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ABSTRACT

Counterfactual explanations (CEs) enhance the interpretability of machine learning
models by describing what changes to an input are necessary to change its pre-
diction to a desired class. These explanations are commonly used to guide users’
actions, e.g., by describing how a user whose loan application was denied can be
approved for a loan in the future. Existing approaches generate CEs by focusing
on a single, fixed model, and do not provide any formal guarantees on the CEs’
future validity. When models are updated periodically to account for data shift, if
the generated CEs are not robust to the shifts, users’ actions may no longer have
the desired impacts on their predictions. This paper introduces VeriTraCER, an
approach that jointly trains a classifier and an explainer to explicitly consider the
robustness of the generated CEs to small model shifts. VeriTraCER optimizes
over a carefully designed loss function that ensures the verifiable robustness of
CEs to local model updates, thus providing deterministic guarantees to CE validity.
Our empirical evaluation demonstrates that VeriTraCER generates CEs that (1) are
verifiably robust to small model updates and (2) display competitive robustness to
state-of-the-art approaches in handling empirical model updates including random
initialization, leave-one-out, and distribution shifts.

1 INTRODUCTION

Machine learning models are increasingly used to support decision-making in sectors such as banking,
education, social services, and criminal justice. Due to the high stakes of these decision-making
settings, and the fact that model internals are often both proprietary and too complex for humans to
understand directly, laws such as the GDPR (European Commission, 2018) and ECOA (Consumer
Financial Protection Bureau, 2018) require that explanations be offered to users who are subject to
these models’ predictions. Explanations commonly take the form of counterfactual explanations
(CEs), which serve as guidelines for how an input can change in order to receive a different decision
in the future. For instance, an individual who is denied a loan may receive a CE that says their
application would have been accepted had their salary been $5000 higher. If the applicant wishes to
obtain the loan, they can work to increase their salary and then reapply.

However, machine learning models must be periodically updated to account for new data and avoid
declining performance due to distribution shift. Even if the CE is valid (i.e., produces the desired
prediction) at the time it is generated, there is no guarantee that it will remain valid after one or more
routine model updates. So, the individual who successfully raises their salary by the requested $5000
may still be rejected if they reapply for a loan 6 months later, because the model internals shifted.

To preserve the validity of CEs across model shifts, we want to generate CEs that are robust to small
model changes. Existing work aims to generate robust CEs by increasing the distance from the
original input to its CE (Hamman et al., 2023), finding CEs in areas of low Lipschitz constants (Black
et al., 2021), or using a minmax objective in the CE generation process (Upadhyay et al., 2021).
While all of these methods yield improved robustness over standard training, they fail to provide
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formal guarantees on the CEs’ robustness, they require solving expensive optimization problems
to generate each CE, and they generate CEs with respect to a fixed model, even if solving the same
optimization problem for a different model – such as one that may be adopted in the future – would
yield a better and still valid CE.

Our approach, VeriTraCER, fundamentally reframes the problem of generating robust CEs in two
ways: first, we consider the multiplicity set of similar models, noting that this set likely contains
models that may be adopted in the future when accounting for slight data shifts. Second, we adapt
existing work, CounterNet, which considers the model training and CE generation processes as a
single pipeline (Guo et al., 2023). Specifically, VeriTraCER uses the existing conception of training
a model that jointly performs classification and CE generation, but promotes CE robustness by
optimizing CE generation over a multiplicity set of classifiers, rather than a single classifier. A key
part of how VeriTraCER obtains robustness is to use verified training (Gowal et al., 2018; Zhang
et al., 2020) to deterministically certify when the predictions and the CEs our model generates are
robust to small model changes, as indicated by an lp-bound on the classifier’s parameters, subject to
restrictions that hold the original prediction constant. We develop a new variation of verified training,
Simul-CROWN, that allows us to obtain tighter bounds than existing approaches. We show that CEs
produced by VeriTraCER are not only certifiably robust to small model shifts, but are also robust
to other empirical forms of model updates—e.g., training with different random seeds or different
data subsets. An added benefit is that CE generation using VeriTraCER is very fast (equivalent to
inference speed), with only a modest increase in training time.

In summary, we make the following key contributions: (1) We propose robust CE generation over
a multiplicity set of models, (2) we develop a loss function to jointly train an accurate model and
a robust and valid CE generator, (3) we design a new verified training algorithm, Simul-CROWN,
to soundly overapproximate our loss function during training, and (4) we show that our technique,
Verified Training for CE Robustness (VeriTraCER), achieves high CE robustness, both to lp-bounded
model shifts and real-world model updates.

2 RELATED WORK

Explainable AI Explanations for model predictions can come from insights about the model (linear
regression coefficients, decision tree rules, or feature activations), or more commonly for black-box
models, from a post-hoc technique. Post-hoc explanation techniques are typically either feature-based
(e.g., Lundberg & Lee (2017); Ribeiro et al. (2016); Simonyan et al. (2013); Smilkov et al. (2017))
and aim to describe which input features are relevant, or counterfactual-based (e.g., Karimi et al.
(2020); Looveren & Klaise (2019); Poyiadzi et al. (2020); Ustun et al. (2018); Wachter et al. (2018))
and aim to describe how the original instance needs to change to get a different prediction. In this
work, we focus on CEs due to the fact that they provide direct guidance to users. CEs are typically
found post-hoc, based on an optimization problem over a fixed model. An exception is the CounterNet
training procedure (Guo et al., 2023), which jointly trains a model and CE generator.

Robust explanations “Explanation robustness” refers to multiple phenomena in the literature; the
focus can be robustness with respect to the input (i.e., whether perturbing the input yields a similar
explanation) or with respect to model changes (i.e., whether changing the model yields a similar
prediction and explanation for a fixed input). In this work, we focus on the latter definition.

Various works have explored robust CE generation for specific model classes, such as for tree-based
ensembles (Dutta et al., 2022; Forel et al., 2022) or (locally) linear models (Bui et al., 2022; Nguyen
et al., 2023). Other work on more complex model classes has shown that it is possible to adversarially
change a model to keep identical predictions, but drastically change the associated feature-based
explanation (Anders et al., 2020; Heo et al., 2019; Slack et al., 2020). Similarly, a given CE can
be invalidated by another equivalently-accurate model in a neural network setting (Hamman et al.,
2023). But it is still possible to improve (average) explanation robustness to model shift, such as by
increasing the local smoothness of the model (Black et al., 2021; Dombrowski et al., 2022; Meyer
et al., 2023; Srinivas et al., 2022). For CEs, increasing the distance to the CE is also commonly
thought to increase robustness to model shift (Jiang et al., 2023; Pawelczyk et al., 2020). However,
this heuristic does not always work for deep models (Black et al., 2021); instead, the agreement of
points in an epsilon-ball around the CE is important (Hamman et al., 2023). However, all of these
papers consider CE generation with respect to a fixed model – by contrast, our process jointly trains a
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model and CE generator in order to obtain robustness. Also, most existing methods only evaluate
CE robustness based on empirical model shift. An exception is Jiang et al. (2023), who consider CE
robustness to a set of models (via lp-norm-bounded changes to the parameters of a fixed model). We
consider the same lp-norm bounded setting, but also evaluate our approach on empirical model shifts.

3 PROBLEM DEFINITION

Let f be a neural net classifier that learns its parameters θf with a loss function L and a training set
D = {(xi, yi)}ni=1. We will assume that f is a binary classifier, i.e., assigns x a label y ∈ {0, 1}. A
distribution shift may occur and yield a new training set D′ = {xi, yi)}ki=1. We finetune f (i.e., train
for an additional small number of epochs) or retrain from scratch in the presence of ℓ2 regularization
to yield a shifted model fm. Given f and fm with parameters θf and θfm , respectively, we measure
their distance ∥θf −θfm∥p as the largest ℓp parameter distance among all layers (both weight matrices
and bias vectors) in f and fm. We make the assumption that the finetuning (or retraining with
regularization) process will yield a model fm such that ∥θf − θfm∥p ≤ δ for some small δ. For
simplicity, we use a single δ for the lp bound across all layers. However, our approach easily extends
to using different δ values for different layers.

Counterfactual explanations A counterfactual explanation (CE) generator g returns a CE x′ with
respect to a function f and an original input x, i.e., x′ = g(f,x). We say that x′ is valid if it satisfies
f(x′) ̸= f(x). The distance between x and x′ is called proximity and should be minimized subject
to the validity constraint. Additional constraints (e.g., not changing immutable features like race or
gender) can be placed on the CE generation process, e.g., by using a custom distance metric that
heavily penalizes changing those features. Our approach is compatible with that type of modification,
but we assume an l1-norm distance metric for simplicity.

Multiplicity set of f Even though f is the result of an optimization process, it likely is not the only
model that performs well on the training data due to model multiplicity (D’Amour et al., 2022; Marx
et al., 2020). Furthermore, the finetuning or retraining process will yield a distinct model fm that is
close to f . We adopt a common assumption from the literature (Jiang et al., 2023; Upadhyay et al.,
2021) that the parameter distance between f and fm will be bounded by lp norms. We define the
multiplicity set with respect to a model f and an input x as follows.

Definition 3.1 (Multiplicity set). Given a model f with parameters θf , an input x, an lp norm, and a
bound δ, we define the δ-robust multiplicity set as Mf,x = {fm | f(x) = fm(x)∧∥θf −θfm∥p ≤ δ}.

Intuitively, the multiplicity set contains models that have comparable performance to f and have a
similar set of model weights. Crucially, it also is intended to contain models fm that may be the
result of model updates due to distribution shift. Note that our definition limits us to models with the
same prediction on x. As we are primarily interested in CEs, it no longer makes sense to consider
adopting the CE if the prediction changes.

CE robustness Data shift necessitates that models change over time, thus creating the risk that
CEs generated by a model will be invalidated in the future. We define CE robustness as follows.

Definition 3.2 (Mf,x-robustness of a CE). Given a binary classifier f and an input x, we say
that a CE x′ is robust if it is a valid CE for all models in the multiplicity set, i.e., if ∀fm ∈ Mf,x,
fm(x

′) = 1− f(x).

Goal Our goal is to devise a training algorithm that yields a model f and a CE generator g such that
the CEs generated by g will be Mf,x-robust (i.e., robust to small changes in the model f ). In other
words, we want to maximize the number of robust CEs that we generate on some dataset (e.g., on the
training dataset during training, or on a test or validation dataset post-training). Note that our goal
differs from all existing works, which propose algorithms to generates robust CEs according to a fixed
model ffix. The following example illustrates how focusing on the model selection process—rather
than just on the CE generation technique—can yield better and more robust CEs.

Example 3.1. Suppose we have an input x = (4, 1) and the three equally-accurate linear models
f0, f1, f2 shown in Figure 1. Considering that these models are equally accurate, we can use CE
robustness to small model shifts as a secondary criteria for choosing the best model. To do so, we
consider the multiplicity set Mfi,x of fi containing linear models with a bound δ = 2 on the l∞
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(a) f0 = x1− x2− 2. The optimal
robust CE of x = (4, 1) is (0, 0).

(b) f1 = x1 − x2 − 1.5. There
exists no robust CE of x = (4, 1).

(c) f2 = x1 − x2 − 2.5. The opt.
robust CE of x = (4, 1) is (0, 0.5).

Figure 1: Plots of three linear models and their multiplicity sets. The black line shows the original linear model
fi. The green and red regions contain all samples that are robust under the multiplicity setMfi,x, receiving
predictions + and −, respectively. The yellow region corresponds to all samples that are not robust under the
multiplicity setMfi,x.

norm. In Figure 1, the yellow regions represent all samples that are not robust to Mfi,x. The optimal
robust CE of x on f0 is x′

0 = (0, 0). However, x has no robust CE on f1, and its optimal robust CE
on f2 is x′

2 = (0, 0.5). In other words, if ffix = f1, then no CE generation algorithm g will be able
to find a robust counterfactual. But if ffix = f2, rather than f0, we can find a better robust CE (since
x′
2 is closer to x than x′

0 is). So, if we train f and g jointly, we can try to end up with a model closer
to f2: that is, a model that performs well and also yields robust CEs that are of high-quality (i.e.,
close to the original sample).

4 APPROACH

Our approach, VeriTraCER, is a training algorithm that takes a training set D as input and outputs
a model f and a CE generator g such that the CEs generated by g have a high rate of Mf,x-
robustness. Devising such a training algorithm requires us to solve the following two challenges.
First, training a model to produce robust explanations requires reasoning in tandem about the accuracy
of the model f and the validity, quality, and robustness of the CEs produced by the CE generator
g (Section 4.1). Second, we need to be able to soundly overapproximate our robust loss function,
as using gradient descent to approximate the loss will be both inefficient and may overlook some
fm ∈ Mf,x (Section 4.2).

4.1 TRAINING THE MODEL f AND THE CE GENERATOR g IN TANDEM

To intertwine model training and robust CE generation, we build off of CounterNet (Guo et al., 2023),
which jointly learns a model f and a (non-robust) CE generator g. Intuitively, we have two loss
functions, Lf and Lg , that are used to optimize f and g, respectively. In each training epoch, there are
three steps. First, we generate CEs x′

i = g(f,xi) according to the current weights of f and g. Next,
we optimize the parameters of f using gradient descent (WRT f ) on Lf , and finally, we optimize the
parameters of g using gradient descent (WRT g) on Lg .

We denote the output of model f after the final sigmoid layer but before discretization as f̄ . The
function f̄(x) ∈ [0, 1] is frequently employed in loss functions for improved optimization compared
to the hard label f(x) ∈ {0, 1}. We define helper loss functions LA, LV, and LQ to promote accuracy,
CE validity, and CE quality (i.e., proximity to the original sample xi), respectively. All three losses
were used in the original CounterNet loss, and can be any binary loss function, e.g., MSE. LR is our
proposed RobustCE loss, and aims to measure the robustness of a CE x′ with respect to Mf,x (as
defined by hyperparameters δ and p, which are omitted in the equations below for brevity). This loss
function should capture the worst classifier fm ∈ Mf,x, i.e., the model that does most poorly on
the CE x′. We define LR(x,x

′, θf ) = maxfm∈Mf,x
LMSE(f̄m(x

′), 1− y). With those definitions
in mind, we define Lf and Lg as follows:

Lf (xi, yi,x
′
i, θf ) = λ1LA(f̄(xi), yi) + λ2LR(xi,x

′
i, θf ) (1)

Lg(xi, yi, g(f,xi), θf ) = λ3LQ(xi, g(f,xi)) + λ4LV(f̄(g(f,xi)), 1− yi) + λ2LR(xi, g(f,xi), θf ) (2)
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4.2 COMPUTING THE ROBUSTCE LOSS

Exactly minimizing LR is expensive: we either need to consider infinitely many reasonable models
in Mf,x or we need to rely on expensive gradient descent to approximate the model fm with no
guarantee that it is the worst-case model. To address this, we use abstract interpretation (Cousot
& Cousot, 1977) to efficiently compute an upper bound L♯

R(x,x
′, θf ) on the RobustCE loss. This

upper bound, when minimized and sufficiently tight, ensures a reduction in the RobustCE loss
simultaneously. The challenge of overapproximation is how to compute the upper bound L♯

R(x,x
′, θf )

as tightly as possible: overly loose bounds may hamper prediction accuracy, CE validity, and CE
quality, without meaningfully enhancing CE robustness.

In Section 4.2.1, we show how to compute L♯
R using two existing abstract interpretation techniques,

IBP (Gowal et al., 2018) and CROWN-IBP (Zhang et al., 2020). Then, in Section 4.2.2 we introduce
a new technique that yields tighter upper bounds on the robust loss while maintaining efficiency
similar to CROWN-IBP.

4.2.1 OVERAPPROXIMATING THE ROBUSTCE LOSS USING EXISTING TECHNIQUES

Interval bound propagation (IBP) allows us to evaluate a function on an infinite set of inputs rep-
resented as a hyperrectangle in Rn. We will use an interval z♯ = [zL, zU ], where zL, zU ∈ Rn

and ∀1 ≤ i ≤ n, zLi ≤ zUi , to denote the set of all n-dimensional vectors whose i-th element is
between zLi and zUi , inclusive. Previous work (Gowal et al., 2018; Zhang et al., 2021) has used
IBP to overapproximate the worst-case loss of test-time adversarial attacks. These works look at
perturbations of an input x, i.e., an infinite set of possible x, as evaluated on a fixed model. By
contrast, we want to use IBP to overapproximate the infinitely many models in Mf,x.

To use IBP, we will relax the definition of Mf,x to Mf by removing the requirement that the
classification of x remains constant, i.e., Mf = {fm | ∥θf − θfm∥p ≤ δ}. After relaxation, the
components of θf (the weights and biases in linear layers) can be overapproximated by intervals.
Therefore, we apply IBP to overapproximate the RobustCE loss under the multiplicity Mf using
interval arithmetic.

Figure 2: Our approach Simul-CROWN
achieves a tighter overapproximation
than IBP and CROWN-IBP because the
latter techniques include portions of the
red region where the CE is not robust.

CROWN-IBP (Zhang et al., 2020) achieves tighter bounds
than IBP by incorporating a backward tightening technique
employed in α-CROWN (Zhang et al., 2018; Singh et al.,
2019). In the evaluation of a function fθ♯ whose param-
eters θ♯ are intervals, CROWN-IBP finds αl,αu, βl, βu

such that σ(αlθ + βl) ≤ f̄θ(x) ≤ σ(αuθ + βu) for all
θ ∈ θ♯. Then, these equations (αlθ + βl and αuθ + βu)
serve to bound f̄ , allowing us to do IBP with tighter – yet
still sound – bounds. Similar to the adaption of IBP, we
need to relax the definition of Mf,x to Mf for CROWN-
IBP because it cannot deal with the additional requirement
of prediction robustness that Mf,x requires. After this
relaxation, the parameters in all layers (i.e., the weight
matrices and bias vectors), can be overapproximated into
intervals. When applying CROWN-IBP to overapproxi-
mate the RobustCE loss, the interval θ♯ becomes the inter-
vals of parameters in all layers, and the αl,αu, βl, βu are
computed based on a specific input x and the lower and upper bounds of parameters, i.e., θL and θU .
Theorem 4.1 (Soundness and Tightness). For any x, x′, and f , the CROWN-IBP-overapproximated
loss L♯CIBP

R (x,x′, θf ) is an upper bound of the RobustCE loss LR(x,x
′, θf ) and a lower bound of

the IBP-overapproximated loss L♯IBP
R (x,x′, θf ). Formally,

L♯IBP
R (x,x′, θf ) ≥ L♯CIBP

R (x,x′, θf ) ≥ LR(x,x
′, θf )

Example 4.1. Consider an interval linear layer with weight matrix W ♯ = ([−1, 3], [−3, 1]) and
bias scalar b♯ = [−4, 0]. For an input x = (−4,−1), CROWN-IBP concatenates W ♯ and b♯ to
form θ♯ = ([−1, 3], [−3, 1], [−4, 0]) and computes αl = αu = (x; 1) = (−4, 1, 1) (note that we
append 1 to x as the multiplicative factor for b♯) and βl = βu = 0. Then we can symbolically
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compute the output based on αlT θ + βl (or αuT θ + βu because the two are the same), i.e.,
(−4,−1, 1)⊤([−1, 3], [−3, 1], [−4, 0]). To compute the concrete upper bounds, we apply interval
arithmetic to the vector product and get [−17, 7]. Note that IBP and CROWN-IBP yield identical
lower and upper bounds for this linear model because it has only one layer.

However, the bounds computed by CROWN-IBP are still loose due to the relaxation from Mf,x to
Mf as illustrated in the following example.

Example 4.2. Consider the same interval linear model as in Example 4.1. Note that the midpoint
of this interval network corresponds to our “true” f , i.e., W = (1,−1) and b = −2. Let f̄(x) =
σ(Wx + b). For the input x = (4, 1) and its CE x′ = (−4,−1), we have f̄(x) > 0.5 and
f̄(x′) < 0.5. IBP and CROWN-IBP are unable to prove that the CE x′ is robust even though Mf,x

does not intersect with the “unsafe” red region shown in Figure 2. To see this limitation, let us
consider a model fm with W ′ = (−1,−3) ∈ W ♯ and b′ = 0 ∈ b♯ that is in Mf but outside Mf,x

(the output of f̄m(x) is σ(−7) < 0.5). fm has an output of σ(W ′x′ + b′) = σ(7) > 0.5 on the CE
x′ meaning that the CE is invalid on fm. This limitation arises from the relaxation from Mf,x to
Mf . Our approach (Section 4.2.2) overcomes this limitation by overapproximating Mf,x instead of
its relaxation Mf and is able to prove that x′ is Mf,x-robust.

4.2.2 OVERAPPROXIMATION THE ROBUSTCE LOSS USING SIMUL-CROWN

The primary challenge faced by IBP and CROWN-IBP in handling Mf,x is their inability to simul-
taneously reason about the overapproximation of f(x) and f(x′). In this section, we present our
approach, Simul-CROWN, which addresses this challenge to achieve a more precise overapproxima-
tion of the RobustCE loss.

To simultaneously overapproximate f(x) and f(x′), we first reframe the definition of the RobustCE
loss, LR = maxfm∈Mf,x

LMSE(f̄m(x
′), 1− ŷ). Namely, if ŷ = 1, LR is maximized when the worst-

case classifier is [argmaxfm∈Mf
f̄m(x

′) s.t. f̄m(x) ≥ 0]. However, if ŷ = 0, LR is maximized
when the worst-case classifier is [argmaxfm∈Mf

f̄m(x
′) s.t. f̄m(x) ≥ 0]. Using this insight, we

apply CROWN-IBP to obtain lower and upper bounds in Mf for each training instance xi. For all
parameters θ ∈ θ♯, we have σ(αl

iθ + βl
i) ≤ f̄θ(x) ≤ σ(αu

i θ + βu
i ) and σ(µl

iθ + νli) ≤ f̄θ(x) ≤
σ(µu

i θ + νui ). We compute αi and βi based on xi and θ♯, while µi and νi are computed based on x′
i

and θ♯.

Theorem 4.2 (Overapproximation by Simul-CROWN). Conditional on the value of ŷ, the optimal
value of LR can be upper bounded by the solution to one of the following cases,

tŷ=1 = max
θ∈θ♯

µu
i θ + νui s.t. αu

i θ + βu
i ≥ 0,

tŷ=0 = min
θ∈θ♯

µl
iθ + νli s.t. αl

iθ + βl
i ≤ 0,

(3)

That is, if ŷ = 1, we have LR ≤ LMSE(σ(tŷ=1), 0), and if ŷ = 0, LR ≤ LMSE(σ(tŷ=0), 1).

We can use a solver to address each case in Equation (3) by encoding it into a linear programming (LP)
problem. However, solving an LP for each training batch is time-consuming and breaks the gradient
information required to optimize the RobustCE loss. Appendix A introduces a greedy algorithm
(Algorithm 2) that solves Equation (3) in O(n log n) time, where n is the size of parameters, and can
be implemented in PyTorch preserving the gradient information.
Theorem 4.3 (Soundness and Tightness). For any x, x′, and f , the overapproximated loss
L♯Ours
R (x,x′, θf ) is an upper bound of the RobustCE loss LR(x,x

′, θf ) and a lower bound of
the CROWN-IBP-overapproximated loss L♯CIBP

R (x,x′, θf ). Formally,

L♯CIBP
R (x,x′, θf ) ≥ L♯Ours

R (x,x′, θf ) ≥ LR(x,x
′, θf )

Note that L♯Ours
R (x,x′, θf ) = L♯CIBP

R (x,x′, θf ) when for all 1 ≤ i ≤ n, µu
i α

u
i > 0 if ŷ = 1 (or

µl
iα

l
i > 0 if ŷ = 0).

The following example shows that Simul-CROWN is tighter than the CROWN-IBP-overapproximated
loss.
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Example 4.3. Consider the same linear model given in Example 4.2, for the original input x = (4, 1)
and the corresponding CE x′ = (−4,−1), we have the following optimization problem according to
Equation (3).

max
θ∈θ♯

− 4z1 − z2 + z3 s.t. 4z1 + z2 + z3 ≥ 0, where θL = [−1,−3,−4], θU = [3, 1, 0]

According to Algorithm 2, the optimal value 0 is obtained when θ = [− 1
4 , 1, 0]. In other words, the

output of the worst-case classifier in Mf,x is σ(0) computed by Simul-CROWN. This upper bound is
tighter than the ones computed by IBP and CROWN-IBP (σ(7) in Example 4.2).

5 EXPERIMENTAL EVALUATION

In this section, we present our evaluation of VeriTraCER. First, we describe the experiment setup
(Section 5.1), and next we show results (Section 5.2) on δ-robustness, cross-model validity, and CE
quality.

5.1 EXPERIMENTAL SETUP

Datasets We perform our evaluation on two real-world distribution shift datasets, Cardiotocog-
raphy (CTG) (Campos & Bernardes, 2010) and WHO (Rajarshi, 2017), as well as three other
datasets commonly used in the robust counterfactual literature, Home Equity Line of Credit (HE-
LOC) (FICO, 2018), Taiwanese Credit (TC) (Yeh & Lien, 2009), and Open University Learning
Analytics (OULA) (Kuzilek et al., 2017). CTG aims to predict whether a fetal cardiotocogram is
healthy, WHO aims to predict whether a country’s life expectancy is above the median, HELOC aims
to predict the likelihood that home buyers will repay a loan within 2 years, TC aims to predict default
on their credit card payments, and OULA aims to predict whether a student will pass an online class.
Additional details including dataset composition and preprocessing steps such as binarization and
distribution shift construction are available in the appendix.

Metrics Given an x and a corresponding CE x′, δ-robustness is satisfied when we can certify that
x′ obeys fm(x′) = f(x′) for all fm ∈ Mf,x = {fm | f(x) = fm(x) ∧ ∥θfm − θf∥p ≤ δ} using
Simul-CROWN. We dynamically determine distinct δi values for each layer (see the appendix for
details); for simplicity, we will continue to write δ-robustness as if δ is a constant. By contrast, x′

exhibits cross-model validity with respect to two models f and fm when f(x′) = fm(x
′). In practice,

we compute empirical cross-model validity across sets of models trained with one of three variations:
different random initialization (RI) for training f and fm, different training datasets constructed by
randomly removing 1% of the data (LOO) for f and fm, or different training datasets under data shift
(DS) for f and fm. We refer to the δ-robustness rate as the fraction of data points in a test set that
exhibit δ-robustness, and similarly for cross-model validity rate. As a secondary metric, we consider
how feasible the counterfactual is to implement through its proximity, i.e., the l1 distance between x
and x′. We consider two other distance metrics in the appendix.

Baseline comparisons We compare our approach with the following existing robust counterfactual
generation methods: Counternet (CN) (Guo et al., 2023) without our robustifying modifications;
ROAR (Upadhyay et al., 2021), which finds robust counterfactuals by using adversarial training in the
counterfactual generation process; and SNS (Black et al., 2021), which finds CEs in regions with a
low Lipschitz constant. For ROAR and SNS, we train NNs with the same architecture as the predictor
part of CounterNet; we optimize this model using a loss function that solely prioritizes accuracy. We
implement all three techniques (IBP, CROWN-IBP, Simul-CROWN) from Section 4.2. We include
results for Simul-CROWN here and put results for the others in the ablation study in the appendix.

Experimental procedure To evaluate δ-robustness, we select layer-specific δi (see appendix for
details) and perform training and all evaluation for that setting. To evaluate cross-model validity for
RI and LOO, we train 10 models, generate CEs for each, and report the average fraction of these
CEs that remain valid across the other 9 models. To evaluate cross-model validity for DS, we train a
model on the original data, then finetune for a small number (typically 20) additional epochs on the
new data to obtain the shifted model.

5.2 RESULTS

7
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Table 1: Fraction of samples that are pair-wise cross-model validity across 10 model trained with different
random initializations (RI) or different segments of data randomly removed (leave-one-out, or LOO). Standard
deviations are in parenthesis. Best result is in bold and second-best result is underlined.

Random Initialization Leave-One-Out
HELOC TC OULA HELOC TC OULA

VeriTraCER 0.93 (0.03) 0.88 (0.14) 0.94 (0.05) 0.86 (0.14) 0.97 (0.01) 0.96 (0.05)
CN 0.92 (0.07) 0.82 (0.26) 0.92 (0.07) 0.91 (0.07) 0.96 (0.02) 0.97 (0.01)
ROAR 0.88 (0.02) 0.44 (0.25) 0.93 (0.05) 0.88 (0.02) 0.88 (0.01) 0.95 (0.04)
SNS 0.90 (0.04) 0.98 (0.02) 0.80 (0.11) 0.94 (0.05) 1.00 (0.00) 0.90 (0.06)

Table 2: Fraction of samples whose CEs are
valid and robust after finetuning with a distribu-
tion shift. Standard deviation over 10 trials in
parentheses.

CTG WHO

VeriTraCER 0.987 (0.010) 0.995 (0.027)
CN 0.981 (0.019) 0.967 (0.030)
ROAR 0.570 (0.104) 0.884 (0.078)
SNS 0.407 (0.024) 0.846 (0.050)

δ-robustness VeriTraCER exhibits high levels of δ-
robustness: 70.24% (±17.41%) of test samples exhibit
δ-robustness for HELOC, 81.08% (±4.51%) for TC,
and 96.96% (±0.96%) for OULA. For the same value
of δ, CN has a δ-robustness for 26.29% (±18.29%) of
HELOC samples, but 0% for TC and OULA samples.
Likewise, the CEs generated by ROAR and SNS for
models trained in a standard way have 0% δ-robustness
on all three datasets.

Random initialization and leave-one-out results Ta-
ble 1 shows what fraction of counterfactuals, generated
for a particular model, remain valid for a model trained
(a) using a different random seed, or (b) with a different 1% of the training data removed. We note
that most CE and dataset combinations have high (> 90%) cross-model validity rates; however,
VeriTraCER has the highest or second-highest cross-model validity rate for most settings.

Real-world distribution shifts Table 2 shows the robustness of CEs to real-world distribution
shifts. We see that VeriTraCER significantly outperforms the non-CounterNet baseline methods,
especially on CTG.

Table 3: Average proximity for valid CEs. (*) indicates that the
CE technique does not correctly account for categorical features.

CTG WHO HELOC TC OULA

VeriTraCER 0.250 0.216 0.099 0.244 0.179
CN 0.220 0.164 0.107 0.234 0.169
ROAR 0.189 0.031 0.032 0.018* 0.015*
SNS 0.038 0.031 0.041 0.015* 0.013*

Counterfactual Quality A weak-
ness of VeriTraCER is that the gen-
erated CEs are a larger distance from
the original CEs. The data on prox-
imity (the l1-distance between an in-
put x and its CE x′ is) is summa-
rized in Table 3. Note that the two
datasets where VeriTraCER performs
worst relative to the other techniques
(TC and OULA) have categorical fea-
tures, which ROAR does not modify,
and SNS does not handle properly (i.e., by breaking one-hot encodings).

6 CONCLUSIONS

We have presented VeriTraCER, a training algorithm that jointly produces a model f and a CE
generator g such that the CEs generated by g will be robust to small changes in the weights of f . We
do this by minimizing an upper bound on our robust loss, i.e., we minimize the loss on the worst-
case model in the multiplicity set Mf,x. We provide a refinement of interval-bound propagation,
Simul-CROWN, allowing the over-approximation to be tighter than other state-of-the-art approaches.
Our approach is able to to find CEs that are certifiably robust at high rates (typically over 90%).
This carries over to high robustness for empirical model updates, such as retraining with a different
random seed. In particular, we outperform state-of-the-art approaches on finetuning after real-world
distribution shifts. The tradeoff is that VeriTraCER generally yields CEs that are a larger distance
form the original sample. In some settings, the additional robustness as well as fast CE generation

8
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time may be worth the additional recourse costs, but future work should aim to provide similar
deterministic guarantees and empirical performance with smaller CE distances.

REPRODUCIBILITY STATEMENT

Our code is available at https://github.com/ForeverZyh/robust_cfx.

REFERENCES

Christopher Anders, Plamen Pasliev, Ann-Kathrin Dombrowski, Klaus-Robert Müller, and Pan
Kessel. Fairwashing explanations with off-manifold detergent. In Hal Daumé III and Aarti
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Algorithm 1 Joint Training of f and g

Input: Training set D = (xi, yi)
n
i=1, Hyper-parameters δ, p in Definition 3.1

Output: Classifier f and robust CE generator g
1: Initialize f and g
2: for e = 1 to maxepoch do
3: x′ = g(f,x1), g(f,x2), . . . , g(f,xn)
4: Optimize θf via∇θf

∑n
i=1 Lf (xi, yi,x

′
i, θf , δ, p)

5: Optimize θg via∇θg

∑n
i=1 Lg(xi, yi, g(f,xi), θf , δ, p)

6: end for
7: return f, g

Algorithm 2 Solving Equation (3) when ŷ = 1

Input: Bounded parameters θ♯ = (θL, θU ), and coefficients from CROWN-IBP µu, νu,αu, βu

Output: max
θ∈θ♯

µuθ + νu s.t. αuθ + βu ≥ 0

1: for i = 1 to n do
2: if αu

i > 0 ∨ (αu
i = 0 ∧ µu

i > 0) then
3: θi = θUi
4: else
5: θi = θLi
6: end if
7: end for
8: s← αuθ + βu, s′ ← µuθ + νu

9: if s < 0 then
10: return −∞ // Constraint not satisfied
11: end if
12: I ← {1 ≤ i ≤ n | µu

i α
u
i < 0}

13: Sort the indices list I descendingly by −µu
i

αu
i

14: for i ∈ I do
15: δ ← |αu

i |(θU − θL), δ′ ← |µu
i |(θU − θL)

16: if δ > s then
17: s′ ← s′ + δ′ s

δ
18: break
19: end if
20: s← s− δ, s′ ← s′ + δ′

21: end for
22: return s′

A ALGORITHMS

Algorithm 1 gives an overview of our robust training approach. We concurrently train a model f and
a CE generator g. Alternatively, it is possible to use a fixed CE generator and to train f to be a model
whose CEs – with respect to the fixed g – are likely to be robust. In that case, line 1 of the algorithm
only initializes f , and line 5 of the algorithm is skipped.

Algorithm 2 shows our algorithm to solve Equation (3). Notably, this algorithm – when implemented
in PyTorch – preserves gradient information. If we were to naı̈vely solve a linear programming (LP)
problem to optimize the RobustCE loss within each training batch, the gradient information would be
lost and thus the optimization process would not work.

B PROOFS

We provide proofs of Theorems 4.1 and 4.3.

Proof of Theorem 4.1. First, we will show that the IBP loss provides a sound upper bound on LR.
By the soundness of IBP, we have

L♯IBP
R (x,x′, θf ) ≥ max

fm∈Mf

LMSE(f̄m(x
′), 1− ŷ)
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Table 4: Dataset composition

Dataset Size (orig.) Size (shifted) # cont. feat. # cat. feat.

HELOC 9871 - 22 0
TC 30000 - 14 9

OULA 32593 - 22 8
CTG 1950 2126 22 0
WHO 2196 2928 18 0

Next, note that Mf,x ⊆ Mf ensures the overapproximation can still capture the worst-case classifier.
Formally,

max
fm∈Mf

LMSE(f̄m(x
′), 1− ŷ) ≥ LR(x,x

′, θf )

The proof of CROWN-IBP loss is tighter than the IBP loss is given in Zhang et al. (2020).

Proof of Theorem 4.3. Without loss of generality, we consider the case ŷ = 1. Simul-CROWN
applies CROWN-IBP to obtain lower and upper bounds in Mf . For all parameters θ ∈ θ♯, we have
σ(αlθ + βl) ≤ f̄θ(x) ≤ σ(αuθ + βu) and σ(µlθ + νl) ≤ f̄θ(x) ≤ σ(µuθ + νu). The coefficients
αl, βl,αu, βu,µl, νl,µu, νu in Simul-CROWN are the same as the ones in CROWN-IBP.

Simul-CROWN computes the upper bound of LR as L♯Ours
R (x,x′, θf ) = LMSE(σ(tOurs), 0), where

tOurs is obtained in the following optimization problem,

tOurs = max
θ∈θ♯

µuθ + νu s.t. αuθ + βu ≥ 0. (4)

CROWN-IBP computes the upper bound of LR as L♯CIBP
R (x,x′, θf ) = LMSE(σ(tCIBP), 0), where

tCIBP is obtained in the following optimization problem,

tCIBP = max
θ∈θ♯

µuθ + νu. (5)

As Equation (4) has an additional constraint than Equation (5), we have tCIBP ≥ tOurs. Therefore, we
have LMSE(σ(tCIBP), 0) ≥ LMSE(σ(tOurs), 0), which leads to

L♯CIBP
R (x,x′, θf ) ≥ L♯Ours

R (x,x′, θf ).

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERIMENTAL SETUP

Details on datasets Details on dataset size and feature composition (number of features, as well as
continuous/categorical breakdown) are summarized in Table 4. We create our own distribution shift
for CTG and WHO as follows. CTG originally has three classes (normal, suspect, and pathological).
We create a distribution shift by first training on only the “normal” and “suspect” samples. Then,
we add in the ”pathological” samples (but assign them the same label as the “suspect” samples).
WHO contains data about countries’ life expectancies across several years (2000-2015). We create a
temporal data shift by using pre-2012 data as the original dataset, and all data as the shifted dataset.
When preprocessing WHO, we also binarize the outcome variable. Instead of predicting the exact life
expectancy in years, we predict whether or not it is greater than the pre-2012 median life expectancy.

Choosing δ We dynamically determine a distinct δi value for the i-th layer with parameter θi based
on its lp norm, denoted as δi = κ∥θi∥p, where κ ∈ [0, 1] is the ratio of δi to the layer norm. This
design is motivated by two considerations. Firstly, parameters across different layers have different
lp norms due to layer size and depth differences. Consequently, a fixed δ may be overly restrictive
for some layers and lenient for others. Secondly, using a single fixed δ could potentially inflate the
norm of each layer artificially to enhance δ-Robustness because larger layer norms make the δ-robust
multiplicity set relatively smaller under a fixed δ.
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C.2 CLASS-LEVEL DATA ON CTG

We include additional analysis on class-level performance for CTG. Recall that the original dataset
has 3 classes: normal (N), suspect (S), and pathological (P). We train the original model only on
N and S data, and then finetune a shifted model with the addition of P data (assigned to the same
class as S). We perform this analysis because the dataset is very imbalanced: around 78% belongs
to class N. That is, we want to ensure that the finetuning process actually adapts the model and CE
generator to the shifted data (rather than just yielding an overall high performance at the expense of
the minority groups S and P).

Before finetuning, all CEs are valid regardless of class. After finetuning, we find that overall, 98.7%
of CEs generated for CTG remain valid. For samples with class=S (i.e., the minority samples that
are represented in the training data), 95.9% of CEs are valid after finetuning. And for samples
with class=P (i.e., only represented in the finetuning data), 96.8% of CEs remain valid. So, while
robustness to finetuning is slightly lower for the minority classes, robustness is very high for all
groups.

C.3 ABLATION STUDIES

Other distance metrics In addition to proximity (see Section 5.1 for a definition), we consider
sparsity and distance to the data manifold (DDM) as CE quality metrics. Sparsity is defined as the
fraction of features that change, i.e., given x and its x′, SPARS(x,x′) = 1

d

∑d
i 1[xi ̸= x′

i]. We
approximate DDM by taking the distance to the nearest point in the training data (by using k-nearest
neighbors with k = 1). For all three metrics, a lower score indicates smaller distance, which indicates
that the CE is of higher quality because it will be easier for the user to obtain. Table 5 contains data
on sparsity and DDM; see Table 3 in the main paper for proximity data.

Table 5: Average sparsity and distance to the data manifold (DDM) for valid CE. (*) indicates that the CE
technique does not correctly account for categorical features.

CTG WHO HELOC TC OULA

Proximity

VeriTraCER 0.780 0.758 0.817 0.758 0.424
CN 0.765 0.718 0.791 0.751 0.403
ROAR 0.900 0.326 0.286 0.166* 0.399*
SNS 0.585 0.338 0.541 0.210* 0.292*

DDM

VeriTraCER 0.130 0.103 0.050 0.123 0.051
CN 0.109 0.064 0.049 0.108 0.039
ROAR 0.072 0.042 0.048 0.020* 0.028*
SNS 0.052 0.040 0.054 0.015* 0.024*

Relation of our approach’s effectiveness and the tightness of the bound. We compare the three
different techniques from Section 4.2. Using an looser bound such as IBP or CROWN-IBP in place
of Simul-CROWN is advantageous for computation speed, however, the overly loose bounds may
hurt the effectiveness. For instance, we expect to see lower model accuracy and higher CE distance
metrics with IBP and CROWN-IBP than with Simul-CROWN. However, Table 6 shows that three
techniques perform largely similarly. Note that the δ-Robustness rate is computed post-training using
Simul-CROWN as it achieves tighter over-approximation than the other two approaches.

C.4 TIME COMPLEXITY

For VeriTraCER, it takes 8.24 (±0.14) s. to train one epoch on HELOC, 126.61 (±1.92) s. to train one
epoch on OULA, and 27.66 (±0.36) s. to train one epoch on TC. By contrast, training one epoch with
standard training on the same hardware takes 0.55 (±0.01) s. for HELOC, 5.39 (±0.06) s. for OULA,
and 1.80 (±0.01) s. for TC. We train each dataset for 100 epochs, so with VeriTraCER, it takes on
the order of 14 minutes for HELOC, 3 hours for OULA, 45 minutes for TC. With standard training,
those times are reduced to around 1 minute, 9 minutes, and 3 minutes, respectively.

Table 7 summarizes the time required to generate one CE, given a trained model. (CounterNet is not
included, as it takes the same amount of time as VeriTraCER.) We see that VeriTraCER can generate
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Table 6: Fraction of samples that exhibit δ-robustness and empirical random initialization (RI) robustness, along
with test accuracy and CE quality metrics for IBP, CROWN-IBP, and VeriTraCER. Prox. is proxmity, Spars. is
sparsity, and Man. is distance to the data manifold.

∆-Rob. RI Acc. Prox. Spars. Man.

HELOC
IBP 0.746 0.920 (0.079) 0.742 0.10 (0.03) 0.82 (0.08) 0.05 (0.01)
C-IBP 0.721 0.918 (0.064) 0.742 0.10 (0.03) 0.82 (0.08) 0.05 (0.01)
VeriTraCER 0.788 0.932 (0.028) 0.738 0.10 (0.03) 0.82 (0.08) 0.05 (0.01)

TC
IBP 0.902 0.862 (0.187) 0.812 0.22 (0.06) 0.74 (0.09) 0.10 (0.03)
C-IBP 0.872 0.900 (0.120) 0.813 0.22 (0.06) 0.75 (0.09) 0.10 (0.03)
VeriTraCER 0.813 0.884 (0.141) 0.806 0.24 (0.05) 0.76 (0.09) 0.12 (0.03)

OULA
IBP 0.880 0.922 (0.079) 0.929 0.19 (0.04) 0.45 (0.12) 0.06 (0.02)
C-IBP 0.968 0.941 (0.055) 0.930 0.18 (0.04) 0.43 (0.12) 0.05 (0.02)
VeriTraCER 0.970 0.941 (0.054) 0.929 0.18 (0.04) 0.42 (0.12) 0.05 (0.02)

Table 7: Average time, in seconds, to generate one counterfactual given a trained model. The standard deviation
for VeriTraCER is negligible (< 10−4) for all datasets.

HELOC OULA TC

VeriTraCER <0.001 <0.001 <0.001
ROAR 3.25 ±0.72 2.75 ±0.52 3.33 ±0.40
SNS 5.25 ±0.21 5.92 ±0.21 5.89 ±0.20

CEs near-instantaneously, while ROAR and SNS must solve complex optimization problems for each
instance.
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