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Abstract

Classifying white blood cells (leukocytes) in a blood sample is essential for diagnosing the
health condition of a person. Conventionally, this is accomplished in a central clinical
laboratory with trained experts and sophisticated blood cell counter systems. Recently,
there has been an increase in developing machine learning and deep learning techniques
based on blood smear and fluorescent images for this task. In this work, we present an
approach based on multimodal fluorescence and bright-field images of blood samples which
are exposed to excitation wavelengths of different light sources. To this end, we collect a
multimodal (four modalities) dataset of 6,700 white blood cells present in peripheral blood.
Despite the multimodal nature of our dataset, we propose a low complexity ensemble-free
deep learning network for performing leukocyte classification. In our proposed approach,
multiple separated subnetworks of a single network can learn features from modality specific
images. This enables our approach to provide an almost on par classification performance
while having 4x fewer parameters than that of a traditional ensemble system employed for
the same task. Our proposed ensemble-free architecture can achieve an overall accuracy of
96.15% for 5-part differential leukocyte classification while having only 1.3M parameters.
We believe that our proposed approach can also help with developing an efficient point-of-
care (POC) solution for leukocyte classification especially for resource poor environments.
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1. Introduction

A complete blood count (CBC) test is the foremost requirement for diagnosing any health-
related condition of a person (Tkachuk et al., 2007). It is quintessential for doctors to
analyse the blood count results for deducing conditions such as anemia, autoimmune dis-
orders, leukemia, and any other bacterial infections (Walters and Abelson, 1996). A CBC
test of a peripheral blood sample consists of the count of red blood cells (RBCs), white
blood cells (WBCs) and platelets (Theml et al., 2004; George-Gay and Parker, 2003). Of
the above, WBCs are further categorized into five parts: Neutrophils, Lymphocytes, Mono-
cytes, Eosinophils, and Basophils and are responsible to defend body organs and heal any
damage to the biological structures (Blumenreich, 1990). Thus, it is vital for doctors to
know the count of WBCs amongst the different categories to diagnose any specific disease
or underlying health condition.

The usual practice for recognizing the different WBCs in the blood has relied on per-
forming a microscopic examination of the blood smear images by trained experts in this
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field (Bain, 2005). The categorization of different cells is determined based on the distin-
guishing features in the morphological structure, size, cytoplasm, and nucleus of a cell under
a microscope by the naked eye of a trained expert. This makes the process quite tedious
and time-consuming while also being dependent on the human expert’s subjective opinion
and bias and prone to any recording errors (Fuentes-Arderiu and Dot-Bach, 2009). Another
way employs sophisticated instruments such as hemocytometer (Lutz and Dzik, 1993) and
flow cytometry (Bodensteiner, 1989) which provide a high accuracy in the classification of
cells. However, these devices require a prior mixing of several reagents and lysing solutions
with the blood sample and are also bulky and expensive, which are normally operated by
trained professionals only in central clinical laboratories. These methods are not suitable
contenders for Point-of-Care (POC) testing especially in resource poor settings.

Recently, due to the advent of machine learning and deep learning, there has been a rise
in adopting techniques such as Support Vector Machines (SVMs), Multi-layer Perceptrons
(MLPs), Convolutional Neural Networks (CNNs) for classifying the blood cell images. Most
of these methods are based on blood smear microscopic images which provide reach features
about the morphology and structure of the cells but still require manual preparation and
staining of the slides by trained personnel (Ramesh et al., 2012). More recently, the research
community has developed image acquisition of cell images by mixing Acridine Orange (AO)
dye with the blood samples and exposing them to different light source excitation yielding
intense green fluorescence like images (Das et al., 2021). AO dye has a natural affinity for
nucleic acids and thus binds to the WBCs which then show up when excited with a light
source (Melamed et al., 1972; Zheng et al., 2008). The fluorescence based imaging is more
efficient and can be integrated easily into a POC setting compared to the one based on
blood smears (Forcucci et al., 2015). However, fluorescence based imaging also suffers from
phototoxicity and photobleaching, which makes the images less feature rich and thus the
process of distinguishing between different cell types becomes more difficult as compared to
the blood smear images (Ojaghi et al., 2020).

In this work, we develop an approach which is based on the multimodal images from
fluorescence and three different bright-field lights. Relying on multiple modalities comple-
ment each other in enhancing the distinguishing features of different WBC cells. Thus, we
collect a dataset of blood samples exposed to four different light sources at the same time
and capture their excitation images under a microscope. Despite the multimodal nature
of our dataset, we target to analyse these images in an efficient way. To this end, we de-
velop an ensemble-free architecture for processing multimodal images at the same time. In
particular, this work has the following major contributions:

• A multimodal approach to WBC classification based on fluorescence and bright-field
microscopic images.

• A single ensemble-free deep learning network based on multimodal images for efficient
WBC classification.

2. Related Work

Automated WBC Classification - There have been a plethora of methods developed for
automated blood smear image based detection and classification of WBCs. They have var-
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ied from utilizing traditional image based features such as hue, saturation values, connected
component labeling (Cruz et al., 2017), local image descriptors such as Scale-Invariant Fea-
ture Transform (SIFT) (Lopez-Puigdollers et al., 2019) to widely used machine learning
approaches such as Support Vector Machines (SVMs) (Rezatofighi and Soltanian-Zadeh,
2011; Putzu et al., 2014), Multi-layer Perceptrons (MLPs) (Nazlibilek et al., 2014; Su et al.,
2014), Naive Bayes Classifier (Mathur et al., 2013; Prinyakupt and Pluempitiwiriyawej,
2015) and later have moved to deep learning approaches involving CNNs - utilizing pre-
trained Resnets, InceptionNets (Habibzadeh et al., 2013, 2018), custom CNN archtiectures
(Zhao et al., 2017; Shahin et al., 2019; Jiang et al., 2018), dual-stage CNNs (Choi et al.,
2017) and even adapting object detectors and classifier frameworks such as Yolo (Redmon
and Farhadi, 2018), SSD (Liu et al., 2016), Faster RCNN (Ren et al., 2015) for automat-
ically detecting and classifying WBCs in the whole image (Wang et al., 2019; Abas and
Abdulazeez, 2021; Alam and Islam, 2019). Although most of the methods are based on
blood smear images as the input, very recently some fluorescence based imaging methods
have also been developed (Yakimov et al., 2019; Das et al., 2021). The existing work mostly
concentrates on the classification performance and very less notice is being paid to the real-
time feasibility of the models. A comprehensive review about various methods related to
imaging and automated methods for WBC detection and classification is provided (Khamael
et al., 2020).
Efficient Models - Although deep learning models have achieved state-of-the-art perfor-
mance on many image related tasks, popularly adopted network families such as ResNets
(He et al., 2016), DenseNets (Huang et al., 2017), InceptionNet (Szegedy et al., 2015) have
very high number of computational parameters, which makes them unsuitable for imple-
menting them on a low power device. Even the more recently developed lowest version
of EfficientNet (B0) (Tan and Le, 2019) has 5.3M parameters. To solve this problem, the
research community has explored to develop approaches for reducing the complexity of the
deep learning networks and there have been many directions developed in this domain such
as Knowledge Distillation (Gou et al., 2021), Quantization and Pruning (Han et al., 2015;
Liang et al., 2021). These approaches have been fairly successful in making efficient net-
works while maintaining an equivalent performance to that of a highly complex network.

However, all the above developed approaches are targeted at the scenario when a dataset
contains a single modality. For our WBC classification task, we have a unique dataset with
four modalities - one from fluorescence and three from bright-field. As different modalities
have their modality specific distinguishing features, the widely used approach for a mul-
timodal dataset is building an ensemble (Hansen and Salamon, 1990) of modality specific
networks for a better generalization and classification performance. Although ensemble
approaches provide a high performance, they come with a huge added cost of complexity.
Instead, we propose an ensemble-free network for our multimodal dataset.

The developments in the domain of network sparsity and pruning suggest that most
of the network parameters are not utilized and can be pruned away without adversely af-
fecting the performance (Zhu and Gupta, 2017; Frankle and Carbin, 2018). To this end, a
recently proposed architecture trained multiple subnetworks (MIMO) for robust prediction
(Havasi et al., 2020) and achieved significant performance improvement for datasets such as
CIFAR-10, ImageNet. However, this approach is also limited to single modality datasets.
Inspired from the sparse utilization of network parameters and the work from MIMO, we
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propose a multimodal input and multimodal output approach for training modality spe-
cific independent subnetworks of a single deep learning network. Our proposed architecture
treats the independent subnetworks as a combination of a traditional ensemble of modality
specific networks. Thus, it is predicted to give a classification performance on par with
a traditional ensemble while having the complexity of a single network. We explain our
proposed architecture and training strategy in detail in Section 4 of this paper.

The rest of the paper is organized as follows. In Section 3, we give a description of
our multimodal dataset and train test splits. In Section 4, firstly we introduce the baseline
techniques and later we describe our proposed approach and training strategy. Section 5
deals with the experimental results of our proposed approach and benchmarking with the
baseline techniques. Finally, we conclude this work in Section 6.

Figure 1: Overall process of data collection and annotation

3. Multimodal Dataset

We present the overall process of data collection and annotation in Figure 1. Please note
that the colors of the images are for representation only and not the actual colors1. Firstly,
we collect blood samples from a normal person which is then exposed to the three different
bright-field light sources and the resulting three different bright-field images are captured by
a camera module. For the fluorescent image, we then immediately stain the blood sample
with an organic fluorescent stain and expose it to another light source before collecting the
resulting fluorescent image. Thus, we capture four different modality images of a blood
sample. The fluorescence image helps us to locate WBCs easily as they are the only cells

1. The technical details of excitation lights and actual colours will be released once the disclosure has been
filed. Please also note that the artificial colour in the image does not affect the conclusion of this work.
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captured suppressing the RBCs. Thus, we crop all the WBCs in the four different images
which are then annotated and classified into five different categories by a trained pathologist.
In total, our dataset consists of 6,697 WBC images which include 4167 Neutrophil (NEU),
2027 Lymphocyte (LYM), 82 Monocyte (MO), 378 Eosinophil (EOS), and 43 Basophil
(BAS) with the class distribution shown in Figure 2. For training and testing our models,
we split the dataset into 5-fold cross validation with stratified split strategy with the ratio
of 80 (train): 20 (test).

Figure 2: Class distribution amongst WBCs in our dataset

4. Multimodal Networks

In this section, we firstly describe the baseline techniques that we adopt for multimodal
WBC classification. Later, we describe our proposed methodology.
Baseline Techniques - Let us represent {X1, Y }, {X2, Y }, {X3, Y }, and {Xf , Y } as the
multi modal input images and their corresponding WBC cateogory of our dataset repre-
senting Color 1, Color 2, Color 3 and Fluorescence respectively. For creating baselines,
we firstly train the individual networks f(θ1), f(θ2), f(θ3), and f(θf ) which learn distin-
guishing features for modality specific images. As we are targeting low complexity network,
we select ShuffleNetV2 with 1.0x output channels (Ma et al., 2018) as our backbone. We
train the individual networks with the standard cross-entropy loss for 5-class classification
of the WBC cells for each of the four modalities. After training the individual modality
baselines, for extracting the diverse features from the multimodal images, we build an en-
semble of the individually trained modality specific network and average their predictions
after the Softmax layer as shown in Figure 3. The ensemble architecture may achieve a
higher performance but also increases the complexity to 4x of a single network.

Proposed Approach - Based on the previous studies of sparsity and pruning of deep
learning networks, we experiment whether separated subnetworks inside a single network
can be trained to learn the modality specific features. To this end, we develop two ap-
proaches as shown in Figure 4. In Figure 4 (a), we show our first approach, a Multimodal
MIMO (MM-MIMO), where we adapt the original MIMO architecture and suit it for a
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Figure 3: Traditional ensemble approach for our multimodal WBC dataset

multimodal dataset. In our adapted architecture, both the network module and fully con-
nected (linear) layer are a part of ShuffleNetV2, which is the same as an individual modality
specific network baseline except for the input and output channels. Firstly, for the inputs
to the MM-MIMO, modality specific input images {X1, X2, X3, Xf} are sampled indepen-
dently from the four modalities and concatenated to X123f by Equation (1) in the channel
dimension and supplied as the input to our MM-MIMO.

X123f = fconact(X1, X2, X3, Xf ) (1)

Their corresponding WBC labels {Y1, Y2, Y3, Yf} are used as the ground truth when
training. The outputs of MM-MIMO are four modality specific predictions {pθ(Y1|X1),
pθ(Y2|X2), pθ(Y3|X3), pθ(Yf |Xf )} based on the last hidden layer of the network. During
training, the overall loss is the sum of the standard cross entropy loss for each of the four
different modalities, which makes the whole network to classify their matching inputs, thus
creating independent subnetworks within MM-MIMO. As we adopt independent sampling
for each modality, the corresponding subnetwork will learn to ignore other input modalities
to ensure that the modality specific prediction is independent. This way we get the indepen-
dent subnetworks for each modality trained. During the testing phase, the four modality
input images are of the same WBC category and the output predictions are averaged after
the Softmax layer to get the final prediction.

In Figure 4(b), we show our second approach, Head Specific MM-MIMO, where we place
specific heads in the initial and the end part of the MM-MIMO. Our reasoning comes from
the idea that although MM-MIMO will learn independent modality specific subnetworks, the
training of such subnetworks will be much more efficient if the inputs are not concatenated
in the earliest stage and similarly the output heads are separated for training. Thus, in Head
Specific MM-MIMO, we firstly extract the modality-specific feature maps {M1,M2,M3,Mf}
from the inputs {X1, X2, X3, Xf} by using a single CNN block given by Equation (2).

Mi = CONV (Xi) (2)
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Figure 4: Our developed approaches (a): Multimodal MIMO - Adapted MIMO architecture
for multimodal input; (b): Head Specific Multimodal MIMO - Multimodal MIMO
with independent convolution heads and fully connected heads

Later, we concatenate the feature maps of all the four modalities to M123f in the channel
dimension and pass it to a single network. And finally, the end part of Head Specific MM-
MIMO consists of modality specific separated heads with each head made up of one fully
connected (linear) layer that outputs to the number of classes and we train it with the same
strategy of MM-MIMO using corresponding ground truth labels {Y1, Y2, Y3, Yf}. To keep
the Head Specific MM-MIMO efficient, the head specific CNN block is the first CNN block
of the ShuffleNetV2 network and the head specific fully connected layer is the ShuffleNetV2
fully connected layer. The common module of the network is the ShuffleNetV2 network
without its first CNN block.

5. Performance Results

In Table 1, we show the results of the individual network baselines for modality specific
images. Since the fluorescent image has comparatively inferior features, it performs the
worst amongst the four kinds of images. All the networks based on bright-field images
perform better than that of the fluorescent image. We also note that the color3 image is
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the best for leukocyte classification giving the highest accuracy of 95.72%, which is 1.78%
better than that of fluorescent.

Table 1: Comparison of performance and network complexity for modality specific baselines

Light source Accuracy FLOPs Params

Fluorescent 93.94±1.11 147.8M 1.259M

Color1 94.56±0.92 147.8M 1.259M

Color2 94.59±0.50 147.8M 1.259M

Color3 95.72±0.34 147.8M 1.259M

In Table 2, we show the results of our developed multimodal networks. Compared with
the best individual baseline performance (Color3), all the multimodal networks perform
better with the traditional ensemble giving the highest performance. This indicates that
there are some diverse features which can be extracted from multimodal images. Although
Ensemble performs the best, it has 4x times more parameters than that of a single baseline
network. We can note that both our approaches MM-MIMO and Head Specific MM-MIMO
give an increase in classification performance but have almost the same parameters as a
single network. Specifically, for Head Specific MM-MIMO, we achieve 0.43% increase in
accuracy with only 1.75% more parameters compared to a single baseline network.

Table 2: Comparison of performance and network complexity for our multimodal networks

Methods Accuracy FLOPs Params

Ensemble 96.33±0.67 591.2M 5.035M

MM-MIMO (Ours1) 95.97±0.31 172.2M 1.276M

Head Specific MM-MIMO (Ours 2) 96.15±0.56 187.6M 1.281M

6. Conclusion

In this work, we present a novel way of classifying white blood cells (WBCs) based on
multimodal images from fluorescence and bright-field light sources. Specifically, our dataset
has three different bright-field image modalities and a single fluorescence based modality.
We also propose an ensemble-free approach for our multimodal dataset, which attains an
almost on par classification performance to that of a traditional ensemble but only has
the computational complexity to that of a single network. We also develop two different
configurations for the proposed ensemble-free approach, both of which perform better than
the single baseline and have almost the same number of parameters. Our best configuration
can achieve an accuracy of 96.15% with only 1.28M parameters. Thus, we believe that the
proposed framework will also help to realize a Point-of-Care (POC) solution for leukocyte
classification especially in resource poor settings.
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