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Abstract

Simulation of high-order nonlinear system requires extensive computational re-
sources, especially in modern VLSI backend design where bifurcation-induced
instability and chaos-like transient behaviors pose challenges. We present S-
Crescendo - a nested transformer weaving framework that synergizes S-domain
with neural operators for scalable time-domain prediction in high-order nonlin-
ear networks, alleviating the computational bottlenecks of conventional solvers
via Newton-Raphson method. By leveraging the partial-fraction decomposition
of an n-th order transfer function into first-order modal terms with repeated poles
and residues, our method bypasses the conventional Jacobian matrix-based itera-
tions and efficiently reduces computational complexity from cubic O(n3) to lin-
ear O(n).The proposed architecture seamlessly integrates an S-domain encoder
with an attention-based correction operator to simultaneously isolate dominant re-
sponse and adaptively capture higher-order non-linearities. Validated on order-1
to order-10 networks, our method achieves up to 0.99 test-set R2 accuracy against
HSPICE golden waveforms and accelerates simulation by up to 18×, providing a
scalable, physics-aware framework for high-dimensional nonlinear modeling.

1 Introduction

In recent years, deep learning technologies have made remarkable progress, with Transformer-based
architectures demonstrating exceptional performance and significant advantages in fields such as
natural language processing (NLP), computer vision, and time-series data modeling.[1] Transformer
models, by effectively capturing complex relationships and long-range dependencies, offer a novel
perspective for data-driven modeling. This technological advancement has inspired researchers to
explore its potential applications in traditional engineering domains, especially in complex physical
modeling and signal prediction[2][3].

Nonlinear system identification remains a core challenge across many domains, particularly under
high-order dynamics, non-stationarity, and limited observability. Classical methods from control
theorysuch as Volterra series, HammersteinWiener models, and grey-box approachestypically de-
compose system behavior into a linear core and a nonlinear correction [4, 5, 6, 7]. However, their
scalability and generalization degrade in high-dimensional parameter spaces [8]. These limitations
are especially pronounced in modern integrated circuit design, where nonlinearities emerge not only
from active devices but also from parasitic effects in passive interconnects. A canonical example
is the “nonlinear driver + linear RC load” configuration, illustrated in Figure 1. As technology
scales, interconnect parasitics exhibit strong dynamic nonlinearities due to proximity effects, pro-
cess variation, and material inhomogeneity [9], complicating accurate modeling. To address this,
we propose a neural operator framework that integrates Laplace-domain physical priors with data-
driven adaptability. Demonstrated on RC current response tasks, this method extends naturally to
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systems governed by partial differential equations with nonlinear boundary conditions, offering a
scalable and physically consistent approach to complex system identification.
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Figure 1: Given a known input signal, the task is to predict the nonlinear systems output before it feeds into the
linear system. This intermediate signal, marked in red, is unknown and serves as the prediction target of our
model.

In response, a growing body of research has applied deep learning to nonlinear system iden-
tification. Approaches based on recurrent networks[10], attention mechanisms[11], and neural
operators[12] (e.g., DeepONet[13], FNO[14], and PINNs) have shown promise, particularly in
low-dimensional settings or for PDE systems with known boundary conditions. Yet, these meth-
ods often require large datasets, lack robustness to structural variation, and suffer from poor
physical interpretability[15][16]. More critically, few methods explicitly leverage the modal
structure or transfer function representation intrinsic to many engineered systems. As a re-
sult, they remain constrained by either computational inefficiency (due to iterative solvers like
Newton–Raphson) or limited generalization to systems with unseen topologies or higher-order
dynamics[17][15][18][19].While deep learning has been explored for general system identification,
its application to signal-line RC response modelinga canonical high-order nonlinear problemremains
largely unexplored. Most existing methods still fall under three classical paradigms: Current Source
Models (CSMs) [20, 21], Voltage Response Models (VRMs) [22], and Direct Waveform Prediction
[23]. Each faces practical limitations: CSMs lack waveform fidelity due to fixed capacitance ab-
straction [24], VRMs suffer from high cost and solver-induced errors [25, 26], and direct fitting fails
under sharp transitions due to overshoot and undershoot distortion.

Against this backdrop, Transformer-based methods offer a powerful new tool for nonlinear system
identification in the S-domain. Transformer architectures excel at capturing complex, long-range
dependencies and higher-order interactions, making them ideally suited to address the limitations of
traditional RC-network models in time-domain response prediction [1].

Even in nominally high-order interconnects, only a handful of dominant poles govern signal behav-
ior. Standard model order reduction (MOR) selects these modes, typically fewer than ten by energy
or gain thresholds, and collapses a 5000th order RC network into a low-order surrogate with min-
imal frequency response error [27, 28]. Going beyond linear reduction, we encode each reduced
first-order term into a learned latent embedding and apply an attention-driven correction operator to
capture nonlinear driver-load effects. On 4th to 10th order surrogates, our method attains R2 up to
0.99 against HSPICE waveforms, evidencing superior accuracy. By leveraging partial-fraction de-
composition, we decouple topology from prediction-forecasting each modal response independently
in the S-domain before summation, thus ensuring universality and structural agnosticism.We intro-
duce a physics awared S-domain neural operator that seamlessly integrates with MOR pipelines,
delivering a scalable, accurate, and efficient solution for nonlinear RC simulation, electromagnetic
analysis, and signal-integrity evaluation without fixed driver or load models.

The proposed model adopts a two-stage architecture: a base module first predicts individual first-
order responses from partial fraction decomposition and aggregates them into a baseline output. A
subsequent compensation network then iteratively refines this output by learning residual corrections
across model orders. This overall architecture is illustrated in Figure 2.
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Figure 2: Model Overview. The model first constructs a baseline prediction by summing the first-order re-
sponses of pole-residue pairs. For each mode i, the residual module ei is trained using the current and previous
poles, residues, and time information to correct the accumulated error. Residuals are added iteratively to refine
the final prediction.

2 Theoretical Background

2.1 Decomposition Theorem for High-Order RC Network Transfer Functions

Modeling nonlinear dynamical systems remains fundamental across many physical domains, where
complex interactions often overlay intrinsic linear behaviors. In integrated circuit design, a promi-
nent instance arises in interconnects, where nonlinear drivers interface with passive metal wires
forming linear time-invariant (LTI) networks. The passive portion, shaped by parasitic resistances
(Ri) and capacitances (Ci), governs signal delay, attenuation, and waveform distortion. The behav-
ior of these RC networks is typically characterized in the Laplace domain via a transfer function
H(s) that maps input signals to output responses [27, 29, 4]. For a network with m independent
energy-storage elements, the transfer function takes the form shown in Equation (1):

H(s) =
N(s)

D(s)
=

b0 + b1s+ · · ·+ bm−1s
m−1

a0 + a1s+ · · ·+ amsm
. (1)

where the roots of the denominator D(s) are the system poles pi = −1/τi = −1/(RiCi), all located
on the negative real axis due to the passive nature of RC circuits.

By the fundamental theorem of algebra and the Heine-Borel theorem, any strictly proper rational
function with distinct poles admits a unique partial fraction expansion[30] shown in Equation (2):

H(s) =

m∑
i=1

ri
s− pi

, ri =
N(s)

D′(s)

∣∣∣∣
s=pi

. (2)

This decomposition can be rigorously derived through two classical approaches. First, the method of
undetermined coefficients constructs a linear system whose solution is guaranteed by the nonsingu-
larity of the associated Vandermonde matrix when all poles are distinct. Second, the Cauchy residue
theorem establishes the residue-based representation by integrating H(s) around a closed contour
enclosing all poles; analytic continuation then ensures the uniqueness of this expansion.

Further physical constraints arise from the realizability conditions of RC networks. All poles must
lie strictly in the negative real domain to ensure overdamped and stable dynamics. While residues are
typically real-valued, they may be either positive or negative, reflecting modal interference effects
in higher-order coupled systems. Despite potential non-monotonicity at the modal level, the overall
response remains physically consistent and interpretable, capturing the multi-timescale nature of
signal propagation inherent to real interconnect behavior.
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2.2 Generalization to Repeated Poles

When a pole pi of the transfer function has multiplicity ki > 1 (with
∑

i ki = m), the partial-fraction
expansion naturally extends to form in Equation (3):

H(s) =

q∑
i=1

ki∑
j=1

rij
(s− pi)j

, (3)

where each higher-order residue is given by Equation (4):

rij =
1

(ki − j)!

d ki−j

ds ki−j

[
(s− pi)

kiH(s)
]∣∣∣∣

s=pi

. (4)

In practice, however, exact repeated poles are rare in on-chip RC networks due to manufacturing
tolerances and layout variations. Even when poles are nearly coincident, the corresponding higher-
order residues rij tend to be small, and their time domain contributions t j−1epit decay rapidly for
pi < 0. Consequently, one can safely ignore repeated-pole terms in most modeling tasks and rely
on single-pole expansions to achieve high-fidelity simulations [31].

This comprehensive decomposition provides a unified framework for both time-domain and
frequency-domain analysis of arbitrary high-order RC interconnect networks.

2.3 Computational Complexity Analysis

Traditional SPICE-based transient simulation begins by formulating a system of nonlinear equations
based on circuit devices and Kirchhoffs laws. Solving this systemtypically via the NewtonRaphson
methodis computationally expensive. For an n-node RC network, each iteration involves Jacobian
construction and LU decomposition, resulting in a complexity of O(n3). Even with sparse solvers,
fill-in effects lead to an effective cost between O(n2.5) and O(n3) over T time steps and P ports
[32, 33].

In contrast, our method operates in the S-domain and eliminates matrix inversion. Computing the
admittance or impedance to a single output node requires O(n) operations. Extending this to all n
nodes yields a total complexity of O(n2), while avoiding iterative linear system solves.

3 Data Acquisition and Preprocessing

3.1 Simulation Environment Setup

The HSPICE simulation platform employing a 40-nm CMOS PDK ensured process-compliant de-
vice parameters (Vth, λ, Ileak), where a single-stage CMOS driver with IEEE 1481-2009-compliant
RC networks (parasitics extracted via Python) was modeled through state space representation and
converted to an S-domain transfer function; subsequent partial fraction decomposition yielded first-
order subsystems characterized by poles pi and residues ri for neural operator-based time domain
prediction.

3.2 Stimulation Configuration

The input voltage waveform was configured as an ideal step signal (0 to VDD transition). Transient
simulations covered both the signal rise phases (0 to 20 ns) and steady state behavior,with a time
step resolution of 10ps.

3.3 Feature Representation and Supervision

Each sample is defined by a tuple of conditioning inputs and supervised outputs. The conditioning
inputs comprise a device type label, a sequence of transient time points t1, . . . , tT , and a set of
frequency domain features obtained via transfer function decomposition, encoded as poleresidue
pairs {(pi, ri)}mi=1. Together, these inputs capture the structural, temporal, and modal characteristics
of the circuit.

The supervised target is the voltage response sequence {Vout(t1), . . . , Vout(tT )}, obtained from
HSPICE simulation, which guides training via time-aligned regression.
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3.4 Feature Normalization

To harmonize heterogeneous input features and enhance model robustness, we apply the following
transformations in a single step shown in Equation (5):

V ′(t) =
V (t)−min(V )

max(V )−min(V )
, t′ =

log10(t)− µt

σt
(5)

where V (t) is the original voltage at time t, min(V ) and max(V ) are its minimum and maximum
over the waveform, t is a sampled transient time point, and µt, σt are the mean and standard deviation
of log10(t) across all samples. These normalizations place both features on comparable scales,
mitigate the influence of outliers, and promote stable, efficient training.

3.5 Transfer Function-Based RC Network Modeling

We propose a compact, system-level modeling framework for standard-cell-driven RC interconnects
by decomposing the Laplace-domain transfer function shown in Equation (6):

H(s) =
Vout(s)

Vin(s)
==

n∑
i=1

Ai
s
pi
− 1

(6)

where each decay rate pi > 0 (inverse time constant) and residue Ai ∈ R satisfies
∑

i Ai = 1,
ensuring a normalized unit-step response. This form captures the dominant exponential kernels
e−pit without explicit node-level modeling.

To enable neuralnetwork learning and generalization across circuits of varying size, we encode each
mode as a pole-residue pair (pi, Ai), normalize all pi and Ai by maxi pi and maxi |Ai|, sort pairs by
descending |Ai|. This interpretable mode sequence accurately reconstructs high-order RC responses
with linear complexity and full spectral fidelity.

4 Model Architecture Design

4.1 Baseline Module: First-Order Prediction

The baseline module predicts the nonlinear voltage response of a single-mode RC system, specified
by a pole-residue pair (p, r), at discrete time points {tk}Tk=1. Unlike ideal linear RC networks, the
input waveform here first passes through nonlinear active components (e.g., CMOS drivers), making
the overall system response analytically intractable. To address this, we employ a neural function
approximator:V̂ (tk) = fθ(p, r, tk).where fθ is a lightweight Transformer trained to capture the
nonlinear mapping from modal and temporal inputs to voltage outputs[1].

The model consists of three encoder and three decoder layers, each composed of multi-head self-
attention, feed-forward sublayers with GELU activation, and layer normalization[34]. Positional
encoding is included to preserve temporal structure. Input features (p, r, tk) are embedded and
processed in parallel to predict V̂ (tk) at each time step. The network is trained end-to-end using
the AdamW optimizer with weight decay, minimizing the mean squared error[35][36] shown in
Equation (7):

LMSE =
1

T

T∑
k=1

(
V̂ (tk)− V (tk)

)2
(7)

This architecture provides an accurate and generalizable first-order predictor that forms the founda-
tion for modeling higher-order RC systems through residual correction.

4.2 Compensation Module: Residual Correction

The compensation module iteratively refines the baseline prediction by learning the residual error
between successive model orders. For each order n and time point tk, the input feature vector is(
n, pn, rn, pn−1, rn−1, tk

)
.where (pn, rn) and (pn−1, rn−1) denote the pole-residue pairs for

the nth and (n− 1)th modes, respectively.The network outputs shown in Equation (8):
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ên(tk) = gϕ
(
n, pn, rn, pn−1, rn−1, tk

)
(8)

which represents the corrective residual to be added to the order-n prediction at time tk.

The function gϕ is implemented as a lightweight Transformer with the same depth and hyperparam-
eters as the baseline module. It is trained end-to-end using the AdamW optimizer to minimize the
residual mean squared error, thereby progressively correcting and refining higher-order predictions.

4.3 Recursive Training Procedure

Let {(pi, ri)}ni=1 be the pole-residue pairs for the nth-order model and {tk}Tk=1 the sampled time
points. Denote by fθ the trained first-order predictor and by {eϕj

}n−1
j=1 the sequence of learned

residual modules up to order n − 1. To train the nth residual module eϕn
, we first accumulate

the baseline prediction by summing fθ(pi, ri, tk) for i = 1, . . . , n. We then add all previously
learned corrections eϕj

to form the current prediction and compute its discrepancy from the true
output Vout(tk). This residual error serves as the target for eϕn

, which is fit by minimizing the mean
squared error over k = 1, . . . , T using the AdamW optimizer. Repeating this process for each order
yields a cascade of lightweight modules that progressively refine the high-order RC response.

Algorithm 1 Iterative Residual Correction Training

Require: Base predictor fθ, residual module set {eϕj
}Nj=1, sampled data {tk, Vout(tk)}Tk=1

Ensure: Trained residual modules {eϕj
}Nj=1

1: Initialize cumulative baseline prediction: V̂base(tk)← 0, ∀k ∈ [1, T ]
2: for residual index j = 1 to N do
3: Load current pole pj and residue rj

Phase 1: Baseline prediction update
4: for time step k = 1 to T do
5: Update baseline: V̂base(tk)← V̂base(tk) + fθ(pj , rj , tk)
6: end for

Phase 2: Residual target computation
7: for time step k = 1 to T do
8: Compute current prediction:

V̂j(tk)← V̂base(tk) +

j−1∑
i=1

eϕi(i, pi, ri, pi−1, ri−1, tk)

9: Compute residual target:

rj(tk)← Vout(tk)− V̂j(tk)

10: end for
Phase 3: Module training

11: Build training set: Dj = {(tk, rj(tk))}Tk=1
12: Minimize the loss:

min
ϕj

1

T

T∑
k=1

(
eϕj

(j, pj , rj , pj−1, rj−1, tk)− rj(tk)
)2

13: Update ϕj using gradient descent
14: end for

By repeating this procedure for n = 1, 2, . . . , N , we ensure each eϕn learns to generalize the cor-
rection from order n−1 to n, yielding a cascade of residual models that together approximate the
full highorder response with minimal overfitting.Moreover, this recursive training scheme offers a
degree of generalization. Each residual module eϕn

depends only on the poleresidue pairs of two
adjacent orders and the current time point, without requiring knowledge of the full network topol-
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ogy or total number of nodes. As a result, the trained modules can be reasonably extended to refine
predictions for moderately higher-order systems beyond those seen during training.

4.4 Inference Procedure

In the inference stage, we compute a single forward-pass estimate of the output waveform by first
assembling a baseline response and then applying all residual corrections in parallel. Specifically,
for each time sample tk shown in Equation (9):

V̂base(tk) =

N∑
i=1

fθ(pi, ri, tk) (9)

where pi is the ith pole (inverse time constant) of the transfer function, ri is the corresponding
residue (modal weight), and fθ(pi, ri, tk) denotes the base predictors output, typically rie

−pitk .

All N residual modules eϕj
are then evaluated and summed in parallel shown in Equation (10):

V̂N (tk) = V̂base(tk) +

N∑
j=1

eϕj

(
j, pj , rj , pj−1, rj−1, tk

)
(10)

where eϕj (·) is the jth trained residual correction module, and its inputs (j, pj , rj , pj−1, rj−1, tk)
include the current and previous pole-residue pairs as well as the time tk.

This procedure yields the final prediction V̂N (tk) at each tk withO(N) complexity, running 5–10×
faster than commercial tools like HSPICE by requiring just a single pass through the base predictor
and residual modules.

5 Experiment

5.1 SinglePole Transfer Function: Training and Test Performance

We first evaluate the performance of our model on singlepole transfer functions. The model achieves
nearperfect fit on the training data and strong generalization to unseen singlepole functions.

�� �� � � � � 

���

���

���

���

���

��	

��


���

���

���

Va
lue

l o g _ t i m e

 p r e d
 r e a l

(a) Single-Pole Transfer Function: Training vs. test
performance. R2 = 0.999 illustrates near-perfect fit

on the training data and strong generalization on
held-out single-pole examples.
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(b) Error-Correction Model: This figure illustrates
the step-by-step waveform correction process, from

the raw prediction without any error correction
through the successive application of first, second,

and third-order error modules, culminating in a final
fit of R2 = 0.9975

Figure 3: (a) Model performance on single-pole transfer functions, showing minimal overfitting and excellent
test-set accuracy. (b) Effectiveness of our recursive error-correction module on a three-pole example.

5.2 Effectiveness of the Error-Correction Model

To demonstrate the benefit of our recursive error-correction module, we evaluate on a three-pole
transfer function example shown in Equation (11):
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H(s) =
3∑

i=1

Ai
s
pi
− 1

(11)

where {pi} and {Ai} are chosen such that the poles are well separated. Figure 3 shows the predicted
and true step responses over time. We compute the coefficient of determination and obtain R2 =
0.9975, confirming that the error-correction stage significantly improves accuracy over the base
model.

5.3 Generalization to Higher-Order Transfer Functions

Next, we evaluate the models ability to generalize beyond training orders. We train exclusively on
systems of order within 3 and then evaluate on transfer functions of orders from 4 to 9. Table 1
reports MSE and R2 on each higher-order test set. Despite never having seen orders above 3, the
model retains strong predictive power, demonstrating effective extrapolation. To probe more ex-
treme extrapolation, we additionally train an error-correction model on 15th-order systems and test
it on 200th-order transfer functions; the full setup and per-case results are provided in the appendix.
Across 20 held-out cases, the mean R2 reaches 0.983 (see Appendix).

Order 4 5 6 7 8 9

R2 0.986 0.997 0.995 0.990 0.979 0.964

Table 1: Generalization performance on higher-order transfer functions (trained on orders ≤ 3).
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(a) Order 4
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(b) Order 5
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(c) Order 6
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(d) Order 7
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(e) Order 8

�� �� �� � � � � 

���

���

���

���

���

��	

��


���

���

Va
lue

l o g _ t i m e

 n = 9 , p r e d
 n = 9 , r e a l

(f) Order 9

Figure 4: Prediction vs. true response for transferfunction orders 4 to 9.

5.4 Inference Time Comparison

Training cost. Each residual-correction module contains approximately 100K160K parameters. All
models were trained on a single NVIDIA RTX 4090 GPU. For reference, single-pole systems typi-
cally train in under 20 minutes, while 10th-order systems converge in approximately 2 hours. Given
the considerable acceleration our model achieves at inference time, this one-time training cost is
highly acceptable.

Dataset construction. Training data is generated using standard HSPICE simulations. Each sim-
ulation typically completes in about 0.5 seconds. For our full training dataset of ∼ 5,000 samples,
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the end-to-end preprocessing pipeline (simulation, waveform extraction, and supervised data for-
matting) completes in under 2 hours. The process is fully scriptable and parallelizable, and does not
pose a practical bottleneck.

Runtime comparison. Finally, we compare the runtime of our S-Crescendo model against HSPICE
on a 10 ns transient simulation sampled at 1,000 time steps. HSPICE runtimes for orders 1 through
10 were measured on a CPU node equipped with an AMD EPYC 7763 (64 cores) and 256 GB
of DDR4 RAM; S-Crescendo inference times were recorded on a workstation with an NVIDIA
RTX 4090 GPU. Table 2 reports the average simulation and inference times. Across all orders,
S-Crescendo achieves more than two orders of magnitude speedup while preserving high accuracy.

DCM baseline. Dynamic Circuit Macromodeling (DCM) is a physics-inspired model-order reduc-
tion technique that constructs dynamic macromodels to balance accuracy and efficiency. On the
same 10-order RC test file, DCM completes in 0.6 s with a fit accuracy of R2 = 0.9983.1

NGSPICE baseline. NGSPICE is a widely used open-source SPICE simulator adopted across
academia and industry. Although typically slower than commercial tools such as HSPICE, its acces-
sibility and device-level accuracy make it a credible practical reference. On our 10-order RC test file,
NGSPICE completes in 1.08 s andbecause it shares core numerical algorithms with HSPICEdelivers
equivalently high fidelity (we did not compute a separate R2 against HSPICE).2

Note. Order-10 is the slowest inference case for our model; benchmarking against this conservative
worst case still yields the above margins over DCM, NGSPICE, and HSPICE, underscoring the
strength of our approach.

Table 2: Runtime comparison between HSPICE and S-Crescendo across transfer function orders (10ns, 1000
steps).

Order 1 2 3 4 5 6 7 8 9 10

HSPICE (s) 0.26 0.21 0.23 0.22 0.27 0.26 0.28 0.23 0.23 0.26
S-Crescendo (s) 0.014 0.019 0.022 0.018 0.023 0.028 0.031 0.034 0.039 0.042
Speedup (X) 18.6 11.1 10.5 12.2 11.7 9.3 9.0 6.8 5.9 6.2

6 Further Discussion

6.1 Degradation of Accuracy at Higher Orders

While S-Crescendo performs well on low to mid-order transfer functions, its R2 degrades as order
m increases. This is due to recursive error accumulation: each correction module εk(t) adjusts not
only current residuals but also propagates previous errors. If the single-pole state space has size N ,
then the full m-pole space grows as Nm, whereas each error model sees only N samples during
training. Thus, the fraction of covered states is shown in Equation (12):

N ×m

Nm
(12)

which shrinks rapidly with m, leading to sparse supervision and compounded inaccuracies.

6.2 Reducing Data Dependency via Blocked Recursion

To alleviate error accumulation and data explosion, we propose a blocked recursion strategy. Instead
of training a separate module per order, we group adjacent orders into blocksfor example, a shared
module for orders 24, another for 56, etc. Each block is supervised on O(N × B) states (for block
size B), yet extrapolates across B orders. This reduces the number of recursive calls and lowers
training demands, improving both runtime and scalability.

1All DCM runtimes were measured on a machine with AMD EPYC 7763 (64 cores), 1 TB RAM, and 30 GB
swap.

2NGSPICE runtime was measured on a machine with Intel Core i7-14650HX CPU and 32 GB RAM.
S-Crescendo inference uses the same RTX 4090 workstation described in this paper.

9



6.3 Scaling of Inference Latency with Order

S-Crescendo’s inference latency scales roughly linearly with order m, since each pole adds a forward
pass. In contrast, tools like HSPICE collapse high-order dynamics via model reduction, maintaining
near-constant runtime. To bridge this gap, we consider (i) collapsing low-impact poles into aggregate
corrections, or (ii) integrating model-order reduction into the learned pipelineboth strategies aim to
extend our efficiency gains to large-scale systems.

6.4 Modeling Limitation: Repeated Poles in Transfer Functions

The model currently does not handle repeated poles, which introduce higher-order temporal terms
like tkeλt. To address this, future models can extend input features to include pole multiplicity,
enabling learning from triplets (pi, Ai,mi). This would broaden the model’s applicability to more
complex, higher-order dynamics.

6.5 Outlook: Toward General NonlinearLinear Hybrid Systems

Beyond RC modeling, the proposed framework extends naturally to hybrid systems with a “non-
linear front-end + linear dynamic core” architecture, common across engineering domains. Exam-
ples include switching converters in power electronics, where nonlinear control drives linear filters;
analog front-ends, where transistor drivers interface with RC loads; and neural membrane models
coupling nonlinear ion channels to capacitive elements. By modeling linear dynamics via Laplace-
domain priors and learning nonlinear corrections, the framework enables efficient, interpretable em-
ulation. Future directions include integrating operator learning or domain-specific constraints to
broaden applicability.
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A Related Works

A.1 Background

Modeling and simulation of high-order nonlinear systems remain central challenges in modern VLSI
backend design, particularly in analog/mixed-signal verification and large-scale circuit time-domain
modeling. Mainstream industrial tools such as HSPICE predominantly rely on Newton-Raphson iter-
ative solvers coupled with numerical integration schemes like Gear or Trapezoidal methods. While
these solvers offer high physical accuracy, their simulation time and resource consumption scale
poorly with system complexity-especially in the presence of strong nonlinearities or high-order
dynamics-posing significant computational bottlenecks for practical deployment.

In recent years, neural networks have demonstrated remarkable success across a wide range of sci-
entific computing applications, including areas within electronic design automation (EDA) such as
device modeling [37], analog circuit fault detection [38], and high-frequency electromagnetic sim-
ulation [39]. However, for the specific task of modeling signal line RC responses in high-order
nonlinear systems, effective deep learning-based approaches remain largely unexplored. To the best
of our knowledge, no existing work has leveraged deep neural networks-particularly Transformer-
based architectures-for direct time-domain modeling of such systems.

Given this gap, we provide a comprehensive review of related work from two perspectives: (1)
traditional modeling approaches developed in the EDA community for approximating RC signal line
responses, including current source models, voltage response models, and direct waveform fitting
methods; and (2) recent advances in neural network-based methods for modeling general nonlinear
dynamical systems, which-while related in scope-target different modeling granularities and lack
direct applicability to high-order S-domain waveform prediction.

A.2 Traditional Methods for Signal Line RC Response Modeling

Existing methods for modeling signal line RC response can be broadly classified into three cate-
gories:

The first category is the Current Source Model (CSM). Criox and Wong proposed a gate cell cur-
rent source model called Blade [20], which consists of a voltage-controlled current source, internal
capacitance, and a one-step time-shift operation. Kellor further enhanced model accuracy by intro-
ducing the KTV model [40], which considers Miller capacitance. Subsequently, Li and Acar [41]
and Fatemi et al. [42] introduced input and output parasitic capacitances, modeling the output cur-
rent source as a function of input/output voltages, gradually incorporating nonlinear characteristics
into CSM models. However, since CSM-based methods can only match fixed effective capacitances
(up to two) throughout the process, the simulation accuracy of current/voltage waveforms is inher-
ently limited [24][43][44][45][46][47] . In recent years, widely adopted industry methods such
as Composite Current Source (CCS) [21] and Extended Current Source Model (ECSM) [48] have
established driver and receiver models for each cell to handle scenarios with nonlinear input and
crosstalk. Nevertheless, CSM-based approaches still face significant challenges in matching high-
order RC load characteristics, limiting their accuracy in current response prediction.

The second category is the Voltage Response Model (VRM), such as the Non-Linear Delay Model
(NLDM). Iterative methods [22] [25] [49] [50] , although capable of achieving high precision, often
require substantial CPU time for convergence. Non-iterative methods [51] [52], on the other hand,
rely on closed-form expressions that offer faster computation but can result in output waveform
matching errors of up to 15% [26]. Furthermore, as technology nodes shrink and RC loads become
more complex, two-parameter fitting methods struggle to accurately capture the response curve of
RC networks, limiting their applicability in high-precision simulations [53].

The third category consists of Direct Waveform Prediction Methods, such as double exponential
functions [23], Weibull functions [54], and gamma functions [55], which directly fit the current or
voltage response. Recently, a macromodeling method [56] was proposed that uses SPICE to extract
parameters for modeling, which improves accuracy to some extent. However, these direct fitting
methods are unable to predict initial overshoot/undershoot effects, which become more pronounced
when the input slope is large.
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A.3 Current Applications of Neural Networks in Modeling Nonlinear Systems

In recent years, neural networks have been widely applied to modeling and prediction tasks of nonlin-
ear dynamical systems. Neural ODE methods [12] introduce continuous-time differential equations
to model system evolution, which are suitable for trajectory prediction problems. Physics-Informed
Neural Networks (PINNs) [11] incorporate partial differential equation constraints during training
to enhance physical consistency of the model. Additionally, Reservoir Computing [57] has demon-
strated excellent performance in modeling short-term behavior of chaotic systems, while Koopman
operator learning [58, 59] attempts to linearize nonlinear systems by mapping them into a linear
space to simplify modeling. Graph Neural Networks (GNNs) [60] process complex local interac-
tions by constructing graphs among components, and neural operator methods, such as the Fourier
Neural Operator (FNO) [14] and DeepONet [13], focus on learning mappings of high-dimensional
functions. In the domain of time series forecasting, Transformer-based models and their variants
(e.g., Informer [61]) have demonstrated strong capability in modeling long-term dependencies. Al-
though these methods have achieved substantial progress in various scientific computing scenar-
ios, existing works mainly focus on low-dimensional systems, continuous trajectory modeling, or
frequency-domain PDE solving, with limited exploration in modeling high-order time-domain re-
sponses of complex circuit RC networks.

The proposed S-Crescendo framework in this work possesses three key characteristics designed to
effectively model time-domain behaviors in high-order nonlinear systems. First, it explicitly sepa-
rates system modes via partial fraction decomposition of the S-domain transfer function. Second,
it employs a distributed Transformer architecture combined with pole-residue embedding strategies,
reducing the response prediction complexity from cubic O(n3) to linear O(n). Third, it introduces
an attention-based correction operator that adaptively captures nonlinear coupled responses while
modeling dominant modes. This framework combines physical interpretability with computational
efficiency and demonstrates high-fidelity waveform fitting consistent with HSPICE simulations on
validation datasets, thus filling the gap of deep learning-based modeling for high-order circuit sys-
tems.

B Dataset Preparation Details

B.1 Reference Simulator for Ground-Truth Generation

All training and evaluation datasets in this work are generated using Synopsys PrimeSim HSPICEő
U2023.03SP22. HSPICE is widely acknowledged as the de facto industry reference for analog
and mixed-signal circuit simulation, owing to its consistently strong agreement with post-silicon
measurementstypically achieving within 1%-5% error across a broad range of process nodes (from
0.18 µm to 3 nm). It provides foundry-certified transistor and passive device models, enabling high
physical fidelity and process portability. Moreover, its Precision Parallel simulation engine supports
near-linear scalability on multi-core systems such as the AMD EPYC 7763 (64-core), facilitating
efficient, high-accuracy waveform generation even for large-scale nonlinear networks. These capa-
bilities establish HSPICE as a trusted ground-truth generator for validating data-driven modeling
frameworks.

B.2 Dataset Computing Environment

The experiments were conducted on a computing platform running CentOS Linux 7, an operating
system known for its long-term stability and high compatibility with the source code of Red Hat
Enterprise Linux (RHEL). This ensures the reliability and consistency of the system environment,
facilitating reproducibility of the experimental results.

The hardware platform is equipped with an AMD EPYC 7763 processor, featuring 64 physical cores
with a base clock frequency of 2.45 GHz and dynamic boost up to 3.5 GHz. It includes a 256 MB
L3 cache and an 8-channel DDR4-3200 MT/s memory architecture, providing substantial parallel
computing capability and high memory bandwidth. This configuration offers ample computational
resources and efficient data handling, guaranteeing smooth execution of large-scale simulation work-
loads while minimizing potential performance bottlenecks.
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B.3 Dataset Preparation

The dataset was constructed through a multi-stage pipeline. First, a Python script automatically
generated SPICE netlists (“.sp” files) representing RC networks of varying orders. These netlists
were then processed along two parallel paths. In the first path, a Python module parsed each netlist
to compute the corresponding analytical transfer function. In the second path, all netlists were
batch-simulated using PrimeSim HSPICE U-2023.03-SP2-2 to obtain time-domain simulation re-
sults. Upon completion of the simulations, another Python script extracted the relevant outputs from
the HSPICE raw data files. Finally, the analytical transfer functions and the corresponding simulated
results were aligned and merged into a unified dataset, which served as the basis for subsequent
model training and evaluation (see Figure 5).

Figure 5: Overview of the dataset preparation pipeline.

B.3.1 Netlist Generation

A Python script automatically generates SPICE netlists for cascaded RC networks of arbitrary order.
For first-order RC circuits, we adopt an exhaustive grid-based method by varying R1 and C1 across
predefined intervals to construct a comprehensive dataset that covers a wide range of transfer func-
tions. The script iterates over discrete values and generates files named testsuite_<n>.sp, each
invoking a transient simulation (.TRAN 10ps 20ns) and including standard PDK models to ensure
consistency.

For higher-order RC networks (N > 1), due to the exponential growth in parameter space, exhaus-
tive enumeration becomes computationally infeasible. Instead, we construct a continuous state space
defined by all possible tuples {Rn, Cn}Nn=1, and sample from this space using randomized or quasi-
random strategies. Each sample corresponds to a specific configuration of RC parameters, which is
then used to generate a netlist representing an N th-order cascaded RC system. This hybrid strategy
ensures both completeness in low-order cases and scalability in high-order scenarios, providing a
diverse and representative dataset for model training and evaluation.

The dataset generation scripts and usage examples are available at our code in supplemen-
tal_material.zip.

Circuit structure We construct a canonical nonlinearlinear cascade by driving a linear RC net-
work with a nonlinear inverter. The nonlinear frontend is implemented as a standard-cell inverter in
SPICE:

X1 I1 OUT vdd 0 CLKINV3_12TR50

Here, OUT is the inverters output node, which serves as the input to the linear RC load. In the simplest
first-order configuration, the RC network consists of a single resistorcapacitor pair:

R1 OUT NODE1 r1
C1 NODE1 0 c1
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To generalize this to an N -stage cascade, we chain N identical first-order sections. Each section n
is defined in the netlist as:

R1 OUT NODE1 r1
C1 NODE1 0 c1

...

R<n> NODE<n-1> NODE<n> r<n>
C<n> NODE<n> 0 c<n>

where the nodes are labeled sequentially as NODE0=OUT, NODE1, , NODEn , and NODEn is grounded.

Although a single stage has the well-known transfer function

Hn(s) =
1

1 + sRnCn
,

the overall transfer function of the cascaded network cannot be written as the simple product∏N
n=1 Hn(s). Inter-stage couplingwhere each stages output drives the nextrequires solving the full

circuit equations or deriving a state-space model to obtain H(s) correctly.

Once the high-order transfer function H(s) is obtained, we apply partial fraction expansion (PFE)
to decompose it into modal contributions:

H(s) =

N∑
k=1

rk
s− pk

,

where pk and rk denote the poles and residues, respectively. This modal form explicitly exposes
the dynamic modes of the network and forms the theoretical foundation for our S-domainaware
Transformer model in time-domain prediction of high-order nonlinear circuits.

B.3.2 Automated HSPICE Simulation and Simulation Parser

The HSPICE simulation workflow was fully automated via a Python script that sequentially runs all
SPICE netlists. Each simulation outputs transient voltage responses at the designated output node,
saved in .lis files containing detailed time-domain voltage and current waveforms.

To facilitate efficient data extraction and downstream processing, a dedicated Python parser was
implemented to systematically extract voltage response sequences from these .lis files. A repre-
sentative snippet of the extracted data is shown below:

time voltage
0.000000e+00 1.8579u
1.000000e-11 9.7816m
2.000000e-11 1.78649e-02
3.000000e-11 2.54157e-02
4.000000e-11 3.26519e-02
5.000000e-11 3.79554e-02
6.000000e-11 4.32588e-02

These extracted voltage traces serve as ground truth data for validating the analytical transfer func-
tions and for subsequent model training and evaluation.

B.3.3 Function Extraction

To characterize the linear dynamics of cascaded RC networks, we implemented a fully automated
Python pipeline comprising four stages: netlist parsing, state-space construction, transfer-function
computation, and result serialization.

1. Netlist Parsing Using regular expressions, the parser reads each SPICE file to extract resistor
Ri and capacitor Ci values. For a third-order network, the script locates lines beginning with R1,
R2, . . ., C3 and applies unit-aware conversion (e.g., f10−15, u10−6). Missing or malformed entries
trigger an exception to ensure data integrity.

19



2. State-Space Model Construction Given the extracted {Ri, Ci}, an admittance matrix G ∈
R3×3 and capacitance matrix Cdiag are assembled for the 3-stage RC ladder. The continuous-time
state-space matrices are then computed as

A = −C−1
diagG, B = C−1

diag[ 1/R1, 0, 0 ]
T, C = [ 0, 0, 1 ].

3. Transfer-Function Computation The transfer function H(s) is obtained from (A,B,C) via
SciPys ss2tf routine, yielding numerator and denominator polynomials. We apply partial-fraction
expansion (residue) to extract poles pi and residues ri. After filtering negligible imaginary parts,
poles are sorted by magnitude, and normalized coefficients are computed as

A′
i = −

ri
pi
, A′

i ←
A′

i∑
j A

′
j

.

4. Result Serialization For each netlist, the tuple (A′
1, p1, A

′
2, p2, A

′
3, p3) is written as a single

row in a CSV file. This standardized format enables downstream training pipelines to ingest model
parameters directly.

B.4 Data Alignment

To prepare the dataset for sequence modeling tasks, we concatenate the static circuit features with
the time-dependent voltage response while preserving the temporal dimension explicitly.

Let x ∈ R2n denote the RC feature vector extracted from an n-th order RC network (e.g., normalized
residues and poles). For a third-order network, we have:

x = (A′
1, p1, A

′
2, p2, A

′
3, p3) ∈ R6.

Let the voltage response sequence over T time steps be represented as a set of timestamped scalar
pairs:

{(t1, y1), (t2, y2), . . . , (tT , yT )}, where yt ∈ R, tt ∈ R.

To incorporate both dynamic and static information, we replicate the static vector x at each time step
and form the augmented matrix:

z(t) =


t1 y1 x
t2 y2 x
...

...
...

tT yT x

 ∈ RT×(2+2n).

This results in a fully timestamped sequence z(t), where each row consists of:

• the current simulation time tt,
• the corresponding voltage response yt,
• and the circuit’s physical parameters x.

Such a format allows temporal models to condition predictions not only on voltage dynamics but
also on circuit-specific properties.

All datasets were automatically constructed using a Python script that fuses the time vector, voltage
response, and RC features.

C Log-Centered Time Warping & Uniform Resampling

C.1 Motivation

A step response v(t) typically exhibits an extremely steep leading edge followed by a long, almost
flat settling tail. When the raw waveform is sampled on a linear time axis, the number of infor-
mative points located on the rising edge is orders of magnitude smaller than the points on the tail.
Consequently, regression models trained with a uniform loss (e.g. MSE) tend to under-fit the neigh-
bourhood of the edge and over-fit the low-slope region, yielding poor predictions for signals whose
rise times differ markedly inside the same simulation window.
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C.2 Center detection

Let tc be the time at which the normalised voltage first crosses v = 0.5:

v(tc) =
1
2VDD, tc = argmin

t

∣∣v(t)− 1
2VDD

∣∣.
The algorithm finds tc with a twostage linear B-spline interpolation around the crossing (see
find_t() in the accompanying code base).

C.3 Log-centred warping

For every sample t we define a log-centred time coordinate

τ = sgn
(
t− tc

) [
ln
(
|t− tc|/T0 + ε

)
− lnε

]
, (13)

with scale factor T0=10−10 s (empirically chosen) and numerical guard ε = 0.1. Equation (13) is
odd around tc and strictly monotone; consequently the mapping t 7→ τ is invertible and preserves
temporal order.

Slope compression. The first derivative

dτ

dt
=

1

|t− tc|+ εT0

is large when |t − tc| is small and diminishes as |t − tc| → ∞. Hence points on the steep edge
(|t − tc| � T0) are stretched in τ -space while the quasi-flat tail is compressed. In effect, the
dynamic range of local slopes∣∣dv

dt

∣∣ −→ ∣∣ dv
dτ

∣∣ = ∣∣dv
dt

∣∣ dt

dτ
=

∣∣dv
dt

∣∣ (|t− tc|+ εT0

)
is equalised, yielding a better-conditioned learning target.
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Figure 6: Raw waveform vs. log-centred waveform.

C.4 Uniform resampling in the warped domain

After warping, we resample the trace at N equally spaced τ -locations

τk = τmin + k∆τ, k = 0, . . . , N−1, ∆τ =
τmax − τmin

N − 1
.

Linear interpolation in τ -space is equivalent to non-uniform interpolation in the original time do-
main, so the final dataset allocates identical representational capacity to equal increments of τ , i.e.
to equal log-scaled time gaps with respect to the edge.
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Figure 7 shows: (a) The original voltage response v(t) for the first RC channel plotted against real
time t. (b) The same trace after applying the center-log warp t 7→ τ and uniformly resampling in
τ -space. Black circles indicate the new sample locations, illustrating the denser coverage near the
rising edge and sparser coverage on the tail.
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Figure 7: Scatter plot in τ -space: before vs. after resampling.

Comparison of the original step response and the uniform resampling in log-time domain. The blue
markers show the raw voltage trace v(t) for the RC network sample (from Figure 8), plotted against
the log-centered time coordinate τ . The orange markers overlay the uniformly spaced samples in
τ -space, demonstrating that the resampling allocates more points near the steep rising edge while
compressing the long tail.
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Figure 8: Scatter plot in τ -space: resampling vs. after uniformed resampling.

C.5 Effect of Uniform Resampling on Regression Accuracy

We conducted an experiment to quantify the impact of our logcentered warping plus uniform resam-
pling on stepresponse modelling accuracy. Under identical training conditions: 60 epochs, batch
size = 1000, using 80 training files (80 Œ 1000 samples) drawn from the full set of 100 RC cases.
The model was evaluated on the held-out test set comprising cases RC_81 through RC_100. We
report the coefficient of determination R2 for predictions made with (“Resampled”) and without
(“Raw”) the uniform resampling in warped time.
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Table 3: R2 comparison: raw vs. logcentered τ -uniform resampling.

Case R2 Raw R2 Resampled

RC_81 0.9571 0.9998
RC_82 0.9591 0.9998
RC_83 0.9609 0.9998
RC_84 0.9629 0.9998
RC_85 0.9647 0.9998
RC_86 0.9662 0.9998
RC_87 0.9675 0.9998
RC_88 0.9690 0.9998
RC_89 0.9702 0.9998
RC_90 0.9714 0.9998
RC_91 0.9725 0.9998
RC_92 0.9736 0.9998
RC_93 0.9745 0.9998
RC_94 0.9753 0.9998
RC_95 0.9761 0.9998
RC_96 0.9768 0.9998
RC_97 0.9774 0.9998
RC_98 0.9780 0.9998
RC_99 0.9785 0.9999
RC_100 0.9816 0.9999

Mean 0.9715 0.9998

Qualitatively, Table 3 shows that uniform resampling in τ -space consistently boosts R2 from the
high-0.95 range up to nearly perfect 0.999. On average, the preprocessing yields an absolute im-
provement of over 0.028 in R2, demonstrating that our logcentered warp and uniform sampling
dramatically enhances the models ability to fit diverse stepresponse curves under identical training
regimes.

As shown in Figure 9, we compare the predictive accuracy of our network on the same RC trace
under two preprocessing regimes. In subfigure 9a, the model is trained and evaluated directly on
the raw time-domain samples, achieving an R2 of 0.9571. While the overall step response shape is
captured, the prediction exhibits noticeable lag on the steep rising edge and slight deviation in the
mid-tail region. In contrast, subfigure 9b illustrates the result after applying the center-log warping
followed by uniform resampling in the warped τ -domain. Here, the fit improves dramatically to an
R2 of 0.9998, with the predicted curve (orange) virtually indistinguishable from the ground truth
(blue) across both the fast edge and the extended settling tail. This comparison clearly demonstrates
that our log-centering and uniform resampling pipeline substantially enhances the models ability to
learn and generalize step-response dynamics under identical training conditions.
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(a) Original time-domain fit (R2=0.9571).

4 2 0 2 4 6 8
log_time

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

vo
lta

ge

RC_cated_81  R²=0.9998
Real
Predicted

(b) Log-time fit after preprocessing (R2=0.9998).

Figure 9: Model predictions vs. ground truth for two RC traces: (a) raw time-domain input, (b) preprocessed
(center-log warp + uniform resampling) input.
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C.6 Theoretical impact on learning

• Variance reduction. Let σ2
raw denote the variance of the target derivative dv

dt on the raw
grid and σ2

warp the variance of dv
dτ on the warped grid. From the slope-compression term

above it follows that σ2
warp ≤ σ2

raw, reducing heteroscedasticity seen by the learner.
• Effective sample size (ESS). The warping acts as an importance-sampling scheme with

weight w(t) = |t − tc| + εT0. ESS increases because highly informative edge samples
receive larger weights after transformation.

• Improved Lipschitz constant. Denote the network fθ with Lipschitz constant L. The
composite function fθ ◦ g−1 (where g−1 is the inverse warp) retains the same L but is
now evaluated on a domain where the target variation is smaller, tightening generalisation
bounds.

C.7 Proof of Lipschitz Constant Reduction

We now show that, under mild parameter choices, the pre-/post-warp composite
F (τ) = fθ

(
g−1(τ)

)
has an overall Lipschitz constant L′ < L.

1. Composition lemma. If f : X → Y is Lf -Lipschitz and h : Z → X is Lh-Lipschitz, then
‖f ◦ h(z1)− f ◦ h(z2)‖ ≤ Lf ‖h(z1)− h(z2)‖ ≤ Lf Lh ‖z1 − z2‖,

so f ◦ h is LfLh-Lipschitz [62].

2. Derivative of the inverse warp. Recall the forward warp

τ = g(t) = sgn(t− tc)
[
ln
( |t−tc|

T0
+ ε

)
− ln ε

]
.

Differentiating,
dτ

dt
=

1

|t− tc|+ ε T0
=⇒ dt

dτ
= |t− tc|+ ε T0.

Since a one-dimensional C1 function h with sup |h′(x)| ≤ M is M -Lipschitz by the Mean Value
Theorem [63], it follows that

Lg−1 = sup
τ∈[τmin,τmax]

∣∣∣d g−1

dτ

∣∣∣ = sup
t∈[tmin,tmax]

(
|t− tc|+ ε T0

)
.

3. Parameter choice for contraction. Let ∆t = max{|tmax − tc|, |tmin − tc|}. If we choose
parameters so that

∆t+ ε T0 < 1,

then
Lg−1 < 1 =⇒ L′ = Lfθ Lg−1 < Lfθ .

Hence F (τ) is strictly more contractive than fθ on the original t-domain.

4. Impact on generalisation. Standard Rademachercomplexity generalisation bounds scale lin-
early with the Lipschitz constant of the hypothesis class and inversely with

√
N [64, 65]. By reduc-

ing the effective Lipschitz constant from L to L′ < L, we tighten the bound

Egen = O
(

L′
√
N

)
⊂ O

(
L√
N

)
,

thereby improving expected test performance.

C.8 Implementation details

1. Voltage normalisation. All voltages are scaled by VDD so that v ∈ [0, 1].
2. Time origin. Warping is performed after shifting the origin to tc. This removes sample-to-

sample phase variation.
3. Parameter choices. T0 controls the width of the expanded region; in our experiments

(10−10s) adequately covers modern technology nodes down to 3 ps edges.

24



D Full Test Case

D.1 Training Data Preparation

Netlist Generation

• Prepare a pool of base RC parameter pairs

• Run:

python prepare/n.py \
--order n \
--count m \
--output_dir sp_files_n

HSPICE Simulation

• Simulations are executed via sim.sh under Linux.

• Run:

hspice testsuite_<n>.sp -o lis/result_<n>

Simulation outputs are stored in the lis/ directory.

Simulation Parser

• Place your HSPICE .lis files into the ./result/ directory.

• Run the parsing script to extract time-voltage waveforms and convert units:

python parse_spice.py \
--input_dir ./result \
--output_dir ./result/csv/

• Parsed CSV files will be saved in ./result/csv/ for further analysis.

Function Extraction

• Place your SPICE netlist files (.sp) into the directory sp_files_n/.

• Run the extraction script to parse resistor and capacitor values, compute state-space param-
eters, poles, and residues:

python extract_functions.py \
--input_dir sp_files_n \
--output_dir result_n

• The extracted normalized residues A′
i and poles pi for each netlist are saved as CSV files

in result_n/.

Data Alignment

• Place your RC parameter CSVs in RC/ and parsed SPICE result CSVs in lis/result/.

• Run the script to merge each pair into result/ as follows:

python data_alignment.py

• This script reads the first row from each RC CSV, duplicates it to match the length of the
corresponding SPICE CSV, concatenates them column-wise, and saves the combined CSV.

• Processed files are named RC_cated_i.csv for i = 1, . . . , n.
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D.2 First-Order Model Training and Error-Model Generation

The following workflow describes how to train the firstorder predictor and automatically generate
the residual (error) datasets for higher-order correction models. All commands assume you are in
the repository root (see code in supplemental_material.zip).

1. Log-centred warp & resampling for Model 1 data
• Place your pre-factorised first-order training CSVs into testxiao/basic/model1/.
• Run:

python testxiao/testxiao.py \
--input_dir testxiao/basic/model1 \
--output_dir testxiao/results \
--warp center-log

Intermediate warped traces appear in testxiao/results/.
• Next, uniformly resample in τ -space:

python testxiao/uniform.py \
--input_dir testxiao/results \
--output_dir data/model1

The resampled CSVs for Model 1 are now in data/model1/.

2. Train the first-order model
• Launch training:

python train_model1.py \
--data_dir data/model1 \
--save_path models/static_cond_model.pth

Upon completion, the static first-order model is saved as
models/static_cond_model.pth.

3. Generate error datasets
• Execute the pipeline script to compute residuals:

python pipeline_train_error_models.py \
--model_path models/static_cond_model.pth \
--input_dir data/model1 \
--tmp_dir _tmp_ds

This creates erroroforder-2 and erroroforder-3 traces in _tmp_ds/.
• Copy the intermediate error files into the next data folder:

cp _tmp_ds/error_*.csv data/error/

4. Train the error models
• Finally, train the error prediction networks:

python combine_and_train_error_model.py \
--data_dir data/error \
--save_prefix models/model_error

This produces models/model_error_2.pth and models/model_error_3.pth,
which predict the 2nd- and 3rd-order residuals respectively.

All script invocations include detailed usage notes in their headers. For full examples and parameter
options, consult the source files in the testxiao/ and root directories of our code in supplemen-
tal_material.zip
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D.3 Performance Evaluation

Once the static and error models have been trained (models/static_cond_model.pth and
models/model_error_n.pth), we run the recursive inference script to generate test predictions
and metrics. You may adjust inference parameters (e.g. batch size, lookback window) via comman-
dline flags.

python test_recursive_inference.py \
--data_dir data/order1/test \
--static_model models/static_cond_model.pth \
--err_model models/model_error_n.pth \
--out_dir results

The script outputs:

• Predicted vs. true response CSVs in results/

• Summary (R2) printed to console and saved under results/metrics/

• Plots of stepresponse comparisons in results/plots/

E 200-Order Extrapolation for Dynamic Signoff

To address the dynamic signoff mode, we conducted high-order experiments up to 200 poles. We
trained residual-correction modules on systems with no more than 15 poles and evaluated on a
200-pole network. The model achieved a coefficient of determination of R2 = 0.9838, indicating
that our approach scales to orders required for full dynamic signoff with a still manageable training
cost (approximately 5–6 hours on a single RTX 4090).

E.1 Experimental Setup

We first generated training data for systems of order ≤ 15 using standard HSPICE simulations.
Residual-correction modules contained approximately 100–160K parameters and were trained with
mixed precision on a single NVIDIA RTX 4090 GPU. Hyperparameters followed the settings used
in lower-order experiments (optimizer, learning rate schedule, batch size), with early stopping based
on validation R2. The 200-pole evaluation network was held out from training and tuned to match
the transient signoff configuration (10 ns horizon, 1,000 samples).

E.2 Case Studies

We report aggregate metrics and qualitative comparisons against HSPICE on the 200-pole network.
The model attains R2 = 0.9838 with low mean absolute error and well-behaved residuals across the
transient window. Visual overlays show close alignment at both fast and slow time scales, with the
largest errors concentrated near rapid slope changes.
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Figure 10: 200 order case study

E.3 Discussion

These results demonstrate that the residual-correction design generalizes beyond the training
order range, providing stable extrapolation to 200 poles. While inference remains fast and
memory-efficient, training cost scales primarily with data volume and sequence length; the reported
5–6 hours is a one-time training cost and remains practical for signoff contexts. Remaining gaps
are localized to high-curvature regions, suggesting that targeted augmentation (e.g., emphasizing
rapid transients) and modest architecture scaling could further close the accuracy margin without
compromising the observed efficiency benefits.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the key contributions of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses limitations including error accumulation and explosive
data requirements of this work in the beginning of Section 6, and provides further explana-
tions and solutions in the rest of Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide the full set of assumptions for each theoretical result, with com-
plete and correct proofs included in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will release both our training and inference code, along with detailed
instructions for constructing the dataset used in our experiments. While the actual dataset
cannot be released due to constraints, all necessary steps and scripts will be provided to
enable reproduction of the main results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release our training and inference code on GitHub. The model and
dataset will not be open-sourced, but we provide the detailed procedure for constructing
the dataset. We partially release the dataset generation scripts, and the data preprocessing
steps are described in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:We will include full training and test details in the supplementary mate-
rial.These details are sufficient to understand and reproduce the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The statistical significance of our experiments is evaluated by comparing the
model’s predictions with the gold-standard results generated by HSPICE simulations. We
report root mean square error (R2) as the primary metric to quantify the accuracy of our
predictions. This provides a reliable and consistent measure of model performance.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were conducted on a single NVIDIA RTX 4090 GPU plat-
form with 32 GB of memory. Training was performed on this platform, and the training
time varied depending on the order of the system and the dataset size. Inference times
are reported and compared in the main paper. The setup ensures that the experiments are
reproducible on similar hardware.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our work
fully complies with it. Our research does not involve human data, privacy concerns, or
potential for misuse. All results are reported transparently and responsibly.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is a technical study focused on physical modeling and simulation
of high-order nonlinear systems to improve efficiency and accuracy in VLSI design. It has
no direct societal applications and therefore does not discuss societal impacts. The method
is primarily for engineering simulations with negligible risk of misuse or social issues like
fairness or privacy.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:This work is a technical simulation study and does not involve high-risk mod-
els or datasets that require special safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [NA]
Justification:We utilized Synopsys HSPICE (U-2023.03-SP2-2) under a valid institutional
license for circuit simulations. Additionally, we employed open-source Python libraries
with proper license acknowledgments provided in the supplemental materials.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: We will release the relevant code and the dataset generation process alongside
the paper. Detailed documentation, including usage instructions and experimental setups,
will be provided in the supplementary material.

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The research uses Transformer architecture but does not involve large lan-
guage models (LLMs) as core components.

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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