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Abstract

The adoption of Foundation Models in resource-constrained environments remains challenging 1

due to their large size and inference costs. A promising way to overcome these limitations is 2

post-training compression, which aims to balance reduced model size against performance 3

degradation. This work presents Any Compression via Iterative Pruning (ACIP), a novel algo- 4

rithmic approach to determine a compression-performance trade-off from a single stochastic 5

gradient descent run. To achieve parameter efficiency, we use an SVD-reparametrization 6

of linear layers and iteratively prune their singular values with a sparsity-inducing penalty. 7

Importantly, the pruning order of the parameters is used to derive a global score map that 8

allows compressing a model to any target size without re-computation. We evaluate ACIP on 9

a large selection of open-weight LLMs and downstream tasks, demonstrating state-of-the-art 10

results compared to existing factorization-based compression methods. We also show that 11

ACIP seamlessly complements common quantization-based compression techniques. 12

1 Introduction 13
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Figure 1: Compared to conventional compression
algorithms (a), an Any Compression algorithm (b)
swaps the computational calibration step and the
decision step, so that models of different target
sizes can be materialized without re-computation.

Post-training compression of Foundation Models, espe- 14

cially Large Language Models (LLMs), promises access to 15

powerful tools where resources are limited, e.g., in automo- 16

tive systems, mobile deployments, or on shop floors (Gho- 17

lami et al., 2022). Typical reasons for resource scarcity 18

include constrained access to hardware, monetary limita- 19

tions, high inference speed requirements, and environmen- 20

tal concerns (Hohman et al., 2024). 21

The original promise of model compression was to elim- 22

inate redundant parameters, resulting in almost lossless 23

methods (Han et al., 2016). While working well for mod- 24

els trained on smaller datasets, this hypothesis does not 25

hold up anymore in the era of LLMs and scaling laws 26

(Allen-Zhu & Li, 2024). For modern “densely trained” 27

models, compression is almost always lossy, leading to 28

a fundamental trade-off between model size and down- 29

stream performance. While characterizing this trade-off 30

supports practitioners in deployment decisions (Boggust 31

et al., 2025), the scientific literature typically focuses on 32

benchmarks at preset compression levels (Zhu et al., 2024). 33

This gap between research and practice implies that, for 34

model users, the process is often perceived as a “black 35

box”, requiring significant expertise and trial-and-error to 36

identify an acceptable setup. We argue for the opposite ap- 37

proach, one that empowers users to seamlessly customize 38

a compression algorithm for their specific use cases. 39
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Any Compression 40

With this motivation in mind, we advocate for methods that permit Any Compression of pre-trained models. 41

Here, ‘Any’ signifies an algorithm’s ability to scale a given base model to an arbitrary target size, guided by the 42

user’s specific needs and limitations, rather than the algorithm dictating possible sizes. To facilitate decision- 43

making, such an algorithm must efficiently reveal the compression-performance trade-off without extensive 44

re-computation. In existing post-training compression approaches, we identify two practical challenges to 45

achieving Any Compression. 46

Problem 1 (Preset compression rates). The size reduction of large Foundation Models is a prominent research 47

area, with existing methods largely falling into three categories: knowledge distillation (training a smaller 48

student model), quantization (reducing numerical precision), and parameter pruning (removing redundant 49

weights) — for a comprehensive survey, we refer to Zhu et al. (2024). While effective, these approaches 50

often impose constraints that conflict with the goal of achieving Any Compression as they are restricted 51

to preset (discrete) compression factors. Indeed, knowledge distillation is limited to a single compression 52

rate defined by the fixed size of the student model (Hinton et al., 2015). Quantization is limited by fixed 53

bit-length reductions (typically from 16-bit to 4-bit or 8-bit representations) (Gholami et al., 2022; Dettmers 54

et al., 2023). Similarly, (unstructured) parameter pruning often relies on rigid sparsity patterns (e.g., n:m 55

sparsity) to ensure efficient memory allocation and hardware acceleration, thereby restricting the possible 56

model sizes (Choquette et al., 2021). 57

Solution (Structured pruning by weight factorization). Weight factorization is a technique where (linear) 58

model weights are decomposed into several sub-matrices (Eckart & Young, 1936). This approach enables 59

fine-grained model compression and high parameter efficiency by pruning the inner dimensions of the resulting 60

matrices (Yuan et al., 2024; Wang et al., 2024). A key advantage is its compatibility with standard hardware, 61

since it only requires basic matrix-vector multiplications. 62

Problem 2 (Different compression rates require re-computation). Most existing post-training compression 63

techniques are inherently inefficient for exploring the trade-off between model size and performance. Conven- 64

tionally, a user selects a target compression rate and other hyperparameters, initiating a costly computational 65

step that can take minutes to hours (Frantar et al., 2023; Sun et al., 2024; Yuan et al., 2024). Each new 66

compression rate requires repeating this entire process, making a comprehensive evaluation of the trade-off 67

landscape impractical (see Figure 1(a)). 68

Solution (Any Compression through amortization). We argue that a reversed workflow is preferable: a single, 69

upfront computational investment that enables the subsequent materialization of a model at any compression 70

rate in almost real-time (see Figure 1(b)). The initial effort, which could be handled by the model supplier, 71

would empower users to efficiently select an optimal model instance for their needs at a negligible cost. 72

The challenge, therefore, is to design algorithms that are compatible with this “compute once, compress 73

dynamically” approach. 74

Contributions and Overview 75

In this work, we introduce Any Compression via Iterative Pruning (ACIP),1 which is specifically developed to 76

address the above problems. To the best of our knowledge, ACIP is the first algorithm that enables large-scale 77

model compression to any size in real-time without requiring re-computation or re-calibration. 78

To overcome Problem 1, ACIP follows a low-rank factorization strategy, based on pruning singular values of 79

large linear layers. This particular form of structured parameter pruning allows for fine-grained compression 80

levels and is parameter-efficient at the same time, as only singular values are altered. Compared to quantization 81

and conventional (unstructured) pruning, an efficient implementation does not come with any restrictions to 82

the underlying hardware, since it is purely based on standard matrix-vector multiplications. 83

ACIP solves Problem 2 by explicitly decoupling an (optimization-based) pruning stage from the actual 84

compression stage. The former can be viewed as a data-dependent calibration step, which estimates the 85

global importance of all target parameters (the singular values of the base model layers) through an iterative 86

pruning scheme. The resulting score map is then used to implement a simple compression step that enables 87

1Pronounced like ‘a sip’ of coffee.
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Figure 2: A visual overview of ACIP. 1 The linear layers of the base model are reparametrized in terms of
their singular value decomposition UMΣV⊤, with a (binary) singular value mask M = M(p) and a low-rank
adapter ∆. 2 An objective function is optimized via gradient descent over the mask parameters p and
adapters ∆, where sparsity is induced on p by an increasing ℓ1-penalty. This leads to pruned entries in the
mask M(p). The optimization path of p gives rise to a score map that determines the global importance of
the singular values across the full model. Potential compression errors are compensated by ∆. 3 Based on
the parameter scores, the base model can be flexibly compressed to any target size by masking the entries
of Σ. The learned adapters ∆ are used as correction for any compression level.

the instantiation of models of any desired size without further computational costs. The detailed methodology 88

and technicalities of ACIP are presented in Section 2 (see Figure 2 for a visual overview). 89

We empirically demonstrate the effectiveness of ACIP on a range of recent LLMs in Section 3, accompanied 90

by a series of additional experiments in the supplementary material (Appendices C and D). In particular, we 91

verify that our approach outperforms other factorization-based methods on multiple benchmarks (Section 3.2) 92

and seamlessly complements quantization-based compression techniques (Section 3.4). In the spirit of scaling 93

laws (Kaplan et al., 2020), ACIP provides consistent and robust size-performance trade-offs, which allows 94

model users to predict downstream capabilities from a few data points. 95

Finally, we put our results in the broader context of related literature in Section 4 and conclude in Section 5 96

by outlining limitations as well as promising avenues for future research that build on our contributions. 97

2 Method 98

Figure 2 provides a schematic overview of Any Compression via Iterative Pruning (ACIP). In its initial stage, 99

ACIP builds a reparametrization of large linear network layers by a singular value decomposition (SVD), which 100

enables model compression through rank reduction (see Section 2.2.1 for details). Unlike existing SVD-based 101

methods (Idelbayev & Carreira-Perpiñán, 2020; Yuan et al., 2024; Wang et al., 2024), Any Compression is 102

achieved by decoupling the pruning and compression stages (cf. Figure 1(b)). More specifically, we construct 103

a score map that establishes a global importance ranking of singular values across all linear layers within 104

the network. The score map is derived by running a (stochastic) gradient descent on a sparsity-inducing 105

objective, using the pruning order of the singular values as a proxy for feature importance (see Section 2.2.2). 106
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In an independent step, the score map can then be used to compress the base model to any desired size 107

without re-computation (see Section 2.2.3). 108

2.1 Preliminaries 109

This section provides several preliminaries to better understand the algorithmic details of ACIP, which are 110

presented in Section 2.2. 111

2.1.1 Score-Based Parameter Pruning 112

As motivated above, the overarching goal of this work is to allow Any Compression of a pre-trained model by 113

decoupling the computational stage from the compression stage. To this end, we use score-based parameter 114

pruning, a framework that has been successfully applied to model compression since the 1980s (LeCun et al., 115

1989; Hassibi et al., 1993). In score-based pruning, a score map ρ is created that assigns an importance 116

score ρi to each target parameter θi. Naturally, this approach gives rise to a (global) ranking of parameters 117

that allows for model compression at any desired rate. 118

There are many ways to design useful score maps. For example, they can be derived based on curvature at 119

a local optimum (LeCun et al., 1989; Hassibi et al., 1993) or by using hand-designed local features (Sun 120

et al., 2024; Frantar & Alistarh, 2023). ACIP takes a novel, data-driven approach to score maps that does not 121

require any handcrafting or feature engineering (see Section 2.2.2). 122

2.1.2 Low-Rank Compression of Linear Layers 123

Linear layers are the molecular building blocks of modern machine learning models, typically accounting for 124

more than 90% of model parameters in transformers (Vaswani et al., 2017), which makes them a natural 125

target for compression. Accordingly, we consider linear layers of the form 126

y = Wx + b, (1)

where W is an m× n matrix, b is a bias term, and x and y are layer inputs and outputs, respectively. In 127

this work, we specifically aim for a low-rank compression based on a matrix factorization such that 128

y = PQx + b, (2)

where P and Q are matrices of sizes m × k and k × n, respectively, and k ≪ min(m, n). The layer 129

parametrization in (2) may be interpreted as a (lossy) compression of the parametrization in (1), leading to a 130

smaller memory footprint whenever k(m + n) < mn. Note that matrix factorization can be used to compress 131

the parameters of any linear layer, including dense layers as well as efficiently parametrized layers such as 132

convolutional layers (Idelbayev & Carreira-Perpiñán, 2020). 133

Singular value decomposition. To determine suitable low-rank factors P and Q in (2), we follow recent 134

work on (large) model compression (Idelbayev & Carreira-Perpiñán, 2020; Yuan et al., 2024; Wang et al., 135

2024) and leverage a singular value decomposition (SVD). SVD factorizes an m× n weight matrix Wl of 136

rank r ≤ min(m, n) at layer l as 137

Wl = UlΣlV⊤
l , (3)

where Ul and Vl are m× r and n× r matrices of (orthonormal) singular vectors, and Σl is a r × r diagonal 138

matrix containing the singular values s(i)
l > 0. Note that we consider the compact SVD here, which ignores 139

the null-space vectors of the full SVD. We may reduce the inner dimension r of the SVD to k < r with 140

Wl ≈ ŨlΣ̃lṼ⊤
l , (4)

by defining Ũl and Ṽ⊤
l to only contain k singular vectors associated with a selected subset of singular values. 141

Measuring the approximation error in terms of (Frobenius) matrix norm, selecting the k largest singular 142

values leads to an optimal approximation of Wl under rank constraints (Mirsky, 1960). It has been previously 143

argued, however, that this approach does not yield satisfactory results in deep learning as is does not take 144
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into account the underlying (training) data and downstream task (Hsu et al., 2022). Different approaches 145

have been presented to address this problem (Hsu et al., 2022; Yuan et al., 2024; Wang et al., 2024; Chen 146

et al., 2021). 147

2.1.3 ℓ1-Regularization 148

Consider a generic loss functional L(X; θ) evaluated on some model that is specified by a parameter vector θ 149

and data X. During model training, sparsity in θ is typically encouraged by solving the penalized optimization 150

problem 151

min
θ
L

(
X; θ

)
+ λ ∥θ∥1 , λ > 0, (5)

which is known as ℓ1-regularization, or least absolute shrinkage and selection operator (LASSO) in case of 152

(generalized) linear models (Tibshirani, 1996; Hastie et al., 2015). Feature selection plays a key role in this 153

optimization problem. Indeed, increasing λ in (5) leads to sparser solutions θ̂(λ). This effectively gives rise 154

to a feature importance ranking for the solution of (5) through the so-called regularization path (Tibshirani, 155

1996; Efron et al., 2004; Mairal & Yu, 2012) — an idea that inspired the approach of ACIP. Furthermore, 156

previous results indicate that optimization paths of iterative schemes can be related to regularization paths 157

(Suggala et al., 2018). Intuitively, this suggests that general optimization paths of iterative schemes for 158

ℓ1-objectives reveal information about feature importance in the context of sparse models as well. 159

In ACIP, we will successively increase λ to introduce a higher degree of model compression in terms of 160

parameter sparsity in a controlled manner (see also Remark 2.1 below). 161

2.2 Any Compression via Iterative Pruning (ACIP) 162

Algorithmically, ACIP consists of the following three key steps, which are detailed in the sections below. For a 163

schematic visualization of ACIP, we refer to Figure 2. 164

Step 1. (Model Reparametrization) Apply SVD to the weights of all (dense) linear layers according 165

to (6). Introduce low-rank adapters ∆ and singular value masks as tunable parameters. 166

Step 2. (Scoring via Iterative Pruning) Choose a surrogate loss L and a calibration data set X. Perform 167

iterative pruning of singular value masks p and simultaneous tuning of low-rank adapters ∆ by 168

applying ℓ1-regularized gradient-based optimization as in (8). Obtain a global parameter score map ρ 169

by using Algorithm 1. 170

Step 3. (Any Compression) Choose any desired compression rate. Use the score map ρ and low-rank 171

adapters ∆ to materialize the compressed model in real-time. 172

2.2.1 Step 1. Model Reparametrization 173

We start by reparametrizing all linear layers of a network2 using SVD as described in (3) and assign 174

Wl ← UlMlΣlV⊤
l + ∆l, (6)

where l denotes the layer index, Ml is a diagonal matrix with binary entries m(i)
l ∈ {0, 1} masking the 175

singular values s(i)
l in Σl, and ∆l is a low-rank adapter (LoRA) (Hu et al., 2022). In all subsequent steps of 176

ACIP, we freeze Σl, Ul, and Vl. 177

We find that adding a low-rank adapter helps to compensate for potential errors that are introduced by 178

pruning in Step 2 (Section 2.2.2). We initialize Ml as the identity matrix and ∆l as zero weights. In this 179

way, the reparametrized model remains identical to the original model up to numerical precision. 180

We assign the binary masks m(i)
l such that s̃(i)

l = m(i)
l · s

(i)
l represents the pruned or retained singular values, 181

respectively. Thus, m(i)
l decouples the magnitude of a singular value and the pruning decisions based on its 182

importance. 183

2Following common practice, we ignore the embedding layer and classification head in (decoder-only) transformers.
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The above parametrization leads to a parameter-efficient compression scheme. Indeed, given an m × n 184

matrix W, the number of non-zero singular values is bounded by r = min(m, n), which means the number of 185

tunable mask parameters scales linearly in the feature dimensions. 186

Mask parametrization. We parametrize the binary masks through a thresholding operation of the form 187

m(i)
l =

{
0, for p(i)

l ≤ 0
1, for p(i)

l > 0
, (7)

where p(i)
l are scalar learnable parameters. As this operation is not differentiable, we use the straight-through 188

estimator for backpropagation (Bengio et al., 2013; Yin et al., 2018). 189

2.2.2 Step 2. Scoring via Iterative Pruning 190

We now aim to build a global score map over all singular values in the reparametrized layers, which guide 191

model compression subsequently in Step 3 (Section 2.2.3). Leveraging the sparsity-inducing property of 192

ℓ1-regularization (see Section 2.1.3), we progressively shrink the mask parameters p(i)
l to zero and derive 193

a score map based on the pruning order. The two key algorithmic components of this “iterative scoring” 194

strategy are presented next. 195

Iterative pruning. The optimization problem solved by ACIP takes the form 196

min
p,∆
L

(
X; θ, p, ∆

)
+ λ ∥p∥1 , (8)

where L denotes a suitable calibration loss for the model, p = {p0, . . . , pL} the set of all mask parameters, 197

∆ = {∆0, . . . , ∆L} the set of all low-rank adapters, and θ the set of all remaining model parameters that are 198

frozen during optimization. We perform gradient-based optimization until a preset maximum compression 199

ratio rstop is reached (see Appendix D.4 for further discussion). Optionally, we perform post-tuning for a 200

fixed number of steps by freezing the masks p and continuing the optimization the low-rank adapters ∆. 201

Remark 2.1 (Scaling of λ). If λ is chosen too small, the maximum compression ratio rstop might never be 202

reached. If λ is too large, training might become unstable and the score map ambiguous. Therefore, we use a 203

simple linear scheduler that scales λ by a fixed factor >1 every j optimization steps, so that pruning becomes 204

increasingly aggressive over time. 205

0 200 400 600 800 1000 1200
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Train Steps

p

Figure 3: Progressive shrinkage of exem-
plary mask parameters p in Attn-V layer
l = 30 of LLaMA-7B based on (8). The
starting points of shrinkage are predictive
of the pruning order, a typical phenomenon
in ℓ1-regularization. In ACIP, this pruning
order determines the score of associated sin-
gular values s (cf. Algorithm 1).

From iterative pruning to score map. The optimization 206

process of (8) is used to construct our score map. Based on the 207

discussion of Section 2.1.3, we hypothesize that there is a close 208

relationship between the order in which the parameters p(i)
l 209

vanish and their importance for the model — the least important 210

parameters are pruned first and so on. When conducting our 211

experiments, we observed a shrinkage behavior that supports 212

this hypothesis; see Figure 3 for a specific example. 213

Algorithm 1 describes how the score map is updated after each 214

optimization step to represent feature importances. In plain 215

words, the score map is built based on the pruning order. A 216

negative number in the map indicates how many steps ago 217

a parameter was pruned. For all parameters that have not 218

been pruned, the score is set to the value of the corresponding 219

parameter. We refer to Appendix D.9 for visual examples of 220

ACIP score maps. 221

The approach of Algorithm 1 ensures that (i) the score map 222

stores the pruning history, and (ii) it estimates future pruning 223

based on the parameter magnitudes. Note that absolute values 224

of the score are irrelevant for parameter ranking. 225
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Algorithm 1 Score map generation

# params: parameters p, vectorized;
# scores: pruning scores, vectorized;
# initialized to NaN

def update_scores(scores, params):
# previously pruned parameters
score_mask = scores <= 0.
scores[not score_mask] = params[not score_mask]
scores[score_mask] -= 1.
return scores

2.2.3 Step 3. Any Compression 226

From Step 2, we only retain the score map ρ and the low-rank adapters ∆. In particular, the pruned masks 227

m(i)
l are discarded, as they are irrelevant for compression at this stage (cf. Figure 2). As motivated above, the 228

score map allows us to globally rank all singular values based on their score. This leads to a fully independent 229

compression stage where we can flexibly create a model of any reduced size: we prune as many singular 230

values s(i)
l (and the corresponding singular vectors) according to their scores ρ

(i)
l so that a given compression 231

rate r is achieved. Note that there is a monotonic but non-linear relationship between the total number of 232

pruned singular values k and compression rate r (see Section 2.1.2). Given a target rate r, we find k via a 233

binary search (in almost real-time). As this compression procedure operates directly on the reparametrized 234

model from Step 1, it is reversible and therefore indeed allows for Any Compression; for a slightly refined 235

version, see Appendix D.3. 236

Finally, to materialize a model at a fixed target rate, all pruned singular values and vectors are discarded, so 237

that the initial SVD-reparametrization turns into an actual low-rank factorization. For layers with determined 238

rank k ≥ mn
m+n , i.e., where a factorization would not save any parameters, we avoid an inefficient storage 239

usage by simply recovering the (dense) weight matrix from its SVD components. 240

3 Experiments 241

Experimental setup. To demonstrate effectiveness across architectural differences in LLMs, we evaluate 242

ACIP on a selection of popular open-weight models: LLaMA-7B/13B (Touvron et al., 2023a), LLaMA-2- 243

7B/13B (Touvron et al., 2023b), LLaMA-3.1-8B (Grattafiori et al., 2024), Qwen2.5-7B/14B (Qwen et al., 244

2024), and Mistral-7B-v0.3 (Jiang et al., 2023). We use a subset of C4 training data (Raffel et al., 2019) 245

for the pruning stage. Regarding evaluation tasks, we follow Wang et al. (2024) and report perplexity on 246

validation held-outs of C4 (Raffel et al., 2019) and WikiText-2 (Merity et al., 2017), and we consider seven 247

zero-shot tasks from EleutherAI LM Evaluation Harness (LM-Eval) (Gao et al., 2023). More implementation 248

details about ACIP and choices of hyperparameters can be found in Appendix B. 249

3.1 Analyzing Compression-Performance Trade-Offs 250

We first study compression-performance trade-offs powered by ACIP. Figures 4 and 5 demonstrate smooth 251

and consistent curve shapes for all considered models; analogous results for WikiText-2 and individual 252

zero-shot LM-Eval tasks can be found in Figure A8. We note that a monotonic relationship between size 253

and performance is not self-evident, e.g., see Figure A13 in Appendix D.6 for a trivial approach that uses 254

magnitude-based pruning. 255

A remarkable observation is that the oldest models, LLaMA-7B/13B, perform best perplexity-wise, while 256

newer, more capable models like Qwen2.5-7B/14B dominate on LM-Eval as expected, especially on the lower 257

compression levels. This apparent contradiction is likely caused by a deviation of the pre-training data 258

distributions from C4 in the case of more recent models. 259

A second noteworthy outcome of Figures 4 and 5 are the gaps between LLMs of different base model sizes in 260

the same family. Indeed, ACIP cannot match the performance of base models of smaller size, e.g., compare 261
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erated by ACIP on C4. Each curve was obtained by
the Any Compression stage (Step 3 in Section 2.2.3),
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for a perplexity evaluation. Square marks denote the
base model performance.
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Figure 5: Compression-performance trade-off curves
generated by ACIP, using average accuracy on all
LM-Eval tasks as metric.

the compressed Qwen2.5-7B with the original Qwen2.5-3B. This is not surprising because the corresponding 262

smaller-size base models were obtained by pre-training or knowledge distillation (Hinton et al., 2015; Busbridge 263

et al., 2025), which are orders of magnitudes more expensive than ACIP. 264

3.2 Comparison to Existing Works 265

We now compare ACIP to two recent works focusing on SVD-based structured pruning, namely ASVD (Yuan 266

et al., 2024) and SVD-LLM (Wang et al., 2024). Both approaches are backpropagation-free and perform 267

(activation-aware) layer-wise updates instead. Table 1 shows that ACIP consistently outperforms both methods 268

with a growing gap for higher compression levels. Note that SVD-LLM was calibrated on WikiText-2 instead 269

of C4, which might explain slightly better results on the former dataset for 70% and 80% size. We think that 270

these results underpin the benefits of an end-to-end scheme: (i) a simultaneous correction, e.g., by LoRA, 271

can drastically improve performance, and (ii) robust pruning patterns can be found without leveraging any 272

specific features of the SVD factorization. Moreover, we note that re-computations are required to generate 273

each row of Table 1 for ASVD and SVD-LLM, whereas ACIP only needs a single run. Analogous results for 274

ACIP applied to all other models can be found in Table A2. 275

3.3 Improving Performance Through Fine-Tuning 276

While the main goal of this work is to produce a full family of accurate, compressed models from a few 277

optimization steps, their performance can be certainly improved through continued fine-tuning. Figure 6 278

highlights the gains of fine-tuning LLaMA-7B; see Table A2 for more detailed numerical results on all 279

other models. We observe that fine-tuning leads to a performance offset that is almost constant across all 280

compression levels, which underlines the predictive capacity of ACIP. Note that we even observe a jump at 281

zero compression because inserting the low-rank adapters learned by ACIP leads to a slight initial performance 282

drop (see Appendix D.3 for a potential improvement). 283

An optional fine-tuning step is not exclusive to ACIP but can be applied to many other compression approaches 284

as well. Table A3 provides a comparison with ASVD (Yuan et al., 2024) and SVD-LLM (Wang et al., 2024) 285

(cf. Section 3.2) when fine-tuned with LoRA. While ACIP still performs best in this respect, we argue that 286

post-compression fine-tuning should be still seen as an independent (and much more costly) algorithmic step 287

for two reasons. (i) Its outcome strongly depends on the specific training protocol and data, making a fair 288

and direct comparison challenging; (ii) it requires us to fix a compression level, which breaks the crucial Any 289
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Table 1: Any Compression under SVD reparameterization. Zero-shot evaluation of LLaMA-7B. Comparison
with baselines ASVD (Yuan et al., 2024) and SVD-LLM (Wang et al., 2024). ↑: larger is better; ↓: smaller is
better; best results for each task and size ratio are marked in bold. The scores for ASVD and SVD-LLM are
taken from Wang et al. (2024).

C4 WikiText-2 Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA LM Eval
Size Method ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Avg. ↑

100% Original 7.34 5.68 0.28 0.67 0.67 0.56 0.38 0.78 0.27 0.52

80%
ASVD 15.93 11.14 0.25 0.53 0.64 0.41 0.27 0.68 0.24 0.43
SVD-LLM 15.84 7.94 0.22 0.58 0.63 0.43 0.29 0.69 0.24 0.44
ACIP (ours) 10.92 8.83 0.28 0.66 0.63 0.49 0.32 0.74 0.23 0.48

70%
ASVD 41.00 51.00 0.18 0.43 0.53 0.37 0.25 0.65 0.21 0.38
SVD-LLM 25.11 9.56 0.20 0.48 0.59 0.37 0.26 0.65 0.22 0.40
ACIP (ours) 12.22 10.35 0.28 0.64 0.62 0.47 0.31 0.73 0.23 0.47

60%
ASVD 1109.00 1407.00 0.13 0.28 0.48 0.26 0.22 0.55 0.19 0.30
SVD-LLM 49.83 13.11 0.19 0.42 0.58 0.33 0.25 0.60 0.21 0.37
ACIP (ours) 13.91 12.46 0.25 0.61 0.59 0.44 0.30 0.71 0.24 0.45

50%
ASVD 27925.00 15358.00 0.12 0.26 0.51 0.26 0.22 0.52 0.19 0.30
SVD-LLM 118.57 23.97 0.16 0.33 0.54 0.29 0.23 0.56 0.21 0.33
ACIP (ours) 16.47 16.16 0.21 0.57 0.57 0.40 0.27 0.68 0.22 0.42

40%
ASVD 43036.00 57057.00 0.12 0.26 0.49 0.26 0.21 0.51 0.18 0.29
SVD-LLM 246.89 42.30 0.14 0.28 0.50 0.27 0.22 0.55 0.21 0.31
ACIP (ours) 21.05 23.99 0.19 0.49 0.55 0.35 0.24 0.64 0.21 0.38
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Figure 6: Compression-performance trade-off curves
for LLaMA-7B on C4 showing the impact of fine-
tuning and quantization after compression with
ACIP. The horizontal axis measures size in terms of
required (weight) memory to visualize the gains of
quantization more clearly.
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Figure 7: Compression-performance trade-off curves
for LLaMA-7B on C4, showing that quantization
before ACIP leads to similar results as without.

Compression feature of ACIP. Therefore, promoting a costly fine-tuning step after compression is not the 290

primary concern of our work. 291

3.4 Combining ACIP with Quantization 292

In the field of low-cost compression for LLMs, quantization is still considered as the gold standard (Hohman 293

et al., 2024; Zhu et al., 2024), so that a practitioner might not be willing to exchange its gains for the benefits 294

of ACIP. Fortunately, ACIP only tunes a tiny fraction of weights with high precision, so that all remaining 295
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modules are suitable for quantization. In our experiments, we quantize all parameterized and unparametrized 296

linear layers to 4-bit in fp4-format (Dettmers et al., 2023) using the bitsandbytes-Package (W4A16), except 297

for the embedding layer and final classification head. We study the gains of quantization for ACIP in the 298

following two ways. 299

Compress first, then quantize. We first apply ACIP as usual, compress the model to a given target size, 300

and then quantize all linear layers. Figure 6 confirms that this approach works fairly well, only producing a 301

slight performance drop compared to non-quantized versions; see Table A4 for a full evaluation on all other 302

metrics. We also observe that an optional fine-tuning step as in Section 3.3 can almost fully compensate for 303

the errors introduced by quantization after compression. This finding is well in line with the effectiveness of 304

the popular QLoRA approach (Dettmers et al., 2023). Moreover, Figure 6 reveals a drastic improvement 305

through quantization in terms of required memory. Here, the ACIP-trade-off allows practitioners to study and 306

apply a more fine-grained compression on top of quantization. 307

Quantize first, then compress and transfer. Compared to layer-wise methods like ASVD and SVD- 308

LLM, ACIP has a higher demand in GPU memory due to backpropagation. A quantization of all frozen 309

weight matrices can be an effective remedy in this respect. For the experiment shown in Figure 7, we 310

have applied quantization before ACIP, which leads to very similar compression-performance trade-offs as 311

in the non-quantized case. Going one step further, we transfer the score maps and low-rank adapters from 312

this quantized version of ACIP back to full precision: We load the base model in bf16, apply layer-wise 313

SVD-parametrization, insert the low-rank adapters learned by quantized ACIP, and use the corresponding 314

score map to obtain a compressed model (W16A16). The resulting trade-off curve in Figure 7 confirms that 315

this simple strategy works fairly well, especially for lower compression levels. 316

3.5 Further Experiments and Ablations 317

Several additional experiments are presented in Appendix D, analyzing the impact of several key components 318

and design aspects of ACIP. Starting with an analysis of algorithmic efficiency and latency (Appendix D.1), 319

we study the impact of the low-rank adapters (Appendix D.2), compression rule (Appendix D.3), stopping 320

criterion (Appendices D.4 and D.5), score map design (Appendix D.6), post-tuning (Appendix D.7), and 321

specific types of linear layers (Appendix D.8). Finally, we show examples of score maps (Appendix D.9) and 322

prompt completions by compressed models (Appendix D.10). 323

4 Related Work 324

In this section, we pick up on our broader discussion on the field of model compression from Section 1 and 325

put our work in context with several directly related branches of research. 326

Structured pruning & low-rank factorization. Conceptually, ACIP falls under the umbrella of structured 327

parameter pruning, specifically, low-rank matrix decomposition. The rationale behind this compression 328

approach is to approximate large weight matrices by products of low-rank factors to reduce the total parameter 329

count, and at the same time, to preserve critical information. After initial efforts into this direction for 330

smaller language models (Edalati et al., 2022; Tahaei et al., 2022), techniques for LLMs primarily built on 331

(weighted) SVD of linear layers (Ben Noach & Goldberg, 2020; Hsu et al., 2022). 332

However, a key challenge of SVD-based pruning is that simply truncating singular values based on magnitude 333

alone is insufficient and makes additional fine-tuning on downstream tasks necessary. Follow-up work 334

recognized that the poor approximations are caused by LLM weights being high-rank and instead turned to 335

decomposing network features which are sparse (Kaushal et al., 2023; Yu & Wu, 2023). Similarly, recent 336

studies (Sharma et al., 2023; Yuan et al., 2024; Jaiswal et al., 2024) have shown rank reduction to differently 337

affect layers in a network and proposed heuristics for non-uniform pruning. Going even further, ASVD 338

(Yuan et al., 2024) pointed out the importance of activation-aware approximations, proposing a training-free 339

compression method that takes the (calibration) data distribution into account. Building on this, SVD-LLM 340

(Wang et al., 2024) recently derived an analytical layer-wise correction leading to superior compression results. 341
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While ACIP promotes an activation-aware solution as well, it relies on gradient-based optimization, which 342

avoids any SVD-specific feature engineering and allows for simultaneous errors corrections. 343

Another relevant line of work on structured pruning aims to jointly remove groups of parameters or entire 344

network components, e.g., weight matrix columns/rows, network layers, or attention heads (Frantar & Alistarh, 345

2023; Ma et al., 2023; Xia et al., 2024; Ashkboos et al., 2024; Kim et al., 2024). At high compression rates, 346

however, such “coarse” approaches often remove critical substructures, causing a significant performance drop 347

that is only recoverable through additional fine-tuning. 348

Score maps & Any Compression. A common feature of the aforementioned structured pruning ap- 349

proaches is that they first truncate parameters to a preset target size and then compute an error correction. 350

This design choice means that exploring the full compression-performance trade-off requires repeated, costly 351

computations for each desired compression ratio (cf. Figure 1(a)). In contrast, ACIP overcomes this limitation 352

by using score maps to determine global parameter importance. As such, score maps have been used as a 353

tool for model compression since the 1980s (LeCun et al., 1989; Hassibi et al., 1993). However, in the era of 354

LLMs, deriving a score for each parameter poses significant challenges in terms of scalability. Addressing this 355

concern, ACIP enables scalable Any Compression by (i) using weight factorization to significantly reduce the 356

score map size (e.g., to ∼900k parameters for a 7B model), and (ii) decoupling the scoring and compression 357

stages (Step 2 and 3 in Section 2.2, respectively). 358

Any-size pre-training. Beyond post-training compression, an alternative paradigm for obtaining models 359

of varying sizes is to incorporate this flexibility into the (pre-)training process itself. For example, Cai et al. 360

(2020) train a single, large “Once-for-all” network from which specialized sub-networks of different sizes can 361

be extracted without retraining. More recently, the MatFormer (Devvrit et al., 2024) has demonstrated 362

how to build a family of “any-size” models directly through a nested pre-training methodology, based on 363

Matryoshka Representation Learning (Kusupati et al., 2022). The recently published Gemma-3n model uses 364

this approach in production to make LLMs ready for mobile and edge devices (Gonzalez & Shivanna, 2025). 365

While these methods also produce a trade-off between model size and performance, they require a significantly 366

higher upfront computational budget associated with complex pre-training from scratch. ACIP provides a 367

lightweight, post-training alternative that offers similar flexibility for any existing pre-trained model. 368

Rate-distortion theory. Finally, our work can be viewed through the lens of rate-distortion theory, which 369

investigates the analytical trade-off between achievable data compression rates and the error (distortion) 370

introduced by lossy compression (Cover & Thomas, 2006). While some recent work (Gao et al., 2019; Isik 371

et al., 2022) investigates rate-distortion theory of machine learning models for simple architectures under 372

rather specific assumptions, the information-theoretic limits of neural network compression are generally 373

unknown in practically relevant settings. In this context, the family of compressed models generated by ACIP 374

conveniently provides an empirical (upper) bound on the distortion-rate function of a large-scale model from 375

a single optimization run. 376

5 Conclusion 377

In this work, we have introduced Any Compression via Iterative Pruning (ACIP), a simple end-to-end 378

algorithm to determine the compression-performance trade-off of pre-trained models. The underlying score 379

map ranking allows us to materialize models of any compression rate in real-time. We have demonstrated 380

empirically that the downstream performance of the resulting models is superior to existing, layer-wise 381

factorization approaches. The flexibility and efficiency of ACIP make it a practical tool for deploying large- 382

scale models in resource-constrained settings, especially in combination with other compression techniques 383

such as quantization. 384

Discussion. Our main results in Figures 4 and 5 resemble the well-known phenomenon of scaling laws 385

(Kaplan et al., 2020; Hoffmann et al., 2022). Recently, it has been shown that any-size models can be achieved 386

through pre-training (Devvrit et al., 2024; Gonzalez & Shivanna, 2025) (see also Section 4), exhibiting similar 387
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trade-offs as ACIP. Establishing a rigorous connection between these two fields of research could be a fruitful 388

avenue of future work. 389

In a similar vein, we observe that more recent models tend to be less compressible (e.g., compare the slopes 390

of LLaMA-13B and Qwen2.5-14B in Figure 5). We hypothesize that this relates to newer models carrying 391

denser information per weight, since they were trained on much larger datasets (Allen-Zhu & Li, 2024). Also, 392

the distribution of the calibration dataset (C4 in our case) might play an important role in this context. 393

A notable technical limitation of our work is that we have only focused on models that are tunable on a single 394

(NVIDIA H100) GPU in bf16-precision. Hence, the scaling behavior of ACIP for larger LLMs (30B+) remains 395

to be explored. We also emphasize that ACIP could be transferred to other modalities, architectures, and 396

tasks without any notable modifications. Finally, a more detailed study of inference speed (beyond the results 397

of Appendix D.1) could provide useful insights into the interplay of low-rank models and their efficiency. 398
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A Additional Remarks 609

In this section, we discuss a few additional aspects (in Q&A format) about our method and experimental 610

design that were not (fully) addressed in the main part for the sake of brevity. 611

Q1. Why did you not directly compare your results to quantization and full-weight (unstructured) pruning? 612

A1. We argue that these are fundamentally different compression approaches. Full weight manipulations, 613

in principle, have the potential to lead to more powerful compressions because they have more degrees 614

of freedom (analogously to full-weight fine-tuning vs. PEFT). Therefore, they should not be seen as 615

competing methods but complementary ones. We admit that practitioners probably would not favor 616

ACIP over well-established and widely supported quantization techniques. However, the adapter-style 617

nature of ACIP makes it suitable for a combination which can lead to extra gains, as demonstrated in 618

Section 3.4. 619

Q2. Why did you not compare with model distillation or combine ACIP with it? 620

A2. While model distillation can lead to outstanding compression results, e.g., see (Busbridge et al., 2025; 621

Raschka, 2024), this approach requires significantly more resources than ACIP, typically orders of 622

magnitudes more. A direct comparison is therefore not meaningful from our point of view, as it 623

should at least be based on approximately the same computational budget. 624

Q3. Why do you propose a backpropagation-based algorithm instead of layer-wise weight updates? 625

A3. Let us first summarize several benefits of our end-to-end optimization approach from the main paper: 626

(i) it is conceptually simple and requires no feature engineering, (ii) an error correction can be injected 627

with almost no extra costs, (iii) it allows us to perform efficient and accurate Any Compression. 628

Apart from that, and to the best of our knowledge, existing compression algorithms that use layer-wise 629

updates like ASVD (Yuan et al., 2024), SVD-LLM (Wang et al., 2024), or WeLore (Jaiswal et al., 630

2024) require a separate fine-tuning step to achieve competitive downstream performance at stronger 631

compression ratios. Therefore, the lower costs of layer-wise compression are actually dominated by a 632

more expensive backpropagation-based step. It remains open if similar results can be obtained by a 633

fully tuning-free algorithm. 634

Q4. Why do you use matrix factorization, and SVD in particular? 635

A4. Committing to a backpropagation-based algorithm (see Q3) means that we have to deal with increased 636

memory requirements. As such, matrix factorization is not helpful in that respect because the number 637

of parameters might even increase initially (for instance, an SVD-parametrization basically doubles 638

the size of a quadratic weight matrix). On the other hand, tuning and pruning only the bottleneck 639

layer (i.e., the singular value masks in case of ACIP) has the potential for drastic size reductions and 640

is highly parameter-efficient. For example, the number of tunable mask parameters for LLaMA-7B 641

with ACIP is <1M. 642

With this in mind, SVD as a specific matrix factorization is an obvious candidate due to its beneficial 643

mathematical and numerical properties, in particular, optimal low-rank matrix approximation and 644

stable matrix operations due to orthogonality. 645
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B Implementation Details 646

In this section, we report more technical details and hyperparameters used for our experiments. 647

Dataset and models. Following previous work on LLM compression, we use C4 (Raffel et al., 2019) for 648

training as it is a good proxy of a general-purpose dataset. In the context of ACIP, it should be primarily 649

seen as a calibration dataset that allows us to propagate meaningful activations through a pre-trained model 650

while performing structured pruning. Overfitting to the distribution of C4 is implicitly mitigated, since we 651

only tune very few parameters (masks and low-rank adapters) compared to the total model size. As loss 652

function L in (8), we use the standard negative log-likelihood loss for next-token prediction. 653

All considered (evaluation) datasets and pre-trained models are imported with the HuggingFace transformers- 654

library in bfloat16-precision. Our experiments were implemented with PyTorch (Paszke et al., 2019) and 655

the Lightning package. 656

ACIP-specifics. As mentioned in Remark 2.1, we apply a linear scheduler that increases the regularization 657

parameter λ dynamically over the pruning process. This ensures that the pruning becomes more and more 658

aggressive over time and the stopping criterion will be reached at some point. Across all experiments, we use 659

λ = 1e−3 as initial value and increase it by a factor of 1.01 every 4 steps (this amounts to a doubling of λ at 660

about every 280 steps). 661

As pointed out in Section 2.2.2, we choose a target compression rate as a stopping criterion for ACIP. In most 662

experiments, a rate of rstop = 0.4 is reasonable (i.e., only 40% or the original parameters remain), and we 663

refer to Appendix D.4 for further discussion and analysis. After the stopping criterion is reached, we tune 664

the low-rank adapter for 1k more steps while the masks are frozen (see Section 2.2.2). 665

The mask parameters in (7) are rescaled by a fixed factor of 0.02 to ensure a better alignment with the 666

numerical range of the remaining network weights. The low-rank adapters are created with r = 32, α = 16, 667

and dropout 0.05. For LLaMA-7B, the number of tunable parameters amounts to <1M mask parameters and 668

approximately 80M low-rank adapter parameters. 669

For sample data from C4, we use 1024 tokens per sample and a batch size of 4. We use Adam (Kingma & Ba, 670

2015) as optimizer without weight decay and a learning rate of 5e−5. 671

Runtime analysis. ACIP requires significantly fewer steps than fine-tuning. Depending on when the 672

stopping criterion is reached, it typically takes 1.5k - 2.5k steps, including 1k post-tuning steps of the low-rank 673

adapters. For LLaMA-7B, for example, this amounts to a wall clock runtime of < 30 minutes, including the 674

initial SVD computations for the base model parametrization. All runs were performed on single NVIDIA 675

H100 GPUs. See also Appendix D.1 for a more detailed efficiency analysis. 676

Fine-tuning. In all post-compression fine-tunings (see Section 3.3), we simply continue training ACIP’s 677

low-rank adapters (the optimizer states are reset). We train for 25k steps on C4 with a batch size of 4 and a 678

learning rate of 2e−4. 679
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C Supplementary Results for Section 3.1 – Section 3.4 680

Figure A8 complements the trade-off curves in Figures 4 and 5 by all other considered evaluation metrics 681

(see Section 3.1). Table A2 reports these results in terms of numbers, including all fine-tuning results for all 682

models (see Section 3.3). Table A3 analyzes the effect of fine-tuning of ACIP compared to existing SVD-based 683

compression methods. Table A4 provides more detailed evaluation results on fine-tuning a quantized and 684

compressed LLaMA-7B model (see Section 3.4). 685
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Figure A8: Compression-performance trade-off curves generated by ACIP on WikiText-2 and individual
LM-Eval tasks, complementing the results of Figures 4 and 5.
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Table A2: Evaluation results for ACIP on all considered LLMs. Scores on C4 and WikiText-2 are measured in
perplexity (smaller is better), and the LM-Eval zero-shot tasks are measured in accuracy (higher is better).
∗The results of LLaMA2-13B were achieved by ignoring all up-projection layers in ACIP (see Appendix D.8).

C4 ↓ WikiText-2 ↓ ARC_c ↑ ARC_e ↑ HellaS. ↑ MathQA ↑ Openb. ↑ PIQA ↑ WinoG. ↑
LM Eval
Avg. ↑

Type ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT
Model Size

LLaMA-7B

40% 21.05 15.66 23.99 17.33 0.24 0.24 0.49 0.53 0.35 0.38 0.21 0.21 0.19 0.20 0.64 0.67 0.55 0.57 0.38 0.40
50% 16.47 12.89 16.16 11.88 0.27 0.27 0.57 0.59 0.40 0.43 0.22 0.23 0.21 0.23 0.68 0.71 0.57 0.60 0.42 0.44
60% 13.91 11.14 12.46 9.63 0.30 0.32 0.61 0.64 0.44 0.47 0.24 0.23 0.25 0.26 0.71 0.73 0.59 0.63 0.45 0.47
70% 12.22 9.84 10.35 8.27 0.31 0.34 0.64 0.69 0.47 0.50 0.23 0.24 0.28 0.28 0.73 0.75 0.62 0.66 0.47 0.49
80% 10.92 8.81 8.83 7.19 0.32 0.38 0.66 0.71 0.49 0.53 0.23 0.24 0.28 0.31 0.74 0.77 0.63 0.68 0.48 0.52
90% 9.75 7.69 7.56 6.12 0.33 0.39 0.67 0.73 0.50 0.56 0.25 0.25 0.27 0.33 0.76 0.78 0.63 0.69 0.49 0.53
100% 9.52 7.32 7.20 5.75 0.33 0.40 0.69 0.75 0.51 0.57 0.25 0.26 0.26 0.34 0.76 0.79 0.63 0.70 0.49 0.54
Orig. 7.31 5.68 0.42 0.75 0.57 0.27 0.34 0.79 0.70 0.55

LLaMA-13B

40% 16.64 13.38 17.66 13.42 0.28 0.28 0.57 0.59 0.41 0.43 0.22 0.23 0.23 0.24 0.69 0.70 0.60 0.62 0.43 0.44
50% 13.06 11.12 12.42 10.49 0.32 0.34 0.63 0.63 0.47 0.48 0.23 0.23 0.26 0.28 0.72 0.73 0.62 0.64 0.47 0.47
60% 11.33 9.76 9.79 8.30 0.35 0.33 0.67 0.68 0.50 0.51 0.24 0.24 0.28 0.30 0.74 0.76 0.65 0.67 0.49 0.50
70% 10.10 8.72 8.17 7.06 0.38 0.38 0.70 0.69 0.53 0.54 0.24 0.26 0.31 0.31 0.76 0.77 0.67 0.70 0.51 0.52
80% 9.06 7.91 6.91 6.21 0.41 0.41 0.74 0.74 0.55 0.57 0.26 0.27 0.32 0.34 0.77 0.78 0.68 0.69 0.53 0.54
90% 8.04 7.06 5.98 5.40 0.42 0.44 0.75 0.76 0.57 0.59 0.29 0.29 0.32 0.33 0.79 0.79 0.70 0.72 0.55 0.56
100% 7.86 6.79 5.83 5.15 0.42 0.46 0.75 0.77 0.57 0.60 0.29 0.30 0.31 0.32 0.79 0.79 0.70 0.73 0.55 0.57
Orig. 6.77 5.09 0.47 0.77 0.60 0.30 0.33 0.79 0.73 0.57

LLaMA-2-7B

40% 24.62 16.74 29.20 18.00 0.21 0.22 0.46 0.50 0.34 0.37 0.20 0.21 0.18 0.19 0.62 0.66 0.51 0.55 0.36 0.39
50% 18.36 13.32 19.64 12.25 0.25 0.27 0.53 0.57 0.38 0.42 0.22 0.22 0.24 0.23 0.67 0.69 0.53 0.56 0.40 0.42
60% 15.27 11.15 14.47 9.54 0.28 0.31 0.59 0.63 0.43 0.46 0.23 0.24 0.25 0.23 0.69 0.72 0.57 0.62 0.44 0.46
70% 12.96 9.73 10.47 7.74 0.33 0.35 0.62 0.68 0.46 0.50 0.25 0.24 0.27 0.26 0.73 0.74 0.60 0.64 0.47 0.49
80% 11.31 8.63 8.46 6.54 0.33 0.37 0.66 0.70 0.49 0.53 0.25 0.26 0.28 0.31 0.74 0.77 0.63 0.66 0.48 0.51
90% 9.46 7.43 6.69 5.45 0.34 0.43 0.69 0.75 0.51 0.56 0.26 0.28 0.28 0.33 0.76 0.78 0.63 0.69 0.50 0.54
100% 9.34 7.06 6.54 5.13 0.34 0.43 0.70 0.76 0.51 0.57 0.26 0.28 0.27 0.32 0.76 0.78 0.64 0.69 0.50 0.55
Orig. 7.04 5.11 0.44 0.76 0.57 0.28 0.31 0.78 0.69 0.55

LLaMA-2-13B

40% 27.55 84.28 41.22 145.79 0.23 0.23 0.43 0.46 0.33 0.30 0.21 0.21 0.18 0.18 0.62 0.63 0.52 0.52 0.36 0.36
50% 17.10 12.76 17.89 13.12 0.30 0.32 0.58 0.61 0.41 0.44 0.21 0.23 0.27 0.27 0.69 0.70 0.56 0.58 0.43 0.45
60% 13.29 10.05 11.11 8.43 0.32 0.36 0.65 0.68 0.47 0.50 0.22 0.23 0.29 0.31 0.72 0.74 0.60 0.63 0.47 0.49
70% 11.04 8.64 8.40 6.71 0.35 0.41 0.70 0.74 0.51 0.54 0.23 0.25 0.30 0.33 0.74 0.77 0.62 0.66 0.49 0.53
80% 9.54 7.68 6.80 5.66 0.37 0.44 0.72 0.76 0.54 0.57 0.25 0.28 0.30 0.34 0.77 0.78 0.64 0.71 0.51 0.55
90% 8.26 6.86 5.70 4.87 0.40 0.47 0.74 0.78 0.55 0.60 0.26 0.31 0.31 0.34 0.78 0.79 0.66 0.72 0.53 0.57
100% 7.87 6.56 5.42 4.61 0.41 0.47 0.75 0.79 0.56 0.60 0.28 0.32 0.31 0.35 0.78 0.79 0.69 0.71 0.54 0.58
Orig. 6.52 4.57 0.48 0.79 0.60 0.32 0.35 0.79 0.72 0.58

LLaMA-3.1-8B

50% 43.32 26.52 61.77 29.52 0.23 0.27 0.51 0.58 0.33 0.37 0.22 0.23 0.17 0.19 0.64 0.68 0.53 0.54 0.38 0.41
60% 31.55 21.00 36.69 19.26 0.29 0.29 0.60 0.61 0.37 0.42 0.24 0.24 0.22 0.23 0.69 0.72 0.55 0.56 0.42 0.44
70% 24.90 17.08 23.06 13.55 0.33 0.32 0.64 0.66 0.41 0.47 0.26 0.27 0.23 0.27 0.71 0.73 0.59 0.62 0.45 0.48
80% 20.78 14.21 15.60 10.12 0.38 0.40 0.69 0.72 0.46 0.51 0.28 0.30 0.28 0.29 0.74 0.77 0.61 0.66 0.49 0.52
90% 16.25 11.28 9.80 7.24 0.41 0.48 0.74 0.80 0.52 0.57 0.33 0.35 0.27 0.31 0.77 0.79 0.67 0.71 0.53 0.57
100% 14.57 9.42 8.04 5.95 0.40 0.51 0.75 0.82 0.53 0.60 0.36 0.40 0.27 0.34 0.78 0.80 0.66 0.74 0.54 0.60
Orig. 9.31 5.86 0.51 0.82 0.60 0.39 0.33 0.80 0.74 0.60

Mistral-7B-v0.3

40% 28.92 19.21 44.29 23.24 0.24 0.26 0.48 0.53 0.35 0.38 0.21 0.21 0.18 0.19 0.66 0.67 0.55 0.57 0.38 0.40
50% 21.44 14.86 28.60 16.53 0.28 0.28 0.57 0.59 0.40 0.43 0.21 0.23 0.22 0.21 0.69 0.70 0.58 0.60 0.42 0.43
60% 16.89 12.49 21.19 12.29 0.32 0.32 0.63 0.66 0.45 0.48 0.24 0.24 0.20 0.23 0.72 0.73 0.60 0.62 0.45 0.47
70% 13.75 10.95 13.28 9.69 0.35 0.34 0.67 0.68 0.49 0.52 0.27 0.28 0.21 0.26 0.74 0.76 0.63 0.63 0.48 0.49
80% 11.80 9.84 8.70 7.49 0.38 0.39 0.70 0.73 0.52 0.55 0.29 0.29 0.23 0.26 0.76 0.77 0.65 0.69 0.50 0.53
90% 10.42 8.84 6.51 5.85 0.40 0.43 0.72 0.75 0.54 0.59 0.31 0.33 0.25 0.31 0.78 0.79 0.68 0.70 0.53 0.56
100% 9.85 8.31 6.04 5.31 0.40 0.45 0.73 0.77 0.55 0.60 0.33 0.34 0.26 0.33 0.78 0.79 0.68 0.72 0.53 0.57
Orig. 8.05 4.96 0.49 0.79 0.61 0.36 0.34 0.80 0.73 0.59

Qwen2.5-3B

40% 71.23 36.85 91.51 39.44 0.20 0.22 0.45 0.51 0.29 0.31 0.21 0.22 0.15 0.16 0.60 0.64 0.50 0.52 0.34 0.37
50% 57.17 29.43 62.42 26.92 0.22 0.25 0.49 0.57 0.32 0.34 0.22 0.21 0.18 0.19 0.63 0.67 0.52 0.53 0.37 0.39
60% 43.30 23.30 38.26 18.38 0.26 0.29 0.57 0.63 0.35 0.39 0.23 0.23 0.21 0.24 0.67 0.69 0.54 0.56 0.40 0.43
70% 34.24 19.04 25.81 13.50 0.31 0.34 0.62 0.68 0.39 0.43 0.25 0.26 0.24 0.26 0.70 0.72 0.57 0.58 0.44 0.47
80% 25.50 16.16 17.02 10.68 0.34 0.36 0.68 0.73 0.43 0.47 0.28 0.31 0.26 0.24 0.72 0.74 0.58 0.57 0.47 0.49
90% 20.10 13.82 11.99 8.57 0.37 0.42 0.73 0.77 0.46 0.52 0.33 0.36 0.27 0.33 0.74 0.78 0.60 0.67 0.50 0.55
100% 18.73 12.81 10.63 7.70 0.36 0.47 0.72 0.78 0.46 0.54 0.33 0.41 0.24 0.31 0.74 0.78 0.60 0.69 0.49 0.57
Orig. 12.90 7.64 0.45 0.77 0.55 0.37 0.30 0.78 0.68 0.56

Qwen2.5-7B

40% 46.43 29.26 49.04 27.24 0.23 0.24 0.52 0.58 0.31 0.34 0.22 0.21 0.19 0.20 0.64 0.67 0.53 0.53 0.38 0.40
50% 34.90 23.26 29.96 19.72 0.27 0.30 0.59 0.64 0.35 0.39 0.22 0.23 0.23 0.25 0.67 0.70 0.54 0.57 0.41 0.44
60% 27.84 18.73 21.98 13.73 0.31 0.33 0.63 0.68 0.39 0.45 0.25 0.26 0.25 0.28 0.70 0.73 0.55 0.60 0.44 0.48
70% 22.97 15.96 15.72 10.71 0.35 0.42 0.68 0.74 0.44 0.49 0.28 0.30 0.29 0.30 0.73 0.76 0.57 0.63 0.48 0.52
80% 19.68 14.02 12.07 8.89 0.40 0.46 0.73 0.78 0.48 0.53 0.33 0.36 0.30 0.33 0.75 0.78 0.59 0.67 0.51 0.56
90% 17.09 12.59 9.82 7.63 0.44 0.48 0.75 0.80 0.52 0.56 0.39 0.41 0.31 0.32 0.77 0.79 0.64 0.70 0.54 0.58
100% 15.34 11.43 8.38 6.60 0.43 0.50 0.75 0.82 0.53 0.59 0.43 0.46 0.28 0.34 0.77 0.79 0.66 0.72 0.55 0.60
Orig. 11.47 6.55 0.48 0.81 0.60 0.43 0.34 0.79 0.73 0.60

Qwen2.5-14B

40% 36.51 25.58 33.78 22.22 0.26 0.29 0.55 0.61 0.36 0.38 0.22 0.23 0.24 0.26 0.67 0.68 0.54 0.57 0.41 0.43
50% 26.27 19.53 20.15 14.57 0.32 0.33 0.65 0.68 0.43 0.44 0.25 0.25 0.26 0.27 0.70 0.71 0.57 0.59 0.45 0.47
60% 21.29 15.63 14.87 10.48 0.36 0.40 0.70 0.73 0.49 0.51 0.28 0.32 0.28 0.31 0.74 0.76 0.62 0.66 0.50 0.53
70% 17.99 13.99 11.25 8.89 0.42 0.43 0.73 0.76 0.53 0.54 0.33 0.36 0.31 0.32 0.77 0.78 0.64 0.68 0.53 0.55
80% 15.23 11.97 8.73 7.11 0.44 0.48 0.77 0.78 0.57 0.58 0.39 0.44 0.34 0.36 0.78 0.79 0.68 0.73 0.57 0.60
90% 13.05 10.77 6.86 6.04 0.48 0.52 0.80 0.82 0.59 0.60 0.49 0.49 0.32 0.35 0.79 0.81 0.70 0.74 0.60 0.62
100% 12.37 9.98 6.23 5.11 0.47 0.53 0.79 0.82 0.58 0.62 0.51 0.53 0.32 0.35 0.79 0.81 0.73 0.77 0.60 0.63
Orig. 9.99 5.05 0.56 0.82 0.63 0.53 0.35 0.81 0.75 0.64
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Table A3: Evaluation of LLaMA-7B on WikiText-2 (perplexity, smaller is better) under different com-
pression ratios, with and without post-training fine-tuning. We compare ACIP with the existing SVD-based
compression methods ASVD (Yuan et al., 2024) and SVD-LLM (Wang et al., 2024), see also Section 3.2. The
scores for ASVD and SVD-LLM are taken from Wang et al. (2024, Table 4). Note that ACIP was fine-tuned
on C4, while ASVD and SVD-LLM fine-tuned on WikiText-2 directly.

Compression Ratio 40% 50% 60% 70% 80%
Method

ASVD 57057.00 15358.00 1407.00 51.00 11.14
ASVD + LoRA FT 44.81 21.83 14.86 10.16 8.37
SVD-LLM 42.30 23.97 13.11 9.56 7.94
SVD-LLM + LoRA FT 17.93 13.26 10.65 9.14 7.78
ACIP 24.00 16.17 12.46 10.34 8.83
ACIP + FT 17.33 11.88 9.63 8.27 7.19

Table A4: More detailed evaluation results for our quantization experiments in Section 3.4, reported in terms
of numbers.

Eff. model size [GB] C4 WikiText-2 ARC_c ARC_e HellaS. MathQA Openb. PIQA WinoG. LM Eval
Size Ablation ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Avg. ↑

40%

ACIP 5.47 21.05 24.00 0.24 0.49 0.35 0.21 0.19 0.65 0.55 0.38
ACIP → FT 5.47 15.66 17.33 0.24 0.53 0.38 0.21 0.20 0.67 0.57 0.40
ACIP → W4A16 1.89 27.12 35.40 0.22 0.46 0.33 0.20 0.18 0.62 0.53 0.36
ACIP → W4A16 → FT 1.89 16.67 18.90 0.23 0.52 0.37 0.22 0.20 0.67 0.57 0.40

50%

ACIP 6.70 16.47 16.17 0.28 0.58 0.40 0.22 0.21 0.68 0.57 0.42
ACIP → FT 6.70 12.89 11.88 0.27 0.59 0.43 0.23 0.23 0.71 0.60 0.44
ACIP → W4A16 2.21 19.28 19.96 0.26 0.54 0.37 0.21 0.20 0.67 0.55 0.40
ACIP → W4A16 → FT 2.21 13.85 13.33 0.25 0.58 0.41 0.23 0.23 0.70 0.59 0.43

60%

ACIP 7.88 13.91 12.46 0.30 0.61 0.43 0.23 0.25 0.71 0.60 0.45
ACIP → FT 7.88 11.14 9.63 0.32 0.64 0.47 0.23 0.26 0.73 0.63 0.47
ACIP → W4A16 2.51 15.84 14.64 0.29 0.58 0.42 0.22 0.22 0.69 0.57 0.43
ACIP → W4A16 → FT 2.51 11.77 10.31 0.29 0.64 0.45 0.22 0.26 0.72 0.61 0.46

70%

ACIP 9.10 12.22 10.34 0.31 0.64 0.47 0.23 0.27 0.73 0.62 0.47
ACIP → FT 9.10 9.84 8.27 0.34 0.69 0.50 0.24 0.28 0.75 0.66 0.49
ACIP → W4A16 2.83 13.45 11.80 0.29 0.63 0.45 0.23 0.24 0.72 0.60 0.45
ACIP → W4A16 → FT 2.83 10.38 8.74 0.32 0.67 0.48 0.23 0.28 0.75 0.64 0.48

80%

ACIP 10.30 10.91 8.83 0.33 0.67 0.49 0.23 0.28 0.74 0.63 0.48
ACIP → FT 10.30 8.81 7.19 0.38 0.71 0.53 0.24 0.31 0.77 0.68 0.52
ACIP → W4A16 3.13 12.61 9.87 0.32 0.65 0.47 0.23 0.28 0.74 0.61 0.47
ACIP → W4A16 → FT 3.13 9.26 7.60 0.36 0.69 0.52 0.24 0.30 0.76 0.66 0.50

90%

ACIP 11.50 9.75 7.56 0.34 0.68 0.50 0.25 0.27 0.75 0.63 0.49
ACIP → FT 11.50 7.69 6.12 0.39 0.73 0.56 0.25 0.33 0.78 0.69 0.53
ACIP → W4A16 3.44 10.25 7.90 0.32 0.66 0.50 0.24 0.27 0.75 0.63 0.48
ACIP → W4A16 → FT 3.44 7.97 6.39 0.38 0.73 0.56 0.25 0.35 0.78 0.69 0.53

100%

ACIP 12.70 9.52 7.20 0.33 0.69 0.51 0.25 0.26 0.76 0.63 0.49
ACIP → FT 12.70 7.32 5.75 0.40 0.75 0.57 0.26 0.34 0.79 0.70 0.54
ACIP → W4A16 3.75 9.75 7.37 0.34 0.69 0.51 0.25 0.27 0.76 0.63 0.49
ACIP → W4A16 → FT 3.75 7.52 5.94 0.40 0.75 0.56 0.27 0.34 0.78 0.69 0.54
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D Further Experiments and Ablations 686

In this section, we present several supplementary experiments analyzing the impact of some key algorithmic 687

components and design choices of ACIP in more detail. Note that the most detailed analyses and ablations 688

are carried out with LLaMA-7B as it was most extensively studied in previous research on structured weight 689

pruning. 690

D.1 Efficiency Analysis 691

Table A5 reports several statistics on the efficiency of the ACIP algorithm and inference speed of compressed 692

models. While these preliminary results do not immediately indicate gains in inference speed, we expect 693

that further optimization like merging the low-rank adapters can compensate for the matrix-factorization 694

overhead (one additional matrix-vector multiplication) and outperform the base model. Moreover, we note 695

that compared to performance-size trade-offs, which are our main concern, analyzing inference speed-ups 696

requires a very careful consideration about the hardware in use (accelerator model, parallel processing units, 697

etc.) and measurement setup (sequence length, batch size, etc.). 698

Table A5: Efficiency analysis of ACIP for LLaMA-7B. The first three rows report the runtime and memory
statistics of ACIP’s key steps (see Section 2.2 and Figure 2) both in terms of numbers and their qualitative
asymptotics. Here, the model sizes are measured as (uncompressed) checkpoint sizes. “Runtime pruning”
refers to the process of pruning the mask parameters to a desired compression ratio (revertible), whereas
“Runtime compress” refers to the process of discarding pruned singular vectors and possibly unparametrizing
linear layers, so that the model gets actually compressed (see Step 3 in Section 2.2.3). The statistics of
inference speed were obtained by generating new text of sequence length 64 and batch size 64. To measure
FLOPs, we use the fvcore package and an input sequence of length 512.

Stage Metric LLaMA-7B

ACIP Step 1 (Model Reparametrization)
O(#Layers × SVD of Layer)

Runtime [min] 4.95
Size parametrized model [GB] 19.71
Size base model [GB] 12.70

ACIP Step 2 (Scoring by Iterative Pruning)
O(#Steps of Masks & LoRA Updates)

Runtime [min] 23.12
Reserved GPU memory peak [GB] 62.45
Steps / s 1.68

ACIP Step 3 (Any Compression)
O(#Layers × Layer Input Dimension)

Runtime pruning [s] 0.49
Runtime compress [s] 0.18

Inference at 40% Size

Size model [GB] 5.47
Reserved GPU memory peak [GB] 25.68
Latency [s] 2.57
Tokens / s 1594.99
GigaFLOPs 1335.85

Inference at 70% Size

Size model [GB] 9.10
Reserved GPU memory peak [GB] 29.43
Latency [s] 2.47
Tokens / s 1658.63
GigaFLOPs 2265.03

Inference at 100% Size (Original)

Size model [GB] 12.70
Reserved GPU memory peak [GB] 32.79
Latency [s] 1.67
Tokens / s 2447.75
GigaFLOPs 3188.63
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Figure A9: Compression-performance trade-off curves for LLaMA-7B on C4 with and without using a
LoRA-adapter for correction in ACIP.

D.2 Impact of Low-Rank Adapters 699

The primary purpose of the low-rank adapters used in ACIP is to correct compression errors on-the-fly during 700

the optimization. A surprising finding of our work is that the final adapters are “universal” in the sense that 701

they can be used across all seen compression levels. While we expect that other PEFT-style approaches would 702

lead to similar findings, it is natural to ask how ACIP would perform without any correction, i.e., just the 703

mask parameters are tuned according to (8). This ablation study is shown in Figure A9. While performing 704

significantly worse than with LoRA, we observe that the perplexity does not blow up and the results are 705

even slightly better than SVD-LLM (see Table 1). This stable behavior of ACIP is closely related to our 706

parameterization of the mask in (7) which ensures that the forward pass corresponds to the actual outputs 707

of the pruned model with binary masks. On the other hand, the straight-through estimator still enables 708

backpropagation. 709

D.3 Impact of the Compression Rule 710

The Any Compression stage of ACIP (Step 3 in Section 2.2.3) relies on a simple algorithmic rule: Prune as 711

many singular values according to the learned score map ρ as needed for a desired compression rate r. Here, 712

the tuned low-rank adapters ∆ are used across all compression levels, even for r = 1.0, i.e., the size of the 713

(uncompressed) base model. While the usage of low-rank adapters is helpful for simultaneous error correction 714

along with iterative pruning (Step 2 in Section 2.2.2), it can lead to a slight drop in performance for lower 715

compression levels. This became already apparent in the ablation of Figure A9 above, where LoRA was fully 716

omitted. 717

Figure A10 shows that this performance gap can be reduced by a refinement of Step 3 in ACIP: If a linear 718

layer l is not compressible for a given rate r (i.e., a low-rank factorization would not save any parameters), 719

we reset the corresponding mask parameters pl to 1.0 and disable the low-rank adapter ∆l. In this way, the 720

layer is fully reset, and for r = 1.0, we exactly recover the base model. Note that this adapted rule is fully 721

reversible and therefore still allows for Any Compression. 722

D.4 Impact of the Stopping Criterion 723

In most experiments, we have used rstop = 0.4 as maximum reasonable compression ratio, i.e., the pruning of 724

masks is stopped if the size of the model is only 40% of the original one (measured in number of parameters 725

of all target weight matrices). We have observed that at this point, the model performance has typically 726

dropped so much that even a fine-tuned model would be of limited practical use. 727

Nevertheless, it is interesting to explore the sensitivity of compression-performance curves against different 728

stopping ratios. The comparison shown in Figure A11 provides several insights in this respect: (i) “Forecasting” 729

compressed models beyond the stopping ratio does not work very well, especially when stopping very 730
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Figure A10: Compression-performance trade-off curves for LLaMA-7B on C4 with and without resetting
linear layers if they are incompressible for a given target compression rate r.
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Figure A11: Compression-performance trade-off curves for LLaMA-7B on C4, using different stopping
compression ratios rstop for ACIP.

early (> 0.8). (ii) The predictive capacity of ACIP remains valid for even stronger stopping compression 731

ratios than 0.4. However, finding the largest reasonable stopping ratio is highly model-dependent. For less 732

compressible models like LLaMA-3.1-8B, it could make sense to stop even earlier than 0.4 (cf. Figure 4). In 733

general, we hypothesize that older models are more compressible than new ones, as the latter “carry” more 734

information per weight due to significantly more training data (Allen-Zhu & Li, 2024). 735

D.5 Impact of the Score Map – Forecasting Pruning Patterns 736

Here, we pick up the observation from Appendix D.4 that forecasting the performance of compressed models 737

beyond the stop ratio leads to inaccurate predictions, i.e., the model is compressed more strongly than it 738

has been done by ACIP itself. However, it turns out that the score map itself exhibits a certain forecasting 739

capability. To this end, we run ACIP as usual until a stop ratio is reached, say rstop = 0.4, but we stop 740

updating the score map earlier in the optimization process. A few compression-performance curves with this 741

modification are reported in Figure A12. We observe very similar curve shapes even if the score map is frozen 742

after only a tiny fraction of mask parameters was pruned. This underpins our intuition from Section 2.2.2 743

that the pruning path of each parameter is fully determined at very early stage of ACIP. 744

D.6 Impact of the Score Map – A Trivial One Does Not Work 745

There are certainly alternative ways to design useful score maps. For example, simply accumulating the 746

gradients of all mask parameters entrywise over an ACIP-run works equally well as the strategy proposed in 747
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Figure A12: Compression-performance trade-off curves for LLaMA-7B on C4, stopping updates of the score
map before the actual stopping criterion of ACIP.
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Figure A13: Compression-performance trade-off curves for LLaMA-7B on C4, using a trivial score map
based on the initial singular values of the base model.

Section 2.2.2. It is therefore valid to ask whether one could even design score maps without any optimization. 748

We demonstrate that perhaps the most obvious approach, namely setting the score map equal to the singular 749

values of the weight matrices, does not work very well. Figure A13 shows that this training-free approach 750

does not produce any reasonable compressed models and decent performance cannot be easily recovered with 751

LoRA-finetuning. This simple experiment confirms that designing useful score maps is not a trivial endeavour 752

and requires a carefully crafted algorithmic approach. 753

D.7 Impact of Post-Tuning 754

Our main experiments are performed with 1k post-tuning steps in ACIP (see the description in Section 2.2.2 755

and Appendix B). Figure A14 shows analogous compression-performance trade-off curves for fewer or no post- 756

tuning steps. We observe that post-tuning can indeed notably increase performance for higher compression 757

ratios. 758

D.8 Impact of Individual Layers – Example of LLaMA2-13B 759

As pointed out in the caption of Table A2, the linear layers targeted by ACIP were slightly modified for 760

LLaMA2-13, namely all up projection layers were ignored. Figure A15 shows what would happen if they are 761

compressed as well. While the performance predictions for ≥ 0.6 look decent, the perplexity explodes for 762

stronger compression; note that even additional fine-tuning does not recover a reasonable performance in 763

this situation. We hypothesize that ACIP has pruned one or more singular values of the up projection layers 764
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Figure A14: Compression-performance trade-off curves for LLaMA-7B on C4 with different numbers of
post-tuning steps in ACIP.
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Figure A15: Compression-performance trade-off curves for LLaMA2-13B on C4, (not) ignoring the up
projection layers in ACIP.

that are crucial for model’s integrity. This finding might be related to the recent work by Yu et al. (2024) 765

on pruning so-called super weights. In any case, ACIP is capable of revealing this undesirable behavior as 766

demonstrated in Figure A15. 767

D.9 Examples of Score Maps Generated by ACIP 768

Figure A16 and Figure A17 show two typical score maps generated by ACIP for LLaMA-7B and Qwen2.5-7B, 769

respectively. A characteristic feature is that attention layers can be pruned more aggressively than the 770

MLP layers. Similarly, we observe non-uniform pruning patterns for layers of the same type across all 771

transformer layers. This confirms the findings of (Yuan et al., 2024; Jaiswal et al., 2024) and demonstrates 772

that non-uniform structured compression can be achieved without any feature engineering. 773

D.10 Examples of Generated Text by Compressed Models 774

Table A6 shows examples of generated text by compressed versions of LLaMA-7B. 775
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(a) Down Projections
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(b) Up Projections
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(c) Gate Projections
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(d) Attention-O
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(e) Attention-V
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(f) Attention-Q
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(g) Attention-K

Figure A16: Example score maps generated by ACIP for LLaMA-7B. The negative values (cf. Algorithm 1)
are normalized to −1 for the purpose of visualization.
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(c) Gate Projections
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Figure A17: Example score maps generated by ACIP for Qwen2.5-7B. The negative values (cf. Algorithm 1)
are normalized to −1 for the purpose of visualization.
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Table A6: Example texts for two prompts generated for LLaMA-7B under different compressions produced
by ACIP.

Size “How to compress Large Language Models?” “What is the concept of time?”
Original I am trying to run a large Language model generation,

but I have a few files on disk of around 3gb each. I was
wondering if there is a way to compress these files? I have
searched the internet but have found nothing.
Re: How to compress Large Language Models?
I suggest compressing it to HDF5, you can find instructions
on how to do this using TensorPacker and PNet on the
TensorFlow Github repository . . .

Have you ever tried to ask a baby what it sees? Time,
is it real? What is the concept of time? Have you ever
tried to ask a baby what it sees? Let’s see what they can
understand.
The concept of time. What it is about, who discovered
the idea of time, and how was it discovered? How is time
measured? We can’t define it. We can’t point at what we
are defining, we can’t even show a picture of it . . .

90% Jeffrey Hunt, a linguist and applied deep learning re-
searcher at the University of Technology, Sydney, talks
with Caleigh Blackstock”s to discuss how to compress a
large language model to speed up training and model exe-
cution.
What does the language model compression actually do
to the overall model? . . .

Please let me know what is the concept of time.
The concept of time is all about the measurement of time.
This measurement was first done using the hourglass.
When this hour Glass was invented, it was the only thing
that could represent the passage of time. . . .

80% Jeffrey Shafman, Zsolt Nemeth, Jeffrey Shafman, Zsolt
Nemeth, Jeffrey Shafman, Zsolt Nemeth. (2013). How to
compress Large Language Models? In: ICML proceedings,
Vol. 22, pp. 462-463.
Magnus Skallman. (2013). How to compress Large Lan-
guage Models? In: ICML13 Proceedings, pp. 462-463. . . .

You can’t even imagine that in that time,
The life of a tree in nature is as brief
As a flash of a lightning bolt,
But in this human world, it may endure
Through many millennia, if the will of man.
So tell me, what is the concept of time?
Hey, I’ve got one, and it’s this: . . .

70% Apr 04, 2018 at 12:05 pm In the last 5-6 years, Natural
Language Systems have been an important direction for
my work and the research I do in the course of my PhD. I
have been using them to teach myself Swedish and improve
my Swedish by machine time in this post. Let’s see if I’ve
got it! . . .

Please tell me where is the concept of time in this poem.
What is the significance of the poem "I Am Wine" by
H.W.C. Carson"?
What does he mean by the poem title?
What does the stairs, the wine, & the man have in com-
mon?
What does he mean by "I am wine"?
What do you mean by "I am wine"? . . .

60% This is a 14 day free trial.
Please use the following link to sign in.
Select the country you need here to view pricing and
purchase.
Whenever you use our web site, we will track your website
traffic, the page where you first connected to our site, and
the search keywords you use to find us. We’ll use this
information to help us continually improve our website.
. . .

You may be wondering what is the concept of time.
The concept of time is all about the phenomenon of time.
It says that there is never no time. It states that there
is always a moment in time. At the moments of time is
when we refer the time of life.
So, as a matter of the moment, time is just a point in
space. . . .

50% Jeffrey Huan, Shu-Hua Ji, Xiao-Hong Li, Xiao-Xiao Li,
Layin Ma”s. 2019:5, Springer.0000.0001/13/8/19/12/720-
22-F43.
Miller A. "The Structure of the Language in Unsupervised
Deep-Processing" in Journal of the Acoustical Actors (v.
11(6). 2006:, pp. 278-295).
Dong Ming, Sun Jin, He Mei-Chen,’ . . .

Getting to this answer isn’t that hard.
The concept of time is all about the study of time. The
study of time isn’t so hard to get a hold on.
When you’re younger, you can begin thinking of how much
you could have had if you had known how much time you
had...if only we had it back then . . .

40% Apr 14, 2018 Resumes at The University of Florida will
be released on Friday, May 29, 2018 2.05:53pm.
Cover your next job announcement with the help of our
new Resume Template Builder.
To create your own Resume Template in minutes.
Improving the quality of your Resume.
To improve your Resume . . .

You may think that it is just a fancy word, or just the
idea it had in the earlier world. But there exists a way to
understand it.
To understand the idea of time by using the example of a
clock, you can learn the very importance of time with a
simple strategy.
The clock ticks with a watch. The clock has it time to
operate. . . .
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