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Abstract

Deep Neural Networks inherit biased correlations embedded in training data and
hence may fail to predict desired labels on unseen domains (or environments),
which have different distributions from the domain to provide training data. In-
variance Learning (IL) has been developed recently to overcome this shortcoming;
using training data in many domains, IL estimates such a predictor that is invari-
ant to a change of domain. However, the requirement of training data in multiple
domains is a strong restriction of using IL, since it demands expensive annotation.
We propose a novel IL framework to overcome this problem. Assuming the avail-
ability of data from multiple domains for a classification task at a higher level, for
which the labeling cost is lower, we estimate an invariant predictor for the target
classification task with training data gathered in a single domain. Additionally, we
propose two cross-validation methods for selecting hyperparameters of invariance
regularization, which has not been addressed properly in existing IL methods.
The effectiveness of the proposed framework, including the cross-validation, is
demonstrated empirically. Theoretical analysis reveals that our framework can
estimate the desirable invariant predictor with a hyperparameter fixed correctly,
and that such a preferable hyperparameter is chosen by the proposed CV methods
under some conditions.

1 Introduction

Training data used in machine learning may contain features that are spuriously correlated to the la-
bels of data. Deep Neural Networks (DNNs) often learn such biased correlations embedded in train-
ing data and hence may fail to predict desired labels of test data generated by a different distribution
from one to provide training data. In classification of animal images, DNNs tend to misclassify cows
on sandy beaches, since most training pictures are taken in green pastures and DNNs inherit context
information in training [3, 9]. Another example is learning from medical data. Systems trained with
data collected in one hospital do not generalize well to other hospitals; DNNs unintentionally extract
environmental factors specific to a particular hospital in training [16-18].

Invariance Learning (IL) is a rapidly developed approach to overcome the issue of biased correlation,
which is caused by some bias in the distribution of a training dataset [10-15, 21, 33-36, 54]. In this
paper, we use the term domain to specify the bias in the distribution of a dataset. IL is thus a
method for removing the influence of domain shits. Using training data from multiple domains, IL
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estimates a predictor invariant to the change of domains, aiming at keeping good performance in
unseen domains as well as in the training domains.

While the IL approach has attracted much attention, requiring training data from multiple domains
may hinder wide applications in practice; preparing training data in many domains often involves
expensive data annotation. In real-world data, labels may be missing [42—45, 56-58] or incomplete;
in some cases, data may only specify classes to which the image does not belong [46-48]. Such
data with insufficient annotation are not directly applicable to the standard IL methods; they must
be re-annotated accurately, often at great financial or human expense. The high cost drives a strong
need to establish a new IL framework without or with lower annotation costs.

To mitigate the problem of annotation
cost, we propose a novel IL framework
for the situation where the training data
of target classification is given in only > AN
one domain, while the task of higher S B
label hierarchy, which needs lower an-
notation cost, has data from multiple
domains. Here, the task of higher la-
bel hierarchy means a classification task
with coarser labels than those of the tar-
get classification. Figure 1 shows an
example of label hierarchy. Consider the case where a target classification has 300 labels
{birdy, ..birdy (g, snakey, ..., snakej oo, turtley, ..., turtle; g } corresponding to 300 species. Then, the
binary labels {bird, reptile} are an example of labels in the higher hierarchy. The decrease in the
number of classes reduces annotation time per image. Moreover, annotation of the binary labels
does not require any expert knowledge, while annotation of the original 300 labels would requires
expert knowledge about birds, snakes, and turtles. Hence, the new IL framework significantly re-
duces the annotation cost in comparison with previous IL methods; we need exhausting annotation
of 300 classes only for one domain and just binary labels for other domains.

bird
bird100

reptile
snakel, snakel00 ,turtlel turtle100

Figure 1: Example of Label hierarchy. Blue labels are in
higher level of label hierarchy than red labels.

Another important issue in IL is hyperparameter selection. Most IL methods involve some hyper-
parameters to balance the classification accuracy and the degree of invariance. As [21] and [19]
point out, in the literature of IL, the best performances of invariance had often been achieved by
selecting the hyperparameters using test data from unseen domains. Moreover, [19] numerically
demonstrated that, without using test data, simple methods of hyperparameter selection fail to find a
preferable hyperparameter. It demonstrates a strong need for establishing an appropriate method of
hyperparameter selection for IL.

We propose two methods of cross-validation (CV) for hyperparameter selection in our new IL frame-
work. Since we assume training data of a single domain for the target task, it is impossible to esti-
mate the deviation of the risks over the domains. Our CV methods mitigate the difficulty by using
additional data from multiple domains in the higher label hierarchy. Theoretical analysis proves that
our methods select a hyperparameter correctly under some conditions.

The main contributions of this paper are as follows:

* We establish a novel framework of invariance learning, which estimates an invariant predictor
from a single domain data, assuming additional data from multiple domains for a classification
task at a higher level.

* Under the framework, we propose two methods of cross-validation for selecting hyperparameters
without accessing any samples from unseen target domains.

» Experimental studies verify that the proposed framework extracts an invariant predictor more
effectively than other existing methods.

e We mathematically prove that our framework can estimate a correct invariant predictor with a
hyperparameter fixed correctly and that such a preferable hyperparameter is selected by the pro-
posed CV methods under some settings.



2 Invariance Learning based on Label Hierarchy

Notations Throughout this paper, the space of input features and finite class labels are denoted
by X and ), respectively. For given predictor f : X — ) and random variable (X,Y’) on
X x ) with its probability Py y, R“Y)(f) denotes the risk of f on (X,Y); i.e., RESY)(f) ==
JU(f(x),y)dPx,y, where | : ¥ x ¥ — R is a loss function. For m € N, [m] denotes the set
{1, ...,m}. For a finite set A, |A| € N denotes the number of elements in A.

2.1 Review of Invariance Learning

Following [10], to formulate the out-of-distribution (0.0.d.) generalization, we assume that the joint
distribution of data (X¢,Y°) depends on the domain (or environment) e € &, and consider the
dependence of a predictor f on the domain variable e. Suppose we are given training datasets
D¢ = {(5,y$)}"-, ~ Pxeye iid. from multiple domains &, C &. The final goal of the
0.0.d. problem is to predict a desired label Y¢ € Y from X¢ € X for larger target domains £ D &,
To discuss the 0.0.d. performance, [10] introduced the 0.0.d. risk

R (f) = max RY(f), (1)

where R¢(f) := R&XY ) (f). This is the worst case risk over £, including unseen domains & \ &;,..

To solve (1), [10] estimates a predictor f that performs well in unseen domains £ \ &, as well as
training domains &, namely a predictor invariant to a change of domains. The invariant predictor
f is composed of two maps ® and w; that is, f = w o ® holds. A feature map ¢ : X — H, which is
often called an invariance, realizes a feature of x € X in the feature space ‘H with biased correlations
in  removed. A predictor w : H — ) estimates the label of feature ®(z). The estimation of an
invariant predictor is implemented by solving the following optimization problem:

mingez,, wroy Y RE(wod), 2
ecEr
De:

where 7y, is the set of invariances captured by (J ¢,

Ty ={®: X = H| P(Y|®(X)) = P(Y**|®(X)) forany e1, e € &, }.

This invariance is based on conditional independence as [14, 15, 40], while [10, 11] use a different
type invariance based on argmin,, R¢(wo ®) instead of P(Y¢|®(X¢)). All IL methods estimate the
invariance using the difference among &;,-, assuming the availability of multiple training domains.

2.2 Invariance estimation by higher label data

Our goal is to make an invariant predictor from a single training domain &, = {e*}. In this case,

(2) is reduced to the empirical risk minimization min ¢ Re"(f) on e*, and therefore the standard IL
framework is not able to extract an invariance.

In this paper, we introduce an assumption that additional data D¢, for an another task (X°, Z¢),
which is in the higher label hierarchy than (X ¢ Y ¢), is available with respect to multiple domains
Eaa C E. The task of higher hierarchy (X ¢, Z¢) has a coarser label Z¢ € Z than Y¢ € ); more
formally, Z¢ is represented as Z¢ = ¢(Y¢) with a surjective label mapping g : Y — Z from
the lower to the higher level in the label hierarchy. The example in Section 1 is formalized by
a surjevtive function g as, setting ) := {birdy, .., birdyqo, turtley, .., turtle; oo, snake, .., snakejgo }
and Z := {bird, reptile}, g(y) := bird if y = bird; (¢ € {1,2,...,100}) and g(y) := reptile else.

By making use of {D¢;}cee,,, our objective for the invariant prediction is given by

Mingez,, wi -y RS (wo ®), 3)
where 7, is the set of invariances:
Tog = {®: X M| P(g(Y*)|B(X*)) = Pg(Y*)|®(X*)) forany e1, 2 € Ea}-

Note that (3) evaluates the risk with a single training domain while the invariances are given by
additional data of multiple domains.



2.3 Construction of objective function

Among several candidates of the loss and model design, we focus a probabilistic output case and
evaluate its error by the cross entropy loss; that is, we model w by pg : H — Py, where Py denotes
the set of probabilities on ) and 6 denotes a model parameter. The risk is then written by

RE(pg 0 @) = /f log po (Y| (X ®))dPxe ye.

We aim to solve (3) by minimizing the following objective function:

Objective (0, ®) := R (pg o ®)
+ A - (Dependence measure of P(g(Y*)|®(X®)) one € Eyq). 4)

Here, R¢” (pe o ®) denotes the empirical risk of py o @ on the training domain &, = {e*} evaluated
by D" R (pg o @) := —ﬁ 2 (ae* g yeDe” log pe(y®” |®(2°")). While we can consider some
variations of invariance regularization, we adopt the one used in [10] and construct an objective
function as

Objective(d, Oaq, ®) := R (pg o ®) + A - Z IV,

e€qd

REZIpZM o )2, (5)

wd=0ad Oad

Here, pez‘H : 'H — Pz is the linear logistic regression model same as [10], ® is a nonlinear neural
~ye e Z|H Z|H
network, and R(X"+% )(pea‘d od) = —@ D (ae z)eDe, 10gp9a‘d (2°|®(z9)).

It is not obvious if the regularization term in (5) is valid as a dependence measure of
P(g(Y*)|®(X*°)), since it was proposed for another type of invariance based on argmin,, R°(w o
®). The next lemma shows that these notions of invariance are the same in the current setting.

Lemma 1. When modeling w by conditional probabilities, the following statements are equivalent:

P(Z¢|®(X°)) does not depend on e < argmin = R(XE’ZE)(pGZ‘Z{ o ®) does not depend on e,
fad ¢
where model pg';l:{ in the right hand side runs over all probability densities.

While our objective function (5) is similar to the ones in [10, 21] in that they are composed of an
empirical risk and an invariance regularization, the correctness has not been fully discussed so far.
In Section 4, we will mathematically prove the correctness of (5) under some settings.

3 Hyperparameter selection method

3.1 Hyperparameter Selection in Invarance Learning

The objective function (5) has a hyperparameter )\ to select, as is often the case with IL methods. The
hyperparameter selection in IL has special difficulty, however; because the 0.0.d. problem needs to
predict Y ¢ on unseen domains, A must be chosen without accessing any data in such unseen domains.
It was reported in [19, 21] that the success of IL methods depends strongly on the careful choice of
hyperparameters, and some of the results even used data from unseen domains in the choice. [19]
reported also experimental results of various IL methods with two CV methods, training-domain
validation (Tr-CV) and leave-one-domain-out validation (LOD-CV), and showed that the CV meth-
ods failed to select preferable hyperparameters. In the Colored MNIST experiment, for example, the
accuracy of Invariant Risk Minimization [10] is 52.0% at best, which is about a random guess level.

The failure of the CV methods is caused by the improper design of the objective function for CV;
they do not simulate the o.0.d. risk, which is the maximum risk over the domains. Tr-CV splits
data in each training domain into training and validation subsets, and takes the sum of the validated
risks over the training domains. Obviously, this is not an estimate of the o.0.d. risk. LOD-CV
holds out one domain among the training domains in turn and validates models with the average
of the validated risks over the held-out domains. Again, this average does not correspond to the
0.0.d. risk. In summary, the problem we need to solve is answering the following question: how can
we construct an evaluation function of the o0.0.d. risk from validation data? In the sequel, we will
propose two methods of CV, which are summarized in Algorithm 1.



Algorithm 1 CV methods. If CORRECTION = True, A is selected by method II and if False, 1.

Require: : Split D¢ ,DeL, ..., D into K parts. Set the hyperparameter candidates A.
Require: :P°(z")« ID“d = , where Df; ;= {(v,2) € Dy |z = 2"} foralle € Eyq and 2~ € Z7.

IDg 4l

1: for A € Ado

2: forkzlf\oKd/(\) ) )

3: LAearn 9[ K <I>[ K] by using D[e k],Dajﬂ K ...,?ag’[ik]. *

4: RE () le ‘Z(I weyeps; ~108Pey ( “|®p (7)) //Risk estimation on e*.
5 Ry () « 4|D[e;]72,| Z(I’y)epfﬁ,},z%_ logpg[xik] (|®} 4y (2),9(Y) = 2) for 2~ in 2~

6: fore € Eqq do

7 RE(N) \Ded o > (e z yepe, . T 108Pg (2°]@7 4, (2°)). // Risk estimation on e.
8 if CORRECTION then L

9: REA) + 4 Y cz-P(27) R, =7 () // Correction term addition.
10: end if
11: end for .
12: REO(N)  maxees, ,ufery RE(A) /l 0.0.d. risk estimation.
13:  end for A
14: ROOE(N) + & Zszl R4 (N) // Final 0.0.d. risk estimation.
15: end for

16: Select \* := argmin, 7@0~0'dA(/\)

3.2 Method I: using data of higher level task

We divide each of D¢, D, ..., D7 into K parts where |Eaa] = n, and use the k-th sample
{D () Do 17 -+ Doy} and the rest {D k7 Dot [~k > Dai [+ for validation and training,
respectively. To approximate the 0.0.d. risk of the trained predictor Py, © @f\_ K We wish to es-
timate R® (p9ﬁ,k] o (IJ[)‘_ k]) for e € £,q4 U {e*} by the validation set. For ¢*, we use the standard

empirical estimate 7@?,:] (pg[)\ o (ID[)‘ }). For e € &,4, we substitute unavailable Y¢ with Z¢ and use

(X°,z2°) . e e
R[k} (pa[{k] °© q)[)\_k]) : [ Z(Ie 2)eDe, Inge[{k] (2 |‘I>[A_k] (z9)).

3.3 Method II: using correction term

Method I can be improved by correcting the replacement R® = R(XY") with R(X%Z%) for e €
Eqd- We use the following theorem for the correction:

Theorem 2. Let Z7 := {z € Z||g7!(z)| > 1}. Foranymap ® : X — H, py : H — Py, and
random variable (X,Y) on X x Y, the following equality holds:

RN (py 0 B) = RAUD (g0 8) + > {P(g(¥) = 2) x ROV (py 0 ) |
ZTEZT
Here, RXY)l=" (pg o @) := f—logpg (Y\@(X),g(Y) = z”)dP(X,y)‘g(y):zy where
Pix,v)|g(v)==~ denotes the conditional distribution of (X,Y’) given the event g(Y') = 27, and

Po(y|®(2), g(¥) = 27) 1= 2B o

The proof is given in Appendix A. The theorem shows that, to estimate the correction term, we need
to estimate ()P (g(Y¢) = 2z-) and (ii) RCX"Y 1= (pe[)\_k] o @ ;) forevery z~ € 2.

o . - D, L
(i) is naturally estimated even on ¢ € Eu,q: P(Z¢ = 27) = ||g§z‘ ‘, where D¢
ad

ad,z”
{(z,2z) € DS, |z = =z~ }. (ii) is not easily estimable; while a direct simulation of the integration
J dP, (X<,ve)|g(ve)=-- demands data from (X ¢, Y¢) ~ Pxe ye, our available data D¢, on e € .4
is from Pxec g(ye), not from Pxe ye. To solve the non- availabihty of data from Pxe y., we use the

training data D¢ ~ Py yer instead. Namely, (ii) is estimated by



B(X YTz — —
R[k-] (pa[ﬁk] °© ‘I’[)\_k]) = Wl]” Z(w,y)epe* —Inga[{k] (y|¢’[)‘_;€} (@), 9(Y) = z),

[k],2~

where D‘fk]

27

{(m, y) € D‘[fk*] lg(y) = z”} C D‘f]:]. In Algorithm 1, the above risk estimate is

abbreviated by ﬁfg]lzf()\) for notation simplicity.

4 Theoretical analysis

Throughout this section, to avoid discussing the non-trivial effects of nonlinear ¢, we focus on the
simplified case of variable selections, where the feature map & is chosen from the projections of x
to a subset of its components. For example, ® may be ®(z1, 2, 23) = (21, 23) when z is three-
dimensional. This type of IL appears practically in causal inference [14, 13] and regression [40].
Let X := A} x &5 where A7 := R™ and X5 := R™2 with ny,ns € N. For a projection ®, let
®; denote the Xj-component of ® (i = 1,2). If ® has a X>-component, we write Im®5 # (). For
simplicity of analysis, the domain set £ is defined by all the probability distributions with the fixed
marginal distribution Py yr of (X1,Y’); namely,

{(X%Y®)}eece := {(X, Y') : arandom variable on X' x V| Pyx (x)y = Px1 y1 } (%)

In this case, for any e € £ the variable (X¢,Y¢) satisfies (i) Pyc|px: (xe) equals to Pyrjyr, and
Ye|dX1(Xe) YI|X!

(i) the marginal distribution Pgx, (x) of the invariant feature d¥1(X) equals to PXII. The above

setting and definition persist through Section 4.

4.1 Theoretical analysis of our objective function

The following theorem ensures that, neglecting estimations and under some conditions, a minimum
of our objective function (5) with careful hyperparameter choice also minimizes the o.0.d. risk (1):

Theorem 3 (0.0.d. optimality of our objective function). Under the setting (%), additionally assume
that the following condition holds:

(A) For any variable selection ® with Tm®q £ (), there exist two domains {e1, ea} C Eqq such that
P(g(Y)|@(X<1)) # P(g(Y*)[(X*2)).

Then, there exists \* € R such that any minimizer (6%, Gid, o7 of (5),

(07,0} @) € argmin{ R (pg 0 ®) + X"+ 37 |V, RO 0 @),
Wad: e€aud -

is 0.0.d. optimal, i.e.,

pot 0 @1 € argmin,, y_,p, R (pp),
where models pg and p(,zam in ming g, & run all the probability density functions, and ® runs all
the variable selections. The gradient Vy,, should be understood as the functional derivative on the
space of probability density functions.

For the proof, see Appendix B. Condition (A) means that £,4 has sufficient variation to capture the
desirable invariance ®.

4.2 Theoretical analysis of our cross validation methods

In Sections 3.2 and 3.3, we approximate R(X"Y*) using label Z¢ of higher level. While the approxi-
mation is not exact, we will prove that the proposed CV methods still select a correct hyperparameter
under some conditions. We will also elucidate the difference of the two CV methods. Given hyper-
parameter A, minimizing (5) over the model yields the feature map (variable selection) denoted by
d* 1 X — R™ (ny < nj+ny). For simplicity of theoretical analysis, we assume that the minimiza-
tion of (5) achieves perfectly the conditional probability density function of Py-cx|gx(xe*), denoted

by p**(y|®*(x)). Then, neglecting estimation errors, the approximated 0.0.d. risk of p*:* 0 ®* used
in Methods I and I are represented by the following RY(\) and R'Z()\), respectively:



RI(N) = max{ max RZ590D (prA o oY), RE ’Ye*)(p*’A o <I>’\)}, (6)

e€€ud
RIT(N) :=max  { REIO (pA 6 @A) 4 ) RETY I (A o
( )eegadu{e*}{ 2 e (o2 5.

(N
We have the following theoretical justification of our CV methods: the chosen A gives a minimizer
of the correct CV criterion. For the proofs, see Appendices C and D.
Theorem 4 (Correctness of Method I). Under the setting of variable selection (), assume further
that the following conditions (i) and (ii) hold:

(i) Among a set A\ of hyperparameter candidates, there exists \' € A such that N = oM,
(ii) Let p© be the probability density function of Pxex cye+y. Then, for any X with Im®y # (),
there is ey € Eqq such that

(w,2) ~ Pxex g(ver) Satisfies ¢ (2|®Nx)) < e P — e with probability 1.

Here, ¢ € R+ is some sufficient small positive real number (that is, 0 < ¢ < 1) and g =
H( (X)) is the conditional entropy of (2 (X¢"),Y).

Then, we have

argminy ., R7(A\) C argminy g, R4 (p** o &1).

Theorem 5 (Correctness of Method II). Under the setting of variable selection (%), assume that, in
addition to (i) in Theorem 4, the following condition (iii) holds:

(i) for any \ with Im®) # (), there is e\ € Eqq such that
(w,2) ~ Pxex g(ver) Satisfies p¢ (2|®*(x)) < e P> — ¢ holds with probability 1.

Here, ¢ is some sufficiently small positive real number and

fro= HO @8 (X)) = 37 {Po(r) = ) x RO 0 ) .
eZH

Then, under the setting (%), we have

argmin, c, R (\) C argmin, ¢, RO%(p** 0 @*).

The conditions (ii) and (ii)” impose that, for at least one ey € £,q4, the two domains ey and e* are
different in the following meaning. if \ fails to remove domain-specific factors (i.e., Im®3 # (),
for some ey € Eua, (z,2) ~ Pxex g(yex) yields low p¢ (z|®*(z)) with high probability. On the
other hand, (z, z) ~ Pxe+ 4(ye*) yields high p® (2|®*(x)) with high probability: that is, e* and e
are different.

The theoretical analysis shows, while Method I is mmg)ler to 1mplement than Method II, Method 1I
is more applicable. Noting that 5 > [, and hence, e e < e7P» —¢, the condition (i)’ is milder
than (ii). Recalling that (ii) and (ii)’ impose the discrepancy between £,4 and e* as discussed in
the last paragraph, relaxation of conditions from (ii) to (ii)’ implies that method Il can be applied
even when domains E,q and e* have smaller discrepancy than the condition for Method I. The
difference of these two methods will be demonstrated in Section 6. The real-world feasibility of the
assumptions (ii) and (ii)’ are discussed in Appendix F.

5 Related work

Fine-tuning The proposed framework uses additional data from multiple domains as well as the
training data for the target task. It is relevant to Transfer learning (TL) [22-24] and meta-learning
[30, 41], which realize fast and accurate learning for a new target task based on a model pre-trained
with additional data sets. For example, after initial learning with a large data set, fine tune [22, 23]



re-trains the model with the target task, while frozen feature [24] fixes the pre-trained model and
tunes a head network. Although they show advantages in many learning problems, they may not
work effectively in the current setting; in the fine-tuning with the target task (X ye ), the model
tends to learn biased correlation in the data set and does not generalize to unseen domains. Some
fine-tuning methods will be compared with the proposed approach in Section 6.

Domain adaptation by deep feature learning Domain adaptation strategies by deep feature
learning [25-27, 31, 32] assume that we can access input data on a test domain in advance, and
try to obtain data representation ®(X¢) that follows the same distribution for the training and test
domains. While the strategies lead to high predictive performance on a test domain similar to a
training domain, such ® does not function by discarding environmental factors from X°¢ € X" as
noted in [10]. Experimental comparisons will be shown in Section 6.

Distributionally robust optimization The proposed work tries to minimize the worst risk among
risks on distributions perturbated from a training distribution [69, 68, 64]. The perturbated dis-
tributions are formalized as a small e-ball centered at the training distribution evaluated by some
divergence. In our setting, the change of distributions in training and testing is necessarily small;
if the background changes drastically, it is expected that its corresponding distribution also changes
drastically.

Few-shot and zero-shot learning Some methods of few-shot and zero-shot learning [70, 71] try
to generalize to new classes not seen in the training set, given only a small number of examples
of each new class or given no examples of each new class. Their problem setting is relevant to
ours in that both of them have restrictions on the data obtained in training. [70, 71] train prototype
representations of each class, which enable us to generalize to new classes not seen in the training
set. While these methods are useful for generalizing new classes, they do not intend to remove
biased correlations embedded in all training data and hence, are unsuitable for our problem setting.

Other strategies [65] tries to obtain a de-biased feature ® following the independence ®(X) 1L F,
seeing £ as a random variable E. Recently, [66] considers the setting where there exists some f in
the model that f # f°°9 where f*°% is an estimator with high prediction performance on both
training and test domain, and that f(z) = f°°% (x) for a sample z from training domains. Under
the setting, they derive an upper bound of the risk on a test domain and propose a method for
decreasing the upper bound. As a debias method, [67] uses two NNs; the first NN learns a biased
mapping by the standard ERM, while the second one is trained with the samples that have large
errors by the first NN. This method is based on the idea that the training with samples with large
errors by the first NN mitigates data bias.

6 Experiments

We study the effectiveness of the proposed framework and CVs through experiments, comparing
them with several existing methods: empirical risk minimization (ERM), fine-tuning methods, and
deep domain adaptation strategies. For fine-tuning, we employ two typical methods of transfer
learning: fine tune (FT) and frozen feature (FF) [22-24]. As a deep domain adaptation technique, we
adopt the state-of-the-art method DS AN [31]. We also compare our two CVs (CVI and CVII) with
conventional CVs: training-domain validation (Tr-CV) and leave-one-domain-out cross-validation
(LOD-CV) [19]. We have two hyperparameters to be selected by CV. In the training with (5), we set
A := Apefore When the training epoch is less than a certain threshold ¢, and A := A, if the epoch
is larger than ¢. It is known that these two hyperparameters are critical for IL methods to achieve
good results. From a set of candidates, each of the CV methods selects a pair (¢, Aafier). To know the
best possible performance among the candidates, we also apply the test-domain validation (TDV)
[19], which selects the hyperparameters with the unseen test domain, and thus is not applicable in
practical situations. Additional experiments and experimental details can be found in Appendices G
and H, respectively. The code is available in Supplementary Material.

Colored MNIST We apply our framework to Colored MNIST [10] with Y = [10] and Z := [2].
We aim to predict Y € ) from digit image data X¢ € R2*24x24 The label Y® is changed
randomly to one of the rest uniformly with a probability of 25%. All digits in images are colored



ImageNet ImageNet | ImageNet
Dataset CMNIST Y =[3] Y =[1] Y = [17],
Best possible 750

random guess .100 333 143 .059

Oracle 715 (.001) | .743 (.018) | .749 (.008) | .708 (.010)

ERM 433 (.004) | 417 (.016) | .507 (.020) | .357 (.020)

FT 250 (.020) | .463(.030) | .409 (.020) | .361 (.011)

FF 248 (019) | 482 (.127) | .226 (.046) | .162 (.011)

DSAN 073 (.003) | .278 (.004) | .293 (.008) | .060 (.007)

Ours + CV 1 606 (.051) | .652 (.028) | .622 (.011) | .556 (.004)

Ours + CV II .618 (.018) | .666 (.027) | .622 (.011) | .556 (.004)

Ours + Tr-CV .500 (.006) | .641 (.033) | .612(.012) | .544 (.013)

Ours + LOD CV | 460 (.200) | .525(.028) | .572(.022) | .528 (.019)

[ Ours+TDV_ | 657 (.008) | 673 (.035) | .634 (.033) | .556 (.004)

Table 1: Average Test Accuracies and SEs of Colored MNIST and ImageNet (5 runs): Oracle show
the result of ERM with grayscale MNIST (CMNIST) and of training with both e; and e3 (ImageNet).
TDV selects A that yields the highest performance on e,. The best scores are bolded.

\ Dataset | cvi [ cvl | T-CV [ LOD-CV |

CMNIST 051 (.053) | 039 (.017) | .163 (.006) | .197 (:205)
TmageNet: Y = [3] | .027 (.029) | .013 (:020) | .025 (.021) | .170 (.041)
TmageNet: Y = [7] | 012 (.001) | .012 (.001) | 018 (015) | .054 (.024)
TmageNet: Y = [17] | .000 (.:000) | .000 (.000) | .001 (.002) | .025 (.021)

Table 2: Means and SEs of {(Accuracy of TDV on e3) — (Accuracy of Each CV on e3) } (5runs).
The lowest errors are bolded.

red or green. The domain e € [0, 1] controls the color of digits; the digits Y¢ > 4 and Y¢ < 4 are
colored in red and green, respectively, with probability e. In training, D¢ ~ Pxo.1 yo.1 is drawn

with sample size n¢" = 5000, and in testing, Y¢ is predicted from X°¢ for es := 0.9. Regarding
the higher level Z¢, the task is to predict Z¢ = 0 for X®in 0 — 4 and Z° = 1 for 5 — 9 (that is,
g(Y¢) =1ifY® > 4 and else, g(Y¢) = 0). The label Z¢ is swapped randomly with 25%. We set
Eq.a = {0.1,0.3,0.5,0.7,0.9} with n® = 5000 for each e € &,4. We model ® by a 3-layer neural
net. Setting the maximum epoch 500 and Apefore := 1.0, we select (¢, Aager) from 4 x 7 candidates
with ¢ € {0,100, 200,300}, Aasier € {10°,10%, ..., 105} by each of the CVs.

Table 1 shows the test accuracies for 2000 random samples in the domain es. The results, together
with additional ones in Appendices G.1 and G.2, demonstrate that the proposed methods signifi-
cantly outperform the others for e;. Among the two proposed methods, CV II yields higher test
accuracies on ey. Table 2 shows the accuracy gain of each CV from TDV with the same data sets for
domain eq. These results, together with Appendices G.1 and G.2, concur with the theory in Section
4 suggesting that CVII succeeds in wider situations, resulting in smaller errors.

ImageNet To see the performance of the pro-
posed methods for more practical data, they are
applied to the ImageNet [53] with its label re-
annotated imitating BREEDS [52], which proposes
a method for re-annotating ImageNet to create an
0.0.d. benchmark. The target task here is to pre-
dict labels Y¢ € ) of images X¢ € R3x224x224,
We conduct three experiments with |Y| = 3,7, 17.
For each experiment, we prepare image datasets in
different two manners e; and e5. The datasets con-
sist of images belonging to one of the classes ).

_—— Dataset el Dataset e2

—
ruffed grouse indigo bunting @ross = water ouzel ﬁ
/ ] & .

| turtle

. : C
lighthouse — fountain castle — Water tower

B L g

<

y structure

2, 4, and 8 classes out of 3, 7, and 17 classes, re- | \cen /J
spectively, are composed of different subtypes be- . ]
tween e; and ep; for example, the images of class Figure 2: ImageNet experiment dataset.

bird in e; are composed of ruffed grouse and in-



digo bunting, and the bird images on ey are composed of albatross and water ouzel (Figure 2). In
detail, show Appendix H.3. In training, D¢ ~ Pxe, .ye1 1s drawn, and in testing, Y is predicted
from X on ey. The coarser label Z¢ is binary (that is, Z = [2]), and the sample in the higher level
D¢, of (X¢, Z¢) is drawn from both e; and e;. Here, D¢}, is the same as D¢ but with labels re-
annotated by g. We model ® by ResNet50 [29]. Setting the maximum epoch 32 and Apefore := 0.1,
we select (¢, Aafier) from 3 X 4 candidates with ¢t € {10, 20, 30}, Asner € {0, 1, 10,100} by each of
the CVs.

Table 1 shows the test accuracies on e;. We can see that the proposed framework succeeded in
predicting on ey, while the other methods failed. Table 2, which shows the difference between
accuracies by TDV and each CV, verify that CVI and II selects A with the smallest error.

Comparison of two CV methods To highlight the difference between the proposed two CVs, we
compare them regarding the discrepancy between the additional domains of higher level £,4 and the
domain for training of the target task e*. We used synthesized data with X = R2, ) = [10] and
Z := [2], preparing ten distributions {N;}°, on R?, which include a domain-specific factor in the
second component depending on e € Z (see Appendix H.2 for explicit representations of {N;}12,).
The task is to predict the distribution label i € {1,...,10}. Setting e* := 20 with n¢~ = 60000,
the test task is to predict the label for domain e = —20. Regarding the task with label of higher
level, we use g(y) = 0if y > 4 and g(y) = 0 else. We draw DS, ~ Pxe z- (n® = 20000) from
Eud = {€ad,40}, where e,q4 ranges from —9 to 1. As e,q increases, e,q approaches to e*. The
model ® is a 3-layer neural net. We set the maximum epoch 500 and ¢ = 0, and select Ayge; from 4
candidates A\uper € {0,0.001, 80, 100} by each CV method.

[ [ €ai=—9 ] €wa=-8 | €d=—7 | €d=-—0 | €wa=-5 | €ad=—4 | aa=—3 | €a=—2 | €ada=—1 | €aa=0 | eag=1 |
[ TDV ] .596 (.078) | .621(.046) | .630 (.041) | .595 (061) | .590 (087) | .621 (.059) | .564 (.071) | .582(.056) | .535(.093) | .520 (.121) | .575(.107) |
[ CVI [.529(128) [ .555(.111) [ .562(.086) | .566 (.109) | 375 (.145) | .346 (.172) | .372(.176) | 358 (.167) | .300 (.146) | .173 (.143) | 218 (.087)

| CVII [ 527 (.152) | .573(.089) | .565 (.085) | .572(.072) | .522 (110) | .523(.102) | .482 (.113) | .506 (.153) | .430 (.146) | .437 (157) | .502 (.149)
Table 3: Comparison of Two CVs: Average Test ACCs and SEs of the estimates (10runs).

Table 3 shows the test accuracy on e = —e* with 2000 random samples (z,y) ~ Px-c* y-c+. From
the results, we can see that CVII tends to select better hyperparameters than CVI, especially in the
case where the variation among the domains is smaller as e,q approaches to e*. This accords with
the theoretical results in Theorems 4 and 5, which show that CVII finds a correct hyperparameter in
smaller discrepancy between £,4 and e* than CVL.

7 Conclusion

We have proposed a new framework of invariance learning: assuming the availability of datasets
for another relevant task in higher label hierarchy, we obtain an invariant predictor for the target
classification task using training data in a single domain. We have also proposed two CV methods for
hyperparameter selection, which has been an outstanding problem of previous methods for invariant
learning. Theoretical analysis has revealed correctness of our methods, including CVs, and the
experimental results have demonstrated the effectiveness of the proposed framework and CVs.

Limitations and potential societal impact In Theorem 3, it is ensured that our objective function
gives a minimizer of the o.0.d. risk, only if at least two domains have different distributions. In
general, different domains do not necessarily have different distributions. Judging the discrepancy
is a further important problem. As a positive impact, our method will enable us to estimate predictors
that don’t use discriminatory factors such as gender. There may be some negative aspects in that our
method removes important information for a prediction as well as unnecessary ones.
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