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Abstract

Table understanding is a crucial task in doc-001
ument processing and is commonly encoun-002
tered in practical applications. We introduce003
2Columns1Row, the first open-source bench-004
mark for the table question answering task in005
Russian. This benchmark evaluates the abil-006
ity of models to reason about the relation-007
ships between rows and columns in tables, em-008
ploying both textual and multimodal inputs.009
2Columns1Row consists of six datasets, 28,680010
tables, designed datasets that vary in the com-011
plexity of the text within the table contents012
and the consistency of the values in the cells.013
We evaluate the models using text-only and014
multimodal approaches and analyze their per-015
formance. Through extensive evaluation, we016
demonstrate the limitations of current multi-017
modal models on this task and prove the feasi-018
bility of a dynamic text-based system utilizing019
our benchmark. Our results highlight signifi-020
cant opportunities for advancing table under-021
standing and reasoning, providing a solid foun-022
dation for future research in this domain.023

1 Introduction024

Document processing has emerged as an essen-025

tial component in various production scenarios, en-026

abling automated extraction, understanding, and027

analysis of information from different types of doc-028

uments. A key challenge in this field is understand-029

ing tables, often addressed through Table Question030

Answering (TableQA) (Jin et al., 2022). TableQA031

involves interpreting tabular data and answering032

questions based on that information, requiring a033

good grasp of both the table structure and its con-034

tent.035

Large Language Models (LLMs) have signif-036

icantly advanced Natural Language Processing037

(NLP) by demonstrating strong generalization038

across diverse tasks. A critical application involves039

table analysis, where tables are typically serialized040

into textual formats for LLM processing. Recent041

approaches leverage Large Vision-Language Mod- 042

els (LVLMs), combining visual and textual repre- 043

sentations to better capture tabular structure and 044

semantics (Liang et al.). Despite these advance- 045

ments, state-of-the-art LVLMs still underperform 046

on complex table-related tasks (Kim et al., 2024). 047

Furthermore, the lack of publicly available bench- 048

marks for intricate tables, notably for non-English 049

languages, inhibits progress in developing special- 050

ized models for this domain. 051

To address these issues, we present 052

2Columns1Row, a detailed benchmark for 053

TableQA in the Russian language. 2Columns1Row 054

consists of six datasets that vary in complexity 055

based on the text within the table contents and the 056

consistency of values in the cells, totaling over 057

28,500 instances. We evaluated the performance 058

of several LLMs on 2Columns1Row and closely 059

examined their errors, identifying specific patterns 060

in their behavior, especially when dealing with 061

more complex tables. Our results highlight the 062

challenges even the most advanced LLMs face 063

in table analysis. Additionally, we assessed the 064

dynamism of the benchmark to ensure its consis- 065

tency when reassembled. Besides, we examined 066

the impact of different prompts, table formats, 067

and additional fine-tuning on the performance of 068

LLMs. 069

The contributions of the paper are as follows: 070

• We present 2Columns1Row, a robust and rep- 071

resentative benchmark table consisting of six 072

datasets that encompass a variety of content 073

and complexity across two modalities. 074

• We tested over 20 advanced LLMs on the 075

2Columns1Row dataset, providing a detailed 076

performance analysis. We examined the mod- 077

els’ behavior, particularly in complex scenar- 078

ios involving questions and table structures. 079

• We reconfigured the 2Columns1Row multi- 080

ple times to ensure stable performance met- 081

rics of selected models on different data splits. 082
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Thus, the benchmark can be set up dynami-083

cally. Additionally, we analyzed how the sys-084

tem prompt, table text representation, and su-085

pervised fine-tuning affect the model’s answer086

quality.087

2 Related Work088

Tasks related to table processing are widespread089

in real-world scenarios (Lu et al., 2025), both in090

production cases and in academic research. An091

application of machine learning is enhancing the092

automation of the table handling process and ex-093

tracting valuable insights. However, the difficulty094

lies in the fact that plain text is used during pre-095

training neural language models, which generally096

does not have a specific structure inherent in tables.097

To address this, there are techniques for adjusting098

models for tabular data using position embeddings,099

various attention mechanisms, and learning objec-100

tives (Yin et al., 2020; Herzig et al., 2020; Liu et al.,101

2021; Deng et al., 2022).102

In recent times, LLMs have been developing103

rapidly and demonstrating impressive results in104

various areas, including the challenges of table un-105

derstanding, such as TableQA (Sui et al., 2024).106

Due to the versatility of LLMs, the use of LLM-107

specific techniques remains relevant, including108

instruction-tuning (Zhang et al., 2023), in-context109

learning (Dong et al., 2022), chain-of-thought110

(CoT) reasoning processes (Wei et al., 2022), and111

even the use of autonomous agents (Wang et al.,112

2024), which is becoming increasingly popular.113

There are also approaches with fine-tuning LLM,114

for example, StructLM (Zhuang et al., 2024) and115

TableLLM (Zhang et al., 2024), which improve the116

comprehension of table structures and stimulate117

complex reasoning for advanced analysis.118

The rapid development of LLMs requires the119

creation of appropriate benchmarks for a compre-120

hensive evaluation of the capabilities of these mod-121

els and their comparison. Nevertheless, the exist-122

ing benchmarks based on table processing (Pasu-123

pat and Liang, 2015) were mostly constructed for124

the English language. Moreover, there are only125

several complex benchmarks for the Russian lan-126

guage (Fenogenova et al., 2024) and none with127

table semantic comprehension.128

To evaluate modern LLMs’ abilities in the table129

analysis in Russian we present 2Columns1Row,130

an extensive and complex synthetic benchmark,131

incorporates diverse datasets with the frequent real-132

world task formulation for the tables understanding, 133

effectively addressing the limitations of existing 134

benchmarks. 135

3 Methodology 136

3.1 Idea 137

2Columns1Row benchmark evaluates a model’s 138

ability to perform a specific yet highly frequent and 139

practical task: retrieving a value from one column 140

based on a corresponding value in another. While 141

other tasks, such as fact verification or data anal- 142

ysis, exist, this formulation is representative, as it 143

tests the model’s comprehension of table structure 144

(i.e., column-row relationships) and necessitates 145

sequential reasoning. 146

Beyond assessing how well LLMs interpret ta- 147

bles from textual representations, we also compare 148

performance against a multimodal approach, where 149

the model receives both the textual prompt and an 150

image of the table. Additionally, our benchmark 151

accounts for value diversity across columns and 152

datasets, employing dynamic regeneration to en- 153

sure consistent model evaluation. 154

To mitigate the well-known issue of data con- 155

tamination and enhance generalizability, we avoid 156

static tables in favor of dynamically generated syn- 157

thetic data. In Section 4.6, we demonstrate the 158

validity of this approach, showing that it preserves 159

benchmark integrity while minimizing biases in- 160

herent in fixed datasets. 161

3.2 Datasets 162

To create the datasets, we synthetically gener- 163

ated all tables for the benchmark and intentionally 164

avoided using real tables. Additionally, for some 165

columns, we sourced data from real-world refer- 166

ences, such as words in different parts of speech 167

from Wiktionary 1. 168

We grouped the tables in the dataset according to 169

the uniformity and complexity of the values in the 170

table cells to assess their impact on the performance 171

of the models. In total, we got 6 datasets based on 172

the context inside: 173

• Person Info dataset includes various informa- 174

tion about a person, such as full name, resi- 175

dential address, and phone number. All of the 176

values are generated randomly and indepen- 177

dently. 178

• Person Info Hard is an advanced version of the 179

Person Info, featuring more potential columns 180

1https://www.wiktionary.org/
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Figure 1: Table example from the Person Info Hard dataset. The columns of the table correspond to: 1) the tool
idea, 2) username, 3) affiliation, 4) SWIFT, and 5) IBAN.

and more complex data structures, such as181

synthetic word sequences.182

• The Colors dataset includes color values in183

the hexadecimal format #RRGGBB.184

• The Numbers set consists of float numbers185

with six decimal places.186

• The Company Info dataset includes the com-187

pany’s name, address, fax, and other company188

information.189

• The Word Sequences dataset contains words190

and their combinations from Wiktionary for191

Russian, categories of articles from Russian192

Wikipedia 2, sentences in Russian, as well as193

titles for slides and presentations.194

For the Colors and Numbers datasets, we used up-195

percase Latin letters as column names. For the196

rest, we used column names based on the seman-197

tics of the values included in them, for example,198

FIO ("Full Name").199

To create the multimodal version of the bench-200

mark setup, a full-size screenshot was taken for201

each table using the Playwright for Python li-202

brary 3.203

An example of the Person Info Hard table is204

shown in Figure 1. Additional examples of tables205

from other datasets are provided in Appendix A.206

The final statistics for the benchmark are as fol-207

lows 4: it includes 6 datasets and a total of 28,800208

tables, with an average of 32 rows and 8 columns209

per table.210

3.3 Generation Pipeline 211

This subsection describes how we generated the 212

datasets for the benchmark. To create datasets, we 213

used two approaches: 1) one based on generation 214

functions and 2) the other on large pre-assembled 215

sets for column values. 216

For the first three datasets (Person Info, Colors, 217

Numbers), we generated the table’s contents using 218

generation functions. The appropriate function was 219

called for each cell in the table based on the dataset 220

and the column. This approach works well for ho- 221

mogeneous values containing many unique values, 222

since the probability of repeated values in a column 223

is minimal. 224

We generated a set of values for the last three 225

datasets for each column separately. These sets 226

contain between 5,027 and 896,982 unique values. 227

For each table size, we randomly selected a set of 228

columns from the given set and, for each column in 229

each table, we sampled uniformly values equal to 230

the number of rows in the table. For some columns, 231

we used permutations of a random number of val- 232

ues from the set. This approach creates tables with 233

a variety of content and avoids repeating values in 234

columns. 235

For datasets Person Info and Person Info Hard, 236

and partially for Company Info and Word Se- 237

quences, we used Python Faker 5 and Mimesis 6 238

libraries for synthetic data generation. 239

Each dataset contains five tables for each size. 240

The number of columns ranges from 2 to 16, and 241

2https://ru.wikipedia.org/
3https://playwright.dev/python/
4The statistics are provided for one setup, as the tables

remain the same; only the format of the text and images varies.
5https://faker.readthedocs.io/
6https://mimesis.name/master/
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Figure 2: An illustration of the pipeline’s work for generating a dataset.

the number of values ranges from 1 to 64.242

To summarize the above, tables in datasets dif-243

fered in several ways:244

• table dimensions (width and height);245

• uniformity of values in columns (whether it246

is possible to determine what each column247

means without a heading);248

• the amount of text in cells (the more text there249

is, the harder the task will be for the model);250

Figure 3: Example: What is the coverage if Leslie
Kerkhov is the opponent in the finals? Answer: Hard
Original QA in Russian:

Какое покрытие, если соперница в фи-
нале — Лесли Керхов? Ответ: Хард
(Kakoye pokrytiye, yesli sopernitsa v
finale — Lesli Kerkhov? Otvet: Khard)

To create questions 7, we used the frequent for-251

mulation: "Kakoye znacheniye v stolbtse target,252

yesli v stolbtse query znacheniye ravno X?" ("What253

is the value of the column target if the value in the254

column query is X?"). An example of question255

generation for a table from WikiTables is demon-256

strated in Figure ??8.257

7Although the values in the tables are unique, we verify the
cells in each column for any duplicate entries to ensure that the
questions remain unambiguous. This allows the benchmark
pipeline to be applied to any real-world data.

8The example is provided for clarity, the real-world tables
are not included in the benchmark.

After creating the tables and generating the ques- 258

tions for them, we provide them in the prompt to 259

the model, having previously converted the table 260

into one of several popular text representation for- 261

mats: Markdown, JSON, CSV, or HTML; see the 262

Eneral process for generating the benchmark is 263

shown in Figure 2. 264

3.4 Evaluation Procedure 265

To evaluate the model’s response apred compared to 266

the ground-truth answer agt, for all we used classic 267

Exact Match metric (EM) and the Coverage (Cov) 268

metric that checks the occurrence of the value of 269

the required table cell in the response to: 270

EM(apred, agt) =

{
1, if apred = agt.

0, otherwise.
(1) 271

Cov(apred, agt) =

{
1, if agt in apred.

0, otherwise.
(2) 272

We also cleaned the models’ responses from 273

spaces at both ends, as they sometimes appeared in 274

the output. 275

4 Experiments 276

We have conducted numerous experiments in text- 277

only and multimodal setups using both open-source 278

and proprietary LLMs. We employ the official 279

API for all proprietary models (GigaChat-2-family 280

LLMs; GPT-4o) and DeepSeek-V3 (for optimiza- 281

tion purposes). For other models, we accessed them 282

through a vLLM library-based server on a set of 8 283

NVIDIA A100 GPUs. To provide a deterministic 284

and accurate model response for all GigaChat-2 285
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models, we used the following settings for gener-286

ation: temperature = 1, top_p = 0; for other287

models, including both text-only and multimodal,288

we applied temperature = 0 and top_p = 1e−6.289

We randomly chose five questions for each290

dataset and table size in all experiments. We se-291

lected the query column evenly from all columns,292

except for the target column, which was always293

excluded.294

4.1 Varying Prompts Impact295

We tested the impact of prompt formulation on296

model performance in the specified TableQA set-297

ting. Writing a comprehensive and high-quality298

prompt is an essential step in achieving high LLM299

performance.300

Answering the question mentioned in Subsection301

3.3 not only requires finding the specified columns302

q and t in the table, but also determining the target303

row r based on the passed value X , and then ex-304

tracting the answer from the corresponding cell in305

column t. Therefore, it is likely necessary to pro-306

vide detailed instructions for the model to follow307

when solving the problem.308

We used structured prompts following this stan-309

dardized format, with tabular data (‘table‘) repre-310

sented in Markdown syntax:311

system prompt312
—–313
table314
—–315
question316
—–317

318

We conducted experiments measuring models319

using both the usual system prompt and a refined320

system prompt that requires strict adherence to the321

instructions provided. We have chosen these sys-322

tem prompts to ensure that all models understand323

the instructions and follow the format. We expect324

the output to consist of a response from a single325

cell in the table.326

Here are the translations of the selected system327

prompts in Russian:328

USUAL system prompt: "You are an expert in329
intelligent document processing. A table in mark-330
down format from a document has been provided331
as input. The answer to the question is always332
in one of the cells of the table. Find this cell and333
answer the question briefly, relying ONLY on the334
data in this table."335

REFINED system prompt: "Solve the task strictly336
according to the instructions. Provide an answer337
without any explanation. You are an expert in338

intelligent document processing. A table from a 339
document has been provided as input. The an- 340
swer to the question is always in one of the cells 341
of the table. Find this cell and answer the ques- 342
tion briefly, relying only on the data in this table. 343
In the answer, specify only the value in the re- 344
quired table cell, without unnecessary words or 345
symbols. Don’t try to build a dialogue, don’t give 346
any explanations or comments to your answer." 347

For both system prompts, we use the same for- 348

mulation to generate questions from Section 3.3 349

as the user prompt: "What is the value of the 350

column target if the value in the column query 351

is X?", where target and query are selected table 352

columns and X is the selected cell value in column 353

query and a specific row of the table. 354

Person Info Colors Numbers Average
Model (REFINED / USUAL prompt) REFINED USUAL REFINED USUAL REFINED USUAL REFINED USUAL
Qwen-2.5–32B-Instruct 98.50 94.21 74.46 77.95 94.83 96.23 89.26 89.46
T-pro-it-1.0-32B 98.29 96.95 77.21 77.66 98.02 97.95 91.17 90.85
Llama-3.3–70B-Instruct 95.60 94.77 62.81 58.62 98.58 97.97 85.67 83.79
Qwen-2.5–72B-Instruct 95.98 94.56 71.12 71.74 95.31 95.19 87.47 87.16
Llama-3.1–405B-Instruct 98.77 97.22 75.94 75.10 99.81 98.87 91.51 90.40

Table 1: Evaluation of the quality of a subset of models,
depending on the choice of prompts. The Coverage met-
ric values are represented for the selected REFINED or
USUAL system prompt. The "Average" column reflects
a weighted average of the metric values for the selected
datasets.

We have selected a subset of the models and 355

benchmark datasets that are representative of the 356

impact of prompt design on the overall LLM per- 357

formance. The results are shown in Table 1. The 358

improvement of the prompt led to the enhancement 359

of all Llama models in all data sets. For Qwen- 360

Instruct models and their fine-tuned version of T- 361

Pro-it, the results were comparable, with the ex- 362

ception of Qwen-2.5-32B-Instruct, which showed 363

a significant improvement in metrics for the Person 364

Info dataset and a decrease in metrics for the Col- 365

ors set. This is probably due to the specifics of a 366

particular model and the complexity of the Colors 367

dataset (uniformity of values in table cells). 368

Experiments demonstrate that careful crafting of 369

high-quality, comprehensive prompts can signifi- 370

cantly enhance the performance of models. 371

4.2 Table Text Representations 372

It is unclear which format provides the best model 373

performance. Therefore, we examined several text- 374

based table formats (Markdown, JSON, CSV, and 375

HTML) to determine which one yields the best 376

results. Our evaluation included various model 377

sizes and complex datasets. Table 2 presents the 378

model metrics based on the table formats we tested. 379
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markdown json csv html Average
Model Colors Word Seq. Colors Word Seq. Colors Word Seq. Colors Word Seq. Colors Word Seq.
GigaChat-2-Lite 65.44 47.46 57.33 65.67 41.19 35.67 67.42 56.19 57.84 51.24
Qwen-2.5–32B-Instruct 74.46 79.23 88.56 92.19 72.10 75.88 86.81 92.60 80.48 84.97
Llama-3.3–70B-Instruct 62.81 60.35 89.44 82.15 57.98 56.98 86.35 76.58 74.15 69.02

Table 2: The Coverage metric values show the depen-
dence of models on the textual representation of tables
on the Colors and Word Sequences datasets. The "Aver-
age" column reflects a weighted average of the metric
values across all table formats.

We compared various text representations of ta-380

bles to find the most effective format. We chose381

a row-based representation for JSON, as identi-382

fying corresponding cells in a column-based for-383

mat is challenging. Our analysis indicated that the384

top three formats, in order of performance, were385

JSON, HTML, and Markdown. Although JSON386

performed well, it required significantly more to-387

kens than Markdown. We also noted that models388

struggled to answer questions about tables in Mark-389

down. As a result, we opted to use Markdown390

format for the remaining experiments.391

4.3 LLMs Text Baselines392

For the text-only experimental setup, we evaluated393

17 models with sizes ranging from 7B to 671B pa-394

rameters. The following cutting-edge open-source395

models were used for performance assessment:396

Qwen-2.5 models (Qwen et al., 2025), Llama 3.1397

and 3.3 models (Grattafiori et al., 2024), Mistral-398

family models (Jiang et al., 2023), DeepSeek-R1-399

Distill-Qwen, DeepSeek-V3 (DeepSeek-AI et al.,400

2025), and fine-tuned versions of Qwen-2.5 T-lite401

and T-pro, adapted for Russian. We also evaluated402

the proprietary models: Gigachat-2-family mod-403

els 9, and GPT-4o (Hurst et al., 2024).404

For all models, we used the REFINED system405

prompt and the user prompt from the subsection406

4.1 and Markdown text format to present the tables.407

Using these, the LLMs showed optimal quality-408

speed trade-off compared to other prompts and text409

representations. Additionally, we note that for the410

DeepSeek-R1-Distill-Qwen-32B, we have embed-411

ded a system prompt at the beginning of the user412

prompt, as specified in the usage recommendations413

for the DeepSeek-R1 series models. The results of414

the models listed, as well as the metric heatmaps415

and error analysis, are presented in Section 5.416

4.4 LLMs Multimodal Baselines417

Besides LLMs with only textual modality, we418

gauged 6 multimodal models. The considered list419

9https://giga.chat/

of LVLMs includes: DeepSeek-VL2-27.5B (Wu 420

et al., 2024), Qwen2.5-VL-72B (Bai et al., 2025), 421

InternVL2.5-78B (Chen et al., 2024), Llama-3.2- 422

90B-Vision (Grattafiori et al., 2024), Pixtral-Large- 423

Instruct-124B (Agrawal et al., 2024), and propri- 424

etary model GigaChat-2-Pro-Vision, adapted for 425

Russian. For a multimodal setup, a full-size screen- 426

shot of each table is provided. As for purely text- 427

based models, we used the same user prompt, but 428

the REFINED system prompt for LVLM is slightly 429

modified here: 430

LVLM’s REFINED system prompt: "Solve the 431
task strictly according to the instructions. Provide 432
an answer without any explanation. You are an ex- 433
pert in intelligent document processing. An image 434
of a table from a document has been provided as 435
input. The answer to the question is always in one 436
of the cells of the table. Find this cell and answer 437
the question briefly, relying only on the data in 438
this table. In the answer, specify only the value 439
in the required table cell, without unnecessary 440
words or symbols. Don’t try to build a dialogue, 441
don’t give any explanations or comments to your 442
answer." 443

Multimodal models’ metrics are provided in the 444

Table 3 with LVLMs subheading, an overview of 445

model performance and error analysis is considered 446

in Section 5. 447

4.5 Training with SFT 448

In addition to evaluating modern general models, 449

we conducted Supervised Fine-Tuning (SFT) us- 450

ing all parameters of the Qwen-2.5–7B-Instruct 451

to investigate how the availability of suitable data 452

affects the effectiveness of the TableQA task solu- 453

tion. One of the reassemblies from 4.6 was used as 454

a training dataset. We employ a cosine annealing 455

scheduler with an initial learning rate equal to 1e−5 456

and a warmup ratio of 0.1. Training was conducted 457

over 3 epochs using the AdamW optimizer, with a 458

batch size of 32 samples, a weight decay ratio of 459

1e−4 and a maximum gradient norm of 0.3. The 460

metrics of the Qwen model after SFT are provided 461

in 3 as SFT Qwen-2.5–7B-Instruct. The impressive 462

performance of the model after fine-tuning high- 463

lights the crucial importance of having high-quality 464

and diverse data when training LLMs in different 465

stages. 466

4.6 Assessing Benchmark Dynamism 467

In addition to the benchmark version used in our ex- 468

periments, we generated four alternative synthetic 469

configurations, each incorporating new tables and 470

corresponding question-answer pairs. To evaluate 471

6
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Person
Info Colors Numbers Person Info

Hard
Company

Info
Word

Sequences Average

Model EM Cov EM Cov EM Cov EM Cov EM Cov EM Cov EM Cov
Small Size Models

Qwen-2.5–7B-Instruct 82.29 82.35 36.90 36.90 53.85 53.85 71.73 72.02 71.38 71.62 33.58 33.90 58.29 58.44
SFT Qwen-2.5–7B-Instruct 95.83 95.85 98.06 98.06 99.35 99.35 92.44 92.44 89.21 89.23 70.33 70.44 90.87 90.90
T-lite-it-1.0-7B 73.31 73.38 28.96 29.04 69.52 69.52 52.02 52.15 57.58 57.73 21.90 22.71 50.55 50.75
Llama-3.1–8B 77.02 77.67 32.10 32.12 80.58 80.58 70.06 70.69 70.35 71.10 31.23 32.23 60.23 60.73
Ministral-8B-Instruct-2410 57.88 58.31 27.96 27.96 66.08 66.08 50.15 50.62 43.62 44.10 15.44 17.00 43.52 44.01
GigaChat-2-Lite 91.54 91.62 65.42 65.44 76.98 77.00 81.42 81.54 82.27 82.42 47.02 47.46 74.11 74.25

Medium Size Models
Mistral-Small-24B-Instruct-2501 96.94 96.98 49.81 49.81 91.60 91.60 91.52 91.54 89.42 89.44 57.50 57.58 79.47 79.49
Qwen-2.5–32B-Instruct 98.50 98.50 74.33 74.46 94.83 94.83 96.79 96.85 94.65 94.73 79.12 79.23 89.70 89.77
T-pro-it-1.0-32B 98.29 98.29 77.19 77.21 98.02 98.02 95.48 95.52 92.62 92.92 71.50 71.73 88.85 88.95
DeepSeek-R1-Distill-Qwen-32B 71.71 77.38 32.81 38.60 55.65 60.77 78.25 79.85 67.81 69.44 58.65 59.56 60.81 64.27
GigaChat-2-Pro 97.94 97.96 63.19 64.79 94.21 94.21 94.58 94.73 92.46 92.62 72.54 73.29 85.82 86.27

Large Size Models
Llama-3.3–70B-Instruct 95.58 95.60 62.81 62.81 98.56 98.58 91.94 92.10 90.60 90.69 60.00 60.35 83.25 83.36
Qwen-2.5–72B-Instruct 95.98 95.98 71.12 71.12 95.31 95.31 95.04 95.06 92.42 92.48 77.88 77.92 87.96 87.98
Mistral-Large-Instruct-2411-123B 91.83 91.92 65.81 65.81 93.48 93.48 84.81 84.85 85.52 85.58 48.50 48.60 78.33 78.38
Llama-3.1–405B-Instruct 98.67 98.77 74.33 75.94 99.81 99.81 96.21 96.33 92.94 93.04 68.27 68.58 88.37 88.75
DeepSeek-V3-671B 98.48 98.48 56.15 56.15 99.12 99.12 97.06 97.06 94.52 94.52 80.00 80.00 87.56 87.56
GigaChat-2-Max 95.62 95.62 73.94 73.94 94.96 94.96 88.25 88.29 88.19 88.21 68.69 68.73 84.94 84.96
GPT-4o 99.62 99.62 89.75 89.75 99.79 99.79 99.29 99.29 97.15 97.15 93.77 93.77 96.56 96.56

LVLMs
DeepSeek-VL2-27.5B 8.88 8.98 6.12 6.12 18.40 18.40 5.58 5.67 5.29 5.35 0.35 0.40 7.44 7.49
Qwen2.5-VL-72B-Instruct 82.73 82.85 55.75 55.75 67.77 67.77 56.90 56.90 65.75 65.81 46.40 47.60 62.55 62.78
InternVL2.5-78B 28.10 28.40 28.40 28.50 27.88 28.23 12.83 13.15 13.54 13.92 4.92 5.44 19.28 19.60
Llama-3.2-90B-Vision-Instruct 36.17 38.00 38.48 38.58 46.75 46.79 19.79 20.38 22.23 23.15 7.46 7.94 28.48 29.14
Pixtral-Large-Instruct-124B 26.12 26.50 15.12 15.12 32.62 32.62 12.08 12.10 13.10 13.33 3.90 3.92 17.16 17.27
GigaChat-2-Pro-Vision 9.73 9.94 5.21 5.21 9.54 9.58 3.46 3.50 4.15 4.25 0.75 0.83 5.47 5.55

Table 3: Performance of the different LLMs on the 2Columns1Row benchmark. The top result is highlighted in
bold, while the second is underlined. “-”. The "Average" column represents a weighted average of the metric values
for all datasets.

the potential dynamism of the benchmark setup, we472

computed the weighted average Coverage metric473

across datasets for each benchmark variant, test-474

ing a subset of models, including the multimodal475

Qwen-2.5-VL (see §5.1). We also report the mean476

and standard deviation of the aggregated metric val-477

ues across all benchmark reassemblies. The results478

are summarized in Table 4.479

Model Main version (v1) v2 v3 v4 v5 mean ± std
Llama-3.1–8B 60.73 60.15 59.60 60.37 60.46 60.26 ± 0.43
Mistral-Small-24B-Instruct-2501 79.49 79.16 79.09 79.00 79.34 79.22 ± 0.20
Qwen-2.5–72B-Instruct 87.98 87.89 87.93 88.19 88.07 88.01 ± 0.12
Qwen2.5-VL-72-Instruct 62.78 62.48 62.67 62.61 61.89 62.49 ± 0.35

Table 4: Results for validating the dynamism of the
benchmark. The Coverage metric’s weighted average
values across all reassemblies of the 2Columns1Row are
provided. Last column represents mean and standard
deviation values µ± σ of the aggregated metric values
across all benchmark reassemblies.

The results indicate a consistently low standard480

deviation (< 0.5%) for all evaluated models, con-481

firming the 2Columns1Row benchmark’s reliabil-482

ity for dynamic evaluation scenarios across various483

row/column configurations.484

5 Results485

5.1 LLM Performance486

The results of evaluating the models on all bench-487

mark datasets are presented in Table 3. Experi-488

ments show that all models follow the expected489

format in most cases and only output the value of490

the required table cell. 491

According to the metrics in the table, the met- 492

rics generally improve with increasing model 493

size. Llama-3.1-405B-Instruct, DeepSeek-V3- 494

671B, and GPT-4o all showed promising results, 495

with GPT-4o performing exceptionally well on all 496

the datasets tested. The Qwen models also stand 497

out, showing excellent results compared to other 498

models of similar size. It is remarkable that the 499

Qwen-2.5-32B-Instruct model performed even bet- 500

ter than the Qwen-2.5-72B-Instruct model. All 501

LVLMs, except for Qwen2.5-VL-72B-Instruct and 502

partially Llama-3.2-90B-Vision-Instruct, perform 503

very poorly compared to their text-only counter- 504

parts. 505

The most challenging datasets turned out to be 506

Colors and Word Sequences. Both datasets have 507

the property of uniformity of values in tables. The 508

difficulty with the Colors dataset arises from the 509

fact that the letters A, B, C, D, E and F appear both 510

in the column headers and in the cell values. This 511

overlap makes it harder for the model to differenti- 512

ate between noise and meaningful information. The 513

Word Sequences dataset consists of semantically un- 514

related text sequences within columns. Cells may 515

contain entire sentences that could potentially lead 516

to the model’s hallucinations. 517

Models achieved the highest performance on the 518

datasets Person Info and Numbers, where columnar 519

heterogeneity enabled value identification through 520
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semantic matching. In contrast, homogeneous syn-521

thetic datasets required positional counting (col-522

umn indexing) for successful task completion, pre-523

senting a greater challenge.524

5.2 Error Analysis525

The main issues with 2Columns1Row involve the526

model selecting incorrect rows or columns and fre-527

quently hallucinating table cell values as table size528

increases. For multimodal models, challenges in-529

clude errors from OCR (Optical Character Recogni-530

tion) and processing high-resolution images. Here,531

Qwen-2.5-VL stands out for its ability to analyze532

complex images effectively. Also, LVLMs of-533

ten struggle to recognize text in Latin characters,534

even when the source is Cyrillic, including column535

names.536

Let us denote the width of the table by W , the537

row with the answer by r, the query column by q,538

and the target column by t. To identify patterns539

in model errors, we created two types of heatmaps540

that are the most representative:541

1. "table width" × "row number": W × r;542

2. "table width" × "relative distance of543

columns": W × (q − t).544

The heatmaps for Llama-3.1-405B on the Colors545

dataset are presented in Figures 4 and 5. The rest546

of the examples can be found in the Appendix B.547

Figure 4: Llama-3.1-405B. Colors dataset. W × r
visualization

Figure 5: Llama-3.1-405B. Colors dataset. W × (q− t)
visualization

As seen in Figure 4, the model’s performance548

deteriorates as the number of columns increases.549

Additionally, with the same number of columns, 550

the model is more likely to provide incorrect an- 551

swers in rows further from the table’s beginning. 552

This suggests that there are challenges with LLM’s 553

understanding of large tables. 554

To interpret the heatmap 5, examine the cell in 555

the i-th row and j-th column. If i < j (above the 556

diagonal), the percentage of correct answers corre- 557

sponds to the table width j and relative distance i. 558

If i > j (below the diagonal), the width is i and the 559

relative distance is j. Questions appear above the 560

diagonal when the question column is to the right 561

of the answer column, and below it when to the left. 562

Average values are found along the diagonal. The 563

figure shows that the model performs well in the 564

following areas: 565

• in the upper-left corner, where there are not 566

so many columns and the tables are simpler; 567

• in the top row and the left column: this cor- 568

responds to pairs of columns that are next to 569

each other at a distance of +1 or −1; 570

• immediately above and below the diagonal: 571

this corresponds to pairs of columns, where 572

one is the first and the second is the last. 573

As in the previous heatmap, the quality of the 574

models decreases as the number of columns in the 575

table increases. Additionally, the metrics are lower 576

when the query and target columns are not located 577

in a trivial manner. It can also be seen from the 578

heatmap W × (q − t) that when q is positioned to 579

the left of t (lower left part), the metrics tend to be 580

higher. 581

6 Conclusion 582

We present 2Columns1Row, the first open-source 583

benchmark for TableQA in Russian, covering the 584

model’s abilities to reason about the relationships 585

between rows and columns in a table using tex- 586

tual and multimodal modalities. This benchmark 587

provides a comprehensive and potentially dynamic 588

tool to evaluate and improve model performance, 589

advancing the field of Intelligent Document Pro- 590

cessing. It assesses textual and multimodal mod- 591

els across diverse tables and demonstrates the vi- 592

ability of a dynamic text-based system for table 593

understanding. The findings highlight significant 594

opportunities for enhancing table understanding 595

and reasoning, establishing a strong foundation for 596

future research in this critical area of document 597

processing. 598
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Limitations599

While 2Columns1Row provides a comprehensive600

benchmark for table analysis tasks in the Russian601

language, it has several limitations that we aim to602

address in future work.603

Task Scope and Complexity The current ver-604

sion of 2Columns1Row primarily focuses on un-605

derstanding columns and rows in table reasoning,606

which is relatively straightforward for state-of-the-607

art models. However, we acknowledge the need608

to expand our research to incorporate more com-609

plex tasks, especially those involving tables, such610

as table summarization, reasoning, and integration611

with autonomous AI agents. This extension will612

provide a more comprehensive evaluation of model613

capabilities in handling tabular data.614

Real-World Data and Dynamic Structure615

While 2Columns1Row includes synthetic datasets616

for controlled evaluation, it lacks a diverse range617

of real-world tabular data with varying structures,618

such as multi-level headings and larger sizes. We619

aim to enhance the benchmark by incorporating620

more complex datasets from real-world scenarios,621

which better reflect the challenges and complexi-622

ties faced in practical applications. The potential623

for a dynamic structure in the benchmark is crucial624

for addressing issues related to data contamination625

and leakage.626

Ethical Statement627

We respect intellectual property rights and comply628

with relevant laws and regulations. The data in the629

benchmark is synthetically generated or publicly630

available, and we have taken careful measures to631

ensure that the documents in our dataset do not632

contain any sensitive personal information.633

Use of AI-assistants We use Grammarly to cor-634

rect errors in grammar, spelling, rephrasing, and635

style in the paper. Consequently, specific text636

sections may be identified as machine-generated,637

machine-edited, or human-generated and machine-638

edited.639
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A Table examples from 2Columns1Row998

datasets999

Examples of syntactically created sets are provided1000

in the following tables:1001

• The Person Info dataset (see Table 7) includes1002

information about individuals, such as: 1)1003

given names, 2) tax identification information,1004

3) email addresses, 4) date of birth, 5) identi- 1005

fication number, 6) date of registration, and 7) 1006

mobile phone numbers. 1007

• The Colors (see Table 7) dataset contains six 1008

columns of color values in the hexadecimal 1009

format #RRGGBB. 1010

• The Numbers (see Table 8) set consists of 1011

floating-point numbers formatted to six deci- 1012

mal places presented in 8 columns. 1013

• The Company Info (see Table 9) dataset in- 1014

cludes the company’s name, address, fax num- 1015

ber, and other relevant information. 1016

• The Word Sequences (see Table 10) dataset 1017

contains words and their combinations from 1018

Wiktionary for Russian, along with their parts 1019

of speech. 1020

B Heatmap examples for error analysis 1021

Heatmap visualization examples of the Colors 1022

dataset for GigaChat-Max (see Figures 12,11)and 1023

Qwen-2.5-32B (see Tables 13, 14) on various table 1024

width/heights. 1025
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Figure 6: Table from the Person Info dataset. The columns of the table correspond to: 1) given names, 2) INN (tax
ID), 3) Email, 4) date of birth, 5) ID, 6) date of registration, 7) mobile phone.
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Figure 7: Table from the Colors dataset.

Figure 8: Table from the Numbers dataset.
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Figure 9: Table from the Company Info dataset. The columns of the table correspond to: 1) Phone numbers, 2)
Name, 3) the date of creation, 4) fax, 5) OGRN (id), 6) address, 7) company email.
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Figure 10: Table from the Word Sequences dataset. The columns of the table correspond to: 1) sentence, 2) adverb,
3) action, 4) gerund, 5) the set of words, 6) adjective.
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Figure 11: GigaChat-Max. Colors dataset. W × r visualization

Figure 12: GigaChat-Max. Colors dataset. W × (q − t) visualization
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Figure 13: Qwen-2.5-32B. Colors dataset. W × r visualization

Figure 14: Qwen-2.5-32B. Colors dataset. W × (q − t) visualization
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