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Abstract

A multitude of industries depend on accu-001
rate and reasonable tabular data augmentation002
for their business processes. Contemporary003
methodologies in generating tabular data re-004
volve around utilizing Generative Adversarial005
Networks (GAN) or fine-tuning Large Lan-006
guage Models (LLM). However, GAN-based007
approaches are documented to produce sam-008
ples with common-sense errors attributed to009
the absence of external knowledge. On the010
other hand, LLM-based methods exhibit a lim-011
ited capacity to capture the disparities between012
synthesized and actual data distribution due013
to the absence of feedback from a discrimina-014
tor during training. Furthermore, the decoding015
of LLM-based generation introduces gradient016
breakpoints, impeding the backpropagation of017
loss from a discriminator, thereby complicat-018
ing the integration of these two approaches. To019
solve this challenge, we propose using proxi-020
mal policy optimization (PPO) to apply GANs,021
guiding LLMs to enhance the probability dis-022
tribution of tabular features. This approach023
enables the utilization of LLMs as generators024
for GANs in synthesizing tabular data. Our025
experiments demonstrate that PPO leads to an026
approximately 4% improvement in the accu-027
racy of models trained on synthetically gen-028
erated data over state-of-the-art across three029
real-world datasets.030

1 Introduction031

With the evolution of business processes that op-032

erate on structured data, tabular data has emerged033

as one of the most crucial data forms, owing to its034

easily manageable structure and efficient retriev-035

ability (Gilbert, 2022). Industries such as finance036

and healthcare heavily rely on tabular data for its037

clarity and ability to facilitate data analyses and038

comparisons (Shwartz-Ziv and Armon, 2022).039

However, in realistic applications, the availabil-040

ity of high-quality tabular data is still an issue,041

mainly due to high costs of data collection and042

annotation and privacy policies (Jensen and Potts, 043

2004). Therefore, various data augmentation meth- 044

ods have been proposed to overcome the scarcity 045

of high-quality tabular data (Wen et al., 2022; Es- 046

maeilpour et al., 2022). 047

The contemporary augmentation methods pri- 048

marily revolve around rules, variational autoen- 049

coders (VAE), generative adversarial networks, and 050

LLMs (Wei and Zou, 2019; Kingma and Welling, 051

2014; Patki et al., 2016; Bao et al., 2019; Borisov 052

et al., 2023). However, these methods exhibit cru- 053

cial limitations: (1) Rule-based methods rely on 054

predefined constraints, which need manual effort 055

and might not capture the diversity of real-world 056

data (Wei and Zou, 2019). (2) The existing VAE- 057

based and GAN-based approaches primarily focus 058

on matching the distribution of table features rather 059

than whether they are logically coherent (Kingma 060

and Welling, 2014; Patki et al., 2016). For example, 061

they might synthesize a sample with an “Age” of 062

“16” and an “Occupation” of “Professor” (Good- 063

fellow et al., 2014), resulting in implausible in- 064

stances due to the lack of external knowledge (Bao 065

et al., 2019). (3) Fine-tuning a LLM on real-world 066

datasets may not capture the real-time differences 067

in the distribution of features between synthetic and 068

real-world data, thereby diminishing the quality of 069

synthesized data. Furthermore, the generation of 070

tabular features via LLMs is implemented through 071

random sampling of the logits of decoders. How- 072

ever, sampling operations are non-differentiable, 073

making it challenging to incorporate GAN-based 074

methods for optimizing a generator, i.e., the LLM, 075

based on the discriminator’s output. 076

To overcome all of these drawbacks, we propose 077

a method of training PPO-guided Language models 078

for Table Augmentation (P-TA). Specifically, we 079

first transform the tabular data into text using tem- 080

plates. After that, we fine-tune a LLM to generate 081

new data in textual form. Additionally, we train a 082

classifier to distinguish between actual and gener- 083
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ated data, utilizing the outputs of the classifier as084

rewards for further optimizing the LLM through085

the PPO algorithm (Schulman et al., 2017).086

Our methodology offers a distinct advantage:087

PPO-guided LMs can introduce external knowl-088

edge, and extensively explore various potential fea-089

ture combination strategies during training by incor-090

porating GANs, consequently enhancing the likeli-091

hood of producing high-quality synthetic data (Sut-092

ton et al., 1999).093

As an additional study for reasonability, we pro-094

pose to clarify the rationale behind tabular features095

to enhance the credibility of synthetic data by gen-096

erating explanations. Explanations can serve as097

a data auditing tool, specifically for assessing the098

quality of synthesized data. The data auditing, in099

turn, contributes to enhancing the accountability of100

models trained using the synthesized data (Werder101

et al., 2022). We found the textual explanations are102

empirically more helpful for data auditors in assess-103

ing data quality than plain tables (see user study in104

our experiments). We are the first to integrate data105

auditing into tabular augmentation, distinguishing106

our work from previous efforts.107

Our contributions are as follows:108

• We propose P-TA, a novel framework to use109

PPO-guided language models for tabular aug-110

mentation, incorporating GANs to LLMs to111

generate tabular rows.112

• We benchmark our framework with state-of-113

the-art (SOTA) methods on three realistic114

datasets. Training with our synthesized data115

improves the accuracy by 4% compared to116

the SOTA baseline, highlighting the high qual-117

ity and potential impact of our approach in118

practical applications.119

• We are the first to explain tabular data via120

retrieval enhancement. Our user study empiri-121

cally shows that our explanations successfully122

assist users with auditing the generated data.123

2 Related Work124

With the development of databases, diverse sec-125

tors widely use tabular data as an indispensable126

data form (Gilbert, 2022). However, the accessi-127

bility of high-quality tabular data remains a per-128

sistent challenge, which is primarily attributed to129

privacy constraints and the substantial costs in col-130

lection (Jensen and Potts, 2004). These factors131

reflect the critical need to propose reasonable tabu-132

lar synthesizing and auditing technologies.133

2.1 Tabular augmentation 134

In prior work, table augmentation is mainly based 135

on statistics (Kamthe et al., 2021), e.g., the Chow- 136

Liu approximation (Chow and Liu, 1968). Contem- 137

porary approaches leverage heuristic algorithms, 138

with methods based on VAEs (Ma et al., 2020; 139

Darabi and Elor, 2021) or GANs (Choi et al., 2017; 140

Park et al., 2018; Koivu et al., 2020). As rep- 141

resentative approaches, TVAE (Xu et al., 2019) 142

is optimized based on the evidence lower-bound 143

(ELBO). It maps tabular features into a Gaussian 144

distribution in the latent space and generates new 145

data through sampling; CTGAN (Xu et al., 2019) 146

adopts a GAN by conditioning the generation pro- 147

cess solely on a single discrete feature for tabu- 148

lar data; CopulaGAN (Kamthe et al., 2021), the 149

current state-of-the-art approach for GAN-based 150

methods, simplifies the underlying CTGAN by uti- 151

lizing Gaussian copulas. However, due to the lack 152

of external knowledge, these models may generate 153

tables with common-sense errors (Borisov et al., 154

2022). Consequently, we use LLMs as a knowl- 155

edge base to introduce a PPO-guided table gener- 156

ator focusing on plausibility and common-sense 157

knowledge. This makes the advantages of LLMs 158

and GANs to be seamlessly integrated. 159

In the field of generative LLMs, prior to the inte- 160

gration of reinforcement learning, training methods 161

primarily relied on masks (Kenton and Toutanova, 162

2019; Liu et al., 2019; Lewis et al., 2020) and au- 163

toregressive learning (Raffel et al., 2020; Brown 164

et al., 2020). After that, the most advanced LLMs 165

such as InstructGPT (Ouyang et al., 2022) and the 166

family of LLaMA (Meta, 2023; Taori et al., 2023) 167

demonstrated the powerful capabilities of the PPO 168

algorithm mechanism. 169

2.2 Feature interpretation 170

Explainable Artificial Intelligence (XAI) methods 171

have demonstrated their effectiveness in data audit- 172

ing (Zhang et al., 2017). Shapley additive explana- 173

tions (SHAP) Lundberg and Lee (2017); Nohara 174

et al. (2019) quantify the impact of each feature 175

on the model’s output. Ribeiro et al. (2016) sim- 176

ulates complex models by training interpretable 177

models to generate local explanations for specific 178

data points. Gradient-based interpretability models, 179

such as Grad-CAM (Selvaraju et al., 2017), Inte- 180

gratedGrad (Sundararajan et al., 2017), generate 181

heatmaps as explanations by computing gradients. 182

However, these methods emphasize feature at- 183
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Figure 1: Training comprises two steps: 1) building an initial generative policy, 2) training a discriminator to
distinguish the generated samples from ground truth, and updating the generative policy via PPO.

tribution concerning predictive impact but do not184

explain the meaningfulness or plausibility of fea-185

tures in a given context. Therefore, we elucidate186

the reasons behind inference results, aiming to en-187

hance the credibility of our approach to generate188

textual explanations.189

3 Methodology190

Given a table with N rows and M columns, where191

each row represents a sample, and each column192

represents a feature. We denote this table as193

T = (s1, s2, ..., sN ), where the i-th sample row194

is represented as si = (ai1, ai2, ..., aiM ), with aij195

denoting the j-th feature column of this sample.196

Regarding data augmentation, our target is197

to generate a new table, denoted as T ′ =198

(s′1, s
′
2, ..., s

′
K), which contains K synthetic sam-199

ples. The synthetic dataset should exhibit a distri-200

bution that resembles the original dataset T .201

As for data auditing, our target is generating202

textual explanations for the plausibility of a given203

feature value a′ij in an arbitrary new sample s′i.204

3.1 Tabular data augmentation205

In the first step, we expand the tabular data by con-206

verting it into text through a predefined template.207

We then employ a LLM to generate new textual208

samples. Finally, we transform the generated text209

into tabular form via the same template. Figure 1210

demonstrates the training pipeline.211

Transforming tabular data into textual data.212

We employed an effective transformation template213

of “[Feature] is [Value]” (Borisov et al., 2023;214

Zhang et al., 2023). Here, [Feature] represents215

a specific feature name in a sample, and [Value] de-216

notes the corresponding value. By connecting short217

phrases associated with all features using commas, 218

we construct a sentence describing a sample. 219

Training We initiate fine-tuning a LLM ϕ on 220

these sentences. The LLM is treated as the gener- 221

ator of a GAN and a knowledge base to mitigate 222

the logical and semantic inconsistencies or con- 223

flicts among the generated features (Heinzerling 224

and Inui, 2021). Our objective is to enable the LLM 225

to emulate the underlying distribution patterns of 226

the feature values and minimize the generative per- 227

plexity, as shown in Eq. (1): 228

LLLM(ϕ) = −
∑
i

log p(wLLM
i = wi|ci;ϕ), (1) 229

where ci is the context of a target word wi. wLLM
i 230

is the corresponding prediction of the LLM. 231

We then generate new samples by sampling from 232

the logits of LLM ϕ. The probability of generat- 233

ing the i-th token wi as w ∈ V is then given by 234

Pϕ(w|w1:i), where V represents the vocabulary. To 235

encourage the LLM to generate diverse samples, 236

we utilize a temperature function (Ackley et al., 237

1985) with a small τ : 238

P ′
ϕ(wi) =

Pϕ(w|w1:i)
1/τ∑

w′∈V Pϕ(w′|w1:i)1/τ
. (2) 239

To prevent text degeneration, we employ the top-p 240

sampling (Holtzman et al., 2020) and sample token 241

wi according to probability distribution P ′′
ϕ : 242

P ′′
ϕ (wi) =

{
P ′
ϕ(wi)/

∑
w′∈Vp

P ′
ϕ(w

′) if wi ∈ Vp

0 otherwise,
(3) 243

where top-p vocabulary Vp is the smallest set such 244

that:
∑

wi∈vp P (wi|w1:i−1) ≥ p. 245

3



Finally, we repeat the sampling and utilize the246

mentioned template to transform generated sen-247

tences back into tabular rows to obtain T ′.248

However, the missing or complex irregular de-249

pendencies between attributes in tables (Borisov250

et al., 2022) can lead to model biases and re-251

duced robustness. Since GAN-based methods have252

proven to excel in generating text with given fea-253

tures (Yu et al., 2017), we employ the PPO algo-254

rithm to optimize the performance of the fine-tuned255

LLM (Ouyang et al., 2022) by incorporating it as256

the generator within a GAN.257

In particular, we train a classifier θ to distin-258

guish between synthetic data labeled as ys and real259

data labeled as yr. Here, θ is trained using a focal260

loss (Lin et al., 2020) to mitigate potential issues261

related to class imbalance. Then, we calculate the262

reward of a generated sample s′ via the classifier θ:263

Rθ(s
′) = P (y′ = yr|s′; θ), (4)264

where the reward value is the probability that y′ is265

classified as actual data by the classifier θ.266

We then employ PPO to increase the probabil-267

ity of generating sentences with high reward val-268

ues, which theoretically leads to a closer alignment269

between generated and original data distributions.270

The objective function for model output s′ consists271

of two components: the score Rθ(s
′) computed by272

the reward model and the KL divergence between273

the generative policy and the sampling policy, i.e.,274

an orininal copy of the generative policy (Ouyang275

et al., 2022). Hence, the goal is to maximize:276

Es′∈T ′ [Rθ(s
′)− β log(PRL(s′;ϕ)/P SFT(s′))],

(5)277

β is the weight coefficient, PRL(s′) and P SFT(s′)278

are the probability related to the generative policy279

and the sampling policy for s′, respectively.280

Here, we have two training objectives for the gen-281

erator: (1) maximizing reward values by aligning282

distributions of synthetic data and actual data, and283

(2) minimizing the Kullback–Leibler divergence284

between the generation policy and the sampling285

policy.286

Finally, we iterate through the training process287

until the GAN, i.e., the generator ϕ and the classi-288

fier θ, reaches a Nash equilibrium (Nash, 1950).289

3.2 Data auditing290
We aim to enhance the plausibility of our model291

by explaining and providing reasons for the gener-292

ated feature values. On the one hand, reading these293

Algorithm 1 Feature Interpretation Algorithm.

1: Input: A generated tabular row s′ =
(a′1, a

′
2, ..., a

′
M ), with the j-th feature value

a′j to be explained; The original dataset T =
(s1, s2, ..., sN ).

2: Output: A textual explanation for why aij is
reasonable in context s′i.

3: # Generate textual descriptions.

4: Use prompt learning to transform s′ and all
si ∈ T into their textual descriptions d′ and
(d1, d2, ..., dN ).

5: # Retrieve descriptions using the augmented strategy.

6: Retrieve k most similar descriptions
(d1̂, ..., dk̂) to d′ from (d1, d2, ..., dN ).

7: # Generate explanations based on descriptions.

8: Generate explanation using (d1̂, ..., dk̂) and d′.

explanations can enhance the transparency of table 294

synthesis techniques for users. On the other hand, 295

when this technology is applied to real-world data, 296

it allows table users to assess the quality of tables 297

without direct access to the table contents, thus 298

ensuring data privacy in theory. We first describe 299

each tabular row as a paragraph that rephrases all its 300

features into text via a LLM. Then, the interpreter 301

reads and compares these textual descriptions of 302

the original samples to explain the reasons behind 303

the presence of a particular value for a given fea- 304

ture. Algorithm 1 presents the steps towards such a 305

plausibility-related interpretation. 306

Generation of textual descriptions. We first 307

convert a table row into a sentence using the tem- 308

plate described in Section 3.1, then fill it into a 309

prompt template, e.g., “Please describe a person 310

with the following features.” Following our instruc- 311

tions, the interpreter pre-processes the templates 312

into descriptions before generating the explanation. 313

Pre-processing tabular rows to descriptions for 314

explanation holds three theoretical advantages: 315

First, the LLM naturally incorporates additional 316

information. For instance, for an individual with 317

the job title “professor” age ranges between 0 and 318

25 years are less plausible, while a “busy schedule” 319

may be quite likely. Therefore, these supplemen- 320

tary details can aid the interpreter in inferring more 321

profound and intricate underlying reasons. Sec- 322

ondly, the tabular features always contain numer- 323

ous abbreviations, many needing to be more readily 324

understandable by language models and individu- 325

als who need domain expertise. By using a LLM 326
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Travel Customers https://www.kaggle.com/datasets/tejashvi14/tour-travels-customer-churn-prediction
Adult Income https://archive.ics.uci.edu/dataset/2/adult
HELOC https://kaggle.com/datasets/averkiyoliabev/home-equity-line-of-creditheloc

Table 1: The real-world datasets used in our study.

to convert them into text descriptions, they should327

be more comprehensible. Thirdly, (Dai and Callan,328

2019) has demonstrated that using descriptive text329

outperforms using keywords (such as tabular fea-330

ture values) in information retrieval tasks, which331

serves as empirical support for our discussion in332

the next paragraph.333

Retrieval augmented generation. When ex-334

plaining a generated feature value, we retrieve335

similar samples corresponding to a target sample336

as comparative data to our interpreter, an LLM.337

The advantage of retrieval lies in providing the338

interpreter model with comparative information,339

thereby preventing incorrect or incomplete analy-340

sis. For instance, if two individuals who are other-341

wise identical except for age receive different levels342

of “income”, the interpreter can theoretically infer343

that age is the most significant factor causing the344

disparity in the “income” feature.345

To retrieve similar samples, we compare two346

samples by comparing the semantic similarity of347

their descriptive texts. Specifically, we employ a348

LLM that has been fine-tuned on semantic simi-349

larity tasks to embed the descriptive texts corre-350

sponding to two samples separately. After that, we351

calculate the cosine similarity between the embed-352

dings as a measure of sample similarity. Finally,353

the top k most similar samples retrieved are input354

into the interpreter for explanation.355

4 Experiments356

4.1 Datasets357

We use three real-world datasets for evaluation by358

following (Borisov et al., 2023). The data we uti-359

lize can be directly downloaded from the internet,360

as shown in Table 1. The dataset Travel encom-361

passes information about travel customers aimed at362

aiding a travel company in computing its churn363

rate. We utilize the “Target” feature, denoting364

customer attrition, as both the classification label365

and the feature to be audited. Adult Income con-366

sists of records from the 1994 Census database. It367

comprises 48,842 instances and 14 attributes. We368

treated the “Income” feature, denoting the annual369

income of specific individuals, as both the classifi-370

cation label and the feature to be audited. HELOC 371

dataset comprises 10,460 samples, each with 24 372

features related to anonymized information about 373

home equity line of credit (HELOC) applications 374

made by real homeowners. We regard the “RiskPer- 375

formance” feature as the classification label and the 376

feature to be audited. 377

For evaluation, we generate 10,000 synthetic 378

samples from Adult Income and HELOC and 1,000 379

synthetic samples from Travel Customers due to 380

the relatively low data size and feature count in the 381

latter dataset. 382

4.2 Automatic metrics 383

Accuracy. Following prior work (Borisov et al., 384

2023), we first conduct training using the origi- 385

nal data on three classifiers: logistic regression 386

(LR) (Cox, 1958), decision trees (DT) (Breiman 387

et al., 1984), and random forests (RF) (Liaw et al., 388

2002). The training involve inputting the feature 389

vectors of original samples into these classifiers 390

and making predictions of the target feature. Sub- 391

sequently, we supply the feature vectors of the gen- 392

erated samples as test samples to these classifiers 393

and observe whether the predicted values by the 394

classifiers match the generated values of the tar- 395

get variable. The closer the predictive accuracy 396

remains to the original accuracy, i.e., accuracy on 397

the original dataset, the more similar the distribu- 398

tion of the test dataset, i.e., the generated data, is 399

to the distribution of the original dataset. 400

Discriminator measure. We use the accuracy of 401

a classifier trained to distinguish between original 402

and synthetic data to measure the performance of 403

our generation approach. High-quality synthetic 404

data should render the trained classifier incapable 405

of accurately categorizing whether the data is syn- 406

thetic or not. 407

To mitigate information leakage, we use a Kernel 408

Support Vector Machine (VN, 2005), contrasting to 409

the neural network-based classifier used in training. 410

Jaccard Coefficient. It is a statistical metric 411

employed to quantify the similarity between two 412

sets (Niwattanakul et al., 2013). We compute the 413

Jaccard coefficient between the feature sets of a 414
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Dataset Original TVAE CopulaGAN CTGAN Neo + GReaT GPT-2 + GReaT Neo + Ours GPT-2 + Ours

Travel

LR ↑ 84.29% 80.64% 74.23% 75.12% 74.82% 79.11% 80.95% 82.22%
DT ↑ 86.91% 80.90% 75.61% 73.30% 72.73% 74.68% 74.81% 80.14%
RF ↑ 87.43% 80.92% 74.23% 72.23% 75.04% 75.31% 69.05% 81.53%
Mean 86.21% 81.01% 74.69% 73.55% 74.19% 76.37% 74.94% 81.30%

Adult Income

LR ↑ 80.55% 77.45% 76.79% 79.58% 76.49% 75.69% 76.56% 76.27%
DT ↑ 82.36% 79.60% 72.44% 78.50% 73.10% 73.17% 79.67% 73.27%
RF ↑ 85.81% 79.60% 77.46% 79.63% 80.38% 79.79% 80.44% 79.82%
Mean 82.91% 78.88% 75.56% 79.24% 76.66% 76.22% 78.89% 76.45%

HELOC

LR ↑ 69.79% 61.04% 42.03% 57.72% 64.39% 52.44% 75.65% 51.64%
DT ↑ 62.00% 66.39% 42.36% 61.34% 60.16% 56.51% 55.03% 57.14%
RF ↑ 70.12% 67.24% 42.35% 62.35% 71.20% 62.80% 77.83% 66.70%
Mean 67.30% 64.89% 42.25% 60.47% 65.25% 57.25% 69.50% 58.49%

Table 2: Accuracy measure. LR, DT, and RF stand for Logistic Regression, Decision Tree, and Random Forest,
respectively. Bold indicates the best performance, and underline indicates the second best in terms of being closest
to the accuracy on the original data.

CopulaGAN CTGAN TVAE Neo + GReaT GPT-2 + GReaT Neo + Ours GPT-2 + Ours
Travel ↓ 97.58% 92.13% 91.26% 98.05% 98.04% 96.15% 96.26%
Adult Income ↓ 88.47% 87.65% 96.92% 82.98% 82.73% 82.51% 82.73%
HELOC ↓ 98.61% 100.00% 99.97% 92.79% 91.50% 86.80% 89.13%
Mean ↓ 94.89% 93.26% 95.85% 91.27% 90.76% 88.49% 89.37%

Table 3: Discriminator measure. We use decreased accuracy values to check whether the data generated cannot be
easily distinguished apart from the original data.

synthetic sample and the sample in the original415

dataset with the maximum feature overlap for that416

synthetic sample. A larger Jaccard coefficient indi-417

cates a closer similarity between the feature value418

distributions of synthetic data and the original data.419

4.3 Human evaluation420

We conduct data audits with human subjects by pre-421

senting them explanations generated by our model.422

Feedback from the pilot study indicates that audit-423

ing the HELOC dataset requires strong financial424

knowledge. Therefore, we conduct data audits on425

two datasets, Adult Income and Travel, for high-426

quality human evaluation. On each dataset, ten427

randomly selected samples are shown. For expla-428

nation quality assessment, human users rate the429

quality regarding reasonableness, relevance, clar-430

ity, and comprehensiveness within a 7-point Lik-431

ert scale (Likert, 1932). Contrastively, we apply432

SHAP to generate numerical explanations. We433

asked all participants to indicate their preference434

for encountering either textual or quantified numer-435

ical explanations.436

5 Results437

5.1 Analysis for automatic evaluation438

Table 2 illustrates the accuracy tests conducted439

on data generated by our approach, where our440

model outperforms baselines across three distinct441

datasets. Specifically, on the Adult Income dataset, 442

our model achieves a considerable increase (of 4 443

percent points) in terms of accuracy, clearly sur- 444

passing the state-of-the-art methods. Similarly, our 445

approach surpasses the baseline by 2% points on 446

the HELOC dataset. In the case of the smaller-scale 447

Travel dataset, our PPO techniques lead to a re- 448

markable increase of 5% points. However, the per- 449

formance of all the models on the HELOC dataset 450

is lower. This should be attributed to the relatively 451

high number of features in HELOC, not all cor- 452

related with the target feature being predicted. A 453

substantial amount of redundant information from 454

the multitude of features can potentially interfere 455

with the predictions of these models. 456

In Table 3, it is observed that our method out- 457

performs the baselines in terms of decreasing a dis- 458

criminator’s ability to discriminate between real 459

and synthetic samples across all three datasets. 460

Even in comparison to the best performing baseline 461

(GPT-2 + GReaT), a reduction of over 2% points of 462

the mean discrimination measure can be observed. 463

In comparison with CopulaGAN or TVAE, the re- 464

duction is even more impressive (with over 6% and 465

7% points, respectively). This is an important ad- 466

vantage of our method, especially for practical ap- 467

plications, where a high reliability of synthesizers 468

is needed. We attribute this to the close resem- 469

blance of the data generated by our approach to the 470

original data distribution, rendering it challenging 471
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Ours SHAP
Dataset REA. COM. CLA. REL. Mean REA. COM. CLA. REL. Mean
Travel 4.29±0.19 4.32±0.19 4.87±0.18 4.37±0.20 4.46 3.69±0.21 3.93±0.21 3.11±0.24 4.26±0.22 3.75
Adult 4.26±0.20 4.00±0.22 5.10±0.17 4.22±0.20 4.40 3.64±0.20 4.17±0.21 3.14±0.23 3.74±0.20 3.67
Mean 4.28 4.27 4.99 4.19 4.43 3.67 3.84 3.13 4.22 3.71

Table 4: Human auditing results with 0.95 confidence interval, where “REA.” represents reasonableness, “COM.”
represents comprehensive, “CLA.” represents clarity, “REL.” represents relevance.

Figure 2: Jaccard Coefficient between generated and original samples in the training set. (Scaled by the factor of
100 for a clear view.)

for the discriminator to accurately distinguish be-472

tween them. However, our method performs less473

effectively than TVAE on the Travel dataset. We474

hypothesize that when the number of tabular fea-475

tures is limited, TVAE exhibits similar or more476

effective data-fitting capabilities than LLMs.477

5.2 Analysis for human evaluation478

In the user study, we recruited 30 participants us-479

ing online recruitment platform Prolific 1. We re-480

quired the participants to be fluent in English. Each481

participant was compensated with a payment of482

£6 for participation in the user study (within 40483

minutes). As shown in Table 4, we observe that484

the explanations generated by our system receive485

positive evaluations (scores > 3.5) across all eval-486

uation dimensions for both datasets. Compared to487

numerical SHAP explanations, our explanations488

achieve higher scores in clarity (CLA), reasonable-489

ness (REA) and comprehensiveness (COM), which490

contributes to a 19.4% improvement in the mean491

score. These results indicate the high quality of our492

explanations. Notably, 80% and 77.33% of individ-493

uals prefer our explanations for auditing the data to494

numerical explanations of SHAP in the Adult and495

Travel datasets, respectively.496

When examining the REA score on each sample,497

there are samples that are not reasonable. For in-498

stance, in the Adult dataset, the example presented499

in Table 6 receives the lowest REA score. The syn-500

thetic data in this case indicates that corresponding501

adults have an income of ”≥50K.” However, all502

three binary classifiers trained for accuracy clas-503

1https://www.prolific.com/

sify this example as ”<50K,” indicating that the 504

example is an erroneous synthetic sample. Our 505

users quickly identify logical errors by reading the 506

explanation we provide. 507

REA COM CLA REL
SVM. 0.64 0.63 0.49 0.5

Table 7: Pearson correlation coefficient between human
and automatic evaluation by an SVM model. All results
yield p-value < 0.05.

To confirm that humans can effectively utilize 508

our explanations to identify flaws in generated data 509

that could impact classifier training, we calculate 510

Pearson correlation coefficients among human eval- 511

uation metrics to the automatic evaluation by an 512

SVM, which is the probability of a given sample 513

being classified to that class. From Table. 7, we ob- 514

serve positive correlations, indicating that human 515

and automatic evaluation of data quality exhibit 516

consistency. This demonstrates that, by reading 517

explanations generated by LLMs, people can as- 518

sess the quality of tables without direct access to 519

the table contents, effectively preserving privacy 520

of critical, person-related information. Notably, a 521

robust correlation is found between the REA and 522

ACC metrics, highlighting the power of our expla- 523

nations in data auditing. 524

5.3 Analysis for ablation experiment 525

In the augmentation task, as depicted in Fig. 2, we 526

observe that PPO can further enhance the similarity 527

of generated data to the original data distribution. 528

This optimization benefits training on relatively 529
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Travel
Synthetic data age:49, workclass:Private, ... education:HS-grad, educational-num:9, marital-

status:Married-civ-spouse, occupation:Craft-repair, ..., income:>50K

User User’s question Explain the reason why the person has an income over 50K.

Ours Explanation ... his educational background may have contributed to his ability to negotiate
better pay and benefits packages ... given his marriage to someone with
similar socioeconomic characteristics, such as being HS-grad and married ...
increasing their joint income potential ...

Table 5: Data audit using our explanation on Adult Income Dataset. Blue text represents the main reason in the
explanation. Please refer to appendix E for the full explanation.

Travel
Synthetic data Age:30, ..., IncomeClass:Middle Income, ServicesOpted:2, AccountSynced-

ToSocialMedia:No, BookedHotel:Yes

User User’s question Explain the reason why the person hasn’t churned.

Baseline w/o. similar samples re-
trieved

... because they have booked a hotel, which indicates that they are still
interested in the services offered ... their age falls within the middle income
class ... It also does not appear that this customer is a frequent flyer or syncs
their account to social media, both of which could potentially indicate higher
levels of engagement with the company.

Ours with similar samples re-
trieved

... because they have engaged positively by choosing two services ... which
indicates some level of satisfaction ... despite not syncing their account with
social media platforms, they have still managed to book a hotel ... indicating
that the company’s offerings meet their needs satisfactorily.

Table 6: Comparison of generated explanation on the Travel Dataset. Blue text represents key-points in explanations.
Red text represents unreasonable explanations. Please refer to appendix E for more details.

large datasets, for instance, on the Adult and HE-530

LOC datasets, it improves the Jaccard similarity co-531

efficient by 4% and 7%, respectively Additionally,532

we observe consistency in the performance of the533

two models in Fig. 2. Specifically, GPT-2 achieves534

higher performance on the Travel dataset, while535

GPT-Neo exhibites higher scores on the Adult and536

HELOC datasets. We hypothesize that this might537

be attributed to GPT-Neo’s superior aptitude in han-538

dling longer tabular texts. The diversity in the train-539

ing data for GPT-Neo may enhance its capability540

to capture textual features in longer documents.541

Table 6 demonstrates the advantage of our pro-542

posed retrieval strategy. In this example, due to the543

absence of comparative information, the baseline544

confuses age and income in assessing the impact545

on user retention. Furthermore, we observe logi-546

cal errors in explanations, such as treating "not a547

frequent flyer" as a positive factor. In contrast, our548

model analyzes all potential factors.549

6 Conclusion550

Our research tackles critical challenges in tabular551

data usage, focusing on integrating language mod-552

els into generative adversarial networks for data553

augmentation. Specifically, 1) Proximal Policy Op-554

timization can leverage a discriminator’s outputs555

to optimize a language model’s generation strategy,556

thereby effectively leading to a substantial boost in 557

the plausibility of generated data. 2) We success- 558

fully generated explanations for synthetic tabular 559

features to assist data audits. Human evaluations 560

highlight the clarity and the power of our explana- 561

tions generated for data audits. These contributions 562

could transform how industries obtain and audit 563

tabular data, facilitating more informed decision- 564

making and refined data-driven processes. 565
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A Ethics Statement851

In the human evaluation phase, the individuals par-852

ticipating in the evaluation are anonymous to the853

authors of this paper. We pay them with the lo-854

cal standards and legal requirements. Furthermore,855

participants will only receive information about856

the data generated and the research questions men- 857

tioned above. We ensured that all participants com- 858

prehended the content of the task and agreed to 859

participate in the manual evaluation. 860

Regarding model usage, we have obtained offi- 861

cial approval from Meta to use LLaMA 2. Addition- 862

ally, the Vicuna-1.5 model is an open-source sup- 863

plementary model built upon the existing weights 864

of LLaMA 2. 865

B Additional Experiments and Results 866

We employ the following metrics for implement 867

additional experiments: 868

Average negative log-likelihood metric. The 869

generated data is expected to conform to the dis- 870

tribution of the training data. Following (Borisov 871

et al., 2023), we calculated the Log-likelihood of 872

synthetic data samples on a density model derived 873

from the original data (Lsyn) and of the original 874

test data on the model derived from the synthetic 875

data (Ltest) using a Gaussian Mixture Model for 876

10,000 samples generated on the Adult Income 877

and HELOC datasets. As depicted in Table 8, our 878

method demonstrates comparability with the state 879

of the art (SOTA). Furthermore, we observed su- 880

perior performance beyond the baseline concern- 881

ing Lsyn, although our approach exhibited slightly 882

inferior performance compared to the baseline in 883

terms of Ltest. Our analysis indicates that the PPO 884

algorithm encounters challenges associated with 885

overfitting in more prevalent data modes. Nev- 886

ertheless, the adverse effects induced by PPO are 887

relatively constrained, given its potential for a more 888

pronounced enhancement in other utilized metrics. 889

Adult HELOC
Models Lsyn Ltest Lsyn Ltest

Identity -13.852 -13.852 -55.672 -55.672
CTGAN -11.221 -21.822 -62.584 -97.382
GReaT-2 -10.706 -23.684 -61.600 -127.006
GReaT-Neo -10.656 -26.054 -60.363 -134.411
Ours-2 -10.630 -24.095 -59.126 -135.449
Ours-Neo -10.484 -28.433 -58.260 -147.703

Table 8: Average log-likelihood of synthetic and orig-
inal data. We calculate them by using density models
obtained from the original data (Lsyn) and the synthetic
data (Ltest), respectively.

KL divergence. It quantifies the difference be- 890

tween two probability distributions (Kullback and 891

Leibler, 1951). As most of the feature values in 892

11

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://openreview.net/forum?id=BEhxCh4dvW5
https://openreview.net/forum?id=BEhxCh4dvW5
https://openreview.net/forum?id=BEhxCh4dvW5
https://api.semanticscholar.org/CorpusID:9333065
https://api.semanticscholar.org/CorpusID:9333065
https://api.semanticscholar.org/CorpusID:9333065
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685


tabular data are not of numeric type and have rel-893

atively small value ranges, making visualization894

challenging, we select to visualize and calculate895

the KL divergence only for the distributions of “ed-896

ucation years”, “weekly working hours”, and “age”897

in the Adult Income dataset.898

Regarding consistency of our human evaluation,899

we computed Fleiss’s Kappa for the scorings of900

reasonableness, relevance, clarity, and comprehen-901

siveness, resulting in values of 0.16, 0.16, 0.21, and902

0.15, respectively. Furthermore, for the Travel and903

Adult datasets, Fleiss’s Kappa yielded values of904

0.18 and 0.17, respectively. Since all the values are905

positive, we conclude that the participants exhib-906

ited consistency in their evaluations, thus affirming907

the reliability of human evaluation.908

The Pearson correlation coefficient As a sup-909

plementary description to the Table 7, we present910

a heatmap illustrating the correlation coefficients911

between human evaluations and automated assess-912

ment metrics.

Figure 3: The Pearson correlation coefficient between
manual and automatic metrics. "ACC." is the probability
of a given sample being classified as reasonable by an
SVM. The p-value of significance is 0.05.

913

Repetition rate. It represents the proportion of914

duplicated instances in the generated samples com-915

pared to all generated samples. A well-performing916

system should exhibit a lower degree of replication.917

Area Under the Curve (AUC). AUC is the area918

under the receiver operating characteristic curve.919

We use it to evaluate our model and the baseline to920

provide a comprehensive performance evaluation.921

In terms of the performance of the binary clas-922

sifier (less than 2%) trained on synthetic data, Ta-923

ble 9 illustrates that the data generated by our pol- 924

icy is similar to that of the baseline. However, it 925

is worth noting that our model substantially im- 926

proved the AUC metric of LR by over 30% on the 927

Adult dataset, demonstrating the enhanced distri- 928

butional consistency of our synthetic data, thereby 929

enabling better applicability of the linear model. 930

Furthermore, as the number of tabular features in- 931

creased, the synthetic data generated by both meth- 932

ods tended to be more similar to the original data. 933

It implies that language model-based table gen- 934

eration methods can exhibit advanced simulating 935

capabilities when features are sufficient. 936

Considering the consistency of label distribu- 937

tions between synthetic and actual data, we first 938

computed the KL divergence between the label 939

distributions of synthetic data for testing and the 940

original dataset. For the Adult dataset, the mean 941

KL divergence was 0.01 ± 0.02 and a maximum 942

value of 0.04. For the Travel dataset, the mean KL 943

divergence was 0.02 ± 0.02 and a maximum value 944

of 0.03. For the HELOC dataset, the mean KL di- 945

vergence was 0.01 ± 0.01 and a maximum value 946

of 0.03. Since the KL divergences between the 947

label distributions of all synthetic datasets and the 948

original dataset were less than 0.05, we conclude 949

that the label distribution of the testing dataset is 950

similar to that of the actual data. 951

The results presented in Table 10 demonstrate 952

that PPO does not significantly increase the repli- 953

cation rate (less than 1%). We observed that for 954

Adult Income and HELOC datasets, our method 955

seldom generates results identical to those in the 956

original dataset. However, for the Travel dataset, 957

given its mere seven features, with four having a bi- 958

nary domain, replication in the generation process 959

unavoidably occurs. 960

C Implementation Details 961

Device Server A Server B
Memory 13G 1012G
CPU Intel Core AMD

i5-1135G7 EPYC 7763
2.40G Hz 2.45G Hz

GPU NVIDIA NVIDIA
Tesla T4 16G A100 80G

Operating Ubuntu Ubuntu
System 18.04.6 LTS 20.04.6 LTS

Table 12: Experimental hardware environment.
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Dataset Travel Adult Income HELOC
Model LR ↑ DT ↑ RF ↑ Mean ↑ LR ↑ DT ↑ RF ↑ Mean ↑ LR ↑ DT ↑ RF ↑ Mean ↑
Original 0.85 0.87 0.95 0.89 0.58 0.76 0.91 0.75 0.76 0.62 0.78 0.72
GPT-Neo + GReaT 0.76 0.68 0.72 0.72 0.54 0.70 0.86 0.70 0.66 0.60 0.78 0.68
GPT-2 + GReaT 0.69 0.65 0.68 0.67 0.54 0.70 0.86 0.70 0.54 0.57 0.68 0.60
GPT-Neo + Ours 0.61 0.79 0.66 0.69 0.87 0.71 0.87 0.82 0.64 0.57 0.77 0.66
GPT-2 + Ours 0.62 0.73 0.63 0.66 0.57 0.68 0.82 0.69 0.54 0.57 0.72 0.61

Table 9: AUC of classifiers trained with synthesized data using different models (listed on the left) on three datasets.

Datasets Travel Adult Income HELOC
Original 53.14% 0.11% 5.61%
Neo + GReaT 16.00% 0.01% 0.00%
GPT-2 + GReaT 22.25% 0.00% 0.00%
GPT-Neo + Ours 16.00% 0.01% 0.00%
GPT-2 + Ours 22.67% 0.00% 0.00%

Table 10: Repetition rate (with top-p of 0.9 and temper-
ature of 0.9 in decoding).

For the experimental setup, we utilized two servers.962

All work related to the significant language model963

mentioned in our paper was conducted on Server964

B. Details of the experimental environment are pro-965

vided in Table 12.966

We employed the standard GPT-2 (Radford967

et al., 2019) with 1.5 billion parameters and GPT-968

Neo (Black et al., 2021) with 1.3 billion param-969

eters models as generators and a self-attention-970

based Convolutional Neural Network (CNN) (Le-971

cun et al., 1998). The CNN has 32 convolutional972

kernels, eight attention heads, and 512 neurons in973

the attention layer (Vaswani et al., 2017).974

For the interpretability task, we randomly se-975

lected 100 samples from the test set for explana-976

tion and human evaluation. The LLM and inter-977

preter used for describing samples were Vicuna-978

v1.5 (Zheng et al., 2023), fine-tuned on LLaMA979

2 (Meta, 2023). The model used for computing980

semantic similarity between descriptive texts was981

Sentence-Bert (Reimers and Gurevych, 2019).982

During training, we utilized the optimizer of983

AdamW (Loshchilov and Hutter, 2018) with a984

learning rate of 1e-4 and a batch size of 16. During985

inference, the maximum generation length was 300,986

top-p (Holtzman et al., 2020) was 0.9, temperature987

was 0.7, and repetition penalty coefficient was 1.2.988

The set of prompts we used for explanations is989

presented in Table 11.990

Regarding the questionnaires used, we posed the991

following four statements for each sample evalu-992

ated:993

(reasonableness) The model explanation exhibits994

minimal logical errors and represents rational in- 995

terpretations of the question. 996

(relevance) The model explanation does not in- 997

clude irrelevant content to the topic. 998

(clarity) The model explanation is easy for me to 999

understand. 1000

(comprehensiveness) The model explanation cov- 1001

ers all important features as I would expect. 1002

To ensure the effectiveness of the feedback col- 1003

lected, we established a gold question and provided 1004

two options: 1005

(gold question) Before getting started, let’s make 1006

sure that you understand the task. Please choose 1007

the task that you will do: 1008

A. I will rate the quality of the decision provided 1009

by the model. 1010

B. I will rate the quality of the explanation pro- 1011

vided by the model. 1012

We will only consider feedback from respon- 1013

dents who answered the gold question correctly 1014

with option A. Any feedback from respondents 1015

who omitted answers will also be deemed invalid. 1016

Furthermore, we randomly selected a sample 1017

from the dataset, placing it at the beginning of the 1018

questionnaire as a warm-up example to ensure the 1019

respondents understood the task. 1020

D Limitation 1021

In this section, we discuss the time complexity of 1022

the proposed approach. During the training phase, 1023

as PPO involves the concurrent utilization of a dis- 1024

criminator and two policies, the time complexity 1025

for a single epoch is 2 ∗O(k1n) +O(k2n), where 1026

k1 and k2 represent the time complexity of the 1027

generation policy and discriminator in training, re- 1028

spectively, and n denotes the number of features in 1029

the tabular data. In contrast, the time complexity 1030

for baselines generated based on language mod- 1031

els is O(k1n). In inference, our generation policy 1032

shares the same linear time complexity as the table 1033

generator GReaT, which is based on a language 1034

model. Utilizing a single A100 GPU, generating 1035
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1,000 HELOC tabular samples, each consisting of1036

24 features, incurs an average per-sample genera-1037

tion time of only 19.31 milliseconds. In summary,1038

despite our model exhibiting higher training time1039

complexity, it adequately meets the requirements1040

of real-world applications during inference.1041

E Additional Case Study1042

To specifically illustrate the effectiveness of our ex-1043

planations, we conducted a case study by randomly1044

selecting samples from the three datasets.1045

The explanations generated are presented in Ta-1046

ble 6, Table 13 and Table 14. We observed that our1047

model precisely captured the underlying reasons1048

that could lead to specific features and provided1049

further implications based on these reasons. For1050

instance, the model realized that booking a hotel1051

room is a positive signal for customer retention. At1052

the same time, low activity on social media may be1053

a negative signal, while other features, such as age,1054

may not significantly impact the retention of the1055

target person. Additionally, through comparisons1056

with other samples, the model recognized the sig-1057

nificance of specific feature values. For instance, it1058

noted that working 35 hours per week falls under1059

the category of long working hours, and having an1060

educational duration of 13 years is higher than the1061

average level.1062
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Travel Customers Adult Income HELOC
Your task is to Core Part, re-
ferring to the following set
of 3 positive customers who
haven’t churned from a travel
company and 3 negative cus-
tomers who have churned
from a travel company:

Your task is to Core Part, re-
ferring to the following set
of 3 positive adults who earn
annual incomes which ex-
ceed $50K and 3 negative
adults who earn annual in-
comes which don’t exceed
$50K:

Your task is to Core Part, referring to
the following set of 3 positive individ-
uals who have never been late for pay-
ments by more than 90 days over a pe-
riod of 24 months since the account of
Home Equity Line of Credit (HELOC)
was opened and 3 negative individu-
als who have been late for payments at
least 90 days by at least once over a pe-
riod of 24 months since the account of
Home Equity Line of Credit (HELOC)
was opened:

---
POSITIVE CUSTOMERS
[1] FEATURES: ”Features
of customer 1”
DESCRIPTION: ”Descri-
ption of customer 1”
...
NEGATIVE CUSTOMERS
[1] FEATURES: ”Features
of customer 4”
DESCRIPTION: ”Descri-
ption of customer 4”
...
---
Your task is to Core Part.

---
POSITIVE ADULTS
[1] FEATURES: ”Features
of adult 1”
DESCRIPTION: ”Descri-
ption of adult 1”
...
NEGATIVE ADULTS
[1] FEATURES: ”Features
of adult 4”
DESCRIPTION: ”Descri-
ption of adult 4”
...
---
Your task is to Core Part.

---
POSITIVE INDIVIDUALS
[1] FEATURES: ”Features of individ-
ual 1”
DESCRIPTION: ”Description of indi-
vidual 1”
...
NEGATIVE INDIVIDUALS
[1] FEATURES: ”Features of individ-
ual 4”
DESCRIPTION: ”Description of indi-
vidual 4”
...
---
Your task is to Core Part.

Core Part: explain the reason
why the customer with the
FEATURES: ”Features” and
DESCRIPTION: ”Descrip-
tion” has (hasn’t) churned
from the travel company

Core Part: explain the rea-
son why the adult with the
FEATURES: ”Features” and
DESCRIPTION: ”Descrip-
tion” earns an annual in-
come which doesn’t exceed
(exceeds) $50K

Core Part: explain the reason why the
individual with the FEATURES: ”Fea-
tures” and DESCRIPTION: ”Descrip-
tion” has been late for payments at
least 90 days by at least once (never
been late for payments by more than
90 days) over a period of 24 months
since the account of Home Equity Line
of Credit (HELOC) was opened

Table 11: Prompts used to generate explanations. Red text represents the core part of a prompt; brown text represents
the features or description of a specific sample; orange text represents an alternate text determined by the target
value of a sample.
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Adult
Synthetic data age:54, workclass:Local-gov, fnlwgt:176977, educa-

tion:Bachelors, educational-num:13, marital-status:Married-
civ-spouse, occupation:Prof-specialty, relationship:Husband,
race:White, gender:Male, capital-gain:0, capital-loss:0, hours-
per-week:35, native-country:United-States, income:>50K

Description generated John Doe is a 54 year old male from the United States who
works as a professional specialist for local government. He has
a Bachelor’s degree and 13 years of formal education under
his belt. John is married to his civilian spouse and is white in
terms of both race and ethnicity. His weekly working hours are
35, with an annual income exceeding $50k.

User User’s question Explain the reason why the adult has an income over $50K.
Ours Explanation generated The reason he earns an annual income which exceeds $50K

is because he holds a position as a professional specialist for
local government, where his expertise and experience likely
command higher wages compared to other occupations within
the same work class. Additionally, his completion of a Bache-
lor’s degree and 13 years of formal education contribute to his
knowledge base and skillset, making him more valuable to his
employer. Furthermore, John’s marriage to someone outside
of the military may provide additional support and resources,
helping him maintain a comfortable standard of living despite
his relatively long working hours each week (35). Lastly, his
status as a white male in the United States could be advanta-
geous when negotiating salaries and benefits. Overall, these
factors combine to give John Doe access to better paying jobs
than those without similar qualifications, resulting in an annual
income above $50K.

Table 13: Case Study of the Adult Income Dataset. Blue text represents key-points in explanations.
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HELOC
Synthetic data RiskPerformance:Good, ExternalRiskEstimate:69,

MSinceOldestTradeOpen:184, MSinceMostRecent-
TradeOpen:5, AverageMInFile:74, NumSatisfacto-
ryTrades:31, NumTrades60Ever2DerogPubRec:0,
NumTrades90Ever2DerogPubRec:0, Percent-
TradesNeverDelq:100, MSinceMostRecentDelq:-7,
MaxDelq2PublicRecLast12M:7, MaxDelqEver:8, Num-
TotalTrades:31, NumTradesOpeninLast12M:0, PercentIn-
stallTrades:23, MSinceMostRecentInqexcl7days:-7, NumIn-
qLast6M:0, NumInqLast6Mexcl7days:0, NetFractionRevolv-
ingBurden:3, NetFractionInstallBurden:-8, NumRevolving-
TradesWBalance:1, NumInstallTradesWBalance:-8, Num-
Bank2NatlTradesWHighUtilization:0, PercentTradesWBal-
ance:33

Description generated With an external risk estimate of 69 and a minimum file score of
74, it appears that this HELOC may pose some level of risk but
is still within acceptable parameters. Additionally, there have
been no trades delinquent by more than 60 days or those ever
reported as public records in the last two years. Furthermore,
only one trade is considered ’́derogatory,’́ indicating that the
borrower’s credit history is generally positive. It’s worth noting
that this HELOC has had zero trades open within the past
year, which could suggest a low utilization rate. However, the
maximum delinquency recorded over the past twelve months
was seven, suggesting potential room for improvement.

User User’s question Explain the reason why the applicant will not have a 90-day or
more severe delinquency after opening a credit account.

Ours Explanation generated The explanation lies in the fact that the individual with the given
features has shown consistent and reliable repayment behavior
throughout their credit history. Despite being delinquent in the
past, they have since made up for it by demonstrating perfect
payment history in the subsequent periods. Moreover, their
current credit score indicates that they are likely to continue
making timely payments going forward. As a result, despite
the presence of certain risk factors like high revolving burden
and negative install burden, their overall creditworthiness is
deemed sufficient to justify the assigned risk estimate of 69.

Table 14: Case Study of the HELOC Dataset. Blue text represents key-points in explanations.
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Adult HELOC
Models Lsyn Ltest Lsyn Ltest

Identity -13.852 -13.852 -55.672 -55.672
CTGAN -11.221 -21.822 -62.584 -97.382
GReaT-2 -10.706 -23.684 -61.600 -127.006
GReaT-Neo -10.656 -26.054 -60.363 -134.411
Ours-2 -10.630 -24.095 -59.126 -135.449
Ours-Neo -10.484 -28.433 -58.260 -147.703
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