
Published in Transactions on Machine Learning Research (11/2025)

Choose Your Model Size: Any Compression of
Large Language Models Without Re-Computation

Martin Genzel∗ martin.genzel@merantix-momentum.com
Merantix Momentum, Berlin, Germany

Patrick Putzky∗ patrick.putzky@merantix-momentum.com
Merantix Momentum, Berlin, Germany

Pengfei Zhao∗,† pzhao@atb-potsdam.de
Understandable Machine Intelligence Lab
Leibniz Institute for Agriculture and Bioeconomy, Potsdam, Germany

Sebastian Schulze sebastian.schulze@merantix-momentum.com
Merantix Momentum, Berlin, Germany

Mattes Mollenhauer mattes.mollenhauer@merantix-momentum.com
Merantix Momentum, Berlin, Germany

Robert Seidel†

Stefan Dietzel stefan.dietzel@merantix-momentum.com
Merantix Momentum, Berlin, Germany

Thomas Wollmann thomas.wollmann@merantix-momentum.com
Merantix Momentum, Berlin, Germany

∗ Equal Contribution
† Work done while at Merantix Momentum

Reviewed on OpenReview: https: // openreview. net/ forum? id= Y6hdYf8tsg

Abstract

The adoption of Foundation Models in resource-constrained environments remains challenging
due to their large size and inference costs. A promising way to overcome these limitations is
post-training compression, which aims to balance reduced model size against performance
degradation. This work presents Any Compression via Iterative Pruning (ACIP), a novel algo-
rithmic approach to determine a compression-performance trade-off from a single stochastic
gradient descent run. To achieve parameter efficiency, we use an SVD-reparametrization
of linear layers and iteratively prune their singular values with a sparsity-inducing penalty.
Importantly, the pruning order of the parameters is used to derive a global score map that
allows compressing a model to any target size without re-computation. We evaluate ACIP on
a large selection of open-weight LLMs and downstream tasks, demonstrating state-of-the-art
results compared to existing factorization-based compression methods. We also show that
ACIP seamlessly complements common quantization-based compression techniques.

1 Introduction

Post-training compression of Foundation Models, especially Large Language Models (LLMs), promises access
to powerful tools where resources are limited, e.g., in automotive systems, mobile deployments, or on shop
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floors (Gholami et al., 2022). Typical reasons for resource scarcity include constrained access to hardware,
monetary limitations, high inference speed requirements, and environmental concerns (Hohman et al., 2024).

The original promise of model compression was to eliminate redundant parameters, resulting in almost lossless
methods (Han et al., 2016). While working well for models trained on smaller datasets, this hypothesis does
not hold up anymore in the era of LLMs and scaling laws (Allen-Zhu & Li, 2024). For modern “densely
trained” models, compression is almost always lossy, leading to a fundamental trade-off between model
size and downstream performance. While characterizing this trade-off supports practitioners in deployment
decisions (Boggust et al., 2025), the scientific literature typically focuses on benchmarks at preset compression
levels (Zhu et al., 2024). This gap between research and practice implies that, for model users, the process is
often perceived as a “black box”, requiring significant expertise and trial-and-error to identify an acceptable
setup. We argue for the opposite approach, one that empowers users to seamlessly customize a compression
algorithm for their specific use cases.

Any Compression

ExpensiveCheap

0 1

CompressChoose size ComputeBase model

(a) Conventional Model Compression

0 1

CompressChoose sizeComputeBase model

Expensive Cheap

(b) Any Compression

Figure 1: Compared to conventional compression
algorithms (a), an Any Compression algorithm (b)
swaps the computational calibration step and the
decision step, so that models of different target
sizes can be materialized without re-computation.

With this motivation in mind, we advocate for methods
that permit Any Compression of pre-trained models. Here,
‘Any’ signifies an algorithm’s ability to scale a given base
model to an arbitrary target size, guided by the user’s
specific needs and limitations, rather than the algorithm
dictating possible sizes. To facilitate decision-making,
such an algorithm must efficiently reveal the compression-
performance trade-off without extensive re-computation.
In existing post-training compression approaches, we iden-
tify two practical challenges to achieving Any Compres-
sion.
Problem 1 (Preset compression rates). The size reduc-
tion of large Foundation Models is a prominent research
area, with existing methods largely falling into three cat-
egories: knowledge distillation (training a smaller student
model), quantization (reducing numerical precision), and
parameter pruning (removing redundant weights) — for a
comprehensive survey, we refer to Zhu et al. (2024). While
effective, these approaches often impose constraints that
conflict with the goal of achieving Any Compression as
they are restricted to preset (discrete) compression fac-
tors. Indeed, knowledge distillation is limited to a single
compression rate defined by the fixed size of the student
model (Hinton et al., 2015). Quantization is limited by
fixed bit-length reductions (typically from 16-bit to 4-bit
or 8-bit representations) (Gholami et al., 2022; Dettmers
et al., 2023). Similarly, (unstructured) parameter pruning often relies on rigid sparsity patterns (e.g., n:m
sparsity) to ensure efficient memory allocation and hardware acceleration, thereby restricting the possible
model sizes (Choquette et al., 2021). In practice, preset compression rates are especially problematic when
deploying under a specific, non-discrete constraint, e.g., a fixed memory budget, forcing users into a costly
“guess-and-check” cycle.
Solution (Structured pruning by weight factorization). Weight factorization is a technique where (linear)
model weights are decomposed into several sub-matrices (Eckart & Young, 1936). This approach enables
fine-grained model compression and high parameter efficiency by pruning the inner dimensions of the resulting
matrices (Yuan et al., 2024; Wang et al., 2024). A key advantage is its compatibility with standard hardware,
since it only requires basic matrix-vector multiplications.
Problem 2 (Different compression rates require re-computation). Most existing post-training compression
techniques are inherently inefficient for exploring the trade-off between model size and performance. Conven-
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Figure 2: A visual overview of ACIP. 1 The linear layers of the base model are reparametrized in terms of
their singular value decomposition UMΣV⊤, with a (binary) singular value mask M = M(p) and a low-rank
adapter ∆. 2 An objective function is optimized via gradient descent over the mask parameters p and
adapters ∆, where sparsity is induced on p by an increasing ℓ1-penalty. This leads to pruned entries in the
mask M(p). The optimization path of p gives rise to a score map that determines the global importance of
the singular values across the full model. Potential compression errors are compensated by ∆. 3 Based on
the parameter scores, the base model can be flexibly compressed to any target size by masking the entries
of Σ. The learned adapters ∆ are used as correction for any compression level.

tionally, a user selects a target compression rate and other hyperparameters, initiating a costly computational
step that can take minutes to hours (Frantar et al., 2023; Sun et al., 2024; Yuan et al., 2024). Each new
compression rate requires repeating this entire process, making a comprehensive evaluation of the trade-off
landscape impractical (see Figure 1(a)).
Solution (Any Compression through amortization). We argue that a reversed workflow is preferable: a single,
upfront computational investment that enables the subsequent materialization of a model at any compression
rate in almost real-time (see Figure 1(b)). The initial effort, which could be handled by the model supplier,
would empower users to efficiently select an optimal model instance for their needs at a negligible cost.
The challenge, therefore, is to design algorithms that are compatible with this “compute once, compress
dynamically” approach.

Contributions and Overview

In this work, we introduce Any Compression via Iterative Pruning (ACIP),1 which is specifically developed to
address the above problems. To the best of our knowledge, ACIP is the first algorithm that enables large-scale
model compression to any size in real-time without requiring re-computation or re-calibration.

To overcome Problem 1, ACIP follows a low-rank factorization strategy, based on pruning singular values of
large linear layers. This particular form of structured parameter pruning allows for fine-grained compression
levels and is parameter-efficient at the same time, as only singular values are altered. Compared to quantization
and conventional (unstructured) pruning, an efficient implementation does not come with any restrictions to
the underlying hardware, since it is purely based on standard matrix-vector multiplications.

1Pronounced like ‘a sip’ of coffee.
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ACIP solves Problem 2 by explicitly decoupling an (optimization-based) pruning stage from the actual
compression stage. The former can be viewed as a data-dependent calibration step, which estimates the
global importance of all target parameters (the singular values of the base model layers) through an iterative
pruning scheme. The resulting score map is then used to implement a simple compression step that enables
the instantiation of models of any desired size without further computational costs. The detailed methodology
and technicalities of ACIP are presented in Section 2 (see Figure 2 for a visual overview).

We empirically demonstrate the effectiveness of ACIP on a range of recent LLMs in Section 3, accompanied
by a series of additional experiments in the supplementary material (Appendices C and D). In particular, we
verify that our approach outperforms other factorization-based methods on multiple benchmarks (Section 3.2)
and seamlessly complements quantization-based compression techniques (Section 3.4). In the spirit of scaling
laws (Kaplan et al., 2020), ACIP provides consistent and robust size-performance trade-offs, which allows
model users to predict downstream capabilities from a few data points.

Finally, we put our results in the broader context of related literature in Section 4 and conclude in Section 5
by outlining limitations as well as promising avenues for future research that build on our contributions.

2 Method

Figure 2 provides a schematic overview of Any Compression via Iterative Pruning (ACIP). In its initial stage,
ACIP builds a reparametrization of large linear network layers by a singular value decomposition (SVD), which
enables model compression through rank reduction (see Section 2.2.1 for details). Unlike existing SVD-based
methods (Idelbayev & Carreira-Perpiñán, 2020; Yuan et al., 2024; Wang et al., 2024), Any Compression is
achieved by decoupling the pruning and compression stages (cf. Figure 1(b)). More specifically, we construct
a score map that establishes a global importance ranking of singular values across all linear layers within
the network. The score map is derived by running a (stochastic) gradient descent on a sparsity-inducing
objective, using the pruning order of the singular values as a proxy for feature importance (see Section 2.2.2).
In an independent step, the score map can then be used to compress the base model to any desired size
without re-computation (see Section 2.2.3).

2.1 Preliminaries

This section provides several preliminaries to better understand the algorithmic details of ACIP, which are
presented in Section 2.2.

2.1.1 Score-Based Parameter Pruning

As motivated above, the overarching goal of this work is to allow Any Compression of a pre-trained model by
decoupling the computational stage from the compression stage. To this end, we use score-based parameter
pruning, a framework that has been successfully applied to model compression since the 1980s (LeCun et al.,
1989; Hassibi et al., 1993). In score-based pruning, a score map ρ is created that assigns an importance
score ρi to each target parameter θi. Naturally, this approach gives rise to a (global) ranking of parameters
that allows for model compression at any desired rate.

There are many ways to design useful score maps. For example, they can be derived based on curvature at
a local optimum (LeCun et al., 1989; Hassibi et al., 1993) or by using hand-designed local features (Sun
et al., 2024; Frantar & Alistarh, 2023). ACIP takes a novel, data-driven approach to score maps that does not
require any handcrafting or feature engineering (see Section 2.2.2).

2.1.2 Low-Rank Compression of Linear Layers

Linear layers are the molecular building blocks of modern machine learning models, typically accounting for
more than 90% of model parameters in transformers (Vaswani et al., 2017), which makes them a natural
target for compression. Accordingly, we consider linear layers of the form

y = Wx + b, (1)
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where W is an m× n matrix, b is a bias term, and x and y are layer inputs and outputs, respectively. In
this work, we specifically aim for a low-rank compression based on a matrix factorization such that

y = PQx + b, (2)

where P and Q are matrices of sizes m × k and k × n, respectively, and k ≪ min(m, n). The layer
parametrization in (2) may be interpreted as a (lossy) compression of the parametrization in (1), leading to a
smaller memory footprint whenever k(m + n) < mn. Note that matrix factorization can be used to compress
the parameters of any linear layer, including dense layers as well as efficiently parametrized layers such as
convolutional layers (Idelbayev & Carreira-Perpiñán, 2020).

Singular value decomposition. To determine suitable low-rank factors P and Q in (2), we follow recent
work on (large) model compression (Idelbayev & Carreira-Perpiñán, 2020; Yuan et al., 2024; Wang et al.,
2024) and leverage a singular value decomposition (SVD). SVD factorizes an m× n weight matrix Wl of
rank r ≤ min(m, n) at layer l as

Wl = UlΣlV⊤
l , (3)

where Ul and Vl are m× r and n× r matrices of (orthonormal) singular vectors, and Σl is a r × r diagonal
matrix containing the singular values s(i)

l > 0. Note that we consider the compact SVD here, which ignores
the null-space vectors of the full SVD. We may reduce the inner dimension r of the SVD to k < r with

Wl ≈ ŨlΣ̃lṼ⊤
l , (4)

by defining Ũl and Ṽ⊤
l to only contain k singular vectors associated with a selected subset of singular values.

Measuring the approximation error in terms of (Frobenius) matrix norm, selecting the k largest singular
values leads to an optimal approximation of Wl under rank constraints (Mirsky, 1960). It has been previously
argued, however, that this approach does not yield satisfactory results in deep learning as is does not take
into account the underlying (training) data and downstream task (Hsu et al., 2022). Different approaches
have been presented to address this problem (Hsu et al., 2022; Yuan et al., 2024; Wang et al., 2024; Chen
et al., 2021).

2.1.3 ℓ1-Regularization

Consider a generic loss functional L(X; θ) evaluated on some model that is specified by a parameter vector θ
and data X. During model training, sparsity in θ is typically encouraged by solving the penalized optimization
problem

min
θ
L

(
X; θ

)
+ λ ∥θ∥1 , λ > 0, (5)

which is known as ℓ1-regularization, or least absolute shrinkage and selection operator (LASSO) in case of
(generalized) linear models (Tibshirani, 1996; Hastie et al., 2015). Feature selection plays a key role in this
optimization problem. Indeed, increasing λ in (5) leads to sparser solutions θ̂(λ). This effectively gives rise
to a feature importance ranking for the solution of (5) through the so-called regularization path (Tibshirani,
1996; Efron et al., 2004; Mairal & Yu, 2012) — an idea that inspired the approach of ACIP. Here, ‘feature
importance’ is understood as the relative contribution to the (task- and data-specific) loss L

(
X; θ

)
, i.e.,

a feature is considered more important if its removal causes a larger increase in the loss. In particular,
different choices of L may lead to different solution paths and feature rankings. Furthermore, previous results
indicate that optimization paths of iterative schemes can be related to regularization paths (Suggala et al.,
2018). Intuitively, this suggests that general optimization paths of iterative schemes for ℓ1-objectives reveal
information about feature importance in the context of sparse models as well.

In ACIP, we will successively increase λ to introduce a higher degree of model compression in terms of
parameter sparsity in a controlled manner (see also Remark 2.1 below).

2.2 Any Compression via Iterative Pruning (ACIP)

Algorithmically, ACIP consists of the following three key steps, which are detailed in the sections below. For a
schematic visualization of ACIP, we refer to Figure 2.
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Step 1. (Model Reparametrization) Apply SVD to the weights of all (dense) linear layers according
to (6). Introduce low-rank adapters ∆ and singular value masks as tunable parameters.

Step 2. (Scoring via Iterative Pruning) Choose a surrogate loss L and a calibration data set X. Perform
iterative pruning of singular value masks p and simultaneous tuning of low-rank adapters ∆ by
applying ℓ1-regularized gradient-based optimization as in (8). Obtain a global parameter score map ρ
by using Algorithm 1.

Step 3. (Any Compression) Choose any desired compression rate. Use the score map ρ and low-rank
adapters ∆ to materialize the compressed model in real-time.

2.2.1 Step 1. Model Reparametrization

We start by reparametrizing all linear layers of a network2 using SVD as described in (3) and assign

Wl ← UlMlΣlV⊤
l + ∆l, (6)

where l denotes the layer index, Ml is a diagonal matrix with binary entries m(i)
l ∈ {0, 1} masking the

singular values s(i)
l in Σl, and ∆l is a low-rank adapter (LoRA) (Hu et al., 2022). In all subsequent steps of

ACIP, we freeze Σl, Ul, and Vl.

We find that adding a low-rank adapter helps to compensate for potential errors that are introduced by
pruning in Step 2 (Section 2.2.2). We initialize Ml as the identity matrix and ∆l as zero weights. In this
way, the reparametrized model remains identical to the original model up to numerical precision.

We assign the binary masks m(i)
l such that s̃(i)

l = m(i)
l · s

(i)
l represents the pruned or retained singular values,

respectively. Thus, m(i)
l decouples the magnitude of a singular value and the pruning decisions based on its

importance.

The above parametrization leads to a parameter-efficient compression scheme. Indeed, given an m × n
matrix W, the number of non-zero singular values is bounded by r = min(m, n), which means the number of
tunable mask parameters scales linearly in the feature dimensions.

Mask parametrization. We parametrize the binary masks through a thresholding operation of the form

m(i)
l =

{
0, for p(i)

l ≤ 0
1, for p(i)

l > 0
, (7)

where p(i)
l are scalar learnable parameters. As this operation is not differentiable, we use the straight-through

estimator for backpropagation (Bengio et al., 2013; Yin et al., 2018).

2.2.2 Step 2. Scoring via Iterative Pruning

We now aim to build a global score map over all singular values in the reparametrized layers, which guide
model compression subsequently in Step 3 (Section 2.2.3). Leveraging the sparsity-inducing property of
ℓ1-regularization (see Section 2.1.3), we progressively shrink the mask parameters p(i)

l to zero and derive
a score map based on the pruning order. The two key algorithmic components of this “iterative scoring”
strategy are presented next.

Iterative pruning. The optimization problem solved by ACIP takes the form

min
p,∆
L

(
X; θ, p, ∆

)
+ λ ∥p∥1 , (8)

where L denotes a suitable calibration loss for the model, p = {p0, . . . , pL} is the set of all mask parameters,
∆ = {∆0, . . . , ∆L} is the set of all low-rank adapters, and θ is the set of all remaining model parameters that

2Following common practice, we ignore the embedding layer and classification head in (decoder-only) transformers.
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1 # params : parameters p, vectorized ;
2 # scores : pruning scores , vectorized ;
3 # initialized to NaN
4

5 def update_scores (scores , params ):
6 # previously pruned parameters
7 score_mask = scores <= 0.
8 scores [not score_mask ] = params [not

score_mask ]
9 scores [ score_mask ] -= 1.

10 return scores

Algorithm 1: The procedure for updating the score
map after each optimization step. For unpruned
mask parameters p, the score is their current mag-
nitude, which estimates the future pruning order.
Once a parameter is pruned, its score becomes a neg-
ative integer value that tracks the pruning history
by decrementing at each step. This dual mechanism
establishes a global importance ranking used to com-
press the model to any target size in Step 3.

0 200 400 600 800 1000 1200

0

0.5

1

Train Steps

p

Figure 3: Progressive shrinkage of exemplary mask
parameters p in Attn-V layer l = 30 of LLaMA-
7B based on (8). Each plotted line corresponds
to the evolution of a parameter value over training
time. The starting points of shrinkage are predic-
tive of the pruning order, a typical phenomenon in
ℓ1-regularization. In ACIP, this pruning order de-
termines the score of associated singular values s
(cf. Algorithm 1).

are frozen during optimization. We perform gradient-based optimization until a preset maximum compression
ratio rstop is reached (see Appendix D.4 for further discussion). Optionally, we perform post-tuning for a
fixed number of steps by freezing the masks p and continuing the optimization of the low-rank adapters ∆.
Remark 2.1 (Scaling of λ). If λ is chosen too small, the maximum compression ratio rstop might never be
reached. If λ is too large, training might become unstable and the score map ambiguous. Therefore, we use a
simple linear scheduler that scales λ by a fixed factor >1 every j optimization steps, so that pruning becomes
increasingly aggressive over time.
Remark 2.2 (Role of the Calibration Loss). As pointed out in Section 2.1.3, a feature importance ranking
as produced by optimizing (8) depends on the specific loss L

(
X; θ, p, ∆

)
. Given a model to be compressed,

this leaves two important design decisions to the user of ACIP, namely the choice of loss function L and
calibration data. In the case of LLMs, it is natural to use the same loss function as in pre-training, i.e., the
negative log-likelihood loss for next-token prediction. The calibration data should be representative of the
task for which the compressed model(s) should perform well. This choice is therefore very use-case dependent
and could range from very specific fine-tuning tasks to general-purpose prediction. In this work, we focus on
the latter.

From iterative pruning to score map. The optimization process of (8) is used to construct our score
map. Based on the discussion of Section 2.1.3, we hypothesize that there is a close relationship between
the order in which the parameters p(i)

l vanish and their importance for the model — the least important
parameters are pruned first and so on. When conducting our experiments, we observed a shrinkage behavior
that supports this hypothesis; see Figure 3 for a specific example.

Algorithm 1 describes how the score map is updated after each optimization step to represent feature
importances. In plain words, the score map is built based on the pruning order. A negative number in the
map indicates how many steps ago a parameter was pruned. For all parameters that have not been pruned,
the score is set to the value of the corresponding parameter. We refer to Appendix D.9 for visual examples of
ACIP score maps.

The approach of Algorithm 1 ensures that (i) the score map stores the pruning history, and (ii) it estimates
future pruning based on the parameter magnitudes. Note that absolute values of the score are irrelevant for
parameter ranking.

7
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2.2.3 Step 3. Any Compression

From Step 2, we only retain the score map ρ and the low-rank adapters ∆. In particular, the pruned masks
m(i)

l are discarded, as they are irrelevant for compression at this stage (cf. Figure 2). As motivated above, the
score map allows us to globally rank all singular values based on their score. This leads to a fully independent
compression stage where we can flexibly create a model of any reduced size: we prune as many singular
values s(i)

l (and the corresponding singular vectors) according to their scores ρ
(i)
l so that a given compression

rate r is achieved. Note that there is a monotonic but non-linear relationship between the total number of
pruned singular values k and compression rate r (see Section 2.1.2). Given a target rate r, we find k via a
binary search (in almost real-time). As this compression procedure operates directly on the reparametrized
model from Step 1, it is reversible and therefore indeed allows for Any Compression; for a slightly refined
version, see Appendix D.3.

Finally, to materialize a model at a fixed target rate, all pruned singular values and vectors are discarded, so
that the initial SVD-reparametrization turns into an actual low-rank factorization. For layers with determined
rank k ≥ mn

m+n , i.e., where a factorization would not save any parameters, we avoid an inefficient storage
usage by simply recovering the (dense) weight matrix from its SVD components.
Remark 2.3 (Merging Low-Rank Adapters). Above, we have treated the truncated weight matrices W̃l and the
corresponding low-rank adapters ∆l as distinct components. It is possible to merge the two decompositions
into a single one to improve model throughput. To this end, let ∆l = AlB⊤

l be the factorization of the
low-rank adapter. Then, we can express the reparametrization at layer l in (6) by matrix concatenations of
the form

Wl =
[
UlΣl, Al

] [
V⊤

l

B⊤
l

]
. (9)

After specifying a compression rate, the corresponding weight matrix can be expressed as

W̃l =
[
ŨlΣ̃l, Al

]︸ ︷︷ ︸
=:M2

[
Ṽ⊤

l

B⊤
l

]
︸ ︷︷ ︸
=:M1

, (10)

where Ũl, Σ̃l, Ṽ⊤
l are the truncated singular components, see (4). Note that W̃l is never explicitly materialized

as a dense matrix in memory (to ensure actual memory savings) and its forward pass is implemented as two
consecutive vector-matrix multiplications with M1 and M2.

2.3 Computational Considerations

In this section, we discuss the computational costs and memory overhead of ACIP and compare them to other
common compression paradigms. As detailed in Section 2.2, the overall process of ACIP can be divided into
three distinct stages, each with different computational characteristics. A summary of the empirical runtime
and memory costs for a LLaMA-7B base model is provided in Table A5.

The most resource-intensive stage of ACIP is scoring via iterative pruning (Step 2). It involves backpropagation
through the entire model to update the singular value masks and the low-rank adapters. As such, these
updates are parameter-efficient, but the overall memory consumption is still proportional to the full model
size, which can be demanding. In contrast, backpropagation-free, layer-wise methods such as ASVD (Yuan
et al., 2024) and SVD-LLM (Wang et al., 2024) are notably more memory-efficient, as they only need to
process and store the data for a single layer at any given time. However, it is crucial to emphasize that the
iterative pruning stage is compatible with Any Compression and represents a one-time, upfront computational
investment. This calibration can be performed once by a model provider, amortizing the cost across all
subsequent uses. Another noteworthy aspect of Step 2 is that the SVD-reparametrization initially leads to an
increased model size compared to the original model (cf. Table A5), since the singular vector matrices U
and V both need to be stored in memory.

Once the score map is generated, the compression stage (Step 3) is exceptionally efficient. As shown in
Table A5, compressing the model to any target size by discarding singular vectors based on their global scores

8
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Figure 5: Compression-performance trade-off curves
generated by ACIP, using average accuracy on all
LM-Eval tasks as metric.

occurs in near real-time. This allows practitioners to dynamically select the optimal compression-performance
trade-off for their specific application without incurring any significant computational delay.

3 Experiments

Experimental setup. To demonstrate effectiveness across architectural differences in LLMs, we evaluate
ACIP on a selection of popular open-weight models: LLaMA-7B/13B (Touvron et al., 2023a), LLaMA-2-
7B/13B (Touvron et al., 2023b), LLaMA-3.1-8B (Grattafiori et al., 2024), Qwen2.5-7B/14B (Qwen et al.,
2024), and Mistral-7B-v0.3 (Jiang et al., 2023). We use a subset of C4 training data (Raffel et al., 2019)
for the pruning stage. Regarding evaluation tasks, we follow Wang et al. (2024) and report perplexity on
validation held-outs of C4 (Raffel et al., 2019) and WikiText-2 (Merity et al., 2017), and we consider seven
zero-shot tasks from EleutherAI LM Evaluation Harness (LM-Eval) (Gao et al., 2023). More implementation
details about ACIP and choices of hyperparameters can be found in Appendix B.

3.1 Analyzing Compression-Performance Trade-Offs

We first study compression-performance trade-offs powered by ACIP. Figures 4 and 5 demonstrate smooth
and consistent curve shapes for all considered models; analogous results for WikiText-2 and individual
zero-shot LM-Eval tasks can be found in Figure A8. We note that a monotonic relationship between size
and performance is not self-evident, e.g., see Figure A13 in Appendix D.6 for a trivial approach that uses
magnitude-based pruning. More insights on the runtime and memory consumption of ACIP as well as inference
speed of compressed models are reported in Table A5 in Appendix D.1.

A remarkable observation is that the oldest models, LLaMA-7B/13B, perform best perplexity-wise, while
newer, more capable models like Qwen2.5-7B/14B dominate on LM-Eval as expected, especially on the lower
compression levels. This apparent contradiction is likely caused by a deviation of the pre-training data
distributions from C4 in the case of more recent models.

A second noteworthy outcome of Figures 4 and 5 are the gaps between LLMs of different base model sizes in
the same family. Indeed, ACIP cannot match the performance of base models of smaller size, e.g., compare
the compressed Qwen2.5-7B with the original Qwen2.5-3B. This is not surprising because the corresponding
smaller-size base models were obtained by pre-training or knowledge distillation (Hinton et al., 2015; Busbridge
et al., 2025), which are orders of magnitudes more expensive than ACIP.
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Table 1: Any Compression under SVD reparameterization. Zero-shot evaluation of LLaMA-7B. Comparison
with baselines SVD magnitude pruning (SVD-Magn.), ASVD (Yuan et al., 2024), SVD-LLM (Wang et al.,
2024), and Dobi-SVD (without remapping) (Qinsi et al., 2025). ↑: larger is better; ↓: smaller is better; best
results for each task and size ratio are marked in bold. The scores for ASVD and SVD-LLM are taken from
Wang et al. (2024) and the scores for Dobi-SVD from (Qinsi et al., 2025).

C4 WikiText-2 Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA LM Eval
Size Method ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Avg. ↑

100% Original 7.34 5.68 0.28 0.67 0.67 0.56 0.38 0.78 0.27 0.52

80%

SVD-Magn. 9819.35 11312.47 0.15 0.27 0.49 0.26 0.20 0.53 0.20 0.30
ASVD 15.93 11.14 0.25 0.53 0.64 0.41 0.27 0.68 0.24 0.43
SVD-LLM 15.84 7.94 0.22 0.58 0.63 0.43 0.29 0.69 0.24 0.44
Dobi-SVD 10.01 8.54 0.26 0.59 0.66 0.44 0.31 0.70 0.23 0.46
ACIP (ours) 10.92 8.83 0.28 0.66 0.63 0.49 0.32 0.74 0.23 0.48

70%

SVD-Magn. 15186.30 12575.68 0.15 0.26 0.51 0.26 0.22 0.52 0.20 0.30
ASVD 41.00 51.00 0.18 0.43 0.53 0.37 0.25 0.65 0.21 0.38
SVD-LLM 25.11 9.56 0.20 0.48 0.59 0.37 0.26 0.65 0.22 0.40
ACIP (ours) 12.22 10.35 0.28 0.64 0.62 0.47 0.31 0.73 0.23 0.47

60%

SVD-Magn. 14414.87 20987.82 0.15 0.25 0.50 0.25 0.22 0.52 0.19 0.30
ASVD 1109.00 1407.00 0.13 0.28 0.48 0.26 0.22 0.55 0.19 0.30
SVD-LLM 49.83 13.11 0.19 0.42 0.58 0.33 0.25 0.60 0.21 0.37
Dobi-SVD 23.54 13.54 0.22 0.41 0.58 0.34 0.27 0.61 0.23 0.38
ACIP (ours) 13.91 12.46 0.25 0.61 0.59 0.44 0.30 0.71 0.24 0.45

50%

SVD-Magn. 62899.32 109019.52 0.15 0.26 0.50 0.26 0.23 0.54 0.18 0.30
ASVD 27925.00 15358.00 0.12 0.26 0.51 0.26 0.22 0.52 0.19 0.30
SVD-LLM 118.57 23.97 0.16 0.33 0.54 0.29 0.23 0.56 0.21 0.33
ACIP (ours) 16.47 16.16 0.21 0.57 0.57 0.40 0.27 0.68 0.22 0.42

40%

SVD-Magn. 29804.73 29364.55 0.14 0.27 0.51 0.26 0.22 0.53 0.20 0.30
ASVD 43036.00 57057.00 0.12 0.26 0.49 0.26 0.21 0.51 0.18 0.29
SVD-LLM 246.89 42.30 0.14 0.28 0.50 0.27 0.22 0.55 0.21 0.31
Dobi-SVD 190.62 46.18 0.15 0.31 0.52 0.28 0.20 0.54 0.22 0.32
ACIP (ours) 21.05 23.99 0.19 0.49 0.55 0.35 0.24 0.64 0.21 0.38

3.2 Comparison to Existing Works

We now compare ACIP to recent works focusing on SVD-based structured pruning, namely ASVD (Yuan
et al., 2024), SVD-LLM (Wang et al., 2024), and Dobi-SVD (without remapping) (Qinsi et al., 2025). The
former two approaches are backpropagation-free and perform (activation-aware) layer-wise updates instead,
while Dobi-SVD proposes a differentiable truncation mechnism for singular values. Moreover, we evaluated a
simple SVD magnitude pruning approach (SVD-Magn.), where we set the score map equal to the singular
values of the weight matrices. This technique allows for Any Compression analogously to ACIP and therefore
serves as another natural baseline; see Appendix D.6 for further study.

Table 1 shows that ACIP consistently outperforms all baseline methods with a growing gap for higher
compression levels. Note that SVD-LLM and Dobi-SVD were calibrated on WikiText-2 instead of C4, which
might explain slightly better results on the former dataset for 70% and 80% size. We think that these results
underpin the benefits of an end-to-end scheme: (i) a simultaneous correction, e.g., by LoRA, can drastically
improve performance, and (ii) robust pruning patterns can be found without leveraging any specific features
of the SVD factorization. Moreover, we note that re-computations are required to generate each row of
Table 1 for ASVD, SVD-LLM, and Dobi-SVD, whereas ACIP only needs a single run. Analogous results for
ACIP applied to all other models can be found in Table A2.
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Figure 6: Compression-performance trade-off curves
for LLaMA-7B on C4 showing the impact of fine-
tuning and quantization after compression with
ACIP. The horizontal axis measures size in terms of
required (weight) memory to visualize the gains of
quantization more clearly.
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Figure 7: Compression-performance trade-off curves
for LLaMA-7B on C4, showing that quantization
before ACIP leads to similar results as without.

3.3 Improving Performance Through Fine-Tuning

While the main goal of this work is to produce a full family of accurate, compressed models from a few
optimization steps, their performance can be certainly improved through continued fine-tuning. Figure 6
highlights the gains of fine-tuning LLaMA-7B; see Table A2 for more detailed numerical results on all
other models. We observe that fine-tuning leads to a performance offset that is almost constant across all
compression levels, which underlines the predictive capacity of ACIP. Note that we even observe a jump at
zero compression because inserting the low-rank adapters learned by ACIP leads to a slight initial performance
drop (see Appendix D.3 for a potential improvement).

An optional fine-tuning step is not exclusive to ACIP but can be applied to many other compression approaches
as well. Table A3 provides a comparison with ASVD (Yuan et al., 2024) and SVD-LLM (Wang et al., 2024)
(cf. Section 3.2) when fine-tuned with LoRA. While ACIP still performs best in this respect, we argue that
post-compression fine-tuning should be still seen as an independent (and much more costly) algorithmic step
for two reasons. (i) Its outcome strongly depends on the specific training protocol and data, making a fair
and direct comparison challenging; (ii) it requires us to fix a compression level, which breaks the crucial Any
Compression feature of ACIP. Therefore, promoting a costly fine-tuning step after compression is not the
primary concern of our work.

3.4 Combining ACIP with Quantization

In the field of low-cost compression for LLMs, quantization is still considered as the gold standard (Hohman
et al., 2024; Zhu et al., 2024), so that a practitioner might not be willing to exchange its gains for the benefits
of ACIP. Fortunately, ACIP only tunes a tiny fraction of weights with high precision, so that all remaining
modules are suitable for quantization. In our experiments, we quantize all parameterized and unparametrized
linear layers to 4-bit in fp4-format (Dettmers et al., 2023) using the bitsandbytes-Package (W4A16), except
for the embedding layer and final classification head. We study the gains of quantization for ACIP in the
following two ways.

Compress first, then quantize. We first apply ACIP as usual, compress the model to a given target size,
and then quantize all linear layers. Figure 6 confirms that this approach works fairly well, only producing a
slight performance drop compared to non-quantized versions; see Table A4 for a full evaluation on all other
metrics. We also observe that an optional fine-tuning step as in Section 3.3 can almost fully compensate for
the errors introduced by quantization after compression. This finding is well in line with the effectiveness of
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the popular QLoRA approach (Dettmers et al., 2023). Moreover, Figure 6 reveals a drastic improvement
through quantization in terms of required memory. Here, the ACIP-trade-off allows practitioners to study and
apply a more fine-grained compression on top of quantization.

Quantize first, then compress and transfer. Compared to layer-wise methods like ASVD and SVD-
LLM, ACIP has a higher demand in GPU memory due to backpropagation. A quantization of all frozen
weight matrices can be an effective remedy in this respect. For the experiment shown in Figure 7, we
have applied quantization before ACIP, which leads to very similar compression-performance trade-offs as
in the non-quantized case. Going one step further, we transfer the score maps and low-rank adapters from
this quantized version of ACIP back to full precision: We load the base model in bf16, apply layer-wise
SVD-parametrization, insert the low-rank adapters learned by quantized ACIP, and use the corresponding
score map to obtain a compressed model (W16A16). The resulting trade-off curve in Figure 7 confirms that
this simple strategy works fairly well, especially for lower compression levels.

3.5 Further Experiments and Ablations

Several additional experiments are presented in Appendix D, analyzing the impact of several key components
and design aspects of ACIP. Starting with an analysis of algorithmic efficiency and latency (Appendix D.1),
we study the impact of the low-rank adapters (Appendix D.2), compression rule (Appendix D.3), stopping
criterion (Appendices D.4 and D.5), score map design (Appendix D.6), post-tuning (Appendix D.7), and
specific types of linear layers (Appendix D.8). Finally, we show examples of score maps (Appendix D.9) and
prompt completions by compressed models (Appendix D.10).

4 Related Work

In this section, we pick up on our broader discussion on the field of model compression from Section 1 and
put our work in context with several directly related branches of research.

Structured pruning & low-rank factorization. Conceptually, ACIP falls under the umbrella of structured
parameter pruning, specifically, low-rank matrix decomposition. The rationale behind this compression
approach is to approximate large weight matrices by products of low-rank factors to reduce the total parameter
count, and at the same time, to preserve critical information. After initial efforts into this direction for
smaller language models (Edalati et al., 2022; Tahaei et al., 2022), techniques for LLMs primarily built on
(weighted) SVD of linear layers (Ben Noach & Goldberg, 2020; Hsu et al., 2022).

However, a key challenge of SVD-based pruning is that simply truncating singular values based on magnitude
alone is insufficient and makes additional fine-tuning on downstream tasks necessary. Follow-up work
recognized that the poor approximations are caused by LLM weights being high-rank and instead turned to
decomposing network features which are sparse (Kaushal et al., 2023; Yu & Wu, 2023). Similarly, recent
studies (Sharma et al., 2023; Yuan et al., 2024; Jaiswal et al., 2024) have shown rank reduction to differently
affect layers in a network and proposed heuristics for non-uniform pruning. Going even further, ASVD
(Yuan et al., 2024) pointed out the importance of activation-aware approximations, proposing a training-free
compression method that takes the (calibration) data distribution into account. Building on this, SVD-LLM
(Wang et al., 2024) recently derived an analytical layer-wise correction leading to superior compression results.
While ACIP promotes an activation-aware solution as well, it relies on gradient-based optimization, which
avoids any SVD-specific feature engineering and allows for simultaneous errors corrections.

Another relevant line of work on structured pruning aims to jointly remove groups of parameters or entire
network components, e.g., weight matrix columns/rows, network layers, or attention heads (Frantar & Alistarh,
2023; Ma et al., 2023; Xia et al., 2024; Ashkboos et al., 2024; Kim et al., 2024). At high compression rates,
however, such “coarse” approaches often remove critical substructures, causing a significant performance drop
that is only recoverable through additional fine-tuning.

Score maps & Any Compression. A common feature of the aforementioned structured pruning ap-
proaches is that they first truncate parameters to a preset target size and then compute an error correction.
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This design choice means that exploring the full compression-performance trade-off requires repeated, costly
computations for each desired compression ratio (cf. Figure 1(a)). In contrast, ACIP overcomes this limitation
by using score maps to determine global parameter importance. As such, score maps have been used as a
tool for model compression since the 1980s (LeCun et al., 1989; Hassibi et al., 1993). However, in the era of
LLMs, deriving a score for each parameter poses significant challenges in terms of scalability. Addressing this
concern, ACIP enables scalable Any Compression by (i) using weight factorization to significantly reduce the
score map size (e.g., to ∼900k parameters for a 7B model), and (ii) decoupling the scoring and compression
stages (Step 2 and 3 in Section 2.2, respectively).

Any-size pre-training. Beyond post-training compression, an alternative paradigm for obtaining models
of varying sizes is to incorporate this flexibility into the (pre-)training process itself. For example, Cai et al.
(2020) train a single, large “Once-for-all” network from which specialized sub-networks of different sizes can
be extracted without retraining. More recently, the MatFormer (Devvrit et al., 2024) has demonstrated
how to build a family of “any-size” models directly through a nested pre-training methodology, based on
Matryoshka Representation Learning (Kusupati et al., 2022). The recently published Gemma-3n model uses
this approach in production to make LLMs ready for mobile and edge devices (Gonzalez & Shivanna, 2025).
While these methods also produce a trade-off between model size and performance, they require a significantly
higher upfront computational budget associated with complex pre-training from scratch. ACIP provides a
lightweight, post-training alternative that offers similar flexibility for any existing pre-trained model.

Rate-distortion theory. Finally, our work can be viewed through the lens of rate-distortion theory, which
investigates the analytical trade-off between achievable data compression rates and the error (distortion)
introduced by lossy compression (Cover & Thomas, 2006). While some recent work (Gao et al., 2019; Isik
et al., 2022) investigates rate-distortion theory of machine learning models for simple architectures under
rather specific assumptions, the information-theoretic limits of neural network compression are generally
unknown in practically relevant settings. In this context, the family of compressed models generated by ACIP
conveniently provides an empirical (upper) bound on the distortion-rate function of a large-scale model from
a single optimization run.

5 Conclusion

In this work, we have introduced Any Compression via Iterative Pruning (ACIP), a simple end-to-end
algorithm to determine the compression-performance trade-off of pre-trained models. The underlying score
map ranking allows us to materialize models of any compression rate in real-time. We have demonstrated
empirically that the downstream performance of the resulting models is superior to existing, layer-wise
factorization approaches. The flexibility and efficiency of ACIP make it a practical tool for deploying large-
scale models in resource-constrained settings, especially in combination with other compression techniques
such as quantization.

Discussion. Our main results in Figures 4 and 5 resemble the well-known phenomenon of scaling laws
(Kaplan et al., 2020; Hoffmann et al., 2022). Recently, it has been shown that any-size models can be achieved
through pre-training (Devvrit et al., 2024; Gonzalez & Shivanna, 2025) (see also Section 4), exhibiting similar
trade-offs as ACIP. Establishing a rigorous connection between these two fields of research could be a fruitful
avenue of future work.

In a similar vein, we observe that more recent models tend to be less compressible (e.g., compare the slopes
of LLaMA-13B and Qwen2.5-14B in Figure 5). We hypothesize that this relates to newer models carrying
denser information per weight, since they were trained on much larger datasets (Allen-Zhu & Li, 2024). Also,
the distribution of the calibration dataset (C4 in our case) might play an important role in this context.

A notable technical limitation of our work is that we have only focused on models that are tunable on a single
(NVIDIA H100) GPU in bf16-precision. Hence, the scaling behavior of ACIP for larger LLMs (30B+) remains
to be explored. We also emphasize that ACIP could be transferred to other modalities, architectures, and
tasks without any notable modifications. Finally, a more detailed study of inference speed (beyond the results
of Appendix D.1) could provide useful insights into the interplay of low-rank models and their efficiency.
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Broader Impact Statement

The primary broader impact of our work lies in increasing the accessibility and practicality of large Foundation
Models. By empowering practitioners to effortlessly navigate the compression-performance trade-off without
costly recomputation, ACIP helps to democratize the deployment of advanced AI. This could unlock novel
applications in resource-scarce domains — from on-device mobile assistants to intelligent systems in manufac-
turing and automotive sectors — and support researchers with limited computational budgets. Ultimately,
our approach contributes to a more sustainable and inclusive AI ecosystem by enabling the efficient use of
pre-trained models, reducing both computational and environmental overhead.

In parallel with these benefits, it is crucial to acknowledge the ethical implications and responsibilities that
come with democratizing powerful technology. The same accessibility that fosters innovation could also lower
the barrier for malicious applications, such as the efficient generation of spam or real-time misinformation on
edge devices. This underscores the critical need for the AI/ML community to proactively develop robust
safety mechanisms and ethical guidelines that are effective for models of all sizes. By doing so, we can ensure
the positive impacts of accessibility are not undermined by potential misuse.

Software and Data

Code is available under https://github.com/merantix-momentum/acip. ACIP-Models are available under
https://huggingface.co/collections/MerantixMomentum/acip.
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A Additional Remarks

In this section, we discuss a few additional aspects (in Q&A format) about our method and experimental
design that were not (fully) addressed in the main part for the sake of brevity.

Q1. Why did you not directly compare your results to quantization and full-weight (unstructured) pruning?

A1. We argue that these are fundamentally different compression approaches. Full weight manipulations,
in principle, have the potential to lead to more powerful compressions because they have more degrees
of freedom (analogously to full-weight fine-tuning vs. PEFT). Therefore, they should not be seen as
competing methods but complementary ones. We admit that practitioners probably would not favor
ACIP over well-established and widely supported quantization techniques. However, the adapter-style
nature of ACIP makes it suitable for a combination. This can, for example, allow ACIP to be further
improved through a quantization of the singular vector matrices as demonstrated in Section 3.4.

Q2. Why did you not compare with model distillation or combine ACIP with it?

A2. While model distillation can lead to outstanding compression results, e.g., see (Busbridge et al., 2025;
Raschka, 2024), this approach requires significantly more resources than ACIP, typically orders of
magnitudes more. A direct comparison is therefore not meaningful from our point of view, as it
should at least be based on approximately the same computational budget.

Q3. Why do you propose a backpropagation-based algorithm instead of layer-wise weight updates?

A3. Let us first summarize several benefits of our end-to-end optimization approach from the main paper:
(i) it is conceptually simple and requires no feature engineering, (ii) an error correction can be injected
with almost no extra costs, (iii) it allows us to perform efficient and accurate Any Compression.
Apart from that, and to the best of our knowledge, existing compression algorithms that use layer-wise
updates like ASVD (Yuan et al., 2024), SVD-LLM (Wang et al., 2024), or WeLore (Jaiswal et al.,
2024) require a separate fine-tuning step to achieve competitive downstream performance at stronger
compression ratios. Therefore, the lower costs of layer-wise compression are actually dominated by a
more expensive backpropagation-based step. It remains open if similar results can be obtained by a
fully tuning-free algorithm.

Q4. Why do you use matrix factorization, and SVD in particular?

A4. Committing to a backpropagation-based algorithm (see Q3) means that we have to deal with increased
memory requirements. As such, matrix factorization is not helpful in that respect because the number
of parameters might even increase initially (for instance, an SVD-parametrization basically doubles
the size of a quadratic weight matrix). On the other hand, tuning and pruning only the bottleneck
layer (i.e., the singular value masks in case of ACIP) has the potential for drastic size reductions and
is highly parameter-efficient. For example, the number of tunable mask parameters for LLaMA-7B
with ACIP is <1M.
With this in mind, SVD as a specific matrix factorization is an obvious candidate due to its beneficial
mathematical and numerical properties, in particular, optimal low-rank matrix approximation and
stable matrix operations due to orthogonality.
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B Implementation Details

In this section, we report more technical details and hyperparameters used for our experiments.

Dataset and models. Following previous work on LLM compression, we use C4 (Raffel et al., 2019) for
training as it is a good proxy of a general-purpose dataset. In the context of ACIP, it should be primarily
seen as a calibration dataset that allows us to propagate meaningful activations through a pre-trained model
while performing structured pruning. Overfitting to the distribution of C4 is implicitly mitigated, since we
only tune very few parameters (masks and low-rank adapters) compared to the total model size. As loss
function L in (8), we use the standard negative log-likelihood loss for next-token prediction.

All considered (evaluation) datasets and pre-trained models are imported with the HuggingFace transformers-
library in bfloat16-precision. Our experiments were implemented with PyTorch (Paszke et al., 2019) and
the Lightning package.

ACIP-specifics. As mentioned in Remark 2.1, we apply a linear scheduler that increases the regularization
parameter λ dynamically over the pruning process. This ensures that the pruning becomes more and more
aggressive over time and the stopping criterion will be reached at some point. Across all experiments, we use
λ = 1e−3 as initial value and increase it by a factor of 1.01 every 4 steps (this amounts to a doubling of λ at
about every 280 steps).

As pointed out in Section 2.2.2, we choose a target compression rate as a stopping criterion for ACIP. In most
experiments, a rate of rstop = 0.4 is reasonable (i.e., only 40% or the original parameters remain), and we
refer to Appendix D.4 for further discussion and analysis. After the stopping criterion is reached, we tune
the low-rank adapter for 1k more steps while the masks are frozen (see Section 2.2.2).

The mask parameters in (7) are rescaled by a fixed factor of 0.02 to ensure a better alignment with the
numerical range of the remaining network weights. The low-rank adapters are created with r = 32, α = 16,
and dropout 0.05. For LLaMA-7B, the number of tunable parameters amounts to <1M mask parameters and
approximately 80M low-rank adapter parameters.

For sample data from C4, we use 1024 tokens per sample and a batch size of 4. We use Adam (Kingma & Ba,
2015) as optimizer without weight decay and a learning rate of 5e−5.

Runtime analysis. ACIP requires significantly fewer steps than fine-tuning. Depending on when the
stopping criterion is reached, it typically takes 1.5k - 2.5k steps, including 1k post-tuning steps of the low-rank
adapters. For LLaMA-7B, for example, this amounts to a wall clock runtime of < 30 minutes, including the
initial SVD computations for the base model parametrization. All runs were performed on single NVIDIA
H100 GPUs. See also Appendix D.1 for a more detailed efficiency analysis.

Fine-tuning. In all post-compression fine-tunings (see Section 3.3), we simply continue training ACIP’s
low-rank adapters (the optimizer states are reset). We train for 25k steps on C4 with a batch size of 4 and a
learning rate of 2e−4.
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C Supplementary Results for Section 3.1 – Section 3.4

Figure A8 complements the trade-off curves in Figures 4 and 5 by all other considered evaluation metrics
(see Section 3.1). Table A2 reports these results in terms of numbers, including all fine-tuning results for all
models (see Section 3.3). Table A3 analyzes the effect of fine-tuning of ACIP compared to existing SVD-based
compression methods. Table A4 provides more detailed evaluation results on fine-tuning a quantized and
compressed LLaMA-7B model (see Section 3.4).
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Figure A8: Compression-performance trade-off curves generated by ACIP on WikiText-2 and individual
LM-Eval tasks, complementing the results of Figures 4 and 5.
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Table A2: Evaluation results for ACIP on all considered LLMs. Scores on C4 and WikiText-2 are measured in
perplexity (smaller is better), and the LM-Eval zero-shot tasks are measured in accuracy (higher is better).
∗The results of LLaMA2-13B were achieved by ignoring all up-projection layers in ACIP (see Appendix D.8).

C4 ↓ WikiText-2 ↓ ARC_c ↑ ARC_e ↑ HellaS. ↑ MathQA ↑ Openb. ↑ PIQA ↑ WinoG. ↑
LM Eval
Avg. ↑

Type ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT ACIP FT
Model Size

LLaMA-7B

40% 21.05 15.66 23.99 17.33 0.24 0.24 0.49 0.53 0.35 0.38 0.21 0.21 0.19 0.20 0.64 0.67 0.55 0.57 0.38 0.40
50% 16.47 12.89 16.16 11.88 0.27 0.27 0.57 0.59 0.40 0.43 0.22 0.23 0.21 0.23 0.68 0.71 0.57 0.60 0.42 0.44
60% 13.91 11.14 12.46 9.63 0.30 0.32 0.61 0.64 0.44 0.47 0.24 0.23 0.25 0.26 0.71 0.73 0.59 0.63 0.45 0.47
70% 12.22 9.84 10.35 8.27 0.31 0.34 0.64 0.69 0.47 0.50 0.23 0.24 0.28 0.28 0.73 0.75 0.62 0.66 0.47 0.49
80% 10.92 8.81 8.83 7.19 0.32 0.38 0.66 0.71 0.49 0.53 0.23 0.24 0.28 0.31 0.74 0.77 0.63 0.68 0.48 0.52
90% 9.75 7.69 7.56 6.12 0.33 0.39 0.67 0.73 0.50 0.56 0.25 0.25 0.27 0.33 0.76 0.78 0.63 0.69 0.49 0.53
100% 9.52 7.32 7.20 5.75 0.33 0.40 0.69 0.75 0.51 0.57 0.25 0.26 0.26 0.34 0.76 0.79 0.63 0.70 0.49 0.54
Orig. 7.31 5.68 0.42 0.75 0.57 0.27 0.34 0.79 0.70 0.55

LLaMA-13B

40% 16.64 13.38 17.66 13.42 0.28 0.28 0.57 0.59 0.41 0.43 0.22 0.23 0.23 0.24 0.69 0.70 0.60 0.62 0.43 0.44
50% 13.06 11.12 12.42 10.49 0.32 0.34 0.63 0.63 0.47 0.48 0.23 0.23 0.26 0.28 0.72 0.73 0.62 0.64 0.47 0.47
60% 11.33 9.76 9.79 8.30 0.35 0.33 0.67 0.68 0.50 0.51 0.24 0.24 0.28 0.30 0.74 0.76 0.65 0.67 0.49 0.50
70% 10.10 8.72 8.17 7.06 0.38 0.38 0.70 0.69 0.53 0.54 0.24 0.26 0.31 0.31 0.76 0.77 0.67 0.70 0.51 0.52
80% 9.06 7.91 6.91 6.21 0.41 0.41 0.74 0.74 0.55 0.57 0.26 0.27 0.32 0.34 0.77 0.78 0.68 0.69 0.53 0.54
90% 8.04 7.06 5.98 5.40 0.42 0.44 0.75 0.76 0.57 0.59 0.29 0.29 0.32 0.33 0.79 0.79 0.70 0.72 0.55 0.56
100% 7.86 6.79 5.83 5.15 0.42 0.46 0.75 0.77 0.57 0.60 0.29 0.30 0.31 0.32 0.79 0.79 0.70 0.73 0.55 0.57
Orig. 6.77 5.09 0.47 0.77 0.60 0.30 0.33 0.79 0.73 0.57

LLaMA-2-7B

40% 24.62 16.74 29.20 18.00 0.21 0.22 0.46 0.50 0.34 0.37 0.20 0.21 0.18 0.19 0.62 0.66 0.51 0.55 0.36 0.39
50% 18.36 13.32 19.64 12.25 0.25 0.27 0.53 0.57 0.38 0.42 0.22 0.22 0.24 0.23 0.67 0.69 0.53 0.56 0.40 0.42
60% 15.27 11.15 14.47 9.54 0.28 0.31 0.59 0.63 0.43 0.46 0.23 0.24 0.25 0.23 0.69 0.72 0.57 0.62 0.44 0.46
70% 12.96 9.73 10.47 7.74 0.33 0.35 0.62 0.68 0.46 0.50 0.25 0.24 0.27 0.26 0.73 0.74 0.60 0.64 0.47 0.49
80% 11.31 8.63 8.46 6.54 0.33 0.37 0.66 0.70 0.49 0.53 0.25 0.26 0.28 0.31 0.74 0.77 0.63 0.66 0.48 0.51
90% 9.46 7.43 6.69 5.45 0.34 0.43 0.69 0.75 0.51 0.56 0.26 0.28 0.28 0.33 0.76 0.78 0.63 0.69 0.50 0.54
100% 9.34 7.06 6.54 5.13 0.34 0.43 0.70 0.76 0.51 0.57 0.26 0.28 0.27 0.32 0.76 0.78 0.64 0.69 0.50 0.55
Orig. 7.04 5.11 0.44 0.76 0.57 0.28 0.31 0.78 0.69 0.55

LLaMA-2-13B

40% 27.55 84.28 41.22 145.79 0.23 0.23 0.43 0.46 0.33 0.30 0.21 0.21 0.18 0.18 0.62 0.63 0.52 0.52 0.36 0.36
50% 17.10 12.76 17.89 13.12 0.30 0.32 0.58 0.61 0.41 0.44 0.21 0.23 0.27 0.27 0.69 0.70 0.56 0.58 0.43 0.45
60% 13.29 10.05 11.11 8.43 0.32 0.36 0.65 0.68 0.47 0.50 0.22 0.23 0.29 0.31 0.72 0.74 0.60 0.63 0.47 0.49
70% 11.04 8.64 8.40 6.71 0.35 0.41 0.70 0.74 0.51 0.54 0.23 0.25 0.30 0.33 0.74 0.77 0.62 0.66 0.49 0.53
80% 9.54 7.68 6.80 5.66 0.37 0.44 0.72 0.76 0.54 0.57 0.25 0.28 0.30 0.34 0.77 0.78 0.64 0.71 0.51 0.55
90% 8.26 6.86 5.70 4.87 0.40 0.47 0.74 0.78 0.55 0.60 0.26 0.31 0.31 0.34 0.78 0.79 0.66 0.72 0.53 0.57
100% 7.87 6.56 5.42 4.61 0.41 0.47 0.75 0.79 0.56 0.60 0.28 0.32 0.31 0.35 0.78 0.79 0.69 0.71 0.54 0.58
Orig. 6.52 4.57 0.48 0.79 0.60 0.32 0.35 0.79 0.72 0.58

LLaMA-3.1-8B

50% 43.32 26.52 61.77 29.52 0.23 0.27 0.51 0.58 0.33 0.37 0.22 0.23 0.17 0.19 0.64 0.68 0.53 0.54 0.38 0.41
60% 31.55 21.00 36.69 19.26 0.29 0.29 0.60 0.61 0.37 0.42 0.24 0.24 0.22 0.23 0.69 0.72 0.55 0.56 0.42 0.44
70% 24.90 17.08 23.06 13.55 0.33 0.32 0.64 0.66 0.41 0.47 0.26 0.27 0.23 0.27 0.71 0.73 0.59 0.62 0.45 0.48
80% 20.78 14.21 15.60 10.12 0.38 0.40 0.69 0.72 0.46 0.51 0.28 0.30 0.28 0.29 0.74 0.77 0.61 0.66 0.49 0.52
90% 16.25 11.28 9.80 7.24 0.41 0.48 0.74 0.80 0.52 0.57 0.33 0.35 0.27 0.31 0.77 0.79 0.67 0.71 0.53 0.57
100% 14.57 9.42 8.04 5.95 0.40 0.51 0.75 0.82 0.53 0.60 0.36 0.40 0.27 0.34 0.78 0.80 0.66 0.74 0.54 0.60
Orig. 9.31 5.86 0.51 0.82 0.60 0.39 0.33 0.80 0.74 0.60

Mistral-7B-v0.3

40% 28.92 19.21 44.29 23.24 0.24 0.26 0.48 0.53 0.35 0.38 0.21 0.21 0.18 0.19 0.66 0.67 0.55 0.57 0.38 0.40
50% 21.44 14.86 28.60 16.53 0.28 0.28 0.57 0.59 0.40 0.43 0.21 0.23 0.22 0.21 0.69 0.70 0.58 0.60 0.42 0.43
60% 16.89 12.49 21.19 12.29 0.32 0.32 0.63 0.66 0.45 0.48 0.24 0.24 0.20 0.23 0.72 0.73 0.60 0.62 0.45 0.47
70% 13.75 10.95 13.28 9.69 0.35 0.34 0.67 0.68 0.49 0.52 0.27 0.28 0.21 0.26 0.74 0.76 0.63 0.63 0.48 0.49
80% 11.80 9.84 8.70 7.49 0.38 0.39 0.70 0.73 0.52 0.55 0.29 0.29 0.23 0.26 0.76 0.77 0.65 0.69 0.50 0.53
90% 10.42 8.84 6.51 5.85 0.40 0.43 0.72 0.75 0.54 0.59 0.31 0.33 0.25 0.31 0.78 0.79 0.68 0.70 0.53 0.56
100% 9.85 8.31 6.04 5.31 0.40 0.45 0.73 0.77 0.55 0.60 0.33 0.34 0.26 0.33 0.78 0.79 0.68 0.72 0.53 0.57
Orig. 8.05 4.96 0.49 0.79 0.61 0.36 0.34 0.80 0.73 0.59

Qwen2.5-3B

40% 71.23 36.85 91.51 39.44 0.20 0.22 0.45 0.51 0.29 0.31 0.21 0.22 0.15 0.16 0.60 0.64 0.50 0.52 0.34 0.37
50% 57.17 29.43 62.42 26.92 0.22 0.25 0.49 0.57 0.32 0.34 0.22 0.21 0.18 0.19 0.63 0.67 0.52 0.53 0.37 0.39
60% 43.30 23.30 38.26 18.38 0.26 0.29 0.57 0.63 0.35 0.39 0.23 0.23 0.21 0.24 0.67 0.69 0.54 0.56 0.40 0.43
70% 34.24 19.04 25.81 13.50 0.31 0.34 0.62 0.68 0.39 0.43 0.25 0.26 0.24 0.26 0.70 0.72 0.57 0.58 0.44 0.47
80% 25.50 16.16 17.02 10.68 0.34 0.36 0.68 0.73 0.43 0.47 0.28 0.31 0.26 0.24 0.72 0.74 0.58 0.57 0.47 0.49
90% 20.10 13.82 11.99 8.57 0.37 0.42 0.73 0.77 0.46 0.52 0.33 0.36 0.27 0.33 0.74 0.78 0.60 0.67 0.50 0.55
100% 18.73 12.81 10.63 7.70 0.36 0.47 0.72 0.78 0.46 0.54 0.33 0.41 0.24 0.31 0.74 0.78 0.60 0.69 0.49 0.57
Orig. 12.90 7.64 0.45 0.77 0.55 0.37 0.30 0.78 0.68 0.56

Qwen2.5-7B

40% 46.43 29.26 49.04 27.24 0.23 0.24 0.52 0.58 0.31 0.34 0.22 0.21 0.19 0.20 0.64 0.67 0.53 0.53 0.38 0.40
50% 34.90 23.26 29.96 19.72 0.27 0.30 0.59 0.64 0.35 0.39 0.22 0.23 0.23 0.25 0.67 0.70 0.54 0.57 0.41 0.44
60% 27.84 18.73 21.98 13.73 0.31 0.33 0.63 0.68 0.39 0.45 0.25 0.26 0.25 0.28 0.70 0.73 0.55 0.60 0.44 0.48
70% 22.97 15.96 15.72 10.71 0.35 0.42 0.68 0.74 0.44 0.49 0.28 0.30 0.29 0.30 0.73 0.76 0.57 0.63 0.48 0.52
80% 19.68 14.02 12.07 8.89 0.40 0.46 0.73 0.78 0.48 0.53 0.33 0.36 0.30 0.33 0.75 0.78 0.59 0.67 0.51 0.56
90% 17.09 12.59 9.82 7.63 0.44 0.48 0.75 0.80 0.52 0.56 0.39 0.41 0.31 0.32 0.77 0.79 0.64 0.70 0.54 0.58
100% 15.34 11.43 8.38 6.60 0.43 0.50 0.75 0.82 0.53 0.59 0.43 0.46 0.28 0.34 0.77 0.79 0.66 0.72 0.55 0.60
Orig. 11.47 6.55 0.48 0.81 0.60 0.43 0.34 0.79 0.73 0.60

Qwen2.5-14B

40% 36.51 25.58 33.78 22.22 0.26 0.29 0.55 0.61 0.36 0.38 0.22 0.23 0.24 0.26 0.67 0.68 0.54 0.57 0.41 0.43
50% 26.27 19.53 20.15 14.57 0.32 0.33 0.65 0.68 0.43 0.44 0.25 0.25 0.26 0.27 0.70 0.71 0.57 0.59 0.45 0.47
60% 21.29 15.63 14.87 10.48 0.36 0.40 0.70 0.73 0.49 0.51 0.28 0.32 0.28 0.31 0.74 0.76 0.62 0.66 0.50 0.53
70% 17.99 13.99 11.25 8.89 0.42 0.43 0.73 0.76 0.53 0.54 0.33 0.36 0.31 0.32 0.77 0.78 0.64 0.68 0.53 0.55
80% 15.23 11.97 8.73 7.11 0.44 0.48 0.77 0.78 0.57 0.58 0.39 0.44 0.34 0.36 0.78 0.79 0.68 0.73 0.57 0.60
90% 13.05 10.77 6.86 6.04 0.48 0.52 0.80 0.82 0.59 0.60 0.49 0.49 0.32 0.35 0.79 0.81 0.70 0.74 0.60 0.62
100% 12.37 9.98 6.23 5.11 0.47 0.53 0.79 0.82 0.58 0.62 0.51 0.53 0.32 0.35 0.79 0.81 0.73 0.77 0.60 0.63
Orig. 9.99 5.05 0.56 0.82 0.63 0.53 0.35 0.81 0.75 0.64
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Table A3: Evaluation of LLaMA-7B on WikiText-2 (perplexity, smaller is better) under different com-
pression ratios, with and without post-training fine-tuning. We compare ACIP with the existing SVD-based
compression methods ASVD (Yuan et al., 2024) and SVD-LLM (Wang et al., 2024), see also Section 3.2. The
scores for ASVD and SVD-LLM are taken from Wang et al. (2024, Table 4). Note that ACIP was fine-tuned
on C4, while ASVD and SVD-LLM fine-tuned on WikiText-2 directly.

Compression Ratio 40% 50% 60% 70% 80%
Method

ASVD 57057.00 15358.00 1407.00 51.00 11.14
ASVD + LoRA FT 44.81 21.83 14.86 10.16 8.37
SVD-LLM 42.30 23.97 13.11 9.56 7.94
SVD-LLM + LoRA FT 17.93 13.26 10.65 9.14 7.78
ACIP 24.00 16.17 12.46 10.34 8.83
ACIP + FT 17.33 11.88 9.63 8.27 7.19

Table A4: More detailed evaluation results for our quantization experiments in Section 3.4, reported in terms
of numbers.

Eff. model size [GB] C4 WikiText-2 ARC_c ARC_e HellaS. MathQA Openb. PIQA WinoG. LM Eval
Size Ablation ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Avg. ↑

40%

ACIP 5.47 21.05 24.00 0.24 0.49 0.35 0.21 0.19 0.65 0.55 0.38
ACIP → FT 5.47 15.66 17.33 0.24 0.53 0.38 0.21 0.20 0.67 0.57 0.40
ACIP → W4A16 1.89 27.12 35.40 0.22 0.46 0.33 0.20 0.18 0.62 0.53 0.36
ACIP → W4A16 → FT 1.89 16.67 18.90 0.23 0.52 0.37 0.22 0.20 0.67 0.57 0.40

50%

ACIP 6.70 16.47 16.17 0.28 0.58 0.40 0.22 0.21 0.68 0.57 0.42
ACIP → FT 6.70 12.89 11.88 0.27 0.59 0.43 0.23 0.23 0.71 0.60 0.44
ACIP → W4A16 2.21 19.28 19.96 0.26 0.54 0.37 0.21 0.20 0.67 0.55 0.40
ACIP → W4A16 → FT 2.21 13.85 13.33 0.25 0.58 0.41 0.23 0.23 0.70 0.59 0.43

60%

ACIP 7.88 13.91 12.46 0.30 0.61 0.43 0.23 0.25 0.71 0.60 0.45
ACIP → FT 7.88 11.14 9.63 0.32 0.64 0.47 0.23 0.26 0.73 0.63 0.47
ACIP → W4A16 2.51 15.84 14.64 0.29 0.58 0.42 0.22 0.22 0.69 0.57 0.43
ACIP → W4A16 → FT 2.51 11.77 10.31 0.29 0.64 0.45 0.22 0.26 0.72 0.61 0.46

70%

ACIP 9.10 12.22 10.34 0.31 0.64 0.47 0.23 0.27 0.73 0.62 0.47
ACIP → FT 9.10 9.84 8.27 0.34 0.69 0.50 0.24 0.28 0.75 0.66 0.49
ACIP → W4A16 2.83 13.45 11.80 0.29 0.63 0.45 0.23 0.24 0.72 0.60 0.45
ACIP → W4A16 → FT 2.83 10.38 8.74 0.32 0.67 0.48 0.23 0.28 0.75 0.64 0.48

80%

ACIP 10.30 10.91 8.83 0.33 0.67 0.49 0.23 0.28 0.74 0.63 0.48
ACIP → FT 10.30 8.81 7.19 0.38 0.71 0.53 0.24 0.31 0.77 0.68 0.52
ACIP → W4A16 3.13 12.61 9.87 0.32 0.65 0.47 0.23 0.28 0.74 0.61 0.47
ACIP → W4A16 → FT 3.13 9.26 7.60 0.36 0.69 0.52 0.24 0.30 0.76 0.66 0.50

90%

ACIP 11.50 9.75 7.56 0.34 0.68 0.50 0.25 0.27 0.75 0.63 0.49
ACIP → FT 11.50 7.69 6.12 0.39 0.73 0.56 0.25 0.33 0.78 0.69 0.53
ACIP → W4A16 3.44 10.25 7.90 0.32 0.66 0.50 0.24 0.27 0.75 0.63 0.48
ACIP → W4A16 → FT 3.44 7.97 6.39 0.38 0.73 0.56 0.25 0.35 0.78 0.69 0.53

100%

ACIP 12.70 9.52 7.20 0.33 0.69 0.51 0.25 0.26 0.76 0.63 0.49
ACIP → FT 12.70 7.32 5.75 0.40 0.75 0.57 0.26 0.34 0.79 0.70 0.54
ACIP → W4A16 3.75 9.75 7.37 0.34 0.69 0.51 0.25 0.27 0.76 0.63 0.49
ACIP → W4A16 → FT 3.75 7.52 5.94 0.40 0.75 0.56 0.27 0.34 0.78 0.69 0.54
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D Further Experiments and Ablations

In this section, we present several supplementary experiments analyzing the impact of some key algorithmic
components and design choices of ACIP in more detail. Note that the most detailed analyses and ablations
are carried out with LLaMA-7B as it was most extensively studied in previous research on structured weight
pruning.

D.1 Efficiency Analysis

Table A5 reports several statistics on the efficiency of the ACIP algorithm and inference speed of compressed
models. While these preliminary results do not immediately indicate gains in inference speed, we expect
that further optimization like merging the low-rank adapters can compensate for the matrix-factorization
overhead (one additional matrix-vector multiplication) and outperform the base model. Moreover, we note
that compared to performance-size trade-offs, which are our main concern, analyzing inference speed-ups
requires a very careful consideration about the hardware in use (accelerator model, parallel processing units,
etc.) and measurement setup (sequence length, batch size, etc.).

Table A5: Efficiency analysis of ACIP for LLaMA-7B. The first three rows report the runtime and memory
statistics of ACIP’s key steps (see Section 2.2 and Figure 2) both in terms of numbers and their qualitative
asymptotics. Here, the model sizes are measured as (uncompressed) checkpoint sizes. “Runtime pruning”
refers to the process of pruning the mask parameters to a desired compression ratio (revertible), whereas
“Runtime compress” refers to the process of discarding pruned singular vectors and possibly unparametrizing
linear layers, so that the model gets actually compressed (see Step 3 in Section 2.2.3). The statistics of
inference speed were obtained by generating new text of sequence length 64 and batch size 64. To measure
FLOPs, we use the fvcore package and an input sequence of length 512.

Stage Metric LLaMA-7B

ACIP Step 1 (Model Reparametrization)
O(#Layers × SVD of Layer)

Runtime [min] 4.95
Size parametrized model [GB] 19.71
Size base model [GB] 12.70

ACIP Step 2 (Scoring by Iterative Pruning)
O(#Steps of Masks & LoRA Updates)

Runtime [min] 23.12
Reserved GPU memory peak [GB] 62.45
Steps / s 1.68

ACIP Step 3 (Any Compression)
O(#Layers × Layer Input Dimension)

Runtime pruning [s] 0.49
Runtime compress [s] 0.18

Inference at 40% Size

Size model [GB] 5.47
Reserved GPU memory peak [GB] 25.68
Latency [s] 2.57
Tokens / s 1594.99
GigaFLOPs 1335.85

Inference at 70% Size

Size model [GB] 9.10
Reserved GPU memory peak [GB] 29.43
Latency [s] 2.47
Tokens / s 1658.63
GigaFLOPs 2265.03

Inference at 100% Size (Original)

Size model [GB] 12.70
Reserved GPU memory peak [GB] 32.79
Latency [s] 1.67
Tokens / s 2447.75
GigaFLOPs 3188.63
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Figure A9: Compression-performance trade-off curves for LLaMA-7B on C4 with and without using a
LoRA-adapter for correction in ACIP.

D.2 Impact of Low-Rank Adapters

The primary purpose of the low-rank adapters used in ACIP is to correct compression errors on-the-fly during
the optimization. A surprising finding of our work is that the final adapters are “universal” in the sense that
they can be used across all seen compression levels. While we expect that other PEFT-style approaches would
lead to similar findings, it is natural to ask how ACIP would perform without any correction, i.e., just the
mask parameters are tuned according to (8). This ablation study is shown in Figure A9. While performing
significantly worse than with LoRA, we observe that the perplexity does not blow up and the results are
even slightly better than SVD-LLM (see Table 1). This stable behavior of ACIP is closely related to our
parameterization of the mask in (7) which ensures that the forward pass corresponds to the actual outputs
of the pruned model with binary masks. On the other hand, the straight-through estimator still enables
backpropagation.

D.3 Impact of the Compression Rule

The Any Compression stage of ACIP (Step 3 in Section 2.2.3) relies on a simple algorithmic rule: Prune as
many singular values according to the learned score map ρ as needed for a desired compression rate r. Here,
the tuned low-rank adapters ∆ are used across all compression levels, even for r = 1.0, i.e., the size of the
(uncompressed) base model. While the usage of low-rank adapters is helpful for simultaneous error correction
along with iterative pruning (Step 2 in Section 2.2.2), it can lead to a slight drop in performance for lower
compression levels. This became already apparent in the ablation of Figure A9 above, where LoRA was fully
omitted.

Figure A10 shows that this performance gap can be reduced by a refinement of Step 3 in ACIP: If a linear
layer l is not compressible for a given rate r (i.e., a low-rank factorization would not save any parameters),
we reset the corresponding mask parameters pl to 1.0 and disable the low-rank adapter ∆l. In this way, the
layer is fully reset, and for r = 1.0, we exactly recover the base model. Note that this adapted rule is fully
reversible and therefore still allows for Any Compression.

D.4 Impact of the Stopping Criterion

In most experiments, we have used rstop = 0.4 as maximum reasonable compression ratio, i.e., the pruning of
masks is stopped if the size of the model is only 40% of the original one (measured in number of parameters
of all target weight matrices). We have observed that at this point, the model performance has typically
dropped so much that even a fine-tuned model would be of limited practical use.

Nevertheless, it is interesting to explore the sensitivity of compression-performance curves against different
stopping ratios. The comparison shown in Figure A11 provides several insights in this respect: (i) “Forecasting”
compressed models beyond the stopping ratio does not work very well, especially when stopping very
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Figure A10: Compression-performance trade-off curves for LLaMA-7B on C4 with and without resetting
linear layers if they are incompressible for a given target compression rate r.
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Figure A11: Compression-performance trade-off curves for LLaMA-7B on C4, using different stopping
compression ratios rstop for ACIP.

early (> 0.8). (ii) The predictive capacity of ACIP remains valid for even stronger stopping compression
ratios than 0.4. However, finding the largest reasonable stopping ratio is highly model-dependent. For less
compressible models like LLaMA-3.1-8B, it could make sense to stop even earlier than 0.4 (cf. Figure 4). In
general, we hypothesize that older models are more compressible than new ones, as the latter “carry” more
information per weight due to significantly more training data (Allen-Zhu & Li, 2024).

D.5 Impact of the Score Map – Forecasting Pruning Patterns

Here, we pick up the observation from Appendix D.4 that forecasting the performance of compressed models
beyond the stop ratio leads to inaccurate predictions, i.e., the model is compressed more strongly than it
has been done by ACIP itself. However, it turns out that the score map itself exhibits a certain forecasting
capability. To this end, we run ACIP as usual until a stop ratio is reached, say rstop = 0.4, but we stop
updating the score map earlier in the optimization process. A few compression-performance curves with this
modification are reported in Figure A12. We observe very similar curve shapes even if the score map is frozen
after only a tiny fraction of mask parameters was pruned. This underpins our intuition from Section 2.2.2
that the pruning path of each parameter is fully determined at very early stage of ACIP.

D.6 Impact of the Score Map – A Trivial One Does Not Work

There are certainly alternative ways to design useful score maps. For example, simply accumulating the
gradients of all mask parameters entrywise over an ACIP-run works equally well as the strategy proposed in
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Figure A12: Compression-performance trade-off curves for LLaMA-7B on C4, stopping updates of the score
map before the actual stopping criterion of ACIP.
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Figure A13: Compression-performance trade-off curves for LLaMA-7B on C4, using a trivial score map
based on the initial singular values of the base model.

Section 2.2.2. It is therefore valid to ask whether one could even design score maps without any optimization.
We demonstrate that perhaps the most obvious approach, namely setting the score map equal to the singular
values of the weight matrices, does not work very well. Figure A13 shows that this training-free approach
does not produce any reasonable compressed models and decent performance cannot be easily recovered with
LoRA-finetuning. This simple experiment confirms that designing useful score maps is not a trivial endeavour
and requires a carefully crafted algorithmic approach.

D.7 Impact of Post-Tuning

Our main experiments are performed with 1k post-tuning steps in ACIP (see the description in Section 2.2.2
and Appendix B). Figure A14 shows analogous compression-performance trade-off curves for fewer or no post-
tuning steps. We observe that post-tuning can indeed notably increase performance for higher compression
ratios.

D.8 Impact of Individual Layers – Example of LLaMA2-13B

As pointed out in the caption of Table A2, the linear layers targeted by ACIP were slightly modified for
LLaMA2-13, namely all up projection layers were ignored. Figure A15 shows what would happen if they are
compressed as well. While the performance predictions for ≥ 0.6 look decent, the perplexity explodes for
stronger compression; note that even additional fine-tuning does not recover a reasonable performance in
this situation. We hypothesize that ACIP has pruned one or more singular values of the up projection layers
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Figure A14: Compression-performance trade-off curves for LLaMA-7B on C4 with different numbers of
post-tuning steps in ACIP.
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Figure A15: Compression-performance trade-off curves for LLaMA2-13B on C4, (not) ignoring the up
projection layers in ACIP.

that are crucial for model’s integrity. This finding might be related to the recent work by Yu et al. (2024)
on pruning so-called super weights. In any case, ACIP is capable of revealing this undesirable behavior as
demonstrated in Figure A15.

D.9 Examples of Score Maps Generated by ACIP

Figure A16 and Figure A17 show two typical score maps generated by ACIP for LLaMA-7B and Qwen2.5-7B,
respectively. A characteristic feature is that attention layers can be pruned more aggressively than the
MLP layers. Similarly, we observe non-uniform pruning patterns for layers of the same type across all
transformer layers. This confirms the findings of (Yuan et al., 2024; Jaiswal et al., 2024) and demonstrates
that non-uniform structured compression can be achieved without any feature engineering.

D.10 Examples of Generated Text by Compressed Models

Table A6 shows examples of generated text by compressed versions of LLaMA-7B.
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Figure A16: Example score maps generated by ACIP for LLaMA-7B. The negative values (cf. Algorithm 1)
are normalized to −1 for the purpose of visualization.
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(f) Attention-Q

0 10 20

384

256

128

0

−1

−0.8

−0.6

−0.4

−0.2

0

Layer

M
as

k 
Pa

ra
m

et
er

 In
de

x

(g) Attention-K

Figure A17: Example score maps generated by ACIP for Qwen2.5-7B. The negative values (cf. Algorithm 1)
are normalized to −1 for the purpose of visualization.
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Table A6: Example texts for two prompts generated for LLaMA-7B under different compressions produced
by ACIP.

Size “How to compress Large Language Models?” “What is the concept of time?”
Original I am trying to run a large Language model generation,

but I have a few files on disk of around 3gb each. I was
wondering if there is a way to compress these files? I have
searched the internet but have found nothing.
Re: How to compress Large Language Models?
I suggest compressing it to HDF5, you can find instructions
on how to do this using TensorPacker and PNet on the
TensorFlow Github repository . . .

Have you ever tried to ask a baby what it sees? Time,
is it real? What is the concept of time? Have you ever
tried to ask a baby what it sees? Let’s see what they can
understand.
The concept of time. What it is about, who discovered
the idea of time, and how was it discovered? How is time
measured? We can’t define it. We can’t point at what we
are defining, we can’t even show a picture of it . . .

90% Jeffrey Hunt, a linguist and applied deep learning re-
searcher at the University of Technology, Sydney, talks
with Caleigh Blackstock”s to discuss how to compress a
large language model to speed up training and model exe-
cution.
What does the language model compression actually do
to the overall model? . . .

Please let me know what is the concept of time.
The concept of time is all about the measurement of time.
This measurement was first done using the hourglass.
When this hour Glass was invented, it was the only thing
that could represent the passage of time. . . .

80% Jeffrey Shafman, Zsolt Nemeth, Jeffrey Shafman, Zsolt
Nemeth, Jeffrey Shafman, Zsolt Nemeth. (2013). How to
compress Large Language Models? In: ICML proceedings,
Vol. 22, pp. 462-463.
Magnus Skallman. (2013). How to compress Large Lan-
guage Models? In: ICML13 Proceedings, pp. 462-463. . . .

You can’t even imagine that in that time,
The life of a tree in nature is as brief
As a flash of a lightning bolt,
But in this human world, it may endure
Through many millennia, if the will of man.
So tell me, what is the concept of time?
Hey, I’ve got one, and it’s this: . . .

70% Apr 04, 2018 at 12:05 pm In the last 5-6 years, Natural
Language Systems have been an important direction for
my work and the research I do in the course of my PhD. I
have been using them to teach myself Swedish and improve
my Swedish by machine time in this post. Let’s see if I’ve
got it! . . .

Please tell me where is the concept of time in this poem.
What is the significance of the poem "I Am Wine" by
H.W.C. Carson"?
What does he mean by the poem title?
What does the stairs, the wine, & the man have in com-
mon?
What does he mean by "I am wine"?
What do you mean by "I am wine"? . . .

60% This is a 14 day free trial.
Please use the following link to sign in.
Select the country you need here to view pricing and
purchase.
Whenever you use our web site, we will track your website
traffic, the page where you first connected to our site, and
the search keywords you use to find us. We’ll use this
information to help us continually improve our website.
. . .

You may be wondering what is the concept of time.
The concept of time is all about the phenomenon of time.
It says that there is never no time. It states that there
is always a moment in time. At the moments of time is
when we refer the time of life.
So, as a matter of the moment, time is just a point in
space. . . .

50% Jeffrey Huan, Shu-Hua Ji, Xiao-Hong Li, Xiao-Xiao Li,
Layin Ma”s. 2019:5, Springer.0000.0001/13/8/19/12/720-
22-F43.
Miller A. "The Structure of the Language in Unsupervised
Deep-Processing" in Journal of the Acoustical Actors (v.
11(6). 2006:, pp. 278-295).
Dong Ming, Sun Jin, He Mei-Chen,’ . . .

Getting to this answer isn’t that hard.
The concept of time is all about the study of time. The
study of time isn’t so hard to get a hold on.
When you’re younger, you can begin thinking of how much
you could have had if you had known how much time you
had...if only we had it back then . . .

40% Apr 14, 2018 Resumes at The University of Florida will
be released on Friday, May 29, 2018 2.05:53pm.
Cover your next job announcement with the help of our
new Resume Template Builder.
To create your own Resume Template in minutes.
Improving the quality of your Resume.
To improve your Resume . . .

You may think that it is just a fancy word, or just the
idea it had in the earlier world. But there exists a way to
understand it.
To understand the idea of time by using the example of a
clock, you can learn the very importance of time with a
simple strategy.
The clock ticks with a watch. The clock has it time to
operate. . . .
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