fn}n∈Z≥1

, f ∈ C[0, 1]. Then

∥g(fn)− g(f)∥∞ = sup
t∈[0,1]

|(fn(t)− tfn(1) + tc)− (f(t)− tf(1) + tc)|

≤ ∥fn − f∥∞ + ∥fn(1)− f(1)∥ ≤ 2∥fn − f∥∞ → 0.

Hence, by the continuous mapping theorem,

g(S∗
n) = Hn

d−→ B(t)− tB(1) + tc.

To show

W (t)− tW (1) + tc = (W (t) |W (1) = c),

first of all, the conditioning (W (t) |W (1) = c) is interpreted as the limit of (W (t) | |W (1)− c| <
ϵ) as ϵ → 0. Denote Y (t) := W (t) − tW (1), so that W (t) = Y (t) + tW (1). Since
Cov(Y (t), tW (1)) = Cov(W (t)−tW (1), tW (1)) = tCov(W (t),W (1))−t2Var(W (1),W (1)) =
0 and that Y (t), tW (1) are jointly Gaussian, they are independent. Therefore,

lim
ϵ→0

(W (t) | |W (1)− c| < ϵ) = lim
ϵ→0

(Y (t) + tW (1) | |W (1)− c| < ϵ)

= Y (t) + lim
ϵ→0

(tW (1) | |W (1)− c| < ϵ)

=W (t)− tW (1) + tc.

B ADDITIONAL RESULTS

In this section we include additional visual and numerical results. Figure B.1 shows additional
video 4× super-resolution results with I2SB in addition to those in Figure 9. Figure B.2 shows
additional video generation results with SDEdit and cross-frame attention, which mirrors the setup
of Figure 10. Figure B.6 and Figure B.7 show video generation results with SDEdit only (without
cross-frame attention) to isolate the influence of noise, and we compare our method (both variants)
with HIWYN (Chang et al., 2024), Control-A-Video (Chen et al., 2023) PYoCo (Ge et al., 2023), as
well as baselines with random, fixed, and interpolated noise using bilinear and nearest interpolating
schemes. The statistics for both the church and cat scenes are reported in Table 1. Figure B.3
demonstrates the differences between both our variants in computing warped pixel regions in the
diffeomorphic case. Figure B.5 shows the differences in the non-diffeomorphic case, where we
use additional examples to demonstrate the area contention issue caused by degenerate meshes that
applies similarly to our grid-based variant and (Chang et al., 2024), and highlight the robustness
of our particle-based variant. Figure B.4 shows additional results for applying our particle-based,
volumetric noise warping to 3D tasks with GaussianCube (Zhang et al., 2024).
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Video Generation Quality (Church)
Metric Ours (G) Ours (P) HIWYN PYoCo CaV Random Fixed Bilinear Nearest

Consistency ↓ 6.955e-2 7.057e-2 6.953e-2 9.800e-2 1.108e-1 1.150e-1 9.273e-2 6.906e-2 8.985e-2
Realism ↓ 7.251e-2 7.130e-2 7.197e-2 7.535e-2 7.430e-2 6.336e-2 5.893e-2 2.102e-1 8.194e-2

Faithfulness ↓ 1.111e-2 1.166e-2 1.171e-2 1.184e-2 1.555e-2 1.344e-2 1.030e-2 1.883e-2 3.090e-2
Video Generation Quality (Cat)

Metric Ours (G) Ours (P) HIWYN PYoCo CaV Random Fixed Bilinear Nearest
Consistency ↓ 4.016e-2 4.070e-2 3.810e-2 5.995e-2 4.507e-2 1.093e-1 4.537e-2 2.613e-2 7.974e-2

Realism ↓ 2.235e-1 2.126e-1 2.108e-1 1.647e-1 1.931e-1 1.561e-1 1.982e-1 3.271e-1 3.195e-1
Faithfulness ↓ 7.841e-3 7.556e-3 7.305e-3 9.290e-3 7.427e-3 9.637e-3 8.558e-3 1.162e-2 1.128e-1

Table 1: We show the quantitative statistics for conditional video generation using SDEdit without
cross-frame attention. The consistency is measured using Warp MSE (Chang et al., 2024), and the
realism and faithfulness are measured as in Meng et al. (2021).

Figure B.1: Additional results generated by performing 4× video super-resolution with I2SB. For
each scene, the upper row represents the low resolution input video, and the lower row represents
the high resolution output video. We refer to our supplementary video for better visualization of
these results.
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Figure B.2: Additional conditional video generation results by integrating our method (particle) with
SDEdit and cross-frame attention (Ceylan et al., 2023) on a cat scene.

Figure B.3: Comparison between the grid-based and particle-based variants for building partition
records when the deformation map is diffeomorphic. The first column shows the deformation map
at different frames. The second and third columns visualize warped pixel regions for both methods.
The fourth and fifth columns show the IoU (larger is better) and Chamfer distance (smaller is bet-
ter) between the warped pixel regions of both variants. We plot the distance between particle and
grid variants alongside a baseline, which is the distance between identity map and the grid variant,
to verify that the particle-based version remains close to the grid-based version even under large
distortion.

Figure B.4: Extension of our particle-based method to warping 3D, volumetric noise. We show
volume renders of the noise on the top left, slice views on the top middle, and 3D Gaussians as used
in the GaussianCube representation on the top right. The bottom row shows the respective results
obtained by running 3D generation with warped and random 3D noise.

16



Published as a conference paper at ICLR 2025

Figure B.5: Comparison of grid-based and particle-based variants under non-diffeomorphic defor-
mation maps typically found in real-world applications. The orange pixels are the invalid pixels
where area contention occurs. Flow maps are downsampled 10× for better visualization. Image se-
quence comes from Brox & Malik (2011) while optical flow is computed via Teed & Deng (2020).
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Figure B.6: The full results generated by all the compared methods on the church scene. The
interpolation baselines yield noticeably corrupted results, and others yield similar quality on the
image level. The difference lies in how the details are preserved across frames. We refer to our
supplementary video for better visualization of these results.
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Figure B.7: The full results generated by all the compared methods on the cat scene. We observe
that HIWYN and our method (both variants) yield similar results. While both our variants are
much faster and more memory-efficient than HIWYN, this makes a particularly strong case for our
particle-based variant considering its significantly improved simplicity and efficiency. We refer to
our supplementary video for better visualization of these results.
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