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ABSTRACT

Two challenges have consistently been key in human-like agent research: 1)
Many jobs require human-level reasoning and introspection capabilities to dis-
cern underlying patterns. 2) Controlling complex modeled humanoid charac-
ters in indeterministic black-box physical environments demands a powerful con-
troller to exhibit human-like movement and commonsensical behavior. To the
end, we introduce “Reason to Behave”, a synergistic framework combining large
language models (LLMs) based introspective reasoner with an enhanced con-
troller. The reasoner empowers the agent with extensive world knowledge and
semantic insights, enhancing contextual interpretation and reasoning formulating
a code-based action plan to bridge the gap between high-level instructions and
the underlying simulator. The steerable controller embeds motion-phase repre-
sentation into adversarial motion prior to the precise timing of diverse life-like
behaviors, allowing rapid mastery over 100 semantically distinct actions, rang-
ing from locomotion, dance, and sport to challenging specialized maneuvers,
preventing mode collapse during skill learning. Without any reward-shaping or
training, our character intuitively performs commonsensical behavior, excelling
in many real-world tasks from navigation to more complicated challenges like
room escaping and pressure plate puzzle.Videos, codes are available at https:
//sites.google.com/view/reasontobehave.

(a) The warrior task

(b) Run then jump skills with its motion phase divide

Figure 1: (a): our character can handle long horizon and reasoning required tasks such as Warrior,
where the humanoid character has to figure out a correct execution logic and possesses a steerable
low-level control to orchestrate different skills. (b): we propose a versatile controller that leverages
skill embedding with unified motion phase information to ensure perfect low-execution in a more
precise manner.
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1 INTRODUCTION

Human possess a wide range of motor skills and exhibit unparalleled abilities in reasoning, under-
standing their environment?, and seamlessly interacting with the real world. Developing physically
simulated characters that mimic humans Peng et al. (2018) has long been considered an ideal goal
for anthropomorphic embodied AI.

Most earlier works employ hierarchical reinforcement learning to endow physically simulated hu-
manoid agents with such capabilitiesPeng et al. (2022)Juravsky et al. (2022), where separated high-
level policies are constructed for different tasks and share one directable low-level controller. The
low-level controller commonly learned from imitation learning can perform various general-purpose
life-like motor skills. This architecture has made strides. The character can tackle tasks like navi-
gation in human-like behavior. However, enabling humanoid characters to finish tasks that require
precise reasoning or understanding of object semantics in the environment is still challenging. Al-
though investing significant time in reward engineering may mitigate it, the hard-learned knowledge
struggles to be transferred to other tasks. All these stand in stark contrast to human capabilities of
versatility in task handling and introspective reasoning due to the absence of foundational world
knowledge and an inherent understanding of their abilities and embodiment.

Large language Models (LLMs) trained on massive internet data integrate human-level world knowl-
edge, deeply understand the worldWei et al. (2022), and exhibit logical reasoning abilities. Some
researchers leverage as a top-level reasoner in a manner reminiscent of human reasoning, which
interprets all contextual information into executable low-level plans, yielding promising task perfor-
mance in many domains, including robotics, embodied AI gaming, and general task solvingWang
et al. (2023). However, the feasibility of transferring such reasoners to a more concrete 3D phys-
ically simulated environment Makoviychuk et al. (2021) remains open due to the indeterministic,
black-box nature of physics engines and the anthropomorphic nature of humanoids. An imperfect
low-level execution could ruin a perfect high-level plan. Commonly, humanoid controllers struggle
with accurately carrying out the reasoner’s instruction in a non-differentiable physically simulated
environment. Also, as a distinctly human-like embodied agent with high-dimensional action space,
plain controllers are challenging to manage its large degrees of freedomPeng et al. (2018). This
becomes even more complex when requiring the endowment of the capability to perform lifelike,
natural movements during task completion.

To overcome the challenges above, we propose an integrated framework, “Reason to Behave”,
which synergizes an introspective reasoner with a steerable low-level controller to perform a human-
like task execution for physics-based characters. Specifically, the reasoner maintains three compo-
nents,“Planner, Picker, and Programmer”, to interpret perception seamlessly and selectively translate
high-level reasoning output into precise low-level execution control logic. To ensure the infallibil-
ity of low execution, we introduce a phase-enhanced low-level controller by incorporating unified
motion phase representation into the skill-conditioned adversarial motion prior to imitation learning
Juravsky et al. (2022). The adversarial motion prior enables the humanoid to perform the human-
like and natural motor skill in a non-differentiable physically simulated environment. In contrast,
the enhancement of conditioned skill embedding and motion phase representation empowers the
controller to expose two critical interfaces for more steerable and precise control: 1) specify which
skill to execute. 2) determine the start time and repetition count for execution. Furthermore, we
verified that combining motion phase information incentivizes policy learning by recognizing the
different stages of every reference motion. We have designed sensor APIs and skill APIs that make
it easy for the introspective reasoner to invoke the low-level controller. The introspective reasoner
can directly control the humanoid agent’s interaction with the environment in Python code output.
This design achieves alignment from the high-level reasoning of LLMs to the low-level execution
of physics-based tasks. Given any task, the system follows a physiological control mechanism. As a
collection of information from the current body’s state and the environment, the reasoner interprets
information and then triggers a low-level controller to execute specific motor skills in a control loop
with continuous environmental feedback. The overall contributions of this paper are as follows:

• We present a novel system for achieving human-like task execution for physics-based char-
acters, which synergizes two essential modules: 1) an LLMs-based introspective reasoner
with three architecturally organized components for task interpretation and instructions

2



Under review as a conference paper at ICLR 2024

generation. 2) an enhanced versatile low-level controller to translate instruction into real
low-execution.

• We propose a steerable physics-based controller that leverages conditional adversarial mo-
tion prior to disparate skill embeddings with unified motion phase representation. This
design facilitates the rapid learning of over 100 semantically distinct motor skills by pre-
venting mode collapse and renders the utmost precise control, ensuring a perfect low-level
execution.

• We open-source our versatile humanoid character control policy with accessible various
control APIs, hoping to facilitate the transfer of powerful reasoning models into the hu-
manoid character in physical simulation environments.

To demonstrate the system’s effectiveness, we evaluate our approach to several humanoid tasks, from
rudimentary tasks like navigation and knock-over to reasoning-required tasks like pressure plate
puzzles and escape games. Our framework demonstrates an exceptionally high success rate in task
completion across all tasks. The manipulated humanoid character shows a human-like movement
and commonsensical behavior during tasks, highly consistent with human reasoning and execution.

2 RELATED WORKS

Skill learning while task solving. In some earlier research, the challenge of directing humanoids
to accomplish tasks within a physically constrained environment was addressed by computing the
equations of motion. These approaches regard the defined task as a trajectory optimization problem,
aligning the character’s actions towards the optimization objective. However, since the absence of
a reference motion, the character may render unnatural behaviors. Imitation learning-based meth-
ods ease this problem by assigning certain motion data to instruct the character “How should your
movement be like when doing the task”, which has become an important technique in the domain
of character animation in recent years. Given a reference motion, control policy is expected to con-
trol the character generating an almost identical movement while concurrently solving one specific
task Peng et al. (2022)Peng et al. (2018)Peng et al. (2021). It is implemented by designing both a
motion-tracking reward and a task reward, following the reinforcement learning paradigm to ensure
effective policy training. The subsequent approach introduces adversarial motion prior(AMP) Peng
et al. (2021) for generating style mimic reward, successfully empowering the control policy to learn
unstructured motor skills from a bunch of reference motions and utilize skills to solve a task imul-
taneously.Creswell et al. (2018) Nonetheless, the learned knowledge cannot be transferred to other
tasks, even if the provided reference motions remain consistent with prior tasks, the policy must
relearn both motor skills and tasks from scratch.

Skill learning then task solving. In pursuit of bestowing reusability upon acquired motor skills,
some works are trying to decouple the motor skills learning from the downstream tasks into sep-
arated stages. Predominantly, these approaches Tessler et al. (2023) mainly construct a multi-skill
latent space, where a foundational controller serves as a decoder, perpetually translating sampled
latent into actions. Subsequently, different task-oriented high-level policies reuse the constructed
multi-skill latent space as their action space, manipulating the character to accomplish downstream
tasks, which is a typical architecture of hierarchical reinforcement learning. Peng et al. (2022) em-
ploys an encoder coordinating with AMP to encode the character’s multi-step state transitions into
a spherically constricted latent space. To obtain a more directable low-level control, PADLJuravsky
et al. (2022) and CALM build a semantic latent space wherein each latent represents a distinct skill.
Physics-based VAEWon et al. (2022), in their preliminary stages, trains several motion-tracking
policies for each reference motion and collects a “state-action” trajectory to compress skills to a ver-
satile stochastic latent space via a conditional VAE, ready for being utilized. Like the task outlined
in ”skill learning while task solving”, many such methodologies have tested on tasks such as loca-
tion, strike or Boxing Bag to ascertain their efficacy Peng et al. (2022). Nonetheless, these methods
are devoid of human prior knowledge, and the character still often exhibit behaviors that don’t align
with human decision on intricate tasks. When confronted with more convoluted tasks that require
reasoning, the substantial cost of reward shaping struggles to endow the model with the requisite
logic for correct task execution.

Planing then task solving. The CALM framework Tessler et al. (2023) encompasses modules
for executing skills and precise navigation, utilizing a pre-designed logical finite automaton as
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Figure 2: The overview of Reason to Behave framework, which synergizes large language models
(LLMs) based introspective reasoner with a low-level controller enhanced by motion phase infor-
mation.

the pivotal logic control unit to handle downstream tasks. Despite its proficiency in invoking apt
skill at opportune moments, this paradigm, which is contingent upon pre-established human-created
rules, struggles to achieve generalization across a diverse array of downstream tasks. LLMs? cul-
tivated from an expansive corpus of internet data, are endowed with abundant semantic knowledge,
granting it the aptitude to exhibit human-like cognitive reasoning and decision-making capability.
DoremiGuo et al. (2023) uses LLMs as a high-level control unit, and assists humanoid tasks of box
relocation by continually assessing the box’s state to determine the activation of a “replan” event.
Yet, in the absence of a potent low-level controller, Doremi is relegated to relying on several crafted
scripts of mid-level actions correlated with box transportation, which coordinate three separate poli-
cies to render few skills like stand or move. The scarce skills substantially constrict the LLMs’
potential to showcase their vast worldly knowledge. In domains outside humanoid research, some
works encapsulate LLMs as embodied agentsWei et al. (2022)Wang et al. (2023), substituting hu-
mans in open-world games such as Minecraft. Through the integration of an adeptly designed Inner
Monologue-based planner, such models can adeptly handle a myriad of in-game tasks, proffering
coherent mid-level plans. However, reliance on predefined scripts remains indispensable for each
mid-level action. In our approach, we not only architect an LLMs-based reflective planner but also
construct a powerful low-level controller congruous with the planner, capable of executing a vast
repertoire of semantically distinct skills.

3 METHODS

In this section, we will elaborate on modules in our framework according to the following work-
flow. We first inspect the design details of skill embedding and unified motion phase representation
conditioned low-level controller in subsection 3.1, focusing on its . Next, in subsection 3.2 we walk
through the introspective reasoner and explain how it gradually corrects its logic with continuous
environment feedback. We also briefly describe the self-adjustment stage, an auxiliary procedure to
ensure that humanoid interaction skills can successfully engage with the target object in any state,
empowered by the introspective reasoner.

3.1 LOW-LEVEL CONTROLLER

3.1.1 IMITATION OBJECTIVE BY CONDITIONAL ADVERSARIAL MOTION PRIORS

We propose strong Conditional Adversarial Motion Priors to endow policy with the capability of
performing natural and human-like behavior with more precise control. At each timestep, the control
policy π(at|st, zt, ϕ) takes three essential inputs: the current states st of the whole character body,
one skill embedding z to specify which skill to perform, and a unified motion phase representation
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ϕ to indicate within the current states, the control is expected to execute which stage of the specified
skill z. To achieve this, we first construct a reference motion dataset that contains a variety of
semantically distinct reference motions that represent disparate skills, denoted asm ∈ M. A motion
encoder from a pre-trained MotionCLIP model is applied on M to generate a discrete skill codebook
Z , where each z ∈ Z is the skill embedding of corresponding reference motion in M. We define
a unified reorientation ϕ, to indicate the different stages of one motion, where each stage is defined
as every 30 frames. During training, we make it mandatory for the controller to render appropriate
actions to make the generated motion sequence (s, s′) match both of the specified z and the motion
phase ϕ with the corresponding motion clip m. A discriminator D((s, s′), zt, ϕ) is built, using
conditional adversarial motion priors, as the reward generator to verify control policy’s ability and
guide control policy training. The loss function of the discriminator can be defined as :

LD = EpM(m)

[
− Epm(s,s′,ϕ) [log (D (s, s′, z, ϕ))]

− wDEpπ(s,s′|z,ϕ) [log (1−D (s, s′, z, ϕ))]

− (1− wD)Epm(s,s′,ω(m),ω(ϕ) [log (1−D (s, s′, z, ϕ))]

+ wgpEpm(s,s′,ϕ)

[∥∥∇ψD(ψ, z)|ψ=(s,s′,ϕ)

∥∥2] ]
(1)

It emphasizes the discriminator to recognize the input (s, s′, z, ϕ) whether (s, ss′), z and ϕ is
matched with each other, and whether the collated data is from reference dataset M or is from
the physically simulated humanoid character. The pm (s, s′, ϕ) indicates the probability of a states
transition of a selected reference motion m with its embedding z during stage ϕ, and pπ (s, s′ | z, ϕ)
denotes the probability of a state transition from the policy π with the selected motion embed-
ding z and the motion phase ϕ. We donate ω(x) is a function to randomly re-sample x, then
pm(s, s′, ω(m), ω(ϕ) represents the probability of a situation that for a states transition from a mo-
tion ω(m) and a motion phase ω(ϕ), any one of them fails to match with the others. The final term of
the loss function is a gradient penalty, applied to stabilize the adversarial training. The discriminator
is trained along with the control policy, generating the implicit life-like motor skills learning reward:

rt = −log (1−D(st, st+1, z, ϕ])) . (2)

Both policy and discriminator are expected to not only distinguish the current phase but also com-
prehend the temporal relationships between different phases, we use positional-encoding fashion
representation to encode motion phase information. Furthermore, we add a special phase, denoted
as ϕ∗, which indicates no specific phase information. The purpose of this design is to retain the
policy’s original acute adaptive ability to make the most comfortable action that facilitates smooth
skill switching, as shown in PADL.

The design of incorporating skill embedding with the motion phase into AMP makes it possible for
a more precise motor skill execution. By specifying the target skill embedding with the periodic
increasing motion phase ϕ, the controller is able to manipulate the character to completely execute
the target skill and determine how many times to perform this in a physically simulated environment.
All of these critical attributes ensure a perfect low execution when integrating the controller into our
framework. We further verify these benefits and compare our approach to other low-level controllers
in subsection 4.3.

3.2 INTROSPECTIVE REASONER

The introspective reasoner consists of core components 3.2.1: planner, picker, and programmer. It
internally integrates an advanced trial-and-error-based self-correction mechanism 3.2.3 to align the
world knowledge inside LLMs with physics-based tasks, as shown in Figure 3.

Since LLMs can only read and output text information, we have defined skill APIs and sensor APIs
as interfaces for the introspective reasoner to call the low-level controller, with each item structured
in the form of <name><description>. Based on world knowledge and reasoning from the task
and environmental feedback in text form, the introspective reasoner selects the appropriate APIs to
interact with the low-level controller and the environment.
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Figure 3: The humanoid character, comprising a planner, picker, programmer, and low-level con-
troller, tries to explore the appropriate pressure plates to raise the walls using sensor APIs and skill
APIs, and then pass through. [6.50, 0.50] represents an incorrect pressure plates, while [11.50, 0.50]
denotes the appropriate one.

3.2.1 CORE COMPONENTS

Planner decomposes the initial instruction into a series of sub-goals based on all the skills the
humanoid character has mastered. This process involves high-level task decomposition, enabling
LLMs to gain a preliminary understanding of the task flow.

Picker sifts through the skill APIs and sensor APIs to select the necessary skills required to achieve
those sub-goals, relying on the information provided by the planner for each sub-goal. Considering
LLMs’ hallucinations, we filter out items in the selected APIs not defined in sensor APIs and skill
APIs.

Programmer reads the textual descriptions of the sub-goals provided by the planner and the APIs
selected by the picker to generate an integrated code for the overall task. This code represents a
combination of skills and actions required to complete the plan.

After humans provide the initial instructions for a given task, the planner generates a plan for com-
pleting this instruction. For each stage in the plan, the picker selects the appropriate APIs to execute.
The programmer then generates the code to execute the plan based on the selected skills. If achiev-
ing the initial instruction requires performing other tasks, the introspective reasoner calls the above
process multiple times, gradually achieving the initial instruction.

3.2.2 SKILL ADJUSTMENT

def sweep_leg(self):
# Adjusted skill API

    self.walk_distance(0.76)
    self.turn_degree(-58.16)
    super().sweep_leg()

def sweep_leg(self):
# Original skill API

    super().sweep_leg()

The distance error is 0.76 meters.
Deviated by -58.16 degree.
Reasoner: Adjusting. . . Success, congratulations !

Figure 4: sweep leg() adjustment.

Given LLMs’ limited access to observational data re-
garding the humanoid character’s end effector, the ac-
curacy of skill calls for interacting with objects is com-
promised.

Consequently, we utilize the introspective reasoner to
invoke the low-level controller, adjusting skill APIs
based on feedback from sensor APIs, including angles
and distances. This process ensures precise execution
of low-level actions while showcasing the introspective
reasoner’s capacity for aligning world knowledge with
the physics-based environment. An illustrative example
is shown in Figure 4.
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3.2.3 TRIAL-AND-ERROR-BASED SELF-CORRECTION

Since LLMs can only access textual descriptions, which provide an incomplete representation of the
environment. As a result, the plan and the code generated may not work in one shot.

The trial-and-error-based self-correction, composed of re-plan and re-program mechanism, auto-
matically achieves alignment between LLMs’ world knowledge and physics-based tasks. If the
code execution fails, the programmer will re-program based on error information. If the current
step fails, the planner will re-plans based on environmental feedback. After several rounds of trial-
and-error corrections, the introspective reasoner can align itself with the physics-based environment,
mitigating the effects of hallucinations caused by LLMs.

4 EXPERIMENTS

In this section, we first walk through the quality of our enhanced low-level controller, then we
evaluate the effectiveness of our whole system on several real-world tasks. Finally, we highlight
the significance of the unified motion phase information for the controller, and why skill adjustment
becomes an indispensable component of interactive skills.

4.1 LOW-LEVEL CONTROLLER

Our primary focus of assessment lies in evaluating three distinct capabilities of the controller: 1)its
proficiency in mastering a multitude of semantically distinguishable skills. 2)its capacity to execute
prescribed actions as directed. 3)its ability to swiftly and precisely respond to signals for skill
switching, culminating in the flawless and accurate execution of the next skill.

Dataset: We train our enhanced low-level controller on a processed MoCap dataset, where each
motion clip represents one distinct skill with an average motion length of about 4.2 seconds. The
dataset covers a wide range of human behaviors and skills across various categories, from locomo-
tion skills like run, jump, crawl; to dance movements like jazz, hip-pop dance, ballet; as well as
some sports like breaststroke, pistol squat, weightlifting, warm-up; as well as many acknowledged
challenging or acrobatic skills like jump turn 360 degree, jump spin kick, hook kick, etc, totally of
124 motion clips.

Our controller learns over 100 various skills in high quality: Our results reveal that our con-
troller exhibits the capacity to master an extensive repertoire of over 100 semantically distinct motor
skills in high quality, exquisitely replicating the authenticity and the completeness of the reference
motions. Upon receiving instructions for the execution of specific skills, the controller demonstrates
a remarkable ability to swiftly adjust its posture, seamlessly switching to the designated skill in a
smooth transition. Furthermore, through the incorporation of motion phase information, the con-
troller achieves a high degree of accuracy in performing the next skill from the correct beginning
and has the potential to ensure the completeness of all skills.

Figure 5: Simulated characters demonstrating various skills from top to bottom: left high side kick,
penalty kick, kneel down, pistol squat.
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Figure 6: The simulated character approaches the door, uses the ”kick forward” skill, and kicks the
door open.

4.2 REASONING, BEHAVING WITH INTROSPECTION

A successful framework not only enables the deductive reasoning of logical pathways to accomplish
tasks but also adeptly orchestrates the utilization of the available motor skill library and sensor tools
to fulfill its objectives. Furthermore, The framework should possess the capability for in-context
learning, leveraging feedback and historical interactions to deduce novel execution strategies and
promptly adapt its tactics to resolve the assigned tasks.

Tasks design: We craft a series of tasks aiming to evaluate the task-solving ability of our framework,
from rudimentary task to reasoning-required task: 1) Navigation, the physically simulated character
moves itself to the target position in the map. 2) Knock over, requiring the character to knock down
different columns that appear on the ground. 3) Get off the room, the character is stuck in a room,
he must navigate to the front of the door, and then make the door open to get out. 4)Pressure plate
puzzle, a huge wall blocks the way, the character needs to find the correct plate and then trigger
the wall to lift up and move through this obstacle. 5) Knock that over, there are many columns
in the map with different colors, heights, or shapes. The character should follow the instructions
and figure out which column should be knocked over. 6) Warrior, where the character is in a long,
narrow apartment filled with various obstacles, requiring the character to escape through all the
barriers.

Table 1: Pose error comparison in meters.

Motion Tcycle (s) Ours

Dance 6.10 0.071
Run 1.30 0.076
Walk 1.33 0.062

Walk-Fast 1.93 0.045
Throw 3.90 0.038

Walk-then-Jump 4.70 0.075
Jump-Spin-Kick 2.66 0.064
Spin-Hook-Kick 2.03 0.049
Left-Side-Kick 1.60 0.055

Our approach helps character solve various tasks
in human-like behavior: For all tasks, we use GPT-
4 as our LLMs-based reasoner and adopt the pre-
trained low-level controller, with conditional adver-
sarial motion priors, as the control policy for hu-
manoid character. For rudimentary tasks, such as
navigation, knock over and get off the room, our
framework generally accomplishes correct logical
action sequences in a zero-shot manner. However, it
is still susceptible to potential flaws stemming from
the low-level controller, such as executing “walk”
skill will gradually deviate to the left, potentially
resulting in mission failure. In the subsequent rea-
soning, our methodology introspects itself, leverag-
ing environmental feedback and historical interac-
tions, adding a patch of ”immediate facing direction
checking” into the previous code thought, automatically compensating for the shortcomings of low-
level control. For reasoning required tasks, such as pressure plate puzzle and knock over, our system
successfully discerns the underlying pattern and finishes the tasks. An interesting finding during
the execution of the pressure plate puzzle is that occasionally, the character initially explores the
plate that can trigger the elevation of the wall. However, due to insufficient time, the wall descends
once more. In response, the character proceeds directly toward the identified correct plate without
reiterating the exploration process, then uses running skills to accomplish the task.
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Figure 7: The comparsion of the controllers that miss this crucial information, our control policy is
capable of performing a complete skill, rather than being stuck in a static pose or a loop subsequence
motion of the skill.

4.3 ABLATION ON UNIFIED MOTION PHASE

Control policies trained using AMP suffer mode collapse, leading to the learning of meaningless
static poses or repetitive motion to appease the discriminator at a minimal cost. To address this,
some works enforce the states transition (s, s′) generated by the policy corresponding to specified
skill embedding z. However, for longer reference motion sequences, exceeding 2 seconds in length,
the mode collapse can still persist. Our approach introduces the motion phase information as an
additional supervision. It facilitates the the controller not only to push each state transition distri-
bution to match corresponding to skill embedding but also to memorize the disparate phase feature
of different reference motions. Compared to the controllers that miss this crucial information, our
control policy is capable of performing a complete skill, rather than being stuck in a static pose or a
loop subsequence motion of the skill.

5 CONCLUSION

In this study, we construct a framework that consists of a introspective reasoner with a motion phase
enhanced controller. Our framework leverages the rich world knowledge of a large language model
as a prior, help humanoid to better understand the environment and its own capabilities, enabling it
to accomplish a wide array of tasks. To ensure a prefect low-execution, we design a motion phase
enhanced low-level controller that can specify which skill to execute determine the start time and
repetition count for execution. We hope our work can facilitate to the transfer of powerful reasoning
models like LLMs into the humanoid character in physical simulation environments.
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A APPENDIX

A.1 PHYSICS-BASED CHARACTER CONTROL

Background: Control of physically simulated humanoid characters in non-differentiable virtual
physical environments is challenging. Reinforcement learning plays a pivotal role in enabling these
characters to acquire human-like skills by iteratively refining control policies through trial and er-
ror, such as mimicking reference human motions by imitation learning. Similar to mainstream
approaches, our learning process for controlling strategies is defined as a Markov Decision Process
(MDP) M = ⟨S,A,P,R, γ⟩, comprising states, actions, transition probabilities, rewards, and a
discount factor gamma. At each timestep, the control policy π(at|st, zt, ϕ), parameterized by θ,
calculates an action at based on current state st with other conditions we will explain in section
llc, and applies at in the character. The black-box simulated environment returns the next state
st+1 according to transition probabilities P with a gained reward r. The policy incrementally re-
fines its ability to an impressive controller by maximizing the expected discounted return, where
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pθ(τ) = p(s0)
∏T−1
t=0 p(st+1|st, at)πθ(at|st, zt, ϕ) is probability distribution over the set of all pos-

sible trajectories.

J(θ) = Eτ∼pθ(τ)

[
T∑
t=0

γtrt

]
,

Action and State: The humanoid we used comprises 15 rigid links with articulated joints intercon-
necting them, which collectively construct the entire body. Our control policy π(at|st, zt, ϕ) is a
proportional-derivative controller, where the output at represents the PD target on degree for all rev-
olute joints. The available state of the character consists of the rotation features and relative position
to its root node, all recorded in the local coordinate system. The state also includes the linear and
angular velocities of every rigid link. All rotation features are represented in a 6D vector. At each
timestep, the π(at|st, zt, ϕ) generates at, then interact with the environment and get the next state
st+1. The transition between states is denoted as (s, s′), which also indicates a character’s motion
during this transition.

A.2 SKILL LIST

Skill IDs Skill Name Skill IDs Skill Name Skill IDs Skill Name Skill IDs Skill Name Skill IDs Skill Name

0 Standing on a leg 21 Goalie Throw 41 Swing Spin Back Kick 65 Joyful Jump 86 walk calling
1 Butterfly Stroke 22 Play Golf 42 Shuttle Run 66 Jump High 88 Wave Hip-Hop Dance
2 Shovel 23 Elbow Strike 43 Cheer 67 High Jump Kick 89 Zombie Walk
3 Basketball dribbling 24 Continous Jump 44 Chicken Dance 68 Macarena Dance 90 Warm up Jump
4 Free Stroke 25 Rope Skipping 45 Straight Punch 69 Left High Side Kick 91 Warm up Hand to Foot
5 Walk(slow) 26 Turn Left 46 Crouched Sneaking 70 Left Side Kick(1) 92 Warm up Shoulder
6 Happy Walk 27 Stand 47 Dance(2) 71 Spin Hook Kick 95 Air Squat
7 Push-up 28 Run 48 Dance(3) 72 Move Greet 99 Run Tired
9 Floor Sweep Kick 29 Walk(fast) 50 Dance(4) 74 Spin Around 100 Elbow Attack then Uppercut
10 Crawl(slow) 30 Turn Right 52 Dodge Walk 75 Pointing 102 Left Twice Kick
11 MMA Kick 31 Kick Forward 54 Penalty Kick 76 Pray 103 Kick Soccer Ball
12 Hold Bar Running 32 Walk Backward(fast) 55 Hip-Hop Dance(1) 77 Punch 105 Jog Strafe Left
13 Side Skip 33 Squat 56 Hip-Hop Dance(2) 78 Fast Straight Punch 107 Lazily Push Kick
14 Walk(circle) 34 Walk Backward(slow) 57 Hip-Hop Dance(3) 79 Bruce Lee Kick 110 MMA Roundhouse Kick
15 Twirling 35 Walking Turn 59 liver shot 80 Rumba Dancing 111 Floor Spin
16 Dance(1) 36 Walk Normal 60 Knee Strike 81 Carry thing run 113 Squat on one leg
17 Approach Jump 37 Walk Tiptoe 61 Jump Spin Kick 82 Samba Dancing 114 Upward Kick
18 Throw 38 Spin Jump 180 62 Forward Punch 83 Silly Dancing 115 Putting Down
19 Climb 39 Jump 360 63 Jazz Dancing 84 Stabbing 117 Crawl(fast)
20 Squat 40 Pick Up 64 Jog 85 Swing Dancing 120 weight lifting

Table 2: 100 skills out of all the skills that character has mastered.
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