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Abstract

This paper tests GPT (specifically, GPT-3.5 with the model variant text-davinci-
003) with one of the most classic behavioral choice experiments – the Allais
paradox, to understand the mechanism behind GPT’s choices. The Allais paradox
is well-known for exposing the irrationality of human choices. Our result shows
that, like humans, GPT also falls into the trap of the Allais paradox by violating
the independence axiom of the expected utility theory, indicating that its choices
are irrational. However, GPT violates the independence axiom in the opposite
direction compared to human subjects. Specifically, human subjects tend to be
more risk-seeking in the event of an opportunity gain, while GPT displays more
risk aversion. This observation implies that GPT’s choices structurally differ from
those of humans under this context, which might serve as a caveat for developers
using LLM to generate human-like data or assist human decision-making.

1 Introduction

Large Language Models (LLMs) have attracted much attention from practice and academia. Unlike
traditional Artificial Intelligence models, LLMs have the distinct ability of in-context learning, in
which the model is trained to generate text based on a given context. Benefiting from Reinforcement
Learning from Human Feedback (RLHF), LLMs can also fine-tune themselves with human-generated
responses as rewards. These two crucial features make LLMs especially suitable for interactive or
conversational tasks, leading to applications in high-stake real-life scenarios.

Multiple-choice is one of the most common tasks encountered by LLMs. Specifically, multiple-
choice tasks require the agent to choose one or multiple options from a finite set of candidates. It
covers a wide range of applications, such as examinations [9, 12, 4, 8, 18], surveys [3, 16], and
recommendations [25, 23]. To evaluate the effectiveness of LLMs’s choices in these applications,
researchers conduct assessments by gauging the accuracy of LLMs in answering multiple-choice
exam questions and in making effective recommendation decisions, many of which demonstrate
promising performance. In the case of survey applications, researchers focus on evaluating LLMs’
responses to multiple-choice survey questions and determining their alignment with those provided
by human participants. For example, [3] demonstrates that the Generative Pre-trained Transformer
3 (GPT-3) model responds to survey questions in ways consistent with well-documented customer
behaviors. [16] compares human and LLM responses to large-scale, high-quality public opinion polls
and finds a substantial misalignment between the views reflected by current LLMs and those of US
demographic groups.

Current analyses compare human and LLM-generated choices in terms of accuracy scores or
(mis)alignment metrics. However, since humans and LLMs are both black boxes, there lacks a
well-structured interpretation of the observed results – We do not know whether they are inherent in
the model or are due to the context of the task, the design of the prompts, or simply randomness. [3]
uses the economic choice theory as a medium, fitting the human and LLM-generated choice data with
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classic choice models and comparing the fitted parameters. However, the choice models are developed
to describe human behavior, which is not necessarily suitable for LLMs. Fitting LLM-generated
choice data to them may lead to model misspecification or overfitting, yielding unstable results.

This work aims to propose an alternative way to leverage the economic choice theory for evaluating
LLMs: to serve as a benchmark to probe the implicit structure beneath LLMs’ choices. In particular,
we focus on GPT-3.5 (hereafter referred to as GPT), and test it with one of the most classic behavioral
choice experiments – the Allais paradox [1]. The Allais paradox is famously known for revealing
irrationality1 of human choices. It happens when human subjects make inconsistent choices in two
experimental lottery choice tasks, which are specifically designed to signal the subject’s violation of
the independence axiom of rationality in the Expected Utility (EU) theory.

Key Takeaways We instruct GPT to participate as a subject in a typical experiment setting [13] of the
Allais paradox. The result reveals that, like humans, GPT falls into the trap of the Allais paradox by
violating the independence axiom, indicating that its choices are irrational. However, GPT violates
the independence axiom in the opposite direction compared to human subjects. A deeper analysis
reveals that humans and GPT exhibit the common consequence effect in a contrariwise way: in
particular, human subjects tend to be more risk-seeking in the event of an opportunity gain, while
GPT displays more risk aversion. This observation implies that GPT’s choices structurally deviate
from those of humans under this context. It is important to note that the conclusion of rationality may
be nuanced and application-dependent and cannot be implied directly for broader applications. We
thus view this experiment result as a probe of LLM choices and a caveat for developers who utilize
LLMs in generating human-like data or assisting human decision-making.

The widespread adoption of LLMs has brought about a pressing need for suitable evaluation methods
in academia and industry [5]. This study, along with several other initial efforts, aims to propose the
value of assessing LLMs from a behavioral experimental perspective. In addition to this research,
[6] conducts a preliminary examination of a set of human behavioral biases. [7] instructs GPT to
participate in a series of budgetary decision experiments and shows that GPT achieves a higher
rationality score than humans documented in the literature. As an initial attempt, this work aims
to highlight the potential of leveraging the extensive body of research in behavioral economics and
operations management experiments to provide novel avenues for evaluating LLMs.

2 The Expected Utility Theory and the Allais Paradox

The EU theory is a normative theory of how people should make decisions. It is an account of how to
choose rationally when having uncertain outcomes from your acts. The EU theory originated in the
17th century as part of the development of modern probability theory in evaluating the attractiveness
of lottery gambles. In essence, if a lottery L offers multiple possible payoffs (represented as set O)
with corresponding probabilities {P (o) : o ∈ O}, the EU theory assumes that individuals evaluate a
lottery based on its expected utility. In particular, each payoff o is assumed to be associated with a
utility of U(o). When represented with multiple lotteries, an individual chooses the lottery with the
highest expected utility EU(L) =

∑
o∈O P (o)U(o).

The utility function U(o) represents roughly how valuable the payoff o is. While the utility function
might seem ambiguous, the work of John von Neumann and Oskar Morgenstern [22] shows with
incredible simplicity and generality that a numerical utility exists for each outcome such that the
expectations for lotteries preserve the preference order over lotteries as long as several basic axioms
hold: completeness, transitivity, continuity, and independence, and decomposability. These axioms
are referred to as the axioms of rationality [15] and are regarded as rational decision criteria [17].

The EU theory offers a structural definition of rational choices. Humans, however, do not follow
this theoretical rational framework. In the upcoming example, we introduce the Allais paradox, a
well-known behavioral choice experiment that illustrates how human decision-makers often deviate
from the independence axiom of EU theory.

The Allais Paradox The Allais paradox is a choice experiment that shows a contradiction of actual
human choices with the predictions of the EU theory, particularly regarding the independence axiom.

1There are various definitions of rationality in the economics and cognitive psychology literature. For the
purpose of discussion in this paper, we focus on the von Neumann–Morgenstern (VNM) Rationality defined by
the five axioms of rationality in the expected utility theory.
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The Allais paradox arises when individuals behave inconsistently in two choice questions, each of
which involves a decision between two different lotteries. Below, we present the two lottery questions
designed by [13] to illustrate the principle of the Allais Paradox:

The first question asks the respondent to choose from lotteries S1 and R1:
S1. 100% chance of getting $7;
R1. 20% chance of getting $10, 75% chance of getting $7, and 5% chance of getting nothing.

The second question asks the respondent to choose from lotteries S2 and R2:
S2. 25% chance of getting $7 and 75% chance of getting nothing;
R2. 20% chance of getting $10 and 80% chance of getting nothing.

The EU theory predicts that a person who prefers S1 over R1 must prefer S2 over R2, and vice versa.
In particular, if one prefers S1 over R1, it implies that U(7) ≥ 0.2U(10) + 0.75U(7) + 0.05U(0).
Subtracting 0.75U(7) and adding back 0.75U(0) to both sides of this equation yields 0.25U(100)+
0.75U(0) ≥ 0.2U(500) + 0.8U(0), which implies that the person should prefer R2 over S2.

However, laboratory experimentation show that human participants commonly choose S1 and R2,
violating the theoretical prediction. In particular, [13] conducts a behavioral experiment where
students and professional traders are asked to respond to the aforementioned questions. They verify
the appearance of the Allais paradox via a hypothesis test, in which the null hypothesis is Pr(R1)
= Pr(R2), and the alternative hypothesis is Pr(R1) ≥ Pr(R2). Fisher’s exact test suggests that both
traders’ and students’ behavior is in line with the Allais paradox at a 95% significance level.

Testing Rationality with the EU Theory This systematical violation of the EU theory has been
observed in a comprehensive set of experiments (see [21, 10, 19], for example). As it became apparent
that EU theory did not accurately predict the behaviors of real people, an alternative view has been
advanced to use it as a theory of how rational people should respond to uncertainty [11]. It has thus
been utilized as a benchmark for designing behavioral experiments to probe the irrational behavior of
a decision-making agent. The Allais Paradox is a classic example of this application.

The unique interactive and dialogic abilities of GPT enable it to interact with experimental instructions
conveyed in human language, which opens up opportunities to examine GPT’s response in behavioral
experiments and draw conclusions about its rationality. If GPT deviates from rational decisions, the
EU theory can offer a structural explanation for the pattern of its irrationality. In the next section, we
test GPT’s response to the Allais paradox.

3 Experimental Setup

This section describes the experimental setup. To provide a stringent test of the EU theory, we follow
the lottery questions in [13] as shown in Section 2. Fig. 1 illustrates how GPT participates in this
lottery choice experiment. Specifically, the GPT agent takes a prompt detailing the choice task and

Figure 1: An Example of Input and Output
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the desired output format. Each prompt consists of three parts: 1) The Context specifies to the GPT
agent that it has to select from two lotteries to gain payoffs. 2) The Response Format (RF) requires the
GPT agent to output in a certain text format to ensure consistent extraction of the choice probabilities.
Responses inconsistent with the required RF are discarded. 3) The Statement of Lottery Choices
(SLC) describes the lottery options in detail. In all SLCs, we use letters A and B to represent the two
lottery options to rule out the potential bias from using different letters.

GPT exhibits a strong sensitivity to the phrasing of the input text [26, 24]. In order to mitigate
this potential bias, we explore different formats for responses (RF1, RF2, and RF3) and ways of
presenting the lottery choices (SLC1, SLC2, and SLC3), representing different levels of human-
alikeness in phrasing, details of which are summarized in Fig. 2. Combining these various RFs
and SLCs, we generate nine prompt configurations for both lottery questions as the input to a GPT
agent. We then extract the GPT agent’s probabilities of choosing each lottery option. GPT is an
autoregressive language model. At position t, given a context sequence Xt = (x1, x2, . . . , xt−1),
where x1, x2, . . . , xt−1 are text tokens, the model predicts the next token yt by maximizing the
probability of the given token sequence conditioned on the context, i.e., P (yt|Xt). A sequence of
length T can be generated autoregressively, predicting each token at each position one at a time.
Given the specified RF, we know the position of the token indicating the letter choice. We extract
the log probabilities of tokens “A” and “B” at this position. With the log-probabilities ρA and ρB of
tokens “A” and “B” given the pre-specified RF, the probabilities of choosing A and B are calculated
as exp ρA

exp ρA+exp ρB
and exp ρB

exp ρA+exp ρB
, respectively. Since GPT’s sensitivity extends to the order of

lottery options in the prompt, we change the order of the two choices for each lottery question and
average the outcomes of the two permutations as the final estimated probabilities.

4 Experiment Results

The experiment is conducted using GPT-3.5 with text-davinci-003. The configuration includes a
maximum of 100 tokens for each input, with five tokens dedicated to log probability prediction. We
summarize the experiment results in Section 4.1 and analyze them in Section 4.2.

4.1 Summary of Choice Probabilities

The experiment outcomes are summarized in Table 1. The first column indicates the experimental
subjects, which include the GPT agents with different prompt designs, the students, and the profes-
sional traders. The second and third columns show the choice probabilities of R1 and R2, respectively.
The fourth column calculates the difference between the second and third columns.

Agent Pr(R1) (%) Pr(R2) (%) Pr(R2) - Pr(R1) (%)
(RF1, SLC1) 85 71 14
(RF1, SLC2) 90 56 34
(RF1, SLC3) 83 68 15
(RF2, SLC1) 88 69 19
(RF2, SLC2) 86 54 32
(RF2, SLC3) 90 59 31
(RF3, SLC1) 75 69 6
(RF3, SLC2) 63 61 2
(RF3, SLC3) 59 75 -16

Students 53 75 -22
Professional Traders 70 89 -19

Table 1: Experiment Results. The data for students and professional traders are referenced from [13].

The numeric values of Pr(R1) and Pr(R2) display significant variations with different prompt designs.
Our primary interest, however, lies around the relative magnitudes of Pr(R2) and Pr(R1). Notably, a
consistent pattern emerges where Pr(R2) surpasses Pr(R1) for the GPT agents across most prompt
designs. This behavior contrasts with the expectations of the EU theory, which stipulates that Pr(R1)
should equal Pr(R2) for a rational agent. In addition, GPT tends to favor R1 over R2, whereas human
agents exhibit a preference for R2 than R1. These observations suggest that GPT falls into the realm
of the Allais Paradox, albeit in a direction opposite to that observed in human agents.
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4.2 The Opposite Common Consequence Effect with GPT

This phenomenon that Pr(R1) ̸= Pr(R2) is generally termed as the common consequence effect [10],
which can be explained as follows. In particular, we let L1 = (1 : $7), L2 = (0.8 : $10, 0.2 : $0),
L∗ = (1 : $0) and L∗∗ = (1 : $7). We can write the lottery options as compound lotteries in the
following way:

S1 = (0.25 : L1, 0.75 : L∗∗) R1 = (0.25 : L2, 0.75 : L∗∗)

S2 = (0.25 : L1, 0.75 : L∗) R2 = (0.25 : L2, 0.75 : L∗)

Based on this representation, S1 can be interpreted as follows: Suppose there is a biased coin
flip with the probability of a head being 0.25 and a tail being 0.75. In the case of a head, S1
yields the outcome of lottery L1; In the case of a tail, S1 yields the outcome of lottery L∗∗. The
same interpretation applies to R1, S2, and R2. By the monotonicity of the utility function [10],
EU(L∗∗) = U($7) ≥ U($0) = EU(L∗). Therefore, L∗∗ is always preferred over L∗, regardless
of the utility function form. On the other hand, the preference order of L1 and L2 depends on the
risk aversion of the individual. Specifically, L2 yields a higher expected value than L1 with a larger
uncertainty. In fact, one can show that EU(L1) ≥ EU(L2) when the agent is more risk-averse, and
vice versa. Since L∗∗ both appear in S1 and R1, the preference order of S1 and R1 only depends on
L1 and L2. Similarly, the preference order of S2 and R2 only depends on L1 and L2. As such, the
EU theory suggests that either all safe lotteries or all risky lotteries are picked in both lottery choices.

Humans, however, do not preserve this consistent reasoning over the two lottery questions. If the
event of a tail entails a better payoff (L∗∗), humans tend to be more risk-averse towards the event of
the head, therefore preferring S1 over R1. If the event of a tail has a worse payoff (L∗), humans tend
to be less risk-averse in the event of the head, therefore preferring R2 over S2. GPT, on the other hand,
exhibits the common consequence effect in the opposite direction compared to humans. Specifically,
GPT displays less risk aversion in the event of an opportunity loss and more risk aversion in the event
of an opportunity gain. This gives a structural interpretation of the differences we observe between
humans and GPT.

5 Discussion and Conclusion

In this paper, we instruct GPT to participate as a subject in one of the most classic behavioral
experiments, the Allais paradox, and demonstrate that GPT’s choices structurally deviate from those
of humans in this specific context. This paper is not meant to be a conclusive or extensive study of
GPT’s choice structure. It is important to note that the conclusions may be nuanced and application-
dependent and cannot be implied directly for broader applications. We thus view this experiment
result as a probe of LLM choices and a caveat for developers using LLM to generate human-like data
or assist human decision-making. In addition, together with the other few initial attempts, this paper
aims to highlight the potential of utilizing the broad behavioral experimental literature to evaluate
LLMs. The current results have several limitations and should be addressed with future efforts:

First, though the results demonstrate a discrepancy between humans and GPT’s choices, there is a lack
of understanding of the cause of such discrepancy. For instance, it would be beneficial to understand
why (RF3, SLC3) is more comparable to humans than the other GPT agents. Secondly, beyond the
VNM rationality discussed in this paper, various definitions of rationality exist in economics and
cognitive psychology literature, such as adaptive rationality [14]. It’s unclear whether our results
extend to other forms of rationality. Furthermore, determining which type of rationality is most
suitable for analyzing LLMs is an important discussion. Thirdly, contamination poses a significant
issue when using behavioral experimental literature to evaluate LLMs. Specifically, the text used in
experiments might have been part of the training set for LLMs. To address this, generating a new set
of lottery questions based on the same principles could be a solution. On the other hand, the inclusion
of extensive theoretical text is intrinsic to LLMs and distinguishes them significantly from humans.
Hence, discussing whether to exclude contaminated text entirely in evaluating LLM "behaviors"
is crucial. Finally, as previously mentioned, it’s unclear whether the conclusions drawn from this
specific lottery context have broader implications. More comprehensive experiments, robustness
checks, and statistical testing are necessary. Additionally, conducting experiments with a broader
range of LLMs, including the latest GPT4, LLaMA [20], and PaLM [2], is essential to ascertain the
generalizability of our findings.
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6 Supplemental Materials

The details of the prompt designs are shown in Fig. 2 below:

Figure 2: Prompt Designs

As shown in Fig. 2, we devise three response formats: RF1 and RF2 prompt the GPT agent to reply
in two distinct human language manners, while RF3 requires the agent to provide a response in
JSON format. Simultaneously, we create three methods of articulating the lottery options: SLC1
presents the choices in the format of typical multiple-choice questions; SLC2 modifies SLC1 by
substituting "100%" with "certainty" and "0 dollars" with "nothing" to create a more human-alike
phrasing; Building upon SLC2, SLC3 fully expounds the two options using human language.
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