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Abstract

Although the emergence of pre-trained Large001
Language Models has significantly accelerated002
recent progress in NLP, their ever-increasing003
size poses significant challenges for con-004
ventional fine-tuning, especially in memory-005
intensive tasks. We investigate the potential006
of Parameter-Efficient Fine-Tuning, focusing007
on Low-Rank Adaptation (LoRA), in the do-008
main of multilingual summarization, a task009
that is both challenging (due to typically long010
inputs), and relatively unexplored. We con-011
duct an extensive study across different data012
availability scenarios, including high- and low-013
data settings, and cross-lingual transfer, lever-014
aging models of different sizes. Our find-015
ings reveal that LoRA is competitive with full016
fine-tuning when trained with high quantities017
of data, and excels in low-data scenarios and018
cross-lingual transfer. We also study different019
strategies for few-shot cross-lingual transfer,020
finding that continued LoRA tuning outper-021
forms full fine-tuning and the dynamic compo-022
sition of language-specific LoRA modules.023

1 Introduction024

The emergence of pre-trained Large Language025

Models (LLMs), such as PaLM 2 (Anil et al., 2023),026

LLaMA 2 (Touvron et al., 2023), and the GPT fam-027

ily from OpenAI, has significantly accelerated re-028

cent progress in NLP. However, the ever-increasing029

size of LLMs poses significant challenges for tra-030

ditional fine-tuning, particularly when faced with031

many downstream tasks or tasks with a large mem-032

ory footprint, e.g., due to processing long inputs.033

Parameter-Efficient Fine-Tuning (PEFT) meth-034

ods have recently shown promise in adapting a035

pre-trained model to different tasks by selectively036

fine-tuning a small subset of additional parame-037

ters. Widely-adopted PEFT techniques include038

adapters (Houlsby et al., 2019; Pfeiffer et al.,039

2021), Low-Rank Adaptation (LoRA; Hu et al.040

2022), prefix-tuning (Li and Liang, 2021), and041

prompt-tuning (Lester et al., 2021). Among these, 042

LoRA has become one of the most popular ap- 043

proaches, achieving state-of-the-art performance 044

without introducing latency at inference time. The 045

majority of PEFT studies have focused on natural 046

language understanding, e.g., classification tasks as 047

exemplified in the GLUE (Wang et al., 2018) and 048

SuperGLUE (Wang et al., 2019) benchmarks, and 049

monolingual generation, e.g., table-to-text genera- 050

tion or summarization (Li and Liang, 2021). 051

In this paper, we empirically investigate the po- 052

tential of LoRA in the domain of multilingual sum- 053

marization, a task that is both challenging, and rel- 054

atively unexplored. Multilingual summarization of- 055

ten involves processing lengthy inputs (Hasan et al., 056

2021), providing a natural testbed for the effective 057

use of PEFT methods. In addition to being able to 058

understand long documents, models are expected 059

to fluently generate sentences in many languages, 060

requiring significant linguistic versatility. Multilin- 061

gual tasks face additional challenges pertaining to 062

the availability of resources (e.g., for training). It 063

is unrealistic to expect that large-scale and high- 064

quality data will be available or created for every 065

language (Parida and Motlicek, 2019). In situations 066

where multilingual data is scarce, PEFT methods 067

which selectively update a small number of parame- 068

ters seem more suitable, while fine-tuning can lead 069

to overfitting or catastrophic forgetting (Kirkpatrick 070

et al., 2017; Mitchell et al., 2022). 071

This motivates us to explore the following re- 072

search questions: (1) Can LoRA be effectively ap- 073

plied to complex multilingual summarization tasks? 074

and (2) Under which conditions does LoRA exhibit 075

the most potential? To answer these questions, 076

we investigate different data availability scenarios: 077

high-data regime (high quantities of training data 078

are available for all languages), low-data regime 079

(training data is limited but available for all lan- 080

guages), and cross-lingual transfer (zero or only a 081

few examples are available for some languages). In 082
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the latter case, a model trained on a high-resource083

language (e.g., English) is localized to additional084

languages for which data is scarce or unavailable085

(Artetxe et al., 2020; Karthikeyan et al., 2020). In086

addition to mimicking real-world conditions, the087

cross-lingual transfer setting allows us to exper-088

iment with the composition of language-specific089

LoRA modules, including the recently proposed090

few-shot LoraHub (Huang et al., 2023). Our ex-091

periments are conducted on two multilingual sum-092

marization datasets, XLSum (Hasan et al., 2021)093

and XWikis (Perez-Beltrachini and Lapata, 2021),094

using different sizes of the PaLM 2 model, an LLM095

trained on multilingual text spanning more than096

100 languages (Anil et al., 2023).097

To summarize, our contributions are as follows:098

(1) we conduct a comprehensive study of the effec-099

tiveness of LoRA for multilingual summarization100

under different data regimes; (2) we showcase the101

benefits of LoRA in low-data and cross-lingual102

transfer settings; and (3) we investigate how to best103

leverage LoRA for cross-lingual transfer subject to104

the availability of target language examples.105

2 Related Work106

Parameter Efficient Fine-Tuning methods fo-107

cus on enhancing computational efficiency while108

maintaining competitive performance compared to109

full fine-tuning. LoRA is one of the most popu-110

lar PEFT approaches (Hu et al., 2022; Chen et al.,111

2022). It reduces the number of trainable param-112

eters by learning pairs of rank-decomposition ma-113

trices while freezing the model’s original weights.114

This vastly reduces storage requirements for large115

language models adapted to specific tasks and en-116

ables efficient task-switching during deployment,117

without introducing inference latency. More re-118

cent work explores how to adaptively adjust the119

rank of the matrices (Zhang et al., 2023b; Valipour120

et al., 2023), proposes generalizations of LoRA and121

related PEFT approaches under a common frame-122

work (He et al., 2022; Chavan et al., 2023), and123

combines LoRA with quantization (Dettmers et al.,124

2023). However, most of these studies focus on125

classification and monolingual generation tasks. In126

contrast, we investigate the potential of LoRA in127

the domain of multilingual summarization, a task128

that is both challenging, and relatively unexplored.129

Cross-lingual Transfer requires a model to130

learn a task from labeled data in one language131

(typically English), and then perform the equiv-132

alent task in another language where no or very 133

little labeled data is available (Artetxe et al., 2020; 134

Karthikeyan et al., 2020; Lauscher et al., 2020; 135

Whitehouse et al., 2022, 2023a). Previous stud- 136

ies focusing on PEFT methods for cross-lingual 137

transfer have explored adapter-based approaches 138

(Pfeiffer et al., 2020; Ansell et al., 2021) and com- 139

posable sparse fine-tuning (Ansell et al., 2022), 140

among others. Vu et al. (2022) evaluate prompt- 141

tuning (Lester et al., 2021) in a zero-shot setting for 142

cross-lingual summarization, focusing on the Wik- 143

ilingua dataset (Ladhak et al., 2020). Their study 144

does not cover LoRA, nor does it explore scenarios 145

with more available data (e.g., few-shot settings). 146

Model Composition and Weight Merging aims 147

to combine individually trained models to enable 148

generalization to unseen tasks. Previous work in- 149

cludes weight composition guided by task similar- 150

ity (Lv et al., 2023) or arithmetic operations such 151

as addition or subtraction (Zhang et al., 2023a), 152

multi-task prompt pre-training (Sun et al., 2023), 153

and combining models in parameter space by min- 154

imizing prediction differences between a merged 155

model and individual models (Jin et al., 2023). For 156

our multilingual summarization task, we also ex- 157

plore the composition of language-specific LoRA 158

matrices through weight averaging, as well as dy- 159

namic weight composition when few-shot samples 160

are available (Huang et al., 2023). 161

3 LoRA for Multilingual Summarization 162

We now present the fundamentals of LoRA (Hu 163

et al., 2022) and then discuss how individual LoRA 164

modules can be combined (Huang et al., 2023) 165

for cross-lingual transfer. We also introduce our 166

assumptions regarding the availability of training 167

data in the domain of multilingual summarization. 168

3.1 LoRA and LoraHub 169

LoRA Let W0 ∈ Rd×k denote the weight matrix 170

of a pre-trained LLM (where d is the input dimen- 171

sion and k is the output dimension). The key idea of 172

LoRA is to represent the fine-tuned W with a low- 173

rank decompositionW0+∆W = W0+BA where 174

B ∈ Rd×r and A ∈ Rr×k, and r � min(d, k), 175

making BA a low-rank matrix compared to W0. 176

During training, W is frozen, while B and A con- 177

tain trainable parameters which are effectively a 178

portion (2r/d) of the parameters compared to full 179

fine-tuning. Although LoRA can be in principle 180

applied to any subset of weight matrices, Hu et al. 181
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(2022) only adapt the weight matrices in the self-182

attention module of the Transformer architecture.183

We also follow this recipe in experiments and up-184

date all four attention matrices (i.e., query, key,185

value, and out).186

LoraHub is a gradient-free, few-shot learning187

approach, recently proposed in Huang et al. (2023).188

It focuses on composing individually trained LoRA189

modules for cross-task generalization. Available190

LoRA modules mi are synthesized into module191

m̂ =
∑N

i=1wimi where wi is a scalar weight that192

can assume positive and negative values. The op-193

timal weighted sum is learned through black-box194

gradient-free optimization (Sun et al., 2022), based195

on performance metrics on a few examples repre-196

sentative of a new target task.197

3.2 Data Regimes198

We investigate the effectiveness of LoRA for mul-199

tilingual summarization under the following data200

assumptions:201

High Data This scenario assumes that sufficient202

training data is available in all languages of interest.203

Such data could be obtained through automatic204

pipelines or crowdsourcing.205

Low Data In this scenario, we assume that a lim-206

ited number of examples are available in the tar-207

get languages of interest, typically in the order of208

dozens or a few hundred. This scenario is com-209

mon when working with low-resource languages or210

when data cannot be easily obtained through crowd-211

sourcing but requires input from expert annotators.212

Cross-Lingual Transfer Within this context, we213

consider scenarios where training examples are pri-214

marily available in one or a few high-resource lan-215

guages. We explore three settings corresponding to216

the following assumptions: (a) only English train-217

ing data is available; (b) training data is available218

in some languages besides English, which creates a219

more complex multilingual setting; and (c) a small220

number of labeled examples are available in the tar-221

get language, allowing us to study few-shot cross-222

lingual generalization.223

4 Experimental Setup224

This section introduces the datasets and models225

used in our study. We further elaborate on the226

details of our experimental setup, and the metrics227

used to assess the generated summaries.228

Dataset XLSUM XWIKIS

Source BBC News Wikipedia
Languages 44 5
Train/Val/Test Data 1.12M / 114K / 114K 1.43M / 40K / 35K
Input/Output Words 470.2 / 22.1 1042.7 / 63.7

Table 1: Summary statistics for XLSum and XWikis
multilingual summarization datasets. Train/Val/Test
shows the number of examples in each split. In-
put/Output shows the average number of words in the
English input document and output summary. XWikis
has long documents and multi-sentence summaries.

4.1 Datasets 229

We perform experiments on two multilingual ab- 230

stractive summarization datasets which differ with 231

respect to the number of languages they cover, the 232

number of data samples available, and the sum- 233

marization task itself (short vs long summaries). 234

Dataset statistics are presented in Table 1. 235

XLSum (Hasan et al., 2021) contains over one mil- 236

lion article-summary pairs in 45 languages. The 237

dataset was automatically collated from BBC news, 238

under the assumption that the introductory sentence 239

in the article is effectively a summary of its con- 240

tent. The number of training examples varies sig- 241

nificantly among languages, with English having 242

more than 300K instances, and Scottish-Gaelic just 243

above 1K (seeTable 8 in Appendix A). 244

XWikis (Perez-Beltrachini and Lapata, 2021) con- 245

sists of document-summary pairs with long doc- 246

uments and multi-sentence summaries. It was 247

synthesized from Wikipedia articles, under the as- 248

sumption that the body of the article and its lead 249

paragraph together form a document-summary pair. 250

XWikis covers five languages, i.e., Czech, German, 251

English, French, and Chinese. It also includes 252

cross-lingual document-summary instances, cre- 253

ated by combining lead paragraphs and article bod- 254

ies from Wikipedia titles that are language-aligned. 255

In our experiments, we focus on cases where the 256

article and the summary are in the same language. 257

4.2 Modelling Details 258

Our experiments focus on PaLM 2 (Anil et al., 259

2023), a decoder-only LLM which, compared to 260

PaLM (Chowdhery et al., 2023), exhibits superior 261

multilingual and reasoning capabilities, as well as 262

better compute efficiency. Specifically, we employ 263

two sizes (XXS and S) of the instruction-tuned 264

FLAN-PaLM 2 model (Wei et al., 2022a). All 265
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experiments were conducted on cloud TPUs, with266

a learning rate in the range of {1e−3, 2e−4, 2e−5}.267

The input/output length was truncated at 2,048/128268

tokens for XLSum and 2,048/256 for XWikis.269

4.3 Automatic Evaluation270

We evaluate the quality of the generated summaries271

along three dimensions, namely relevance, faith-272

fulness, and conciseness. In terms of relevance,273

we employ the widely used ROUGE score (Lin,274

2004), which measures the degree of n-gram over-275

lap between generated summaries and reference276

text. Following Aharoni et al. (2023), we com-277

pute ROUGE over SentencePiece tokens (Kudo278

and Richardson, 2018) to avoid inconsistencies in279

tokenization among languages.280

We measure the extent to which generated sum-281

maries are faithful to their input using textual en-282

tailment (Falke et al., 2019; Kumar and Talukdar,283

2020; Honovich et al., 2022; Whitehouse et al.,284

2023b; Huot et al., 2023). Specifically, for our en-285

tailment classifier, we fine-tuned mT5-XXL (Xue286

et al., 2021) on two NLI datasets, namely ANLI287

(Nie et al., 2020) and XNLI (Conneau et al., 2018).288

Following previous work (Aharoni et al., 2023;289

Huot et al., 2023), for each sentence in the sum-290

mary, we compute its entailment probability given291

the input and report the average across sentences.292

We also assess if a summary concisely represents293

the information in the source article using a recently294

proposed metric trained on the SEAHORSE bench-295

mark (Clark et al., 2023), which is a large-scale col-296

lection of human ratings on various dimensions of297

system summary quality across multiple languages,298

datasets, and models. We use a publicly available1299

mT5-XXL model (Xue et al., 2021) fine-tuned on300

SEAHORSE binary conciseness judgments.301

5 Results and Analysis302

5.1 High-data Regime303

In the high-data regime, we use the complete304

training set, including all languages in XLSum305

and XWikis. In Table 2, we compare conven-306

tional fine-tuning on all layers (Full FT), and a307

more constrained setting that exclusively updates308

attention layers (FT-Att) against LoRA variants309

where attention layers are tuned with different310

ranks (r = {4, 16, 64, 512}). We report results311

with PaLM 2-XXS and select the best checkpoints312

based on ROUGE-L throughout.313

1https://huggingface.co/google/seahorse-large-q6

XLSUM XWIKIS
Params R-L NLI SH R-L NLI SH

Full FT 100% 31.11 42.93 31.64 34.08 41.04 25.19
FT-Att 20% 30.88 50.32 36.12 32.22 37.06 24.20

LoRA-512 13.3% 29.81 42.58 30.16 33.38 40.48 24.78
LoRA-64 1.7% 29.79 45.51 31.80 34.04 45.34 27.02
LoRA-16 0.4% 29.77 48.48 33.25 33.80 46.10 27.42
LoRA-4 0.1% 29.03 51.16 34.42 32.92 47.43 27.72

Table 2: Results on XLSum and XWikis datasets with
PaLM 2-XXS trained in the high-data regime: full
fine-tuning on all layers (Full FT), on attention layers
(FT-Att), and LoRA-* (with different ranks). Params
denotes the proportion of trainable parameters. Best
ROUGE-L (R-L), NLI, and SEAHORSE (SH) concise-
ness scores (area under the ROC curve) are in bold.

Perhaps unsurprisingly, conventional fine-tuning 314

on all layers achieves the best ROUGE-L scores 315

for XLSum and XWikis. Updating attention 316

layers only results in competitive performance 317

on XLSum, however, it delivers a drop of 1.86 318

ROUGE-L points on XWikis. All LoRA vari- 319

ants, even those with high ranks, update fewer 320

parameters than constrained fine-tuning. Despite 321

remarkable efficiency in parameter updates, LoRA 322

with rank 4 lags behind full fine-tuning (by 2.08 323

ROUGE-L points on XLSum and 1.16 on XWikis). 324

In general, we observe that expanding the parame- 325

ter update space through higher ranks enhances 326

summary relevance. For XWikis, LoRA with 327

rank 64 is very close to full fine-tuning. How- 328

ever, for XLSum where language diversity and 329

data imbalances are more pronounced, all LoRA 330

variants lag behind full fine-tuning by more than 331

1 ROUGE-L point. In line with Chen et al. (2022), 332

we observe that LoRA becomes more sensitive to 333

learning rate with higher ranks, requiring more 334

careful hyper-parameter tuning. 335

With regard to NLI, we note that LoRA achieves 336

superior scores compared to full fine-tuning with 337

lower rank settings exhibiting better summary faith- 338

fulness. We observe similar trends with the con- 339

ciseness metric. Additional results and language- 340

specific performance are included in Appendix B. 341

Takeaways When training data is available, full 342

fine-tuning yields the most relevant and informa- 343

tive summaries. LoRA is a competitive alternative, 344

particularly when considering summary faithful- 345

ness. Its performance can be further enhanced 346

with higher ranks, although more careful hyper- 347

parameter tuning is generally required. 348

4

https://huggingface.co/google/seahorse-large-q6


4 6 8 10 12 14

25
26
27
28
29
30
31

RO
UG

E-
L

XLSum

Full FT
LoRA-4

4 6 8 10 12 14 16 18

27
28
29
30
31
32
33
34

RO
UG

E-
L

XWikis

Full FT
LoRA-4

4 6 8 10 12 14

40
42
44
46
48
50
52
54

NL
I

XLSum

Full FT
LoRA-4

4 6 8 10 12 14 16 18
32
34
36
38
40
42
44
46
48

NL
I

XWikis

Full FT
LoRA-4

4 6 8 10 12 14
26

28

30

32

34

36

SE
AH

OR
SE

XLSum

Full FT
LoRA-4

4 6 8 10 12 14 16 18
21
22
23
24
25
26
27
28

SE
AH

OR
SE

XWikis

Full FT
LoRA-4

log2 of Examples per Language

Figure 1: Results on XLSum and XWikis datasets with
PaLM 2-XXS trained in the low → high-data regime:
Full FT vs. LoRA-4. Results for up to 256 examples
per language are averaged over three seeds, with the
standard deviation shown in the shaded areas.

5.2 Low-data Regime349

We then compare full fine-tuning against LoRA in350

the low-data regime where limited training data is351

available. From this section onward, we focus on352

LoRA with rank 4 and full fine-tuning on all layers.353

We randomly sample 16, 64, and 256 training ex-354

amples per language for both XLSum and XWikis.355

To ensure our results are robust, we conduct ex-356

periments with three different seeds, each with a357

unique set of samples. To examine how perfor-358

mance evolves as we increase our training sam-359

ples, we further present experiments with 1,024 and360

4,096 examples per language for both datasets.2 We361

set the number of validation samples to match that362

of the training data. As before, we select the best363

checkpoint based on ROUGE-L and subsequently364

evaluate on the entire test set.365

Figure 1 tracks the performance of PaLM 2-XXS366

with full fine-tuning and LoRA, when the number367

of training examples per language varies from 16368

to the entire dataset. The x-axis shows the number369

2When the number of training samples is set to 4,096, three
languages in XLSum already lack sufficient data, so we refrain
from selecting more examples per language.

Test XLSUM XWIKIS
Languages R-L NLI SH R-L NLI SH

Full FT
Non-English

5.20 4.49 6.88 17.51 35.95 22.43
LoRA-4 21.13 39.07 23.08 23.86 45.54 25.96

Full FT
English

32.58 57.09 38.01 36.59 53.59 30.81
LoRA-4 32.21 63.13 43.44 34.07 49.94 29.01

Table 3: Zero-shot cross-lingual transfer using full fine-
tuning (Full FT) and LoRA (rank 4); PaLM 2-XXS
models are trained and validated on English and tested
on all other languages (Non-English) and English only.
Best ROUGE-L (R-L), NLI, and SEAHORSE (SH) con-
ciseness scores (area under the ROC curve) are in bold.

of examples per language on log scale; the high- 370

data setting is approximated by ∼214.6 examples in 371

XLSum and ∼218.1 in XWikis. For training data 372

with 256 or fewer samples, we show standard de- 373

viation with shaded areas. We observe that LoRA 374

achieves overall better faithfulness (NLI) and con- 375

ciseness (SH) than full fine-tuning. For ROUGE-L, 376

LoRA demonstrates advantages in low-data scenar- 377

ios, while full fine-tuning delivers a performance 378

boost when increasing the number of examples 379

from 256 to 1,024. In addition, full fine-tuning is 380

sensitive to checkpoint selection in the low-data 381

regime, due to its susceptibility to overfitting. As 382

a result, it requires more frequent validation for 383

optimal checkpoint selection. In comparison, the 384

training process for LoRA is more stable. 385

Takeaways In low-data scenarios, LoRA is a bet- 386

ter alternative to full fine-tuning. It delivers consis- 387

tently competitive or even superior results with the 388

added advantage of efficient and stable training. 389

5.3 Cross-lingual Transfer 390

We now focus on cross-lingual transfer in multi- 391

lingual summarization and explore two common 392

scenarios, namely zero- and few-shot learning. For 393

LoRA, we focus on rank 4 in all experiments. 394

Zero-shot Transfer from English 395

We first consider a typical scenario where only 396

English training data is available, i.e., training and 397

validation are carried out using English examples, 398

whilst the model is tested on new languages. 399

Table 3 shows the performance of PaLM 2-XXS 400

with full fine-tuning and LoRA. We separate results 401

on English as they are not zero-shot (second block 402

in Table 3) and broadly align with our findings in 403

Section 5.1 (high-data regime). Full fine-tuning 404

generally outperforms LoRA except for NLI and 405

SH on English XLSum. In the cross-lingual trans- 406
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Hausa

Target: Gwamnatin Najeriya ta ce ’yan kasar sun ga irin amfani da rufe iyakokin
kasar ya yi a fannin tattalin arzikinta.

Full FT: President Muhammadu Buhari has appointed his deputy, the BBC presenter
and former minister, Shugaba Muhammadu Buhari, as the new chairman of the
Presidential Council.

LoRA-4: Gwamnatin Nijeriya ta yi tsokacin da shawarar da zai rufe iyakokin kasar.

Indonesian

Target: Perempuan Vietnam yang dituding terlibat dalam pembunuhan Kim Jong-
nam, saudara tiri dari pemimpin Korea Utara Kim Jong-un, telah dibebaskan.

Full FT: Kim Jong-nam, the wife of North Korean leader Kim Jong-un, has died in a
fight with Malaysia Airlines flight MH17. Here are the key points of the ruling:

LoRA-4: Seorang wanita Vietnam yang didakwa sebagai bagian dari pembunuhan
Kim Jong-nam, saudara tiri dari pemimpin Korea Utara, telah dibebaskan.

Table 4: XLSum Output Examples: zero-shot trans-
fer from English using Full FT and LoRA with PaLM
2-XXS. Full FT fails to generate summaries in target
languages and the content are off-topic.

fer scenario (first block in Table 3), fine-tuning per-407

forms exceptionally poorly across metrics and lan-408

guages on XLSum. The gap is smaller for XWikis409

as only four non-English languages are covered410

and all but Chinese are Indo-European. Further411

examination of the model output shows that the412

generated text is mostly in English rather than the413

target language. The model appears to comprehend414

the new language (i.e., input documents), however,415

it struggles to generate output accordingly.416

Table 4 illustrates XLSum examples of model417

output for Hausa and Indonesian. In both cases,418

Full FT summaries are in English, and off-topic419

(the Hausa article discusses the Nigerian govern-420

ment’s decision to close its borders, while the In-421

donesian one reports on the murder of Kim Jong-422

un). In Appendix B, we provide per-language re-423

sults which highlight that for zero-shot transfer424

from English, full fine-tuning consistently lags be-425

hind LoRA in every language, even in cases where426

languages are well-represented in the pre-training427

phase of PaLM 2 or are considered linguistically428

close to English.3 This catastrophic forgetting be-429

havior echoes the findings in Vu et al. (2022).430

Zero-shot Transfer from Multiple Languages431

We extend our study of zero-shot cross-lingual432

transfer to scenarios where training data is available433

in multiple languages rather than just English.434

For XLSum, we create a training data pool of435

10 languages from eight distinct linguistic fami-436

lies, each with substantial training data. These437

languages include Arabic (AR), (Simplified) Chi-438

nese (ZH), English (EN), Hausa (HA), Hindi (HI),439

3See Table 21 in Anil et al. (2023) regarding the distribution
of languages used in the pre-training of PaLM 2.

AZ BN JA RN KO NE GD SO TH YO
UNSEEN

AR 
ZH 
EN 
HA 
HI 
ID 
FA 
PT 

SW 
TR 

Full FT
LoRA-4

Avg. LoRA

SE
EN

15.42 23.38 28.20 10.29 23.78 21.91 16.75 14.94 23.35 19.00

14.46 22.11 30.85 8.25 22.33 22.77 16.02 14.40 23.12 16.53

15.12 22.24 28.91 8.90 23.09 23.43 15.54 18.30 22.23 20.85

15.67 22.26 27.49 10.59 21.90 22.17 16.20 18.09 20.47 19.40

13.60 22.71 28.81 9.75 21.31 24.96 18.13 12.90 22.54 19.30

17.07 23.91 29.41 10.47 24.82 23.64 20.66 19.26 22.94 19.51

10.66 22.15 27.59 10.19 20.77 20.68 16.26 15.86 22.28 17.62

15.05 22.32 28.13 7.82 22.84 22.27 16.78 15.26 21.34 18.52

17.10 22.69 28.67 11.87 24.37 24.84 18.18 18.74 21.42 19.49

12.16 21.46 27.49 9.79 20.30 20.23 16.78 15.67 21.71 18.44

15.89 5.97 22.61 13.17 8.45 21.72 17.92 12.15 13.17 13.75

19.94 26.25 32.15 10.23 26.26 27.38 19.16 20.26 25.37 18.87

18.22 23.05 29.71 16.25 25.03 24.57 22.67 21.51 23.42 22.96

(a) ROUGE-L scores for 10 test languages on XLSum.

CZ DE EN FR ZH
UNSEEN

CZ
DE
EN
FR
ZH

Full FT-excl.XX
LoRA-4-excl.XX

Avg.LoRA-excl.XX

SE
EN

20.53 19.41 16.15 12.25
27.13 30.69 29.21 18.43
26.11 27.89 27.65 13.77
26.93 29.97 28.39 17.19
25.01 24.19 25.14 26.27
17.16 25.31 23.47 22.60 12.56
24.68 27.45 32.19 30.68 19.66
28.55 31.57 32.93 30.27 18.99

(b) ROUGE-L scores for five languages on XWikis.

Figure 2: Zero-shot cross-lingual transfer on XLSum
(top) and XWikis (bottom); PaLM 2-XXS models are
trained on one (SEEN) language and tested on another
(UNSEEN). We also show results with full fine-tuning
on all seen languages (Full FT), LoRA, and (average)
weighted combination of language-specific LoRA mod-
ules (Avg.LoRA); excl.XX in XWikis denotes leave-
one-out training, excluding the test language.

Indonesian (ID), Persian (FA), Portuguese (PT), 440

Swahili (SW), and Turkish (TR). Additionally, we 441

select 10 test languages: Azerbaijani (AZ), Bengali 442

(BN), Japanese (JA), Kirundi (RN), Korean (KO), 443

Nepali (NE), Scottish Gaelic (GD), Somali (SO), 444

Thai (TH), Yoruba (YO). Test languages were se- 445

lected so that they are maximally diverse, each rep- 446

resenting a unique language family.4 For XWikis, 447

we adopt a leave-one-out approach, since it only 448

covers five languages. We rotate through the avail- 449

able languages, using four for training and one for 450

testing. 451

In addition to full fine-tuning and LoRA, we 452

report experiments with language-specific LoRA 453

modules, each trained on examples from one lan- 454

guage. An advantage of such specialized modules 455

is their scalability and adaptability. When addi- 456

tional languages become available, there is no need 457

4See Appendix A for details of language families in XLSum.
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to re-train the entire model; it is sufficient to add a458

new language-specific module. During inference,459

we can also flexibly experiment with various LoRA460

modules or weight composition methods. As men-461

tioned in Section 2, weight composition is an active462

research area that has demonstrated effectiveness463

across a spectrum of applications. We adopt a sim-464

ple approach that computes the weighted average465

of all available modules.466

The heatmaps in Figure 2 represent the467

ROUGE-L for models trained in one language and468

tested on another. Rows represent source models469

from SEEN languages, and columns UNSEEN test lan-470

guages. The color scale is column-wise normalized471

to provide a comparative view of the performance472

of the best and worst models for each UNSEEN test473

language. In the bottom three rows, we also illus-474

trate the performance of models trained on multiple475

seen languages and tested on unseen ones. We ex-476

periment with full fine-tuning, LoRA (rank 4), and477

weighted average LoRA.478

Based on the results of Figure 2, we observe that:479

(1) full fine-tuning consistently lags behind LoRA480

in zero-shot cross-lingual transfer, even with a di-481

verse collection of languages besides English; (2)482

the weighted average of language-specific LoRA483

modules (Avg.LoRA) and LoRA (trained on all484

available languages together) benefit different un-485

seen languages. Particularly for XLSum, lower-486

resource languages (i.e., RN, GD, SO, and YO), ex-487

hibit superior performance with language-specific488

LoRA training; and (3) languages with similarities489

demonstrate better transferability, as exemplified490

by transferring ZH to JA and SW to RN on XLSum,491

and the Indo-European languages on XWikis.492

Few-shot Cross-lingual Transfer493

Finally, we consider situations where some exam-494

ples are available in the target languages and ex-495

plore effective strategies for utilizing them. We496

follow on from the previous section and assume497

that models have been already trained on (seen)498

languages with sufficient data. One approach is499

to continue training these models using target lan-500

guage examples. So, if the starting checkpoint was501

obtained from full fine-tuning on seen languages,502

we continue with full fine-tuning on the new lan-503

guages. We also adopt the same strategy for LoRA.504

Another widely-used technique is in-context505

learning, where input and output examples are506

concatenated to form in-context demonstrations.507

Despite promising results in many LLM applica-508

XLSUM XWIKIS
Method R-L NLI SH R-L NLI SH

ZERO-
SHOT

Full FT 14.48 28.87 13.71 20.22 30.17 16.26
LoRA-4 22.59 37.39 24.21 28.46 48.31 26.40
Avg. LoRA 22.74 49.14 32.44 26.93 49.29 26.86

16-
SHOT

Full FT (cl) 22.31 30.15 18.79 26.90 34.17 21.82
LoRA-4 (cl) 24.71 41.12 26.47 30.05 45.90 28.20
LoraHub 23.37 38.95 26.07 27.59 47.45 25.84

64-
SHOT

Full FT (cl) 24.30 30.65 19.57 28.73 39.42 24.16
LoRA-4 (cl) 25.94 42.07 27.66 31.08 45.12 28.05
LoraHub 24.21 41.34 28.02 27.66 48.09 26.56

Table 5: Cross-lingual transfer on 10 XLSum lan-
guages and five XWikis languages (using leave-one-
out training) for PaLM 2-XXS model. 16- and 64-shot
experiments show average results from three different
seed runs. For continued learning (cl), we use a 14/2
and 60/4 training/validation split. Best ROUGE-L (R-
L), NLI, and SEAHORSE (SH) conciseness scores (area
under the ROC curve) are in bold. Results for individ-
ual languages are in Tables 11 and 14, Appendix B.

tions (Brown et al., 2020; Wei et al., 2022b), in- 509

context learning becomes less practical in the do- 510

main of multilingual summarization where mod- 511

els are expected to process long articles, which is 512

memory-intensive, especially as the number of ex- 513

amples grows. Instead, we experiment with the 514

recently proposed few-shot LoraHub learning ap- 515

proach (Section 3.1). The original formulation of 516

LoraHub (Huang et al., 2023) does not assume 517

any prior knowledge of the available LoRA mod- 518

ules which are randomly sampled and initialized 519

with zero weights (i.e., starting from a general- 520

purpose pre-trained LLM). We initialize LoraHub 521

with the weighted average of pre-existing language- 522

specific LoRA modules. The composition of mod- 523

ules fine-tuned on the same task, albeit in different 524

languages, offers a stronger baseline compared to 525

a pre-trained LLM. 526

We consider two few-shot settings, with 16 or 527

64 target language examples, simulating practical 528

scenarios where human annotators or experts create 529

a few examples for low-resource languages. We 530

compare few-shot continued learning and LoraHub 531

learning, using the same examples. To ensure ro- 532

bustness, all experiments are run on three differ- 533

ent sets of examples, and we report the average. 534

For continued learning, we split the examples into 535

training and validation using 14/2 and 60/4 splits. 536

For LoraHub, we use the Nevergrad toolkit5 for 537

black-box optimization. We empirically compared 538

ROUGE-L and loss as performance metrics guid- 539

ing the optimization, and found that ROUGE-L led 540

5https://facebookresearch.github.io/nevergrad
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XLSUM XWIKIS
Params R-L NLI SH R-L NLI SH

Full FT 100% 36.99 58.72 41.92 39.65 46.03 28.01
LoRA-4 0.04% 36.29 61.64 43.99 39.25 47.56 28.30

Table 6: Results on XLSum and XWikis datasets with
PaLM 2-S trained in the high-data regime: Full FT and
LoRA (rank 4). Params denotes the proportion of train-
able parameters. Best ROUGE-L (R-L), NLI, and SEA-
HORSE (SH) conciseness scores (area under the ROC
curve) are in bold.

to more stable results.541

Table 5 presents our results on XLSum and542

XWikis with 16- and 64-shots, averaged across543

test languages. Zero-shot results are also included544

for comparison. Our analysis supports the follow-545

ing observations: (1) with only a few target lan-546

guage examples (e.g., 16), full fine-tuning sees547

a remarkable improvement, resulting in an aver-548

age boost of 7.8 ROUGE-L points on XLSum549

and 6.7 on XWikis, corroborating the findings of550

Lauscher et al. (2020); (2) LoraHub slightly en-551

hances ROUGE-L performance compared to (zero-552

shot) weighted-average on XLSum with only 16553

examples; (3) LoRA continued learning consis-554

tently outperforms full fine-tuning and LoRAHub555

in terms of ROUGE-L and SH; however, LoraHub556

is superior in terms of NLI for XWikis.557

Takeaways In cross-lingual transfer situations,558

LoRA is consistently superior performance com-559

pared to full fine-tuning. LoRA continued learning560

shows particular promise when only a small num-561

ber of examples are available in the target language.562

6 Scaling Up563

We extend our analysis to the larger PaLM 2-S564

model, focusing on the high-data regime and zero-565

shot cross-lingual transfer using English data. Our566

results are summarized in Table 6 and Table 7.567

Interestingly, LoRA and full fine-tuning achieve568

similar performance, with LoRA taking the lead569

in cross-lingual transfer (see first block in Ta-570

ble 7). We hypothesize that when using the larger571

PaLM 2-S model, the increased capacity makes up572

for the small percentage of trainable parameters in573

LoRA (only 0.04% of the parameters), allowing574

it to benefit more from high-data regime training.575

At the same time, the larger model is more robust576

and does not exhibit catastrophic forgetting during577

full fine-tuning. As a result, we see that full fine-578

tuning performs on par with LoRA in the zero-shot579

Test XLSUM XWIKIS
Languages R-L NLI SH R-L NLI SH

Full FT
Non-English

33.22 60.72 41.96 35.70 46.27 27.51
LoRA-4 33.31 64.18 43.98 36.00 47.23 28.69

Full FT
English

40.38 71.21 45.82 42.03 51.76 28.95
LoRA-4 39.61 78.05 47.02 41.53 50.09 29.07

Table 7: Zero-shot transfer on XLSum and XWikis us-
ing Full FT and LoRA (rank 4). PaLM 2-S models
are trained and validated on English and tested on all
other languages (Non-English) and English only. Best
ROUGE-L (R-L), NLI, and SEAHORSE (SH) concise-
ness scores (area under the ROC curve) are in bold.

cross-lingual setting (see Table 7). 580

Takeaways For larger models such as PaLM 2-S, 581

LoRA is on par with full fine-tuning but a better 582

choice when considering computational efficiency. 583

7 Conclusions 584

In this paper, we explored the effectiveness of 585

LoRA on multilingual summarization across a di- 586

verse range of scenarios primarily determined by 587

the availability of training data. We summarize 588

our key findings by comparing the computationally 589

efficient LoRA against full fine-tuning. 590

LoRA achieves superior performance to full 591

fine-tuning in zero-shot and few-shot cross-lingual 592

transfer scenarios, and low-data settings (e.g., train- 593

ing data with fewer than 1K samples). This is most 594

pronounced with smaller models (e.g., PaLM 2- 595

XXS). In the specific case of few-shot learning, 596

LoRA continued learning outperforms LoraHub. It 597

also achieves overall superior summary faithfulness 598

and conciseness across various scenarios. 599

For larger models like PaLM 2-S, LoRA exhibits 600

on-par performance to full fine-tuning. This sug- 601

gests that model capacity matters. Notably, for 602

smaller models like PaLM 2-XXS, LoRA displays 603

worse performance in the full fine-tuning (high- 604

data) regime, when said performance is measured 605

via ROUGE-L, but is consistently superior in terms 606

of faithfulness and conciseness. 607

Taken together, our results underscore the utility 608

of PEFT methods for complex multilingual tasks 609

and cross-lingual transfer. Avenues for future work 610

include few-shot transfer and effective ways to com- 611

bine LoRA modules, e.g., by learning which ones 612

to activate for different tasks/languages (Ponti et al., 613

2023). It would also be interesting to reproduce 614

our results across varied LLMs and broader multi- 615

lingual generation tasks, beyond summarization. 616
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Limitations617

In this work, we have focused exclusively on618

decoder-only models. Future work could explore a619

wider range of LLMs, including encoder-decoder620

models. We anticipate the observations gained621

from decoder-only models to largely align with622

those from encoder-decoder models, thus gener-623

alizing our findings. In our cross-lingual transfer624

studies, we only considered LoRA models with a625

rank of 4, due to computational considerations. Ex-626

panding to additional LoRA settings would allow627

us to perform a more thorough comparison. Finally,628

our experiments have exclusively focused on multi-629

lingual summarization tasks. Extending our study630

to a wider range of multilingual text generation631

tasks with long input and output would provide a632

more comprehensive perspective on the capabilities633

and limitations of LoRA.634
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A Datasets 1011

Table 8 and Table 9 show the language families and 1012

the number of training examples per language in 1013

the XLSum and XWikis datasets. 1014

B Additional Results 1015

Table 10 shows ROUGE-1, ROUGE-2, and 1016

ROUGE-L scores for LoRA and full fine-tuning 1017

with PaLM 2-XXS on the two datasets. We ad- 1018

ditionally report activating LoRA tuning on Feed 1019

Forward layers with different ranks. 1020

Table 11, Table 12, and Table 13 show 1021

ROUGE-L, NLI, and SEAHORSE few-shot learning 1022

results for individual languages on XLSum. Ta- 1023

ble 14, Table 15, and Table 16 show ROUGE-L, 1024

NLI, and SEAHORSE few-shot learning results for 1025

individual languages on XWikis. 1026

Table 17, Table 18, and Table 19 show ROUGE- 1027

L, NLI, and SEAHORSE results for PaLM 2-XXS on 1028

XWikis for individual languages; in the high-data 1029

regime and in a zero-shot cross-lingual transfer set- 1030

ting from English. Table 20, Table 21, and Table 22 1031

show ROUGE-L, NLI, and SEAHORSE results for 1032

PaLM 2-XXS on XLSum for individual languages; 1033

in the high-data regime and in a zero-shot cross- 1034

lingual transfer setting from English. 1035
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Language ISO Language Family # Train

English EN Indo-European 306,522
Hindi HI Indo-European 70,778
Urdu UR Indo-European 67,665
Russian RU Indo-European 62,243
Portuguese PT Romance 57,402
Persian FA Indo-Iranian 47,251
Ukrainian UK Slavic 43,201
Indonesian ID Austronesian 38,242
Spanish ES Romance 38,110
Arabic AR Semitic 37,519
Chinese-Traditional ZH Sino-Tibetan 37,373
Chinese-Simplified ZH Sino-Tibetan 37,362
Vietnamese VI Austroasiatic 32,111
Turkish TR Turkic 27,176
Tamil TA Dravidian 16,222
Pashto PS Indo-Iranian 14,353
Marathi MR Indo-Aryan 10,903
Telugu TE Dravidian 10,421
Welsh CY Celtic 9,732
Pidgin PI Unknown 9,208
Gujarati GU Indo-European 9,119
French FR Romance 8,697
Punjabi PA Indo-Iranian 8,215
Bengali BN Indo-European 8,102
Swahili SW Bantu 7,898
Serbian-Latin SR Indo-European 7,276
Serbian-Cyrillic SR Indo-European 7,275
Japanese JA Japonic 7,113
Thai TH Kra-Dai Languages 6,616
Azerbaijani AZ Turkic 6,478
Hausa HA Afro-Asiatic 6,418
Yoruba YO Niger-Congo 6,350
Oromo OM Afro-Asiatic 6,063
Somali SO Afro-Asiatic 5,962
Nepali NE Indo-Aryan 5,808
Amharic AM Semitic 5,761
Kirundi RN Bantu 5,746
Tigrinya TI Semitic 5,451
Uzbek UZ Turkic 4,728
Burmese MY Sino-Tibetan 4,569
Korean KO Koreanic 4,407
Igbo IG Niger-Congo 4,183
Sinhala SI Indo-European 3,249
Kyrgyz KY Turkic 2,266
Scottish-Gaelic GD Celtic 1,313

Table 8: Language family and the Number of training
examples per language in XLSum.

Language ISO Language Family # Train

English EN Indo-European 624,178
German DE Indo-European 390,203
French FR Indo-European 323,915
Czech CS Indo-European 61,224
Chinese ZH Sino-Tibetan 31,281

Table 9: Language family and the Number of training
examples per language in XWikis.
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PaLM 2-XXS Trainable Layers Params
XLSUM XWIKIS

R-L R-1 R-2 R-L R-1 R-2

Full FT All Layers 100% 31.11 41.66 21.78 34.08 42.68 24.37
Attention Layers 20% 30.88 41.17 21.43 32.22 41.48 22.54

LoRA

Attention Layers

rank 512 13.3% 29.81 40.33 20.25 33.38 41.52 23.63
rank 64 1.7% 29.79 39.98 20.18 34.04 41.58 24.28
rank 16 0.4% 29.77 39.75 20.09 33.80 41.34 24.14
rank 4 0.1% 29.03 38.83 19.28 32.92 39.97 23.27

Attention + FFN
Layers

rank 64 5.4% 29.45 39.64 19.79 33.59 41.37 23.79
rank 16 1.4% 29.79 39.99 20.17 33.55 41.11 23.95
rank 4 0.3% 29.67 39.76 20.02 33.70 40.82 24.05

Table 10: Results on XLSum and XWikis datasets with PaLM 2-XXS trained in the high-data regime: full fine-
tuning on all layers, full fine-tuning on attention layers, and LoRA (with different ranks). Params denotes the
proportion of trainable parameters.

PaLM 2-XXS AVG AZ BN JA RN KO NE GD SO TH YO

ZERO-
SHOT

Full FT 14.48 15.89 5.97 22.61 13.17 8.45 21.72 17.92 12.15 13.17 13.75
LoRA-4 22.59 19.94 26.25 32.15 10.23 26.26 27.38 19.16 20.26 25.37 18.87
Avg. LoRA 22.74 18.22 23.05 29.71 16.25 25.03 24.57 22.67 21.51 23.42 22.96

16-
SHOT

Full FT + continued learning 22.31 16.64 22.95 28.28 17.02 24.31 26.94 19.56 19.66 23.58 24.18
LoRA-4 + continued learning 24.71 20.74 26.19 32.26 17.82 27.13 27.82 23.00 22.26 24.30 25.55
LoraHub 23.37 18.58 24.81 27.69 16.65 25.82 25.40 24.83 23.13 24.71 22.05

64-
SHOT

Full FT + continued learning 24.30 17.86 22.80 32.49 19.28 27.09 28.89 21.72 22.17 23.90 26.83
LoRA-4 + continued learning 25.94 20.91 26.08 33.10 19.09 28.43 29.38 25.78 23.06 25.48 28.06
LoraHub 24.21 20.10 25.16 29.03 17.61 27.46 26.82 24.94 23.04 24.37 23.53

Table 11: Cross-lingual transfer results (ROUGE-L) on 10 XLSum languages XLSum for PaLM 2-XXS model.
16- and 64-shot experiments show average results from three different seed runs. For continued learning, we use a
14/2 and 60/4 split for training/validation.

PaLM 2-XXS AVG AZ BN JA RN KO NE GD SO TH YO

ZERO-
SHOT

Full FT 28.87 19.17 28.28 35.27 24.00 30.76 46.44 38.22 15.23 33.02 18.26
LoRA 37.39 37.92 52.61 62.54 9.62 54.57 47.35 16.86 21.92 53.23 17.26
Avg. LoRA 49.14 45.54 60.55 66.37 39.63 66.44 55.86 33.43 34.26 60.86 28.47

16-
SHOT

Full FT + continued learning 30.15 15.83 46.29 37.55 17.55 35.61 42.22 20.07 26.69 39.74 20.00
LoRA + continued learning 41.12 37.33 56.45 52.31 30.62 58.08 49.10 24.32 33.37 45.02 24.58
LoraHub 38.95 37.76 47.95 48.17 35.52 49.29 40.90 32.14 26.29 52.08 19.40

64-
SHOT

Full FT + continued learning 30.65 20.06 39.10 47.13 12.54 41.70 47.93 18.01 24.03 46.00 9.96
LoRA + continued learning 42.07 37.16 53.76 54.85 18.20 52.19 52.90 31.29 37.10 52.61 30.60
LoraHub 41.34 36.56 44.52 54.47 47.70 53.45 45.16 29.60 23.98 54.35 23.65

Table 12: Cross-lingual transfer results (NLI) on 10 XLSum languages XLSum for PaLM 2-XXS model. 16- and
64-shot experiments show average results from three different seed runs. For continued learning, we use a 14/2
and 60/4 split for training/validation.
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PaLM 2-XXS AVG AZ BN JA RN KO NE GD SO TH YO

ZERO-
SHOT

Full FT 13.71 12.38 12.97 24.94 9.43 8.40 30.71 13.57 5.18 12.57 6.99
LoRA-4 24.21 25.40 36.15 48.70 4.15 36.86 32.84 7.10 9.02 36.71 5.17
Avg. LoRA 32.44 29.79 41.96 53.99 20.28 46.02 39.28 19.00 17.15 41.79 15.11

16-
SHOT

Full FT + continued learning 18.79 11.44 29.33 26.83 9.69 24.72 26.20 8.31 11.22 29.66 10.51
LoRA-4 + continued learning 26.47 26.22 37.43 37.68 14.53 39.02 32.29 13.57 15.95 33.12 14.91
LoraHub 26.07 26.35 33.69 38.75 17.56 34.90 29.20 17.87 13.45 38.99 9.92

64-
SHOT

Full FT + continued learning 19.57 13.88 26.64 29.87 7.77 27.07 28.51 8.78 11.80 32.63 8.77
LoRA-4 + continued learning 27.66 27.02 37.05 40.43 9.67 34.20 35.36 16.84 18.37 38.63 19.03
LoraHub 28.02 26.81 31.88 46.24 23.37 37.88 33.13 17.36 11.72 39.58 12.17

Table 13: Cross-lingual transfer results (SEAHORSE) on 10 XLSum languages XLSum for PaLM 2-XXS model.
16- and 64-shot experiments show average results from three different seed runs. For continued learning, we use a
14/2 and 60/4 split for training/validation.

PaLM 2-XXS AVG CS DE EN FR ZH

ZERO-
SHOT

Full FT 20.22 17.16 25.31 23.47 22.60 12.56
LoRA-4 28.46 28.55 31.57 32.93 30.27 18.99
Avg. LoRA 26.93 24.68 27.45 32.19 30.68 19.66

16-
SHOT

Full FT + continued learning 26.90 22.53 29.23 30.50 26.16 26.11
LoRA-4 + continued learning 30.05 27.68 33.76 31.98 30.12 26.70
LoraHub 27.59 26.09 29.81 32.70 29.10 20.25

64-
SHOT

Full FT + continued learning 28.73 26.45 30.17 32.24 28.86 25.95
LoRA-4 + continued learning 31.08 28.97 34.09 33.11 30.99 28.24
LoraHub 27.66 26.05 29.82 33.00 29.20 20.25

Table 14: Cross-lingual transfer results (ROUGE-L) on XWikis using leave-one-out training with PaLM 2-XXS
model. 16-shot and 64-shot experiments show the average results obtained across three different seed runs. For
continued learning, we use a 14/2 and 60/4 split for training/validation.

PaLM 2-XXS AVG CS DE EN FR ZH

ZERO-
SHOT

Full FT 30.17 33.30 28.60 34.73 24.07 30.14
LoRA-4 48.31 52.80 44.27 48.66 40.05 55.78
Avg. LoRA 49.29 52.67 42.86 50.34 43.76 56.80

16-
SHOT

Full FT + continued learning 34.17 26.93 31.51 43.51 26.73 42.17
LoRA-4 + continued learning 45.90 48.17 37.67 49.65 39.30 54.73
LoraHub 47.45 52.71 41.32 48.09 43.15 51.98

64-
SHOT

Full FT + continued learning 39.47 35.29 32.36 54.19 35.73 39.81
LoRA-4 + continued learning 45.12 48.46 36.48 50.75 38.31 51.62
LoraHub 48.09 52.74 41.31 50.63 42.72 53.05

Table 15: Cross-lingual transfer results (NLI) on XWikis using leave-one-out training with PaLM 2-XXS model.
16-shot and 64-shot experiments show the average results obtained across three different seed runs. For continued
learning, we use a 14/2 and 60/4 split for training/validation.
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PaLM 2-XXS AVG CS DE EN FR ZH

ZERO-
SHOT

Full FT 16.26 13.13 19.74 18.81 16.90 12.73
LoRA-4 26.40 29.84 28.59 27.22 27.23 19.11
Avg. LoRA 26.86 30.13 28.48 28.07 28.18 19.44

16-
SHOT

Full FT + continued learning 21.82 18.10 25.53 25.00 21.47 18.98
LoRA-4 + continued learning 28.20 27.80 29.59 29.43 29.18 25.02
LoraHub 25.84 28.95 27.48 28.20 27.63 16.96

64-
SHOT

Full FT + continued learning 24.16 22.92 23.31 29.15 26.80 18.64
LoRA-4 + continued learning 28.05 28.02 28.80 30.08 29.16 24.17
LoraHub 26.56 29.34 27.33 29.93 27.60 18.58

Table 16: Cross-lingual transfer results (SEAHORSE) on XWikis using leave-one-out training with PaLM 2-XXS
model. 16-shot and 64-shot experiments show the average results obtained across three different seed runs. For
continued learning, we use a 14/2 and 60/4 split for training/validation.
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PaLM 2-XXS High-Data EN Zero-Shot
FT LoRA FT LoRA

Average 34.08 32.92 17.51 23.86
English 35.13 34.16 — —
German 36.97 36.08 20.64 27.89
French 34.53 33.65 16.77 27.65
Czech 31.92 30.82 19.21 26.11
Chinese 31.82 29.91 13.43 13.77

Table 17: Per language ROUGE-L results on XWikis
using full fine-tuning (FT) and LoRA (rank 4), for
PaLM 2-XXS in the high-data regime and in a zero-
shot cross-lingual transfer setting from English.

PaLM 2-XXS High-Data EN Zero-Shot
FT LoRA FT LoRA

Average 41.04 47.43 35.95 45.54
English 48.34 51.35 — —
German 35.27 39.42 37.09 42.02
French 35.58 39.31 37.32 41.73
Czech 42.46 50.78 33.75 51.75
Chinese 43.53 56.30 35.66 46.65

Table 18: Per language NLI results on XWikis using
full fine-tuning (FT) and LoRA (rank 4), for PaLM 2-
XXS in the high-data regime and in a zero-shot cross-
lingual transfer setting from English.

PaLM 2-XXS High-Data EN Zero-Shot
FT LoRA FT LoRA

Average 25.19 24.20 22.43 25.96
English 27.80 29.37 — —
German 26.42 28.88 25.39 28.47
French 25.95 29.15 24.87 28.46
Czech 25.36 28.40 21.86 28.97
Chinese 20.42 22.79 17.60 17.93

Table 19: Per language SEAHORSE results on XWikis
using full fine-tuning (FT) and LoRA (rank 4), for
PaLM 2-XXS in the high-data regime and in a zero-
shot cross-lingual transfer setting from English.

PaLM 2-XXS High-Data EN Zero-Shot
FT LoRA FT LoRA

Average 31.11 29.03 5.20 21.13
English 32.33 31.25 – –
Hindi 35.41 32.80 4.43 27.24
Urdu 34.93 31.70 1.31 22.67
Russian 27.40 25.08 5.67 22.60
Portuguese 30.82 28.50 8.85 26.44
Persian 34.64 31.91 3.67 27.94
Ukrainian 27.64 24.92 5.82 19.32
Indonesian 33.42 31.28 8.49 27.87
Spanish 26.21 24.80 8.21 22.85
Arabic 29.47 27.52 4.19 23.26
Chinese-Traditional 36.74 33.44 3.03 25.86
Chinese-Simplified 36.95 33.96 2.11 28.54
Vietnamese 32.11 30.00 5.68 24.69
Turkish 31.09 28.08 7.11 24.41
Tamil 32.71 29.67 3.44 21.22
Pashto 36.41 33.81 3.13 14.76
Marathi 28.14 26.25 4.73 17.97
Telugu 29.62 27.31 4.04 19.30
Welsh 30.72 27.72 6.78 23.75
Pidgin 31.50 30.37 16.84 22.76
Gujarati 35.79 33.43 3.88 26.00
French 29.67 29.74 10.32 26.55
Punjabi 42.01 40.61 2.08 34.14
Bengali 29.52 28.26 1.85 22.29
Swahili 31.11 29.81 6.45 25.14
Serbian-Latin 22.92 21.94 5.56 18.87
Serbian-Cyrillic 24.55 23.60 5.49 15.28
Japanese 38.34 36.08 2.01 29.04
Thai 25.93 26.53 4.53 22.26
Azerbaijani 24.01 23.36 5.34 14.31
Hausa 33.03 28.85 7.55 15.82
Yoruba 33.66 29.87 8.40 20.30
Oromo 23.89 19.35 5.42 7.15
Somali 26.31 24.56 6.33 18.14
Nepali 32.28 30.81 1.79 23.07
Amharic 36.45 34.61 1.76 11.22
Kirundi 25.55 19.28 7.16 8.80
Tigrinya 39.85 36.34 1.52 16.90
Uzbek 24.21 23.09 3.51 12.39
Burmese 35.79 33.33 1.63 23.66
Korean 32.92 31.03 6.78 23.05
Igbo 30.59 28.57 7.74 16.63
Sinhala 35.75 35.26 2.93 27.88
Kyrgyz 22.61 22.18 4.31 12.24
Scottish-Gaelic 25.10 25.55 6.72 15.21

Table 20: Per language ROUGE-L results on XLSum
using full fine-tuning (FT) and LoRA (rank 4), for
PaLM 2-XXS in the high-data regime and in a zero-
shot cross-lingual transfer setting from English.
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PaLM 2-XXS High-Data EN Zero-Shot
FT LoRA FT LoRA

Average 42.93 51.16 4.49 39.07
English 62.34 62.60 – –
Hindi 55.00 56.15 2.02 49.50
Urdu 53.06 52.70 0.58 34.95
Russian 50.39 51.32 4.63 51.37
Portuguese 43.72 43.55 15.98 47.45
Persian 61.11 62.91 1.71 61.88
Ukrainian 47.34 50.00 3.35 34.03
Indonesian 57.03 60.26 8.02 61.63
Spanish 43.06 47.82 22.81 57.13
Arabic 46.92 48.78 2.09 44.86
Chinese-Traditional 57.04 60.85 0.80 58.49
Chinese-Simplified 57.13 59.94 1.84 57.74
Vietnamese 55.83 59.04 3.40 54.95
Turkish 46.84 51.02 5.44 44.23
Tamil 61.37 63.26 1.59 42.65
Pashto 45.49 46.87 1.97 24.39
Marathi 45.66 55.50 3.12 42.45
Telugu 43.73 50.49 0.88 33.70
Welsh 41.63 46.40 2.33 35.87
Pidgin 41.96 49.96 32.69 59.13
Gujarati 44.91 52.15 0.46 32.48
French 43.49 54.14 25.62 53.52
Punjabi 33.92 45.35 0.49 26.78
Bengali 51.17 63.23 2.93 47.99
Swahili 38.19 49.10 4.65 40.19
Serbian-Latin 35.07 44.41 4.91 44.72
Serbian-Cyrillic 29.72 42.63 1.12 45.97
Japanese 59.18 63.13 3.44 58.70
Thai 42.09 53.77 1.42 52.30
Azerbaijani 31.69 48.98 4.04 28.95
Hausa 31.37 38.11 2.31 19.91
Yoruba 34.71 42.99 6.02 18.23
Oromo 37.75 57.54 3.70 17.95
Somali 31.43 42.26 4.69 22.16
Nepali 46.71 59.99 0.54 40.40
Amharic 35.94 52.42 0.18 28.72
Kirundi 22.97 28.42 3.45 18.49
Tigrinya 41.04 44.01 0.53 28.01
Uzbek 29.78 46.71 2.14 17.78
Burmese 36.21 54.03 1.00 32.02
Korean 47.31 62.30 2.72 48.97
Igbo 32.43 38.73 3.76 23.81
Sinhala 31.49 57.47 0.17 34.10
Kyrgyz 27.39 47.95 0.70 26.43
Scottish-Gaelic 19.42 32.90 1.46 13.94

Table 21: Per language NLI results on XLSum using
full fine-tuning (FT) and LoRA (rank 4), for PaLM 2-
XXS in the high-data regime and in a zero-shot cross-
lingual transfer setting from English.

PaLM 2-XXS High-Data EN Zero-Shot
FT LoRA FT LoRA

Average 42.93 51.16 4.49 39.07
English 42.00 42.72 – –
Hindi 39.78 40.39 5.51 34.22
Urdu 40.96 38.77 4.28 20.58
Russian 43.60 44.32 6.79 41.20
Portuguese 33.19 34.56 12.95 37.87
Persian 44.39 45.43 5.68 42.24
Ukrainian 40.90 43.22 6.29 26.24
Indonesian 41.22 44.43 7.04 40.13
Spanish 33.30 37.06 19.19 45.30
Arabic 36.35 38.57 5.09 32.96
Chinese-Traditional 41.70 43.34 5.09 35.71
Chinese-Simplified 41.68 42.84 5.10 39.12
Vietnamese 35.78 36.42 6.03 28.99
Turkish 46.85 48.85 7.19 44.01
Tamil 38.00 37.06 4.43 21.96
Pashto 29.78 25.35 4.10 5.60
Marathi 33.08 35.48 7.82 25.43
Telugu 25.97 26.26 5.49 10.30
Welsh 29.00 28.98 5.93 17.44
Pidgin 28.82 32.71 22.28 37.42
Gujarati 26.13 27.99 5.56 13.49
French 36.77 48.56 20.38 43.65
Punjabi 22.58 23.84 4.80 10.53
Bengali 38.57 43.09 7.72 32.00
Swahili 31.57 39.15 5.72 28.45
Serbian-Latin 29.87 38.37 9.78 36.45
Serbian-Cyrillic 24.71 32.70 4.92 22.66
Japanese 38.68 43.81 7.77 45.05
Thai 31.35 38.99 5.68 32.21
Azerbaijani 27.07 35.27 5.29 15.41
Hausa 25.95 28.11 4.71 8.14
Yoruba 26.45 26.82 5.50 7.52
Oromo 24.63 22.66 6.16 6.26
Somali 23.87 22.36 5.01 7.59
Nepali 33.83 40.11 5.11 23.67
Amharic 25.44 26.81 4.79 4.67
Kirundi 18.69 14.30 5.89 6.64
Tigrinya 26.61 17.19 4.71 5.19
Uzbek 25.59 30.67 5.17 6.05
Burmese 28.06 35.06 4.92 10.54
Korean 32.52 40.15 5.95 27.97
Igbo 18.25 19.65 5.92 7.27
Sinhala 24.01 34.99 4.62 13.99
Kyrgyz 20.81 29.62 5.22 8.29
Scottish-Gaelic 15.65 22.03 4.95 5.05

Table 22: Per language SEAHORSE results on XLSum
using full fine-tuning (FT) and LoRA (rank 4), for
PaLM 2-XXS in the high-data regime and in a zero-
shot cross-lingual transfer setting from English.
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