Under review as a conference paper at ICLR 2025

EFFICIENT GRADIENT-BASED ALGORITHM FOR TRAIN-
ING DEEP LEARNING MODELS WITH MANY NONLIN-
EAR ACTIVATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

This research paper presents a novel algorithm for training deep neural networks
with many nonlinear layers (e.g., 30). The method is based on backpropagation of
an approximated gradient, averaged over the range of a weight update. Unlike the
gradient, the average gradient of a loss function is proven within this research to
provide more accurate information on the change in loss caused by the associated
parameter update of a model. Therefore, it may be utilized to improve learning. In
our implementation, the efficiently approximated average gradient is paired with
RMSProp and compared to the typical gradient-based approach. For the tested deep
model with many nonlinear layers on MNIST and Fashion MNIST, the presented
algorithm: (a) generalizes better, at least in a reasonable epoch count, (b) in the
case of optimal implementation, learning would require less computation time than
the gradient-based RMSProp, with the memory requirement of the Adam optimizer,
(c) performs well on a broader range of learning rates, therefore it may bring time
and energy savings from reduced hyperparameter searches, (d) improves sample
efficiency about three times according to median training losses. However, in the
case of the tested shallow model, the method performs approximately the same as
the gradient-based RMSProp in terms of both training and test loss. The source
code is provided at [...].

1 INTRODUCTION

1.1 BACKPROPAGATION OF ESTIMATED AVERAGE GRADIENT

This research paper presents an approach based on estimating the average gradient on the range of a
potential parameter update. The average gradient, unlike the gradient, stores information about an
accurate value of the loss delta (Figure [I)). Therefore, the approach can be utilized to increase the
precision of the computation of how loss is related to the parameters of a model. Consequently, it
may contribute to more efficient loss minimization.

Our experiments show that deep learning with many nonlinear layers may be vastly enhanced by
combining our method with RMSProp optimizer (Tieleman et al.,[2012). In this research, RMSProp
is paired with our method because the former does not incorporate momentum by default (i.e., in the
most popular libraries like PyTorch or Keras). Therefore, comparing methods based on decreases in
batch losses after each update is valid, assuming that the weight updates have similar magnitudes
across compared methods. Nevertheless, the method can be paired with all other first-order optimizers,
because it alters only the gradient. Importantly, our algorithm improves sample efficiency more
than threefold (according to median training loss) for the tested deep model. Moreover, it may
reduce energy consumption along with training time, performing better on unseen data. Furthermore,
in the case of our method, additional electricity and time savings may be obtained due to faster
hyperparameter searches. This is because it exhibits good performance over a wider range of learning
rates compared to the gradient-based RMSProp for the deep model. However, in the case of the tested
shallow model, the method performs approximately the same as the gradient-based approach in terms
of both training and test loss.

In recent years, the sizes of deep learning models have significantly increased, vastly scaling up
capabilities in different types of tasks. Moreover, due to the popularity of some nonlinear activation

Under review as a conference paper at ICLR 2025

—— Loss in Terms of a Parameter 0.4+
1.751 ==~ Gradient Line

- Average Gradient Line
Before Parameter Update

After Parameter Update
Suggested by the Gradient

Local Minimum

0.34

0.2 4

*o nm

0.14

Loss

0.0

\
—0.14 — Loss in Terms of a Parameter

===~ Gradient Line

_0.24 === Average Gradient Line N

W Before Parameter Update \\

After Parameter Update \,
Suggested by the Gradient \,

-031{ @
\
Y Local Minimum .

1.0 15 2.0 2.5 3.0 OjB 1t0 1:2 1:4 14‘6 118 ZtO 2:2
Parameter Parameter
(a) Example 1. The average gradient suggests a differ- (b) Example 2. If the average gradient decreases in the
ent direction for updating a particular parameter. same direction as the gradient, it additionally provides
more information about the loss landscape.

Figure 1: Comparison of Gradient and Average Gradient. The latter accurately reflects the influence
of a parameter update on loss (as described by Equation 3] under the assumptions that f represents
the visualized loss function, with and =’ denoting the parameter values before and after an update,
respectively). The plots refer to a simple case with only one parameter of the model. Appendix [F]
presents visualizations involving two parameters.

functions, also in models with huge numbers of layers, our approach may provide a perspective on
improvements of practical deep learning. This especially regards areas, where sample efficiency is
crucial, like reinforcement learning from human feedback (Kirk et al., [2023)), which was used in
popular chatbots, such as OpenAI’s ChatGPT (OpenAl, 2023) or Anthropic’s Claude (Kirk et al.,
2023). Our method represents a step toward enabling very deep models to learn efficiently on the fly,
akin to how people or some animals do.

1.2 GRADIENT OPTIMIZATION AND AVERAGING

Gradient optimization dominates deep learning with optimizers like Stochastic Gradient Descent (Liu
et al.,2020), RMSProp (Tieleman et al.l|2012), Adam (Kingma & Ba,|2014)) or Nadam (Dozat, 2016).
The leading algorithms for training do not change frequently over the years. However, our algorithm
or its variants may be used along with first-order optimizers, as mentioned in Section[I.1]

Gradient averaging is commonly used in machine learning, but in a distinct scenario than in our
approach. Momentum is the running average of gradients over subsequent batches (Liu et al.,[2020;
Kingma & Bal 2014} |Dozat, 2016). It prevents falling into local minimums and may accelerate
learning. Similarly, averaging model parameters may improve convergence and learning speed
(Ruppert, 1988} [Polyak & Juditsky, 1992 Merity et al., [2017; Wei et al., [2023; [Sun et al., [2010),
though it requires a significant amount of memory. The technique can be described as averaging
a function of gradients, as the averaged model parameters over subsequent updates depend on the
gradient values.

Accumulating gradients over a batch is inherent in machine learning. In practice, it is equivalent
to averaging gradients computed for multiple inputs. However, this approach alone does not take
into account the information about a parameter update (Fig. [I)), which remains unknown during its
computation. Consequently, it does not guarantee the accuracy of computing the influence of the
unknown parameter update on the loss. Nevertheless, batching remains fully compatible with our
method and is employed in our implementation.

Our approach is more closely related to some second-order optimization methods (Tan & Lim) 2019)
rather than momentum-based or parameter-averaging techniques. This is due to the utilization of
information about the curvature of a loss function during each parameter update (Fig. [I). Recently,
one of the most popular algorithms for second-order optimization of neural networks is L-BFGS
(Berahas et al., 2016). However, the current methods in this field are impractical for training large
models due to their computational inefficiency or substantial memory requirements.

Under review as a conference paper at ICLR 2025

The integrated gradient, closely related to the average gradient, is used in some neural-network
explainability techniques (Sundararajan et al.,2017; Khorram et al., 2021; |Sattarzadeh et al.| [2021).
However, the approximation algorithms for the integral of the gradient used in the literature are very
inefficient to compute for every parameter update of a model due to the calculation of the Riemann
sum (Hughes-Hallett et al., | 2021)).

2 METHODS

2.1 ALGORITHM

All of the best and most popular optimizers for training large neural networks rely on the gradient.
Consequently, they explicitly ignore how loss function in terms of model parameters behaves in the
range between before and after a potential weight update (Fig. [I). The definition of the gradient
implies, that it reflects the accurate influence on loss only for learning rates approaching to zero,
which does not hold in practice. Consequently, gradient-based optimizers do not calculate the accurate
influence on loss of a potential weight update, which may significantly slow down the learning of very
deep models with many nonlinear operators, as our experiments show. The average gradient solves
the described problem. Our algorithm efficiently approximates the average gradient, providing more
reliable information on the update direction that minimizes the loss. The average gradient (contrary
to the gradient) is directly proportional to the loss delta (Fig. [I} Equation[I4]in Appendix [B), hence it
accurately describes the influence on loss of a parameter delta.

In our algorithm, given a sequential model, the average gradient is approximated and propagated
according to the assumption:

amk‘ am/€+1 8m’n
AVGVg b =~ AVG — - AVG——— - ... - AV ~AVG VY, L
Okg O Gkg 80k mkg aalk mn_? a:lfn,l mng on (1)
where / is a loss function, 6}, are parameters of a layer no. ¢ and (xk, k41, .., ,) are inputs and

outputs of subsequent layers of a neural network. The notation V, f refers to the gradient of some

function f for an argument x, and 97 denotes the Jacobian. The average operator .AVG of gradients
or Jacobians is defined in Appendix@ however, it may be intuitive. The averages are aggregated with
respect to the parameters of a model (6) or the outputs of subsequent layers (xx, Tx41, - ..,). The
average gradients are propagated in the same manner as the gradients in the standard backpropagation
algorithm. The computation based on Equation [I]is fast and memory efficient because the procedure

is similar to the standard backpropagation of gradients, which is done according to:

_ Omy | OTryr | . Oz |
Vo 0= o 00 Dea g, g @

The version of our algorithm that consists of two iterations (Algorithm [1}) first performs the standard
backpropagation (Equation [2) through layer outputs &, and model parameters ¢ along with parameter
update of an optimizer (in the experiments it is RMSProp) to new weight values 6. Then it is assumed
that the absolute value of the parameter delta |§ — 6’| of the RMSProp optimizer is good enough to
retain it. The second backpropagation is performed for eventual negations of update directions only,
where, conversely, the average gradient is propagated (Algorithm [2)). Importantly, the range on which
the gradient is averaged equals [0, 6'] (between parameters before and after the estimated potential
update; Algorithm[3). The average derivatives of each nonlinear activation are calculated as follows:

AVG f'(t) = f; /f’_(t)dt _ f@') = f(=) 3)

te[z,z'] ' —x ' —x

where f means an activation function (in the experiments it is either ELU or Tanh activation), x means
an input scalar assuming forward propagation using the 6 weights, and 2’ means the corresponding
input number assuming forward pass for the 6’. The equation is the one-dimensional analogy of the
average gradient and the Jacobian, both of which are defined in Appendix [A]

In the case of applying an activation function f : R — R, or f : R®” — R", to a layer output
x = (r1,x2, ..., ,) (assuming parameters 6), which changes to @’ = (x},z}, ..., 2},) during the
forward pass with updated parameters 6”:

e X g AVG F1), AVG Flta).... VG FE) @

tefae,a/] O t1€le1,2]] t2€[ws,ah) tn€lwn,al,]

Under review as a conference paper at ICLR 2025

where each term AVG .y f'(-) is defined in Equation

Let us define a typical layer, denoted as k, which is parameterized by ;. This layer could be a
convolutional layer, a fully-connected layer, or another operator that is linear over all or most of
its domain. Let us assume that the layer no. k outputs yy, which is then passed to an activation fj.
Consequently each part of Equation [T]can be approximated as:

AVGq, % = AVG,, 2~ AVG,, Bw AVGieryw %
AVQ@k 6mk+1 AVQ@k % ~ Avgek Avgte [yx,y;] g{

where the approximation, instead of equality, is the consequence of chaining averages of Jacobians,
which can be proven analogously to Equation[I] (see Appendix [B). The average operator AVG of
Jacobians is defined in Appendix AVGicly, 1] % is defined in Equation Generally, the
vast majority of applied neural network operators are either nonlinear activations or linear functions
in by far most of their domains (e.g., max pooling, convolution, fully connected, or ReLU). In the
case of the nonlinear activations, equations no. [3|and |4{are used to compute the average Jacobians.
For linear transformations, such as yy () and y (6y), the average gradients and Jacobians are easy
and fast to compute. However, for implementation simplicity and a slight speedup of computations,
broader estimates of the average Jacobians from Equation [5|are applied:
AVGa, Bg;“ AVGa, g% ~ Oyi Avgte[yk,yk ﬂ

oxy,

AVGy, =5 amkﬂ = AVGy, 57 % ~ ayk - AVGiely .yl g{

&)

(6

which use the non-averaged Jacobian g%z. Therefore, intuitively, the broad estimation

of AVG,, 69’;“ is approximately between 6(:;3;:1 and AVG,, 6;{::1, and analogously for
AVGy, 2t

Algorithm 1 Simplified algorithm version for 2 iterations. Back and forward propagation would be
called two times in optimal implementation, where memory requirement would be the same as for
Adam optimizer.

Input: model: Neural Network Model
dataset: Training Dataset
lossF'n: Loss Function
optimizer: Optimizer
for all batch € dataset do
modelOutput <— model(batch.x) {It is assumed that model’s layers’ results are kept inside
model }
model Loss < LossFn(modelOutput, batch.y)
modelCopy < model {Copy model}
modelCopyOutput + modelCopy(batch.x) {This inference is redundant if modelCopy gets
also intermediate layers’ results copied }
modelCopyLoss < LossFn(modelCopyOutput,batch.y) {This computation is also redun-
dant, since it is the same as model Loss}
Backpropagate(modelCopyLoss) {Compute the gradients using the standard backpropaga-
tion procedure. Assume that the gradients are stored inside modelCopy}
optimizer.Step(modelCopy) {Perform weight update on modelCopy (using the gradients
stored inside modelCopy)}
modelCopy(batch.x) {Execute inference to store new layer-wise results in modelCopy}
AveragedBackpropagation(model, modelCopy, modelLoss) {The procedure is de-
scribed as Algorithm The parameters of the model are modified within}
end for

An algorithm version with n backpropagation iterations computes (n — 1) times the approximated
gradient average, each time based on the previous. The intuition behind this is that a better estimate
of the averaged derivatives of nonlinear activations is computed after every iteration (Equatlon B
backpropagated according to equations no. 4 E] and[I). Consequently, each time a more precise
estimate of the optimal parameter update (A#)* is obtained (where optimality means that the average
gradient is accurately estimated and the parameter update is compliant with it). Therefore, once again

Under review as a conference paper at ICLR 2025

Algorithm 2 Averaged Backpropagation Algorithm calculates the approximation of the average
gradient.

procedure AVERAGEDBACKPROPAGATION(
model: Neural Network Model
model A fterUpdate: model After Candidate Update of
Parameters
modelLoss: model’s 1Loss)
Backpropagate(model Loss,
model.Layers.Last().Output) {Compute the gradient of model Loss in terms of the last
layer’s output. Let us assume that the gradient is assigned to the grad property of the output
variable (model.Layers.Last().Output)}
for index < (Count(model Layers) — 1) to 0 do
6 = model Layers[index].0 {To simplify notation }
if IsNonlinear(model.Layers[index]) then {Calculation of either the gradient or its aver-
age, which corresponds to the terms in Equation
BackpropagateThroughNonlinearLayer(model Layers[index].Output,
model.Layers[indez]. Input, model A fterUpdate. Layers[index].Output,
model A fterUpdate.Layers[indez].Input) {Procedure described as Algorithm[3] Let
us assume that activations are separate layers (like in equations no. and @)}
else
Backpropagate(model Layers|index].Output, model. Layers[index].Input) {The typ-
ical backpropagation procedure. It propagates the gradient through a layer. Let us assume
that the gradient is assigned to the grad property of the input variable}
0.averagedGrad < 0.grad {In this case, for a linear layer, the gradient is treated as its
average (compare equations no. [|and[5)}
end if
0" = model A fterUpdate.Layers[index].0 {Notation simplification}
0« 0+ |0 — 0| - sgn(f.averagedGrad) {Update by the absolute value of optimizer’s
update from Algorithm |1} |6’ — 6|, but in the direction of the approximated gradient average
sgn(f.averagedGrad)}
end for
end procedure

the average gradient can be refined to more precisely match the parameter update (A6)*, and so on
(in a loop).

The n-iteration version of the method is labeled as Algorithm []in Appendix [G](for two iterations it
is a little slower than Algorithm [I]due to additional model-state copies, moreover it is more complex).
The optimal implementation of the n-iteration algorithm variant would be slightly more than n times
slower than the gradient-based RMSprop training, where n is the number of iterations. There are
exactly n backward passes, optimally n inferences, and some additional copy operations C' of a model
(optimally |C| < n + 1, but Algorithmin Appendix@is suboptimal in this respect). However, the
copies are generally significantly faster than forward or backward passes, because it is just needed
to copy blocks of data, that are not bigger than the memory used during forward or backward pass.
Furthermore, creating the copies by saving results of weight updates directly into different memory
addresses only slightly increases the execution time.

An interesting way of comparing the gradient-based RMSProp optimization with our algorithm is
to examine the average loss deltas for all weight updates of both algorithms. The first iteration
of our method is the gradient-based RMSProp procedure, hence the change in loss for RMSProp
ARMSProp is known for both the same model parameters and data as in the case of the loss delta of
our method. Therefore, the sum of loss differences after the updates of both approaches can be easily
and measurably compared relatively to the sum of loss deltas of RMSProp:

RD _ AngeB AAG - AvgbeB ARMSP'r‘op
AG,RMSProp | AVGreB ARrMSProp]

D S R)
TS GOsrrs) — @) g (bEZB (6o(ORrrsProps) — Co(0b)))

(N

Under review as a conference paper at ICLR 2025

Algorithm 3 Backpropagation Through Nonlinear Layer. It is assumed that each input number
influences a corresponding single output scalar. This is because, in the experiments, the only
operators assumed to be nonlinear during backpropagation of the gradient average are certain
activation functions: R — R).

procedure BACKPROPAGATETHROUGHNONLINEARLAYER(LayerOutput: Tensor
LayerInput: Tensor
LayerOutput A fterUpdate: Tensor
LayerInput A fterUpdate: Tensor)
f < Layer function
for all (output Num, input Num, output NumU pdated, input NumU pdated) € Zip(
LayerOutput, Layer Input, Layer Output A fterUpdate, Layer Input A fterUpdate) do
{The commonly used Zip function illustrates iterating through multiple tensors at once}
if |input NumUpdated — input Num| > € then {Check if the difference in the inputs is
higher than a tiny constant e. The condition prevents division by zero. In the experiments
€~ 1.19e—7}
AVG s finputNum inputNumbUpdated) J' () = 2 e (B4 [} and
A
input Num.averagedGrad < AVG, f'(z) - output Num.averaged Grad
{Propagate the average gradient backward using the chain rule. Equations [3|and {4| define
| the term AVG ey, /] % in Equation@ which is part of Equation }
else
input Num.averagedGrad « f/(inputNum) - output Num.averagedGrad {In this
case input Num =~ input NumUpdated, thus AVG,¢; ;1 f'(z) = f'(input Num) for
activation functions. The backpropagation towards input complies with the chain rule
(equations no. [6|and|[T)}
end if
end for
end procedure

RD ac,rMSProp 18 the relative difference in avg. loss deltas of RM S Prop and the method based
on the average gradient (AG). The AVG operator denotes the arithmetic average. B is the set of all
batches. A 4¢ 5 is the loss delta assuming a batch b after our algorithm’s update of model parameters
0, to new values %G’b. Notation for RMSProp is analogous. /; is the loss, assuming data of a
batch b. sgn is the sign function. RD would not be as useful when using momentum because the
metric compares the aggregated loss of a single batch per parameter update, whereas momentum
contributes to a decrease in loss over many batches per a single parameter update. Without the
momentum, RD significantly increases the statistical confidence in comparing training algorithms
because, for the same model weights, the losses are compared for each weight update. Keeping the
same parameter values for each loss delta reduces the variance of RD, resulting in a decrease in
errors when comparing methods.

2.2 MODELS AND TRAINING

Our algorithm was tested on two different models with nonlinear ELU (Clevert et al., [2015) and
Tanh activations. Model A has a small number of layers (Table EI), and the second one, Model B,
is much deeper, with 30 nonlinear layers (Table [2} not counting max pooling as nonlinear). It was
assumed that Model A is trained for 15 epochs, while Model B — 500 in the case of the gradient-based
RMSProp training, and 300 for our method. Grid search was used to find the optimal learning rates
for the standard RMSProp training over the course of all 500 epochs, while our method was optimized
only for 200 epochs (out of 300 during testing). The objective of the hyperparameter search was to
minimize the loss that is the smallest over a training. The results of the search for optimal learning
rates are shown in Table[3] The epoch counts are tailored to ensure that the training achieves minimal
or near-minimal test loss values before the final epoch of the gradient-based RMSProp training. The
only loss function used in this research is cross-entropy loss, and the batch size is set to 128 in all
experiments.

Under review as a conference paper at ICLR 2025

Table 1: Model A . .
Table 2: Model B is designed to test the perfor-

Output Parameter Mance of our algorithm on deep neural networks
Layers Shape Count O a.ch.ieve a re.asonable time of many trainings. for
- statistical significance of the results. The practical-
Convolution 2D (3 x 3)) .) o
ity of the architecture is not prioritized.

+ELU (8,26,26) 80
Convolution 2D (3 X 3) Output Parameter
+ELU (8,24,24) 584 Layers Shape Count
Convolution 2D (5 x 5) Convolution 2D (3 X 3)
+ ELU
stride = 2 padding = 2 (16,12,12) 3216 + ELU (8,26,26) 80
C . Max Pooling 2D (2 x 2) (8,13,13)
onvolution 2D (3 x 3) .
Convolution 2D (3 x 3)
+ ELU (16,10,10) 2320 +ELU (16,11,11) 1168
Convolution 2D {3 x 3) Max Pooling 2D (2 x 2) (176 57 5)
+ELU (16,8,8) 2320 i e
Convolution 2D (5 x 5) Linear + Tanh 10 4010
+ ELU 26 %
stride = 2 paddlng =2 (16, 4, 4) 6416 Linear + Tanh 10 26x110
__ Flatten 256 Linear + Softmax 10 330
Linear + Softmax 10 2570 3223
17506

The learning algorithms were tested on two popular image datasets: MNIST (LeCun & Cortes} [2010)
and Fashion MNIST (Xiao et al., 2017). Both datasets have the same input size (28 x 28 x 1), but their
image characteristics are significantly different, allowing the performance of the training algorithm to
be tested across various domains. Moreover, since the method does not have any hyperparameters
apart from the learning rate, it is less likely to overfit to a specific experimental setup (model, dataset,
and learning rate) and show good results on it, while experiencing significant performance drops on
other setups.

3 RESULTS

For the shallow model A, all of the training algorithms are approximately equal (Fig.[2a] Fig. [2b).
The relative difference in summed loss deltas (Equation [7]) revealed that the algorithm based on
the average gradient is only marginally better than the standard RMSprop according to RD =
1.20e—3 £ 2.7e—4 (0.12% faster minimization of loss with 0.027% of SEM error) on MNIST and
RD = 5.86e—3 £ 2.79¢—3 on Fashion MNIST in the case of two iterations. For five iterations,
RD = 6.47e—4 £ 9.8e—5 on MNIST and RD = 2.37e—3 + 4.5e—4 on Fashion MNIST. RD of
the first epoch has the highest influence on the scores above. Nevertheless, excluding the first epoch,
the values of the metric remain positive.

The results of Model B are much more interesting. The version of the algorithm with two iterations is
about three times faster at minimizing the median of training losses on both datasets (Fig.[2c} Fig.[2d).
On the other hand, the mean training losses tend to fluctuate frequently in the plots, showing higher
oscillations for our algorithm. However, this occurs due to the lower training count than in the case of
the gradient-based RMSProp, hence an anomaly during a single training may significantly increase
the average loss. Moreover, the mean losses still tend to be considerably lower than for the standard
RMSProp training. Despite the minority of epochs with high oscillations, the method utilizing the
average gradient is approximately two to three times faster in minimizing the mean loss, although this
is not clearly visible in the plots. Furthermore, for both versions of our algorithm on both datasets,
during from 49.3% to 70% of epochs, the average training loss was lower with statistical significance
(SEM) than for the gradient-based RMSProp. Conversely, our algorithm was worse in that respect
during from 0.667% to 2.33% of epochs with statistical significance. The average of minimal
training losses on MNIST for the five iterations is 0.0393 £ 0.0058, which is significantly lower than
0.0883 £ 0.0117 for the standard RMSProp. Meanwhile, the two iterations are also perform better
than the gradient-based RMSProp, but without statistical significance, achieving 0.0747 4 0.0188.
Even better averages of minimal training losses were obtained on Fashion MNIST, with the five-

Under review as a conference paper at ICLR 2025

Table 3: Learning rates. All hyperparameter searches of Model A consist of five trainings for each
learning rate (LR), while in the case of Model B, it is one training, unless stated otherwise. For Model
B, the losses do not directly predict the performance of the methods, because different epoch counts
are used between the methods. The standard error of the mean is used as the confidence range for the
losses, while for the LRs, the maximum distance to the next best LRs on both sides represents the
errors. The LRs used in the experiments are listed in the "Learning Rate” column.

Learning The Most Important Hyperparameter Search Results
Dataset Model Method Rate [Learning Rate: Avg. of Min. Training Loss]
6e—4:8.04de—3; 7e—4:6.48e—3; 8e—4 : 5.69e—3
RMSProp 8e—4 9e—4:5.94e—3; 10e—4 : 7.70e—3; 11le—4 : 7.39e—3
2 Iterations 8e—4 8e—4:0.00555; 9e—4 : 0.00692; 1e—3 : 0.00832
5 Iterations 8e—4 8e—4:0.00514; 9e—4 : 0.00580; 1le—3 : 0.00678
be—4:0.194; 2e—4:0.0979; 2.5e—4 : 0.
3e—4:0.0683; 3.5e—4:0.191; 4e—4:0.0759
The best learning rate of the search after the experiments
(10 trainings per LR in {1.5e—4,2e—4,...,5.5e—4}):
(3.5e—4 + 1.5e—4) : (0.0856 £ 0.0139), (matches the
performance in our experiments in Section 3]
The loss for a high learning rate (10 trainings):

Model

MNIST

Mode] RMSProp 2.5e—4 1.5e—3 : (2.09 £ 0.05)
2 Iterations 7.5e—4 The learning rate is guessed
5 Iterations 7.5e—4 The learning rate is guessed

Ie—3:0.201; 1.25e—3:0.186; 1.5e—3 : 0.183

Model RMSProp 1.5e—3 1.75e—3 : 0.189; 2e—3 : 0.183; 2.25e—3 : 0.193
2 Iterations 1.9e—3 1.8e—3:0.186; 1.9e—3 : 0.179; 2e—3: 0.180
Fashion 5 Iterations 1.5e—3 1.5e—3:0.178; 1.6e—3:0.179; 1.7e—3 : 0.200

MNIST 2e—4:0.356; 2.5e—4:0.331; 3e—4 : 0.285
3.5e—4:0.349; 4e—4 : 0.487; 4.5e—4 : 0.459
The best learning rate of the search after the experiments
(10 trainings per LR in {2e—4,2.5e—4, ..., 6e—4}):
(4de—4 £ 1.5e—4) : (0.318 + 0.016), (matches the
performance in our experiments in Section 3]
The loss for a high learning rate (10 trainings):

Mode] RMSProp _ 3e—4 9e—4 : (0.641 + 0.168)
94¢! 2 Tterations 9e—4 Ge—4:0.330; 9e—4 : 0.242; 1.2e—3 : 0.355
5 Iterations 9e—4 9e—4:0.243; 1.5e—3 : 0.276

iteration and two-iteration versions achieving 0.254+0.017 and 0.257=£0.014 respectively, compared
to 0.314 &£ 0.008 by the gradient-based training.

Plots of the test losses of Model B look very similar to the training losses (Appendix [C)), showing
significant improvements in generalization, which correspond to the lower training losses. On MNIST,
the average of best accuracies over training for five iterations is equal to (97.87 £ 0.09)%, which
is significantly higher than (96.80 & 0.78)% and (96.75 £ 0.55)% for the two-iteration version and
gradient-based algorithm, respectively. On Fashion MNIST, the analogous results are (88.09+0.35)%,
(87.54 & 0.55)% and (86.57 + 0.29)%, respectively. Appendix [D|presents the accuracy plots.

For Model B, the RD metric (Equation [/) provides a very high confidence of superiority of the
average gradient for the high learning rates used for the trainings based on the average gradient
(Table[3). On MNIST for two and five iterations, it equals 10.41 £ 1.94 and 1.43 £ 0.29, respectively.
On Fashion MNIST, it is 0.58 £ 0.14 and 0.24 &£ 0.04 for both variants, respectively.

Importantly, for Model B, the average-gradient algorithm dominated also for the learning rates that
are optimal for the standard RMSProp training. Multiple metrics favored our algorithm with statistical
significance , i.e., RD € [0.0611 4 0.0004, 1.07 & 0.31], despite training counts equal to only two
or three (for each of the four experiments).

Under review as a conference paper at ICLR 2025

1071 4 . L
--- Gradient-Based Training (Mean of 200) --- Gradient-Based Training (Mean of 200)
\ ~== Our Algorithm (2 Iterations; Mean of 100) \ --- Our Algorithm (2 Iterations; Mean of 100)
~=~ Our Algorithm (5 Iterations; Mean of 100) \ -=- Our Algorithm (5 Iterations; Mean of 100)
—— Gradient-Based Training (Median of 200) —— Gradient-Based Training (Median of 200)
—— Our Algorithm (2 Iterations; Median of 100) 4x10-1 = Our Algorithm (2 Iterations; Median of 100)
—— Our Algorithm (5 Iterations; Median of 100) % —— Our Algorithm (5 Iterations; Median of 100)
@ a
S S
o 2
£ €3x107!
£ =
= =
10724
2x107!
2 4 6 8 10 12 14 2 4 6 8 10 12 14
Epoch Epoch
(a) Model A on MNIST (b) Model A on Fashion MNIST
--- Gradient-Based Training (Mean of 15) --- Gradient-Based Training (Mean of 15)
--- Our Algorithm (2 Iterations; Mean of 15) ~=- Our Algorithm (2 Iterations; Mean of 15)
~=~ Our Algorithm (5 Iterations; Mean of 7) === Our Algorithm (5 Iterations; Mean of 7)
1004 —— Gradient-Based Training (Median of 15) — Gradlent-l?ased T"a'”'”g (MEd'a“_ of 15)
)\ —— Our Algorithm (2 Iterations; Median of 15) — Our Algorithm (2 Iterations; Median of 15)
—— Our Algorithm (5 Iterations; Median of 7) 100 = Our Algorithm (5 Iterations; Median of 7)
A @
§ g
g 2
g <
& £
10—1 4
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch
(¢) Model B on MNIST (d) Model B on Fashion MNIST

Figure 2: Training losses. Only mean curves contain confidence ranges (SEM).

In the case of Model B, our implementation of the two-iteration variant of the algorithm based on
the average gradient (Alg. [I) is nearly three times slower (per epoch) than the training based on
the gradient, while the five iterations (Alg. d]in Appendix [G) are almost eight times slower. (The
estimated runtime of optimal implementation is slightly more than two times longer for the two
iterations per epoch when compared to the gradient-based RMSProp, and around six to seven times
longer for the five iterations.)

4 DISCUSSION

4.1 CONCLUSIONS

The algorithm based on the average gradient offers significant benefits when compared to the standard
RMSProp training for the deep model with many nonlinear activations: (a) About a threefold increase
in sample efficiency in terms of median loss, and about two to three times faster mean loss reduction.
This is reached by only two iterations, which optimally require a little more than double the time of
computation per epoch in comparison with the gradient-based RMSProp training. Meanwhile, our
suboptimal implementation of the two-iteration version of the algorithm needs nearly three times
more runtime per epoch than the training based on the gradient. Therefore, the presented method is
not only more sample-efficient, but it is also faster and saves energy. (b) Outstanding performance
on higher learning rates, which may offer significant benefits in terms of both electricity and time

Under review as a conference paper at ICLR 2025

spent on hyperparameter searches. (c) Considerably better generalization, at least in a reasonable
epoch count.

The RD (Equation[7) confirms the outstanding results of the other measures. The score of RD =
10.4141.94, achieved by the two iterations on MNIST, corresponds to the average speed of batch-loss
minimization that is (11414-194)% of the speed of the gradient-based RMSProp while using the same
absolute values of weight updates. In the other cases, the average speed of batch-loss minimization
ranges from (124 + 3.6)% to (243 + 29)%. Therefore, even a relatively slight speedup in batch-loss
minimization (such as (24 & 3.6)%) may contribute to a significantly higher gain in sample efficiency,
increasing it by two to three times. Moreover, it is crucial to note that the mentioned gain occurs at
learning rates that are three times higher than the optimal rates for gradient-based training. Generally,
high learning rate values may enable rapid learning because model parameters are adjusted faster.

Nevertheless, the average gradient is also superior in terms of the average speed of batch-loss
minimization when using the optimal learning rates for gradient-based training. The algorithm’s
potential in handling very deep models with numerous nonlinear layers is further confirmed by its
dominance during training with the optimal learning rate for gradient-based RMSProp. Despite the
low sample sizes, multiple measures are statistically significant, i.e., RD.

Surprisingly, the algorithm version with five iterations is worse than the two iterations according to
‘R'D with higher statistical confidence than for other measures. Across all experiments, the variant is
computationally inefficient in terms of the resources required to reduce the loss to a certain level.

In the case of the shallow model with nonlinear ELU activations, the method is only marginally better
(with statistical significance) than the standard gradient-based RMSProp training. This behavior is
expected due to the scaling properties of the algorithm (Appendix [E).

The method is promising and provides a perspective on multiple interesting further experiments. For
some applications, the benefits of the method may surpass those for Model B, e.g., in the case of
deeper models. The method may also contribute to the training of large models in the future, where
sample efficiency is needed to learn new tasks on the fly, akin to how people or some animals do.

See Appendix [B|for mathematical guarantees of the average gradient. Refer to Appendix [Ffor the
limitations of our algorithm in estimating the average gradient.

4.2 FUTURE WORK

Interesting directions for further experiments include: (a) Computing the average gradients over a
much larger range than that of a parameter update to capture the global trend of the loss landscape.
(b) More accurate approximation of the average Jacobians using Equation [5]instead of Equation [§]
This would enable computing the average Jacobians of linear operators. Therefore, the algorithm
based on the average gradient may enhance trainings of deep models without nonlinear activations.
Moreover, the usage of Equation [5] may further improve the performance in the case of many
nonlinear activations because of the increased precision in approximating the average gradient.
(c) Incorporation of the momentum into our algorithm. Preferably Nesterov momentum (Dozat,
2016) should be used. If not, the average gradient would also be calculated for the momentum part
of the update step. This could often reverse the direction of the momentum for a model parameter,
thereby impairing the effectiveness of the entire momentum procedure. (d) Development of similar
algorithms, but with update steps, that, for a given model parameter, vary in size over the iterations
of the average-gradient computation. By adjusting the step size of each model parameter to the
absolute value of the average gradient, the learning process may be enhanced. (e) Tests of the
method on large and very deep architectures, that are used in practice and contain many nonlinear
layers. (f) More research on how the method scales up, also in relation to the number of neurons in
layers of neural networks. (g) Experiments with learning without forgetting (L1 & Hoiem, 2017)
and online learning. Sample efficiency may be very beneficial there.

5 REPRODUCIBILITY STATEMENT

We put emphasis on providing detailed descriptions of all experiments. The algorithms (Alg. 4 in
Appendix [Gland Alg. [T)in Section[2} with subprocedures labeled as Alg.[2]and Alg. [3)) are described in
detail in Section The models (Tables[T|and[2), the learning rates (Table[3)), and all other important

10

Under review as a conference paper at ICLR 2025

experiment settings are described in Section [2.2] The code, along with environment settings, is
available under [...]. Appendix [B|contains one of our most important theoretical results: the proof of
Equation [T]and its superiority over the gradient in minimizing the batch loss by accurately indicating
how each model parameter individually contributes to the change in the batch loss (Equation [T4)).
The proven potential for batch-loss minimization is verified not only by the RD metric with high
statistical significance but also by comparisons of training losses and other metrics (Section [3).

REFERENCES

Albert S Berahas, Jorge Nocedal, and Martin Takic. A multi-batch 1-bfgs method for machine
learning. Advances in Neural Information Processing Systems, 29, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Deborah Hughes-Hallett, Andrew M Gleason, Patti Frazer Lock, and Daniel E Flath. Applied calculus.
John Wiley & Sons, 2021.

Nikhil Ketkar. Stochastic gradient descent. Deep learning with Python: A hands-on introduction, pp.
113-132, 2017.

Saeed Khorram, Tyler Lawson, and Li Fuxin. igos++ integrated gradient optimized saliency by
bilateral perturbations. In Proceedings of the Conference on Health, Inference, and Learning, pp.
174-182, 2021.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on 1lm generalisation and
diversity. arXiv preprint arXiv:2310.06452, 2023.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann|
lecun.com/exdb/mnist/L

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935-2947, 2017.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
momentum. Advances in Neural Information Processing Systems, 33:18261-18271, 2020.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing Istm
language models. arXiv preprint arXiv:1708.02182, 2017.

R OpenAl. Gpt-4 technical report. ArXiv, 2303, 2023.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Jjournal on control and optimization, 30(4):838-855, 1992.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

Sam Sattarzadeh, Mahesh Sudhakar, Konstantinos N Plataniotis, Jongseong Jang, Yeonjeong Jeong,
and Hyunwoo Kim. Integrated grad-cam: Sensitivity-aware visual explanation of deep convolu-
tional networks via integrated gradient-based scoring. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1775-1779. IEEE, 2021.

Xu Sun, Hisashi Kashima, Takuya Matsuzaki, and Naonori Ueda. Averaged stochastic gradient
descent with feedback: An accurate, robust, and fast training method. In 2010 IEEE international
conference on data mining, pp. 1067-1072. IEEE, 2010.

11

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2025

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319-3328. PMLR, 2017.

Hong Hui Tan and King Hann Lim. Review of second-order optimization techniques in artificial
neural networks backpropagation. In IOP conference series: materials science and engineering,
volume 495, pp. 012003. IOP Publishing, 2019.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26-31,
2012.

Ziyang Wei, Wanrong Zhu, and Wei Biao Wu. Weighted averaged stochastic gradient descent:
Asymptotic normality and optimality. arXiv preprint arXiv:2307.06915, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

A DEFINITION OF AVERAGE GRADIENT/JACOBIAN

Let us define the average gradient of a function f(x) : R" — R for some row vector x € [a, b] (the
formula is analogous to the one-dimensional case in Equation [3):

b 1
AVG Vaf = (b—a)°! o/ Vof dz = (b—a)°! o/ Vart(oa)f dt (8)
a 0

x€|a,b)

where o denotes the elementwise operation of either multiplication or inversion ((-)°~1). However,
the cases of vector elements where division by zero occurs are handled differently, using the partial

derivative g—f:
z;

of _ of
" Oa; ®

Vi:bi—a1202 AVG
z;€laq,b;] 0x;

If f(x) : R* — R™, then using to Equation|8}
Ange[a,b] Vafi (b - a’)071 o fb Vaf1 dx
AVG al _ Avgwe[a,b] Va2 (b— a)°*1 o fa Vafa dx

x€la,b] Ox

Avgme[a,b] vmfm (b — 0)071 o fab vmfm dx

(10)
(b—a)] [Jy Vasew-af dt
(b - a)o—l ° fo va.th-(bfa,)f2 dt
.. 071 DR
(b - O,) fol Va+t~(bfa) fm dt
Again, the cases of vector elements where division by zero occurs are handled as follows:
, of Of
Vi:b—a; =0 = =
' ¢ w;é[ggh] Ox; Oa; an

B PROOF OF EQUATION [I]AND ITS LOSS-MINIMIZATION POTENTIAL

B.1 DEFINITION AND PROPERTIES OF AVERAGE GRADIENT OF LOSS

Using Equation[2] the average gradient AV Gy, Vg, ¢ can be defined without the approximation given
in Equation

WGV o= Avg (o O O g (12)
k

(I 0 AN) (00y, Ooxy, o 01

where multiple variables are under the average operator (0, €, Tg41,- - - , Ty). There are numerous
ways to define how (xy, k41, ..., x,) depend on the weights and biases 0y, as they all change

12

Under review as a conference paper at ICLR 2025

together during a parameter update. To compute the average (Equation [I2), it can be assumed
that the parameters of the layer no. k and the outputs of the layers change linearly with respect to
each other, as if they move from 6, to 8}, and from (xg,...,x,) to (), ..., x,) after an update
of the parameters of all layers. Under this assumption, the calculation is formulated as follows:
while computing the average, the integral contains a function fy ;(¢) = 0y + ¢ - (), — 0)) for the
variable under integration ¢ € [0, 1] (6 and 8}, denote model parameters before and after an update,
respectively). Moreover, the integral involves each layer’s output: fy ;(t) = x; + t - (2} — ;).
Finally, the average gradient (Equation [I2)) is equal to:

8f:c k(t) afm,k‘+1(t) a.fwn()
.AVQV@,CK—AVQVfMK—AVQ(aka(t)- Dfo (D 5fmn 0

_ Ofex(t) Ofwrt1(t) Ofpn(t)
7/0 Ofo.r(t) ’ Of . ie(t) T Ofwm_1(t) Ve () dt

Vi t(t)

(13)

which is more direct and easier to work with.

Importantly, unlike the gradient, the average gradient (AVGy, Vy, ¢) is directly proportional to the
loss-change impact of each model parameter separately g/, — g 1. (of the shape of 6, and 6}, unlike
the scalar £):

n 1] |0k |

Ay x
AVG Vg, 0 = AVG Vi (> loi) AVQVek O tors) Avg(d ag(g Ey) =
k k 7=0 =0 1=0 k
0, 1 0% n
fe,fl e d Joo" Cy n dY (14)

= (AVG Ly, 1. s AVG L,) =
<0k1g 0,k,1 ekng 0,k,n> 9;@1 ekl H;C’n_ekr,n

- Cor kom — o bm o
= 09’/k’1 99&1 AN ea’fk’ ge’k’)= (0, — 0r)° "o (lor ke — loi) o< Lor i — Lok
k1~ Ykl kn — Ykn

where o denotes the elementwise operation of either multiplication or inversion ((-)°~1). diag(g Blo .k =)

denotes diagonal elements of the Jacobian matrix. g ; € lg i represents the scalar loss contrlbutlon
of a single model parameter (0, ;), that can be defined as an integral of the gradient: (g ; =

9" " Vyly dY + Cs, for any constant scalars C; and Cy. (Note that in this case, lg . ; # Lo + Ch,
for any constant Cy, because the loss ¢ also depends on other parameters than 6}, ;.) Important

properties: (a) {p = C + ZZ:O Z‘i“(l) g 1.,; for a constant C' that is invariant across updates
of the model parameters 6. (b) The elements of 1 are related to the difference in loss during

parameter update: (o — lg = (Y, _ OZ €9 i) — (Oro Zlg}l) lo). (c) The following
equation is satisfied: Vol = VQ(Z o Zi:o g 1..;)- The simple one-dimensional visualization of
the proportionality from Equation [14] (AVGy, Vg, ¢ o Lo/ 1 — lg 1) is shown in Fig.[I] Note that
the property of proportionality does not hold for the gradient updates (which are utilized by Adam
(Kingma & Ba, [2014), RMSProp (Tieleman et al.l 2012), and SGD (Ketkar, 2017} Liu et al.|[2020)).
In the gradient case, during the update step of 6 weights, 6’ is not used in the calculation of itself.
Therefore, ly: — ly cannot be computed yet, and the accurate influence on loss remains unknown,
unlike for the average gradient (Equation . The cases of scalar parameters 6, ; € 0, and Q;W €0,
where division by zero occurs are handled differently:

14 or
i —O0ki =0 = Avg —_— (15)

Vi : 6,
b O, i €[0k,:,0 aﬁk i aok,i

Assuming the functions fp ;, and f, ; from Equation [13|are any functions (but differentiable with
respect to each other), Equation[I4]remains valid. Therefore, the crucial property of direct proportion-
ality to the loss values does not depend on our previous assumptions about 6;, and x;. The purpose of
these assumptions is to provide a simple example, reduce reasoning abstraction, and simplify further

proofs in Sections [B.2]and [B.3]

13

Under review as a conference paper at ICLR 2025

B.2 PROOF OF OF EQUATION [[] WITHOUT SPECIFYING PRECISION OF APPROXIMATION

For some function f and some constants C, Cs, ..., Cy:
Similarly, let us denote approximately constant functions as C (z) = C1,Cy(z) = Cy,...,Cl(z) =

C,, for some = € [a,b], a # b. The constant that precisely approximates each function C’(z), is
its average: C' (z) = AVG C{(z) = C1,C5(x) = AVG Cy(x) = Cs,...,Cl(z) = AVGC) (z) =
C,,. Therefore, similarly to Equation [I6}

/cl Cl (@) - f(x) de ~ AVG Cl(x)- ... AVG C'.(x /f

z€[a,b] z€[a,b]

/ac;(x)-...- ' (x) de/ - /b /f

which is also approximately equal to both sides of Equatlon@ In Equation[T7] both approximations

are equivalent, because AVG C!(x f Cl(x — a) dz. For functions R™ — R™, equations no.
[I6) and [I7) are analogous. Note that in the general case, the different approximations of the terms
Cl(z) ~ C!(a) and C}(x) =~ C;(b) are worse than the average: C/(z) ~ AVG C!(x) = C; (which
is used further in Section|B.3)).

7)

Rapid changes in the gradient over the range of an update indicate that the update step is too large,
leading to instability and reduced training effectiveness due to excessively large steps in the loss
landscape. We assume effective learning, where gradients do not change signiﬁcantl between
updates, ensuring the learning rate is appropriately sized. In this case, the gradient Vg, ¢ does not
change signiﬁcantlyﬂ over the range of a weight update [, §’]. Therefore, using Equation |17|to
approximate Equation [T3}

L Ofe k(t) Of» k+1(t) Ofwn(t)
S r(t / fm Ofzk+1(t) / Fonlt /
ol - dt - Izl g [,) dt (18)
/o O fo (1) 80 8fmkt3 0 afwn 1() e (t)
ULk Tht1
= Avg ot AVg T Avg St AV Vs, ¢

Applying the notation of Equation [I2]to Equation 18] we get:
1 1 1 1
Of ot Ofw st Ofan(t
Aevgvgkgz/ f Jc() dt/ f 7k+1() dt'.--'/ 'f*())dt/ v.fw‘n(t)g(t) dt
k 0 0 0

” o Ofox(t) Ofzk(t) / Ofzn-1(t ,
k Oz (Vr) / i 0xp41(Xk) /m”*1 0%y, (Xn-1) /m
= diy, 7d — " dXn_ V. £ dxn
/9k 90, Ok Xk . X1 Xn—1 .. xnt @X
6 6 a n
_ Avgﬂ Avg EEEEL L Avg I AVG Y,
80k T ailfk Tn—1 ox LTn—1 Tn
(19)
where 0y, xp, Tk41,...,x, are all linear functions of ¢ (previously denoted as
foks faks fo+1s- -5 fon). Therefore, the functions xy(6k), Trt1(xk), ..., Tn(x,—1) are
known. The edge cases of those scalars within 0y, €y, k11, ..., x, that do not depend on t are

handled analogously to Equation[I3] as in these cases the average gradient equals the gradient.

Despite the provided arguments on why the approximation is applied, the precision of the estimation
is not specified, although it is crucial. Therefore, the accuracy of the approximation is described
in Section Otherwise, if the precision of the estimation is not important, then Equation
ultimately proves Equation[I] O

!The magnitude of the gradient change need not be specified, as it suffices that it contributes to the approxi-
mations with unspecified bounds in Equations [T8]and [T9] However, the accuracy of these approximations is

proven in Section|B.3]
2See footnote

14

Under review as a conference paper at ICLR 2025

The analogous reasoning can be applied to prove Equation 5]

In the algorithm, it is also assumed that the average gradient of the loss with respect to the output
of the last layer, denoted as (AVG,, Vg, 0), is replaced by the gradient (V, ¢). Moreover, in
our implementation, the gradients replace the average gradients of layers that are approximately
linear (using Equation [6]instead of Equation 3)), resulting in a broader approximation in Equation [T}
However, the presented reasoning still applies, including the proof of approximation accuracy in
Section[B.3] See Appendix [F]for comments on the limitations of our implementation of Equation [I]

B.3 PROOF OF SUFFICIENT PRECISION OF APPROXIMATION

Referring to the content of the paragraphs just before and after Equation the approximation
in Equation (17| is more precise in the case of Cl/(z) ~ AVGCi(x) = C; than in the case of
approximating C}(x) ~ C/(a). The average Jacobian of each term in Equation 1| can be denoted
as AVG C!(x), while the Jacobian of each term in Equation [2[can be denoted as C/(a). For the
average Jacobian AVG C!(x), a better estimation in Equation is obtained, as stated in the text
near the equation. Consequently, applying Equation [T7] to approximate Equation [I3] results in a
higher precision in estimating Equation [[| when averaging each Jacobian term separately, compared to
utilizing the Jacobians without averaging. Therefore, a better approximation of the accurate average
gradient is obtained compared to using the gradient. [] The average gradient is proportional to the
change in loss after the corresponding parameter update (Equation [T4). Therefore, approximating
the average gradient more precisely than current gradient-based methods can lead to more efficient
minimization of batch loss, for example, by using Eq.[T] Therefore, learning can be enhanced
compared to the potential of gradient-based methods.

C TEsT Loss CURVES OF MODEL B

--- Gradient-Based Training (Mean of 15) 2x100] | 77 Gradient-Based Training (Mean of 15)
—-==0ur Algorithm (2 Iterations; Mean of 15) —==Our Algorithm (2 Iterations; Mean of 15)
~==Our Algorithm (5 Iterations; Mean of 7) —-== Our Algorithm (5 Iterations; Mean of 7)
—— Gradient-Based Training (Median of 15) —— Gradient-Based Training (Median of 15)
o = Our Algorithm (2 Iterations; Median of 15) = Our Algorithm (2 Iterations; Median of 15)
10°1 Our Algorithm (5 Iterations; Median of 7) —— Our Algorithm (5 Iterations; Median of 7)
@ A o]
S k] 10
gl g
@ i
6x1071
T T T T T T 4 x 10_1 T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch
(a) MNIST (b) Fashion MNIST

Figure 3: Test losses of Model B. Only mean curves contain confidence ranges (SEM).

D TEST ACCURACY CURVES OF MODEL B

15

Under review as a conference paper at ICLR 2025

98
88
97 -
87
96 -
86
> 95 1 >
e 1%}
o © 85
3 3
g 941 3
< <
% i 84
2)

Hii
Gradient-Based Training (Mean of 15)
Our Algorithm (2 Iterations; Mean of 15)

Gradient-Based Training (Mean of 15)
Our Algorithm (2 Iterations; Mean of 15)

focl
w

92 4
~ Our Algorithm (5 Iterations; Mean of 7) 82 Our Algorithm (5 Iterations; Mean of 7)

| — Gradient-Based Training (Median of 15) Gradient-Based Training (Median of 15)
911 -— Our Algorithm (2 Iterations; Median of 15) Our Algorithm (2 Iterations; Median of 15)

| —— Our Algorithm (5 Iterations; Median of 7) 81 Our Algorithm (5 lterations; Median of 7)
90 4 [sens i omn o0y I i H —_— T T T T T

100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Epoch Epoch
(a) MNIST (b) Fashion MNIST

Figure 4: Test accuracy of Model B. Only mean curves contain confidence ranges (SEM).

E SCALING IN TERMS OF MODEL DEPTH

The algorithm based on the average gradient aims to reduce errors of the predicted influence on loss
of a parameter update. In the case of the gradient-based approach, the errors arise from the impaired
prediction of how inputs to subsequent layers influence their outputs (Fig. [T). Let us model the errors
as multiplicative, because each time a fraction of output may be influenced by the error. Therefore,
when compared to the gradient-based algorithm as a baseline, the multiplicative errors are reduced
after backpropagation through each nonlinear layer (by computing the average Jacobian of the layer).
Consequently, the incorporation of the average gradient exponentially reduces the error in terms of a
count of nonlinear layers (that are involved in the backpropagation process). This explains the huge
performance-improvement gap between the models for the method based on the average gradient,
which emerges from the difference in models’ depths. However, the gap is also increased due to the
linearity of the ELU activation function in most of its domain, where the gradient equals its average.
In this case, our algorithm produces results similar to those of gradient-based optimization.

If the errors (of the predicted influence on loss of a parameter update) are enormous, then the learning
is impossible. Therefore, the learning performance tends to decrease after the error reaches a certain
value for a given model, learning rate, and other parameters. From that point onward, our algorithm
more efficiently reduces the batch loss compared to the gradient-based approach by minimizing the
error in the loss-influence prediction. Importantly, the improvements tend to increase with both the
number of nonlinear layers in a model and the learning rate.

F THREE-DIMENSIONAL COMPARISON OF THE GRADIENT AND THE
AVERAGE GRADIENT

In our experiments, during a parameter update, in terms of the average reduction of loss for a batch,
our algorithm lies between the gradient (red arrows in Figure [3) and the lowest average gradient
(black arrows in Figure [5). Our algorithm does not always find a locally optimal solution (the best in
the range of a single parameter update) because:

a The average gradient is approximated (by using Equation|[T]instead of Equation[3] Equation|[6]
as a substitute of Equation[5] and the non-averaged gradient of the loss with respect to the
last layer output).

b The optimal parameter update may be inaccurately estimated before the average gradient for
this parameter update is calculated. Moreover, even after many iterations of Algorithm[4]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

882
883
884
885
886
887
888
889
890
891

892
893
894
895
896
897
898
899
900
901

902
903
904
905
906
907
908
909
910
911

912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

15 Before Parameter Update — Gradient Direction

Possible Values After Parameter Update, = —® Direction of the Lowest Average Gradient

1.0 2.24
0.5
Y 0.0 o
[[
9] @
£ -05 £ 2.00
& 10 &
-1.5
-2.0
1.76
-1 0 1 2 -1 0 1 2
Parameter 1 Parameter 1

1.52

o~ o~
g g
£ £ 8
© 8 128 ~
& &
1.04
0
Parameter 1
0.0 -

—05 0.80

-1.0
o~ o~
@ g -15
- -
[[
§ § -2.0
© © 0.56
a [N

-2.5

-3.0

-3.5

0.32
-1 0 1 2
Parameter 1 Parameter 1

Figure 5: Three-dimensional comparison of the gradient and the lowest average gradient in a few
example scenarios. The latter accurately reflects the influence on the loss of a parameter update.
Furthermore, it accurately shows how each model parameter individually contributes to the change
in the batch loss (Equation [T4), which is utilized by our algorithm. Each plot illustrates the loss in
terms of two example model parameters, assuming a specific magnitude for each parameter update
(represented by the radius of each white circle). The arrows point to the loss values after an update
based on the gradient and the average gradient. The average gradient is calculated for the update that
minimizes it. Therefore, it points to the minimum loss on each white circle, although this minimum
is not always achieved by the approximated average gradient computed by our algorithm.

(Appendi?, the update step may not converge to a locally optimal solution (black vectors
in Figure [5)).

¢ After the first iteration of our algorithm, only the negations of the directions of changes in
each parameter are possible. Thus, the search for locally optimal updates is bounded by 2/€!
combinations, where |©] is the count of trainable parameters.

17

Under review as a conference paper at ICLR 2025

Nevertheless, the RD metric (defined in Equation[7)) indicates our algorithm minimizes the batch
loss more efficiently on average compared to the gradient-based approach.

G ALGORITHM VERSION WITH PARAMETERIZED NUMBER OF ITERATIONS

Algorithm 4 Algorithm Version with Parameterized Number of Iterations (two or more). The number
of iterations is equal to the optimal number of backpropagation calls and inferences. The memory
requirement of the ideal implementation would be higher than that of Adam by only an additional
scalar size per parameter of the model.

Input: model: Neural Network Model to Train
dataset: Training Dataset
lossF'n: Loss Function
optimizer: Optimizer
iterCount: Number of Backpropagation Iterations
for all batch € dataset do
modelInitial < model
modelCopy < model
initial Output < modelCopy(batch.x) {It is assumed that modelCopy’s layers’ results are
kept inside modelCopy}
initial Loss <— LossFn(initial Output, batch.y)
Backpropagate(initial Loss) {Compute the gradients using the standard backpropagation
procedure. Assume that the gradients are stored inside modelCopy}
optimizer.Step(modelCopy) {Parameter update}
model Output A fterUpdate < modelCopy(batch.x)
model LossA fterUpdate < LossEFn(modelOutputA fterUpdate, batch.y)
for iter = 1,...,iterCount — 1 do {Loop (iterCount — 1) times, because one backward
propagation is done}
if iter # 1 then
modelCopy < model
modelCopy(batch.x) {For each layer, compute its output, and store it inside modelCopy}
model <— modelInitial
end if
initial Output < model(batch.x) {This computation is redundant if layer outputs are
copied from model Initial }
initial Loss < LossFn(initialOutput, batch.y) {Analogously, this computation is also
redundant}
AveragedBackpropagation(model, modelCopy, initial Loss) {The procedure is de-
scribed as Algorithm [2| The parameters of the model are modified within}
end for
end for

18

	Introduction
	Backpropagation of Estimated Average Gradient
	Gradient Optimization and Averaging

	Methods
	Algorithm
	Models and Training

	Results
	Discussion
	Conclusions
	Future Work

	Reproducibility Statement
	Definition of Average Gradient/Jacobian
	Proof of Equation 1 and Its Loss-Minimization Potential
	Definition and Properties of Average Gradient of Loss
	Proof of of Equation 1 without Specifying Precision of Approximation
	Proof of Sufficient Precision of Approximation

	Test Loss Curves of Model B
	Test Accuracy Curves of Model B
	Scaling in Terms of Model Depth
	Three-Dimensional Comparison of the Gradient and the Average Gradient
	Algorithm Version with Parameterized Number of Iterations

