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Fig. 1: The Dex1B benchmark consists of 1B generated high-quality demonstrations for grasping (top) and articulation (middle)
tasks. At the bottom, we show the direct sim-to-real transfer results of our method DexSimple trained with Dex1B. This
demonstrates that Dex1Bis both scalable and generalizable to real environments.

Abstract—Generating large-scale demonstrations for dexterous
hand manipulation remains challenging, and several approaches
have been proposed in recent years to address this. Among
them, generative models have emerged as a promising paradigm,
enabling the efficient creation of diverse and physically plausible
demonstrations. In this paper, we introduce Dex1B, a large-
scale, diverse, and high-quality demonstration dataset produced
with generative models. The dataset contains one billion demon-
strations for two fundamental tasks: grasping and articulation.
To construct it, we propose a generative model that integrates
geometric constraints to improve feasibility and applies addi-
tional conditions to enhance diversity. We validate the model on
both established and newly introduced simulation benchmarks,
where it significantly outperforms prior state-of-the-art methods.
Furthermore, we demonstrate its effectiveness and robustness
through real-world robot experiments.

I. INTRODUCTION

Dexterous manipulation with hand has been a long-standing
topic in robotics. While its highly flexible and dynamic
nature allows for more complex and robust manipulation
skills, the high degrees of freedom (DoF) of a hand makes
it very challenging to achieve its ideal function. In fact,
with recent advancements in applications using parallel-jaw
grippers [24] [9, 6] 25 [1]], researchers in the community
have started questioning the necessity of dexterous hands and
having doubts about whether hands are only making problems
harder.

We argue that dexterous hand is indeed valuable, but
we just did not have enough data to capture the diverse
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Fig. 2: Dex1B demonstration collection. The engine takes object assets and hand pose initialization as input, using a control-
based optimization algorithm to generate the Seed dataset. Then the Seed dataset is used as the training data for DexSimple,
else for Dex1Bfor the last iteration. Then DexSimple will generate a scaled proposal dataset with 7 as the scaling ratio. For
the proposal dataset, we then use the simulation critic and debiased algorithm to create the debiased dataset for optimization

refinement.

and complex distributions required for effective dexterous
manipulation. To address this data scarcity, previous works
have explored various approaches, including human demon-
strations [[13} (16} 5} 4]], optimization-based methods [[19, 3| [18]],
reinforcement learning (RL)-based techniques [7) 26]]. While
these methods help generate demonstrations at a certain scale,
they each have limitations: human annotation is costly and
imprecise, optimization-based methods are slow and sensitive
to initialization, and RL-based techniques lack data diversity.

Meanwhile, a large body of generative models [10, 14}
23, [12} 20] has been proposed in recent years to model the
distribution of demonstration datasets, motivating us to explore
how generative models can be leveraged for data generation.
And we identify two key issues when applying generative
models on data generation: i). Feasibility: The success rate
of generative models is often lower than that of discriminative
models. ii). Diversity: While generative models can produce
more diverse actions than discriminative models, they still tend
to interpolate between the seen demonstrations, which may
maintain or even reduce the original level of diversity of whole
dataset rather than expanding it.

To address the feasibility issue, we propose incorporating
geometric constraints into the generative model, which sig-
nificantly improves its performance. We also integrate opti-
mization techniques with generative models, leveraging the
strengths of both approaches: optimization ensures physically
plausible results, while generative models enable efficient
large-scale generation. To improve diversity, we introduce
additional conditions to the generative model and prioritize
sampling actions for less frequent condition values, encourag-
ing the model to generate actions that differ more from existing
ones in the dataset.

Our approach begins with an optimization-based method
to construct a small yet high-quality seed dataset of dexter-
ous manipulation demonstrations. We then train a generative
model on this dataset and use it to scale up data generation
efficiently. To mitigate biases introduced by optimization, we
propose an debias mechanism, which systematically improves
the diversity of generated data. This framework results in

Dex1B, a dataset comprising one billion dexterous hand
demonstrations, representing a substantial advancement in
scale, diversity and quality over existing datasets. Compared
to DexGraspNet [19], which operates on the object set of
similar scale, our dataset offers 700x more demonstrations,
significantly enriching the available training data for learning-
based models. Unlike previous approaches that rely solely
on human annotation or optimization, our method combines
optimization and neural networks, achieving a superior balance
between cost, efficiency, and data quality.

To effectively leverage the scale and diversity of Dex1B,
we introduce DexSimple, a new baseline that extends prior
work [10] by incorporating conditional generation and en-
hanced loss functions. Despite its simplicity, DexSimple ben-
efits from the scale and diversity of Dex1B, achieving state-
of-the-art (SoTA) performance across dexterous manipulation
tasks.

II. DEX1B BENCHMARK

We introduce a comprehensive benchmark for two fundamen-
tal dexterous manipulation tasks: grasping and articulation.
In the grasping task, the robot hand must reach for and lift
an object, whereas the articulation task requires the hand to
manipulate an articulated object to achieve a specific degree
of opening. Our benchmark consists of over 6,000 diverse
objects and provides one billion demonstrations across three
dexterous hands: the Shadow Hand, the Inspire Hand, and
the Ability Hand. Each demonstration consists of a complete
action sequence, from initial reaching to object manipulation.
To generate these demonstrations, we synthesize key hand
poses at critical interaction points with the object, while the
remaining action sequences—such as reaching, lifting, and
opening—are generated using motion planning. The evaluation
of our benchmark is conducted with ManiSkill [17, 21]].
Overview of Data Generation. Broadly, hand pose gener-
ation for dexterous manipulation can be approached through
optimization-based methods or generative models. While opti-
mization methods can be effective, they are often computation-
ally expensive, especially for large-scale generation, and tend
to bias the dataset toward simpler cases. On the other hand,



generative models rely on an initial dataset to learn meaningful
data distributions. In this work, we integrate both approaches
to leverage their strengths.

As illustrated in Figure 2] we begin by constructing a small-
scale seed dataset using optimization. This seed dataset serves
as the foundation for training a generative model to learn
its underlying data distribution. The trained generative model
is then used to produce additional demonstrations. However,
since the generative model inherently inherits the biases of
the seed dataset, we introduce a debiasing strategy to enhance
diversity. Specifically, we condition the generative model on
targeted factors to generate hand poses under less frequently
observed conditions, thereby expanding the dataset beyond the
initial distribution. By iteratively refining the generative model
through repeated training and debiasing operations, we con-
struct our final dataset, Dex1B, which achieves both diversity
and robustness in dexterous manipulation demonstrations.
Optimization for Seed Dataset. To generate the seed dataset,
we implement an efficient optimization method for hand pose
synthesis based on previous work [19, 3], while including
new features like scene-level collision avoidance and support
for various hands. Although the optimization process is well-
engineered (1,000 grasps per minutes on a single GPU), gen-
erating one billion demonstrations remains computationally
expensive. Therefore, we only use optimization to create a
small-scale seed dataset (around 5 million poses).
Generative Models for Scaling-up Demonstrations. Gener-
ative models are widely adopted for capturing the distribution
of action demonstrations. However, applying these models for
data generation still presents several challenges: i). Feasibility:
The success rate of generative models is often lower than that
of discriminative models, leading to a higher proportion of
infeasible samples. ii). Limited Diversity: While generative
models can produce more diverse actions than discriminative
models, they still tend to interpolate between the demonstra-
tions, which may maintain or even reduce the original level
of diversity of whole dataset rather than expanding it.

To address the feasibility issue, we first incorporate ge-
ometric constraints during the generation process, enabling
our model to outperform state-of-the-art generative models.
In addition, we apply a post-optimization step to the sampled
hand poses to prevent penetration and ensure that the fingers
closely cover the object.

To improve diversity, we encourage the generative model
to sample actions that differ more from existing actions in
the dataset while maintaining success rate. To achieve this,
we introduce an additional condition to the generative model
and prioritize sampling actions for less frequent conditions.
Specifically, we associate each hand pose with a single 3D
point on the object. We first define the heading direction
v € R3 of a hand pose as the vector from the palm center
to the midpoint between the thumb tip and the middle finger
tip. The closest point along this direction is then assigned
as the associated point of the hand pose. We adapt our
generative model to take the feature vector of a 3D point
as a condition for generating corresponding actions. During

data generation, we first statistically compute the probability
of each point associated with existing actions on the object
and then sample new actions inversely proportional to this
probability. Additionally, we statistically count the number of
existing actions for each object and sample more actions for
the more challenging ones.

After increasing the dataset size and diversity, retraining
the model on the expanded dataset can further improve its
performance. This iterative data generation process can be
repeated multiple times to progressively refine both the model
and the dataset.

III. DEXSIMPLE MODEL

While a large body of generative models [10} 14} 23} 12} 20]

have been proposed for dexterous hand manipulation in recent
years, their use for data generation or policy deployment re-
mains limited. In this work, we revisit the simple CVAE model
and demonstrate that incorporating an SDF-based geometric
constraint during training enables it to outperform state-of-
the-art methods by a large margin. Furthermore, we integrate
additional condition over the base model to support diverse
data generation.
Vision Encoder and CVAE. We employ a point cloud P €
RN*3 as the visual input, using a full point cloud sampled
from the object mesh for data generation and a single-view
depth map for policy deployment. We utilize PointNet [[15]] to
encode the point cloud into a global feature vector fo,5 € R?
and local feature vectors f, € R? for each point p € R?:

fObj7 {fp}pep = P01ntNet(P)

The VAE model uses a multi-layer perceptron (MLP) to
encode the hand pose g into the mean and standard deviation
vectors of a latent distribution. A sample is drawn from this
distribution and passed to the MLP decoder to reconstruct the
original hand pose. After concatenating conditional vectors
(e.g., the global point cloud feature vector f.y5) to both the
inputs of the VAE encoder and decoder, the CVAE model can
generate samples under a given condition:

H, 0 = Enc(g, fobj)7
z2=p+o0e e~N(0,I),
g = Dec(z, fon;)- (1)

In our work, we simply concatenate additional vectors to
incorporate more conditions. Each hand pose is associated with
a single object 3D point p by finding the closest point along
its heading direction v. To achieve this, we concatenate the
corresponding local object feature vector f, with the CVAE
conditional vector.

IV. EXPERIMENTS

A. Grasping Synthesis Evaluation

Grasping is essential in most manipulation tasks, we firstly
evalute the proposed method’s effectiveness in grasp synthesis
using the DexGraspNet [19] benchmark. We train DexSimple
solely with the benchmark’s provided training data, reducing



Setting Quality Diversity
Method Opt Filter SR T Q1 1T Pen| H mean 1 Hstd |
DDG [11] 67.5 0.058 0.17 5.68 1.99
UGG [14] 43.6 0.026 043 8.33 0.30
DexSimple 63.7 0.075 0.29 8.53 0.25
UDG [22] v 233 0.056 0.15 6.89 0.08
GraspTTA [10] v 24.5 0.027 0.68 6.11 0.56
UGG [14] v 64.1 0.036 0.17 8.31 0.28
DexSimple v 86.0 0.125 0.13 8.56 0.15

TABLE I: Grasping synthesis results on the DexGrasp-
Net [19] benchmark. The proposed generative model, DexSim-
ple, significantly outperforms all baseline methods. Some
evaluation results are taken from UGG [14].

Eval on DexYCB

Eval on Dex1B

Method Training Data Train set Test set Train set Test set
BC w. PointNet DexYCB [2] 34.72 3.03 1.02 2.56

DexSimple DexYCB [2] 43.49 2121 23.68 22.80
BC w. PointNet Dex1B (ours) 33.02 31.82 3140 28.54
DexSimple Dex1B (ours) 47.17 53.02 49.58 4540

(a) Lifting task comparison on DexYCB [2] and Dex1B.
Eval on ARCTIC

Eval on Dex1B

Method Training Data Train set Test set Train set Test set
BC w. PointNet ARCTIC [8] 41.03 25.62 37.65 30.16
DexSimple ARCTIC [8] 4875 23.08 49.16 51.57
BC w. PointNet Dex1B (ours) 57.50 63.67 64.74 56.88
DexSimple Dex1B (ours) 72.00 7349 77.05 64.79

(b) Articulation task comparison on ARCTIC [§] and Dex1B.
TABLE II: Benchmarks on (a) lifting tasks with DexYCB [2]]
and our datasets, and (b) articulation tasks with ARCTIC [8§]]
and our datasets. Models trained on Dex1B consistently out-
perform those trained on DexYCB/ARCTIC across various
tasks, baselines, and splits.

the output to a single frame and omitting conditioning during
training.

We present quantitative results in Table [l Many grasp
generation methods, such as UGG [14], commonly employ
post-optimization to enhance performance. To ensure a fair
comparison, we indicate the use of post-optimization (abbrevi-
ated as “Opt”) in the table. The results show that the proposed
generative model, DexSimple, outperforms all baseline meth-
ods by a large margin. In terms of quality, DexSimple (with
post-optimization) achieves the highest success rate (86.0%),
the highest ()1 score (0.125), and the lowest penetration (0.13).
For diversity, DexSimple outperforms baseline with a higher
entropy mean of 8.56.

UGG [14] proposes a learning-based discriminator to filter
grasping, which can be applied to our method. With this
filtering, the success rate increases to 92.6%.

B. Benchmarks

We benchmark two methods for grasping and articuation
tasks on our datasets, and compare them with the same

Lifting Articulation

e
o

14
©

14
©

e
S

e
Y

4
n

Performance Degradation Ratio

0.0001 0.001 0.01 0.1 1
Data Scale

0.0001 0.001 0.01 0.1 1
Data Scale

Fig. 3: Scaling the number of demonstrations used for
training. For both tasks, our model consistently improves with
more training data.

methods trained on DexYCB [2] and ARCTIC [8]]. In addition
to the proposed DexSimple, we implement a vanilla behavioral
cloning with PointNet [15] (referred to as BC w. PointNet).
This model takes the object point cloud, current hand joint
values, and poses as input to predict chunked actions for the
next n = 50 frames. The predicted actions are then merged
using a temporal weighting technique form ACT [24].

The results are reported in Tab. [[, When comparing models
trained on Dex1B to those trained on DexYCB/ARCTIC,
we consistently find that the former outperforms the latter
across tasks, baselines and splits. This suggests that supervised
learning methods perform better when trained on our larger
and more diverse Dex1B dataset. Tab. [l also demonstrates that
the proposed generative method, DexSimple, achieves better
performance than the regression-based BC baselines on both
the relatively small DexYCB/ARCTIC dataset and the larger-
scale Dex1B. For lifting task, it also can be clearly observed
that models trained on DexYCB struggle to generalize to
unseen objects.

C. Scaling the Dataset

To investigate the effect of training data size on perfor-
mance, we reduce the amount of training data and analyze its
impact on the success rates of both the lifting and articulation
tasks. As shown in Fig. [3} the performance degradation ratio
increases as data is reduced, illustrating that the success
rates of the proposed DexSimple consistently improve with
more training data. Notably, we observe that performance
degradation is more pronounced for the lifting task than for
the articulation task as training data decreases. We hypothesize
this is because lifting relies heavily on stable object grasping,
requiring a precise geometric understanding of individual
objects, which becomes more challenging with reduced data.
In contrast, the articulation task, which emphasizes trajectory
execution, shows greater resilience to data reduction as it can
adapt to unseen objects through a more generalized approach
to motion. This suggests that while both tasks benefit from
larger datasets, lifting requires a more extensive dataset to
achieve stable performance, whereas articulation maintains
reasonable performance even with less data.
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