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Abstract

Cancer patients experience high rates of chronic pain throughout the treatment1

process. Assessing pain for this patient population is a vital component of psycho-2

logical and functional well-being, as it can cause a rapid deterioration of quality3

of life. Existing work in facial pain detection often have deficiencies in labeling4

or methodology that prevent them from being clinically relevant. This paper in-5

troduces the first chronic cancer pain dataset, collected as part of the Intelligent6

Sight and Sound (ISS) clinical trial, guided by clinicians to help ensure that model7

findings yield clinically relevant results. The data collected to date consists of 298

patients, 509 smartphone videos, 189,999 frames, and self-reported affective and9

activity pain scores adopted from the Brief Pain Inventory (BPI). Using static im-10

ages and multi-modal data to predict self-reported pain levels, early models show11

significant gaps between current methods available to predict pain today, with room12

for improvement. Due to the especially sensitive nature of the inherent Personally13

Identifiable Information (PII) of facial images, the dataset will be released under14

the guidance and control of the National Institutes of Health (NIH).15

1 Introduction16

The prevalence of chronic pain in cancer patients is high, with an estimated prevalence of 59% in17

those undergoing anticancer treatment, 64% of whom have advanced stage disease and 33% who18

continue to experience pain following completion of curative treatment [1]. Despite advances in pain19

management, prompt assessment and management of cancer pain remains a challenge and a large20

proportion of patients continue to experience moderate to severe pain.21

Sub-optimal pain management can block patient recovery and improvement, making the already22

difficult cancer experience, worse, for both patient and family [2, 3]. Manual clinical assessment23

requires accounting for a landscape of complex emotions and beliefs that clinicians must regularly24

take into account when assessing cancer patient pain - physical, psychological, social, and spiritual25

elements combined with severe distress for future outlook [2, 4]. For example, patients undergoing26

chemotherapy are more likely to believe that “good patients" do not complain about pain which they27

believe can be distracting to clinicians and become non-communicative [2]. Further, few patients are28

actually screened for pain at each clinical visit [3], and pain is under-reported in patient populations29

such as nursing home patients [3]. Due to the variety of complex conditions affecting cancer pain,30

experts recommend repeated, regular pain assessment, which can be difficult and impractical for31

manual assessment by clinicians.32

Currently, no facial pain datasets exists for chronic cancer pain and little research overall has been33

conducted into machine learning for the identification and evaluation of chronic pain. For example, in34
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a review by [4], only seven out of 52 machine learning papers evaluated pain in a non-acute context35

such as chronic fatigue, fibromyalgia, chronic pancreatitis, migraines, and genetic pain. Existing36

facial pain research focuses on acute, musculoskeletal pain such as chronic lower back pain [5]37

and shoulder pain [6, 7] or simulated pain induced by heat or electrical stimuli [8, 9] where painful38

expressions are obvious through grimaces and eye raises. Such datasets are manually labeled by39

trained observers with Facial Action Coding Units [10], making the labeling procedure prohibitively40

expensive and impractical for clinical use. Further, external pain labels may be biased towards an41

outside observer’s impression of a patient’s pain, not the patient themselves. Research also shows that42

typical pain facial expressions that correlate with physical pain are less frequently observed among43

chronic pain cancer patients who exhibit subdued and placid expressions [11].44

Given the limitations of existing facial expression pain data, the U.S. National Institutes of Health45

(NIH) National Cancer Institute (NCI) initiated “A Feasibility Study Investigating the Use of Machine46

Learning to Analyze Facial Imaging, Voice and Spoken Language for the Capture and Classification47

of Cancer Pain" [12], or "Intelligent Sight and Sound" (ISS). Details of the protocol are available48

publicly at https://clinicaltrials.gov/ct2/show/NCT04442425. This is an observational,49

non-interventional clinical study that aims to address the following problem statement [12, 13]: “To50

determine if a new observational based pain prediction algorithm can be produced that is accurate to51

standard, patient-reported pain measures and is generalizable for a diverse set of individuals, across52

sexes and skin types.” The study has two objectives: 1) investigate facial image data, and 2) analyze53

text and audio, as modalities for predicting self-reported chronic cancer pain.54

The study is ongoing and aims to recruit 112 patients. We report the initial dataset, which is less55

than a quarter of the final data consisting of 29 patients. Data include multimodal extracts from56

video submitted in a spontaneous, home setting, and in a few cases of in-clinic capture at the NIH. It57

includes visual spectrum (RGB) video frames, facial images resulting from face detection models,58

facial landmarks from Active Appearance Models (AAMs) [14, 15], audio files, Mel spectrograms,59

audio features, and self-reported pain scores adopted from the Brief Pain Inventory (BPI) [16–18].We60

will present details of the study design, data distribution, and storage procedures to ensure patient61

privacy. We also provide initial baseline results for pain classification using simple, traditional,62

machine learning models and neural networks.63

2 Related Works64

Automatically detecting pain from facial expressions has been extensively published following65

methods of facial emotion recognition (FER). The majority of these works have focused on acute or66

musculoskeletal physical pain [4, 19–27]. Primary pain datasets based upon facial imaging include67

UNBC-McMaster Shoulder Pain Expression Archive [6, 7], the Biopotential and Video Heat Pain68

(BioVid) Database using controlled, simulated heat to induce pain [8], Multimodal Intensity Pain69

(MIntPAIN) database using pain resulting from electrical stimulation [9], the Experimentally Induced70

Thermal and Electrical (X-ITE) Pain Database [28, 29], and the EmoPain for chronic, musculoskeletal71

pain [30]. These datasets traditionally contain video sequences since video enables continuous clinical72

monitoring of pain response [18]. These datasets also contain extensive offline annotations of pain73

ratings by external observers, and sometimes include additional modalities such as thermal and depth74

data. Additional video facial expression pain datasets exist that focus on different patient populations,75

but primarily focus on physical pain. These include multimodal behavioral and physiological data for76

neonatal pain [31, 32] and the University of Regina (UofR) Pain in Severe Dementia dataset [33, 34].77

A summary of the pain datasets is provided in Table 1.78

Table 1: Related Pain Datasets.
Dataset Stimulus Subjects Frames Sequences Seq. Duration Modality
UNBC-McMaster [6, 7] Shoulder pain 25 48,398 200 10 - 30 sec., per Unimodal
BioVid [8] Heat stimulus 90 8700 87 5.5 sec. Multimoda
MIntPAIN [9] Electronic stimulus 20 187,939 9366 1 - 10 sec. Multimodal
EmoPain [30] Chronic lower back pain 22 44,820 35 3 sec. Multimodal
Neonatal Pain, USF [32, 35, 36] Heel lancing 31 3026 200 9 sec. Multimodal
UofR [33] Physical, painful movements 102 162,629 95 Unknown Multimodal
X-ITE [28, 29, 37] Heat and electronic stimuli 134 26,454 N/A 7 sec. Multimodal
ISS (Dec. 2020 - Jul. 2021) Chronic cancer pain 29 189,999 509 3.52 - 135.59 Multimodal
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3 ISS Dataset79

The ISS protocol is a single site study with a goal of enrolling a total of 112 patients (90 adult and80

22 pediatric) who are actively receiving treatment for advanced malignancies and/or tumors at the81

NIH Clinical Center or treated with standard of care in the community. The study is overseen by82

the NIH Institutional Review Board (IRB), and the protocol was also reviewed by NCI’s Center for83

Cancer Research (CCR) Scientific Review Committee. New patient enrollment was paused during84

the Covid-19 pandemic due to initially unknown risks, but has resumed with vaccine availability and85

clinician guidance.86

3.1 Sample and Study Design87

To obtain as representative a sample as possible within the constraints of a feasibility study with an88

overall small sample size, the sample consists of twelve cohort groups of seven patients each. Patients89

represent a breadth of age, sex, skin tone (as a proxy for ethnicity), and pain experience. The current90

ISS dataset consists of 29 adult patients ages 18 years and over who have consented to participate in91

the study; no pediatric patients (ages 12-17) have been enrolled yet.92

Table 2: ISS: Twelve Patient Cohorts.

Number Pain Target Skin Types Sex Pain Class Goal Current
1A 0 I - III Male None 7 7
1B 0 I - III Female None 7 2
1C 0 IV - VI Male None 7 4
1D 0 IV - VI Female None 7 0
2A 1-3 I - III Male Low 7 1
2B 1-3 I - III Female Low 7 1
2C 1-3 IV - VI Male Low 7 3
2D 1-3 IV - VI Female Low 7 0
3A 4-6 I - III Male Moderate 7 2
3B 4-6 I - III Female Moderate 7 2
3C 4-6 IV - VI Male Moderate 7 0
3D 4-6 IV - VI Female Moderate 7 0
4A 7-10 I - III Male Severe 7 1
4B 7-10 I - III Female Severe 7 2
4C 7-10 IV - VI Male Severe 7 2
4D 7-10 IV - VI Female Severe 7 3

112 30

The goal is to evenly93

split the sample by94

i) sex (Male or Fe-95

male), ii) Fitzpatrick96

Skin Type [38], a97

self-reported, visual98

method of skin tone99

classification, where100

patients are asked to101

type themselves into102

one of two groups:103

"light" skin tones in104

types I-III or "dark"105

skin tones in types106

IV-VI, and iii) a self-107

reported “worst" pain108

score reported on a 0109

– 10 Numerical Rating110

Scale (NRS) [39]. The111

self-reported pain score is referred to as the “Pain Target" and are grouped into levels 0, 1-3, 4-6, and112

7-10. It represents the worst pain the patient has experienced in the past thirty days prior to the start113

of the study. It is fixed throughout the patient’s enrollment and does not change. As a result, there is114

no variance for the “Pain Target" score. The “Pain Target" is the classification target which is later115

used for our baseline tasks.116

Table 3: ISS Study Design Overview. * Note that due to the global
Covid-19 pandemic, the majority of patient videos were submitted
in the remote setting.

Study Duration 3 months

# Remote Submission 3 / week; Max. 1 /day

# In-Clinic Submissions 1 - 4 /week*

Survey Tool Smartphone (iPhone or Android) or computer (camera/mic.)

Time / Submission Average total time: 3 min

Time / Question Q 1-9: 1 min, Q10: 15 sec, Q11: 15 sec. - 3 min.

Self-Reported Pain Q 1-9: Questions with Likert-scale responses

Voice/Video: Prompt Q10: Read and record one of 3 randomized nursery rhymes.

Voice/Video: Narrative Q11: Record respond to "Describe how you feel right now."

Compensation: Min. 3 / week, they earn $15.

The twelve different cohorts are117

shown in Table 2, along with the goal118

of seven patients to be enrolled per119

cohort, and the current distribution120

of patients enrolled. Note that data121

from one patient (0009) in Cohort 2B122

was unusable. As a result our analy-123

sis reports across 29 patients. Clin-124

ical inclusion criteria include indi-125

viduals with a diagnosis of a cancer126

or tumor who are under active treat-127

ment for this condition at NIH/NCI.128

Patients must also have access to a129

smart phone or computer with cam-130

era, microphone, and internet access.131

Several clinical exclusion criteria ap-132

ply. Excluded are patients with active central nervous system (CNS) metastases, with the exception133
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of those who have completed curative intent radiotherapy or surgery and have been asymptomatic for134

three months prior to consent, patients with Parkinson’s disease, and any psychiatric condition that135

would prohibit the understanding or rendering of informed consent. Additional exclusion criteria136

those who are non-English speaking or have known current alcohol or drug abuse. Each patient is137

enrolled for a three-month period and are financially incentivized to complete three check-ins per138

week remotely and up to four in-clinic check-ins. The study design is summarized in Table 3. Patients139

engage using an electronic questionnaire and through video recording using a custom developed140

mobile or web application, using an Android, iPhone, or computer with camera and microphone.141

3.2 Patient Protocol142

Figure 1 provides a series of screenshots showing the patient at-home or in-clinic check-in using143

the ISS application. For each approximately 3-minute check-in, patients respond to a nine element144

questionnaire based on the Brief Pain Inventory (BPI, licensed from MD Anderson) [16–18] and two145

prompts to record videos of themselves.146

Patient Login Home or Clinic
Setting

Self-Reported
Pain Scores

Recording
Instructions Record Prompt Record Narrative

Questions 1 - 9 Question 10 Question 11

Figure 1: Submitting a Video through the ISS Mobile Application.

3.2.1 Questions 1 - 9: Self-Reported Pain Scores147

In addition to the self-reported “Pain Target" which was assigned to each patient upon enrollment148

shown in Table 2, there are nine additional self-reported pain scores. We capture these self-reported149

pain scores based on the cancer pain literature which indicates that cancer patients experience complex150

emotions and beliefs that can influence their perception of pain and as a result, clinical treatment151

[2, 3]. These nine pain scores are submitted at the time of video submission and change at each152

submission. They are distinct and unrelated to the “Pain Target" which is used for the baseline153

classification tasks. There is no formula that relates the nine self-reported scores among themselves154

or to the “Pain Target". In the below, Question 1 captures current pain intensity scored on an 11-point155

Likert Scale (0 No Pain - 10 Worst Possible Pain) followed by Question 2 which, when answered156

affirmatively, indicates the presence of chronic pain. Questions 3-9 utilize an 11-point Likert Scale (0157

Does not Interfere - 10 Completely Interferes) to measure the interference of pain in an individual’s158

activity (3, 5, 6) and an individual’s affect or mood (4, 7, 8, 9).159

1. How do you rate your pain right now? (0 No Pain – 10 Worst Possible Pain on Likert-scale).160

2. Do you have pain, related to your cancer, that has lasted for more than 3 months? (Yes/No)161

3. How is your pain interfering with your General Activity?162

4. How is your pain interfering with your Mood?163

5. How is your pain interfering with your Walking Ability?164

6. How is your pain interfering with your Normal Work (both work outside the home and housework)?165

7. How is your pain interfering with your Relationships with other people?166

8. How is your pain interfering with your Sleep?167

9. How is your pain interfering with your Enjoyment of life?168
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3.2.2 Questions 10 and 11: Prompt and Narrative169

Following the questionnaire, Question 10 is a prompt to record a video where the patient reads a 10-170

15 second passage of text at a grade 3 reading level selected at random from three different passages.171

The use of this sort of prompt is common practice in mood induction or conditioning trials where a172

neutral, non-emotion inducing prompt is used as a control versus a potentially, emotionally charged173

response related to the experimental condition [40–42]. The neutral passage options are:174

• “Sarah stepped down from the wagon, a cloth bag in her hand. She reached up and took off her175

yellow bonnet, smoothing back her brown hair into a bun. She was plain and tall.” From Sarah Plain176

and Tall by Patricia MacLachlan [43]177

• “And then the dog came running around the corner. He was a big dog. And ugly. And he looked178

like he was having a real good time. His tongue was hanging out and he was wagging his tail.” From179

Because of Winn Dixie by Kate DiCamillo [44]180

• “You have brains in your head. You have feet in your shoes. You can steer yourself any direction181

you choose. You’re on your own. And you know what you know. And YOU are the one who’ll182

decide where to go.” From Oh the Places You Will Go by Dr. Seuss [45]183

Finally, in Question 11, the patient records a video responding to the prompt "Please describe how184

you feel right now.” Narratives include discussion of medical conditions, mood, daily activities,185

current beliefs and attitudes about their pain. The allowable video length can range from 15 seconds186

to 3 minutes, with recording instructions shown prior to each video prompt. For “at-home” check-ins,187

patients are instructed to complete the submission alone, in a quiet and brightly lit room, preferably188

with a white wall or background. In addition, patients are asked not to reveal personal information189

such as their name or address. In Figure 1, the application screens for Questions 10 and 11 include a190

live video image to help the patient keep their face centered in the frame, but the application blurs the191

video. The blur effect is to prevent the patient from manipulating their facial expression and minimize192

self-conscious alteration of their appearance, allowing them to focus on their responses.193

3.3 Data Description194

A high level summary of the ISS dataset is provided in Table 4. The ISS dataset is comprised of195

29 patients submitting videos in a spontaneous, non-posed, home setting through a smartphone or196

computer. Patients are adults over the age of 18 y.o. and consist of the following demographics:197

20 Male, 9 Female, 17 Skin Type I-III, 12 Skin Type IV - VI. All patients were enrolled between198

December 2020 and July 2021. There are 189,999 total video frames. After facial detection, we199

extracted 173,011 facial images. After landmark detection on the facial images, the dataset was200

reduced by 2.86% to 168,063 facial images with landmarks, since landmarks could not be detected for201

some faces. We show the ratio of data imbalance across four pain levels using the total frames in Table202

4 where the "None" label is the majority class. The dataset also contains self-reported pain scores from203

Questions 1 - 9, described in detail in the Study Design section, along with sex and skin type labels204

assigned upon enrollment. Additional descriptive analysis is provided in Supplementary Materials.205

Table 4: ISS Data Summary.
ISS Data Summary Ratios of Total Frames by Pain Levels

Total Patients 29 20 M, 9 F, 17 Skin Type I-III, 12 Skin Type IV-VI 4 Pain Levels Frames Ratio No. Patients 2 Pain Levels Frames Ratio No. Patients
Total Videos 509 Avg. Videos per Patient 17.55 None 100984 1.00 13 No Pain 100984 1.00 13
Total Frames 189,999 Avg. Frames per Patient 6551 Low 11784 8.57 4 Pain 89015 1.13 16
Total Duration 316 min. Avg. Duration per Patient 655 sec. Mod. 25999 3.88 4
Avg. Duration per Video 37.32 sec. Range of Duration per Video 3.52 - 135.79 sec. Severe 51232 1.97 8

A notional depiction of ISS data types is shown in Figure 3 to provide context for the data types.206

Due to the sensitivity of Personal Identifiable Information (PII) in the clinical study protocol, we are207

unable to display actual facial images from the dataset at this time.208

3.3.1 Data Extraction209

We use the patient narrative (Question 11) video files (.mp4) and extract frames at 10 frames-per-210

second. We decide to use the narrative versus the prompt since it may contain greater signals of pain211

and emotion, compared to the neutral baseline recording. An audio .wav file of the patient narrative212

is simultaneously extracted using the ffmpeg library. We use the PyTorch FaceNet library that213
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Figure 2: Distribution of ISS Data. Histograms for the total videos, frames, seconds, and average seconds per
video, for the ISS dataset are in the four left-most plots. The four plots on the right illustrate the distribution of
patients (y axis) by the four pain levels, when combined into two pain levels, by sex, and by skin type.
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Frames are extracted from each patient video at 10 fps. Face detections are cropped 
at 160 x 160. Landmarks are detected on cropped faces, each an array of 468 x 3. 

Audio is extracted from video. A Mel Spectrogram is generated for each audio file. 
25 audio features are calculated for the audio file.

Patient enters pain scores 
at start of submission 

(Q 1 – 9)
Data Type 1 – Self-Reported Pain Scores

Data Type 2 – Gender, Skin, 
Timeframe Labels

Data Type 3 – Patient Narrative Video Data Type 4 – Video Extracts: Frames, Faces, Landmarks

Data Type 5 –
Patient Narrative Audio

Data Type 6 – Audio Extracts: Mel Spectrogram, Audio Features

Patient submits narrative 
video (Q 11) after prompt 

(Q 10)

Figure 3: ISS Data Types. Facial images shown are not actual patients from the ISS dataset due to privacy
restrictions. The ISS Dataset currently consists of six types of data: 1) Nine Self-Reported Pain Scores, 2) Labels
for Sex, Skin Type, and Timeframe, 3) Patient Narrative Video, 4) Video Extracts: Frames, Faces, Landmarks,
and 5) Patient Audio, and 6) Audio Extracts: Mel Spectrogram, Audio Features.

implements a fast and CUDA-enabled version of the Multi-task Cascaded Convolutional Networks214

(MTCNN) algorithm [46] using an InceptionResnetV1 model pre-trained on VGGFace2 for face215

detection and cropping faces from frames. All patient faces were recorded in a frontally aligned216

position so no realignment was implemented. Similar to [26], we extract features using AAMs.217

Specifically, we use the Google MediaPipe [47] Face Mesh AAM model based on 3D Morphable218

Models [15] to detect facial landmarks where each face returns an array of 468 points for three219

coordinates. From the audio .wav file, we use the Librosa [48] library to generate a Mel Spectrogram220

(n_fft=2048, hop_length=512, n_mels=128), and apply signal processing to capture audio features221

about the .wav file to include Mel-frequency cepstral coefficients (MFCCs), chromogram, spectral222

centroid, spectral bandwidth, roll-off frequency, and zero crossing rate, leading to 25 audio features.223

We further break up the original video into 4-second chunks leading to 40 frames per video chunk,224

extracting its respective .wav file, spectrogram, and audio features.225

3.3.2 No External Labels226

In contrast to existing acute pain datasets [7–9], the ISS dataset lacks external offline labeling227

traditionally completed using the Facial Action Coding System (FACS) [10]. Per the ISS problem228

statement, the goal is to predict patient (self)-reported pain, as opposed to observations made by non-229

patients via offline pain coders. There are three reasons for not externally encoding ISS video frames230

using FACS. First, researchers agree that FACS is expensive due to the need for a trained coder to231

annotate each video frame, making the process time-consuming and clinically infeasible [18, 49].232

Second, ethicists and psychologists argue that there is limited evidence that facial expressions233
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are reliably and specifically mapped to emotion production [50, 51]. Emotion production is not234

necessarily tied to a single set of facial expressions, but relies on the context of the situation and235

human culture [50]. Third, cancer patients with chronic pain may not display the typical set of facial236

action units (AUs) commonly associated with acute pain. For example [11] collected video data237

from 43 outpatient lung cancer patients obtained in a spontaneous home setting [11]. They found that238

the cancer patients were more subdued in expression, and displayed fewer AUs such as grimaces or239

clenched teeth, commonly found in facial pain images. As a result, AU labels associated with pain240

such as brow lowering (AU4), orbital tightening (AU6, AU7), levator contraction (AU9, AU10), and241

eye closure (AU43) may not be applicable to chronic cancer facial pain detection [52]. However, when242

the ISS dataset is released, there are no prohibitions on researchers attempting to annotate using FACS.243

3.4 Data Storage and Access244

A secure cloud-based environment receives mobile and web-based submissions of patients’ video,245

audio, and survey (nine self-reported pain scores) data. No PII such as names or date of birth is stored,246

with the exception of face, voice, and sex information. The environment is AWS GovCloud FedRAMP247

Moderate, with Federal Information Security Management Act (FISMA) moderate Authority-to-248

Operate (ATO) credentials.249

The ISS dataset consists of cancer patients discussing their medical conditions. The very nature of the250

images and videos make the data Protected Health Information (PHI) due to the NIH/NCI not being251

classified as a "covered entity". Extreme care must be exercised to ensure patient privacy and rights252

are not violated. As a result, we plan to ensure proper patient protections by placing the collected253

data in restricted access repositories under the stewardship of the NIH. Members of the scientific254

community will be able to request access to the data and code which may be granted on a per-case255

basis. This requirement is necessary to ensure legal requirements are met, avoid public spillage of256

PII data, and ensure patient trust that their data is used within the scope of the intended scientific257

use. In return researchers receive access to a dataset with numerous modalities and potential clinical258

relevance of results.259

4 Baselines260

We conduct seven baseline experiments for a classification task to predict each patient’s self-reported261

“Pain Target" level assigned at the start of their enrollment shown in Table 2. These levels are fixed262

upon enrollment for cohort assignment and remain unchanged throughout the study. As a result, one263

patient represents a single pain level throughout the study. All experiments are static models, which264

return predictions on a frame-by-frame level. Given how we are in the initial phase of the ISS study,265

we train models using facial images, landmarks, and the additional nine self-reported pain scores266

for emotion and activity. However, we do provide baseline results on 4-second chunks of audio via267

spectrograms and audio features. These are meant to be representative of common approaches to268

similar work, and establish the careful curation results in a task more difficult than prior literature269

with simpler labeling or collection. More details on all results are in the Supplementary Materials.270

Training Details All experiments are trained using 10-fold cross validation where three test patients271

are withheld in the test set for nine splits and two patients set aside for the tenth split. There is no272

overlap between training and test sets for each split. Please refer to the Supplementary Materials273

Appendix Section F.1. Table 10 that shows the “10-fold-CV details - Test Patients per Split." For274

neural networks in Experiments 1 and 3 - 7, we use a batch size of 16, Adam optimizer with 1e-4275

learning rate, and cross entropy as the loss function, training for 10 epochs, for all experiments. The276

batch size of 16 was selected empirically based on cross validation accuracy, after running several277

experiments varying batch size from 4, 8, 16, 32, and 64. We selected Adam optimizer since it has278

been used in recent facial pain detection studies such as [24, 53]. We fine-tune ResNet50 as the279

convolutional neural network (CNN) backbone for all multimodal experiments, which is pretrained280

on ImageNet. We use PyTorch for model training and train on four NVIDIA Tesla T4 GPUs.281

Experiments 2 and 3 are trained using the Scikit-Learn library for the Random Forest Classifier, using282

100 estimators, gini criterion, min_samples_split=2, and min_samples_leaf=1.283

Experiment 1: Pain Prediction using Static Face Images The first set of experiments only uses284

static, facial images. We fine-tune ResNet-50 [54] pretrained on ImageNet [55] to predict four and285

two levels of pain. Four levels are “None" (Self-Reported Pain Level 0), “Low" (1-3), “Moderate"286
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(4-6), or “Severe" (7-10), and two levels combine “Low", “Moderate", and “Severe" pain levels into287

a single “Pain" class. Training binary classifiers for“No Pain"/“Pain" prediction is similar to many288

existing facial pain detection works [7, 22]. We found that the binary classifier leads to better test289

patient accuracy scores, and continued Experiments 2 through 7 using only two pain levels.290

Experiments 2, 3: Pain Prediction using Static Landmarks or Pain In these experiments, we291

use only one modality to train two separate models and use traditional machine learning models,292

specifically the Random Forest algorithm [56]. Experiment 2 uses the landmark arrays detected for293

each facial image and Experiment 3 uses the nine self-reported pain scores explained in Section 3.2.1294

that represent how pain interferes with the patient’s emotions and activity, plus labels for sex, skin295

type, and timeframe. The timeframe label is categorical and is extracted from the video submission296

timestamp representing what time of day (early AM, late PM, etc.) the video was submitted. For297

both Experiments 2 and 3, we train a Random Forest Classifier. Note, that the target “Pain Target" is298

not in the set of the nine self-reported pain scores, which are distinct and separate.299

Experiments 4 - 6: Pain Prediction using Static Multimodal Data We train three multimodal300

networks using an early, joint fusion strategy as proposed by [57]. For Experiment 4 (“Fusion 1"),301

we concatenate the fully connected outputs of ResNet50 with raw landmarks. The feature vector is302

then inputted to a feedforward neural network for binary pain prediction. Experiment 5 (“Fusion 2")303

concatenates the fully connected outputs of ResNet50 with raw landmarks, in addition to the nine304

pain scores, skin, sex, and timeframe labels. Similarly, the feature vector is inputted to the same305

feedforward network architecture for binary pain prediction. Experiment 6 (“Fusion 3") concatenates306

three vectors: the feature map from layer-4-conv2D-1, the landmark features outputted from a307

landmark-specific feedforward network, and the nine pain scores, sex, skin, and timeframe features308

outputted from a pain-specific feedforward network. The resulting feature vector is inputted to a309

CNN for binary pain prediction.310

Experiment 7: Audio Models Experiment 7 is a binary pain prediction model that uses the Mel311

spectrogram image and 25 audio features from 4-second chunks of audio extracted from each patient312

video. A feature vector resulting from the concatenation of the spectrogram feature map from313

layer-4-conv2D-1 and audio features learned by a feedforward network, are inputted to the same314

CNN architecture as used in Experiment 6. Diagrams for all experimental architectures are provided315

in the Supplementary Materials.316

5 Results317

Accuracy Calculation The accuracy of each model is evaluated for each test patient using the tenth318

model checkpoint. Using the checkpoint, we evaluate each test patient individually. We only evaluate319

test patients using their respective, assigned split per 10-fold cross-validation (See Supplementary320

Materials Section F.1. Table 10 “10-fold-CV details - Test Patients per Split" for details). For example,321

test patients 0002, 0029, and 0021 are only evaluated using the trained model from Split 1, not Split 2322

which would have included these three patients in its training set. We evaluate each test patient using323

a batch size of 1, predicting the target pain score for each patient image. We then calculate accuracy324

for the test patient in question as simply accuracy_score(y_true, y_pred) where y_true is the set325

of true “Pain Target" labels and y_pred is the set of predicted “Pain Target" labels.326

As a result, in Table 5, we show the mean accuracy computed for each “Pain Target" level across all327

test patients (“No Pain" or “Pain" for two levels, and “None", “Low", “Moderate", or “Severe" for328

four levels of pain). For example, in Experiment 1 “ResNet50-4-static", the accuracy scores for all329

patients with ground truth pain labels of “None", were averaged together to calculate the result of330

0.583. In Figures 4 and 5, the bars are color-coded by the ground truth “Pain Target" level for each331

patient. The y-axis is the accuracy predicted for the patient. For example, upon zooming into Figure332

4a, Patient 0029’s (8 marks from the right of the x-axis) ground truth “Pain Target" level is “No Pain".333

However, the Experiment 1 static binary model only predicts it with 0.309 accuracy.334

Experiment Results The Experiment 6 multimodal network combining multiple features from335

the facial images, landmarks, pain scores, sex, skin, and timeframe labels performs the best for336

overall pain classification. Compared to training on a single modality alone (Experiments 1, 2, 3, 7),337

Experiment 6 (Fusion 3) shows the best overall class accuracy of 0.657 shown in Table 5. Fusion 3 also338

shows the highest accuracy for the “Pain" level at 0.717. Experiment 6 (Fusion 3) led to 72.4% of test339

patients exceeding 50% accuracy per frame as noted in Figure 5b. However, it ties with Experiment340

8



5 (Fusion2) and Experiment 2 (Random Forest PM) for 51.7% of test patients achieving over 75%341

accuracy per Figure 5a and Figure 4d. While the Random Forest pain model (Figure 5d) shows greater342

“No Pain" accuracy, using only the self-reported nine pain scores does not detect the original “Low"343

pain levels as well as the multimodal Fusion 3 model visualized in Figure 5c shown in blue bars.344

Experiment 3 (Random Forest Pain) shows the highest “No Pain" accuracy scores at 0.706 per Table345

5. Adding the nine self-reported pain scores appears to boost accuracy, compared to training only346

on faces and landmarks per Experiment 4 (Fusion 1, 0.513) in Table 5. This is likely due to high347

correlations between the nine reported pain scores. Analysis shows strong Pearson correlation values348

exceeding 0.89 among activity, mood, work, enjoyment, and relationship scores. Continued analysis349

as more patients enroll in the study is required to understand the effect of the nine pain scores across350

all patients. The facial landmarks perform the worst in Experiment 2 (Random Forest LM) with only351

37.9% of test patients exceeding better than random at over 50% accuracy per Figure 4b. However,352

when adding landmarks to facial images in Experiment 4 (Fusion 1), several test patients completely353

fail to be detected (1, 2, 16, 13, 29, 3, 28, 25) per Figure 4d. This may be consistent with recent354

research by [34] who show that landmark detection declines when comparing different populations,355

such as older patients with dementia, to healthy adults.356

Table 5: Experiment Results by Pain Level Accuracy. “LM" indicates facial landmarks.
Experiment 4-Class Model Data All Classes None Low Moderate Severe
Exp. 1 ResNet50-4-static Faces , only 0.378 0.583 0.168 0.252 0.213

2-Class Model All Classes No Pain Pain
Exp. 1 ResNet50-2-static Faces, only 0.568 0.513 0.612
Exp. 2 Random Forest LM Landmarks, only 0.373 0.479 0.287
Exp. 3 Random Forest Pain Pain Scores, only 0.650 0.706 0.602
Exp. 4 Fusion 1 Faces + Landmarks 0.513 0.304 0.683
Exp. 5 Fusion 2 Faces + Landmarks + Pain Scores 0.631 0.563 0.687
Exp. 6 Fusion 3 Faces + Landmarks + Pain Scores 0.657 0.582 0.717
Exp. 7 Static Audio Audio, only 0.456 0.645 0.303
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(c) Pain, 65.5%
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Figure 4: Accuracy Scores per Test Patient by Model: Faces, Landmarks, Pain, and Fusion 1. We show
the resulting scores per test patient for the binary pain classifiers. Horizontal bar indicates 50% accuracy. Percent-
ages in sub-captions indicates the number of patients exceeding 50% test accuracy. Notation: Faces=ResNet50-
2-static; LM=Random Forest LM (landmarks); Pain=Random Forest Pain; F1=Fusion1. Best viewed in color
and zoomed in.
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(c) F3 - 4 Labels

1 5 23 22 19 11 2 8 12 17 16 14 21 4 26 3 18 24 27 25 29 20 7 13 28 6 10 30 15

Patient

0.0

0.2

0.4

0.6

0.8

1.0 Pain Levels
None
Moderate
Severe
Low

(d) Pain - 4 Labels

Figure 5: Accuracy Scores per Test Patient by Model - Fusion 2, 3, and Pain, Visualized with 4 Original
Labels. We show the resulting scores per test patient for the binary pain classifiers. Horizontal bar indicates 50%
accuracy. Percentages in sub-captions indicates the number of patients exceeding 50% test accuracy. Notation:
Pain=Random Forest Pain; F1=Fusion1; F2=Fusion2; F3=Fusion3. Best viewed in color and zoomed in.
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6 Discussion and Future Work357

Due to a variety of state-of-the-art techniques, we sought to implement simple models to demonstrate358

baseline results using fairly minimal preprocessing, transformations, and architectures. The results of359

our models show the dataset’s difficulty. For comparison, acute pain detection studies have shown360

accuracy scores up to 82.4% (hit rate) [26] using the UNBC-McMaster Shoulder Dataset and 95%361

for multimodal infant pain detection using a custom dataset by [31]. Chronic pain detection using362

psychological inventories have achieved 86.5% (cross-validated balanced accuracy) using a support363

vector machine [58].364

Limitations The first limitation of the dataset is the low number of currently enrolled patients at only365

29 patients and the imbalance across pain levels. However, we observe that two new patients enroll366

into the study every month. As the number of patients grow, we expect a more balanced distribution of367

pain levels, sex, skin type, and increased volume of data, consistent with the cohort design indicated in368

Table 2. However, medical datasets using active patient populations for major diseases such as cancer,369

are extremely scarce due to the time and review required for medical privacy and ethics. This differs370

greatly from current pain datasets that have recruited fairly healthy patients, who are not actively371

undergoing disease treatment. Due to the special sensitivity of the ISS study population, we believe372

that our current initial results offers important insights currently missing in the medical AI community.373

Next, despite the patient instructions to complete the submission in a quiet, brightly lit room with a374

white wall or background, many videos submitted varied in quality and resolution. The following375

examples observed in the dataset present challenges to machine learning: 1) Patient sitting in front of376

a door with signage in the background showing letters and numbers; 2) Patient occasionally wears a377

mask in some videos (due to Covid-19); 3) Patient records video in area of intense sunshine and glare378

causing reflection from various surfaces; 4) Patient records in a dark, shady room, leading to grainy379

resolution and video quality; 5) Patient speaks very quietly or muffled, making it difficult to hear the380

patient narrative; 6) Missing data as is the case of Patient 0009 and absent self-reported nine pain381

scores from Patient 0015.382

Ethics Publicly available acute pain datasets have lacked ethnic diversity. For example, the UNBC-383

McMaster Database [6] uses ethnicity as a demographic indicator where out of the original 129384

patients (63 Male, 66 Female), a minimum of 13.2% (17 patients) consisted of non-Caucasian385

ethnicity (refer to Table 1 of [6]). It may be less given how studies using the UNBC-McMaster dataset386

have access to data from only 25 out of 129 patients [20–22, 24]. The BioVid and MIntPAIN datasets387

provide no information about ethnicity and race [8, 9]. EmoPAIN contains 22 patients (18 Caucasian,388

3 African-American, 1 South-Asian) who are majority white [30]. As a result, we sought to increase389

the diversity of enrolled patients by using cohorts that include sex and skin type specifications. While390

the Fitzpatrick Skin Type scale was originally developed for dermatological use, it has recently391

been criticized for its conflation with race and ethnicity [59]. It has been found to overestimate the392

prevalence of Type IV skin classification in African Americans [60]. The visual grouping of patients393

into lighter tones (Skin Types I - III) or darker tones (Skin Types IV - VI) may be too restrictive and394

biased in terms of broadening our diversity of patients. As a result, the ISS dataset requires careful395

monitoring and a regular ethics review.396

Future Work The second phase of the study will analyze more diverse modalities. First, we will397

extract text from the audio files and explore its utility towards multimodal pain models. Next, since398

patients were unable to conduct in-clinic visits, we were unable to gather thermal imagery captured399

from a thermal camera stationed at the clinic. Thermal imagery offers insights into physiological400

states that is unseen on visible images alone [61]. Our intent is to generate paired visible-thermal401

datasets as collected by the Iris, Eurecom, and Equinox datasets [62–64]. Lastly, we estimate that402

after enrolling 112 patients, the ISS dataset will contain an additional 1,456 videos, 543,733 frames,403

and 3.8 hours of content.404
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