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Abstract

Since the advent of machine learning, interpretability has remained a persistent
challenge, becoming increasingly urgent as generative models support high-stakes
applications in drug and material discovery. Recent advances in large language
model (LLM) architectures have yielded chemistry language models (CLMs) with
impressive capabilities in molecular property prediction and molecular generation.
However, how these models internally represent chemical knowledge remains
poorly understood. In this work, we extend sparse autoencoder techniques to un-
cover and examine interpretable features within CLMs. Applying our methodology
to the Foundation Models for Materials (FM4M) SMI-TED chemistry foundation
model, we extract semantically meaningful latent features and analyse their acti-
vation patterns across diverse molecular datasets. Our findings reveal that these
models encode a rich landscape of chemical concepts. We identify correlations
between specific latent features and distinct domains of chemical knowledge, in-
cluding structural motifs, physicochemical properties, and pharmacological drug
classes. Our approach provides a generalisable framework for uncovering latent
knowledge in chemistry-focused AI systems. This work has implications for
both foundational understanding and practical deployment; with the potential to
accelerate computational chemistry research.

1 Introduction

The intersection of artificial intelligence (AI) and chemistry has recently witnessed unprecedented
advances with the emergence of foundational chemistry language models (CLMs)1,2. Built upon
Transformer3 architectures, these models have been fine-tuned for tasks in molecular property
prediction and de novo materials design, often matching or exceeding traditional approaches.4,5,6,7

Yet, these empirical successes come with a critical limitation: the models operate as “black boxes,”
their internal decision-making processes opaque to human understanding. This interpretability
challenge is particularly acute as it touches on a fundamental epistemological question: are these
models learning genuine chemical principles, or are they sophisticated pattern-matching systems?

Without interpretable representations, we cannot distinguish between models that have internalised the
physical laws governing molecular behaviour and those that merely memorise statistical correlations in
training data. This distinction has profound implications for model generalisation, scientific discovery,
and the regulatory approval of AI-assisted therapeutics. The core difficulty lies in deciphering
the holistic, molecular-level vectors that represent entire chemical structures, where concepts are
entangled and distributed.

Recent advances in sparse autoencoders (SAEs) 8,9,10,11,12 provide a promising path toward inter-
pretability. SAEs decompose neural network activations into sparse features that can correspond
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Figure 1: Overview of our workflow. Embeddings are extracted from SMI-TED and converted into
features via the SAE model. These features are then interpreted to find relationships with structural
and physical information.

to interpretable and meaningful concepts.9 However, their application to chemistry has remained
unexplored. In this work, we present the first application of SAEs to CLMs, specifically the state-
of-the-art SMI-TED foundation model7, presenting the first systematic investigation of interpretable
features within CLMs. We train SAEs on the internal representations of the model and analyse the
resulting sparse features across diverse molecular datasets (Figure 1). Our analysis reveals that these
models develop rich, hierarchical representations of chemical knowledge, with individual features
corresponding to structural motifs, physicochemical properties, and pharmacological drug classes -
concepts never explicitly provided during self-supervised training.

Contributions (1) The first application of SAE techniques to CLMs, revealing interpretable chem-
ical features within foundation model representations. (2) A novel domain-specific evaluation
framework that validates chemical interpretability through molecular descriptors, substructure analy-
sis, and functional annotations. (3) Demonstration of feature steering capabilities that enable causal
manipulation of molecular representations while preserving chemical validity. All materials needed
to reproduce our results including model weights will be made available at the time of publication.

2 Methodology

2.1 Problem Formulation and Model Setup

We formalise the problem of interpreting CLMs via sparse dictionary learning.8 Our central hypothesis
is that a dense molecular representation vector, x ∈ Rdmodel , can be sparsely decomposed as x ≈∑

i hiwi, where {wi} is a dictionary of interpretable feature vectors and h is a sparse activation
vector. We extract these fixed-size vectors (dmodel = 768) from the submersion layer of the SMI-TED
foundation model, which is responsible for mapping a sequence of molecular tokens into a single,
fixed-size vector that represents the entire molecule.

2.2 SAE Architecture Training and Evaluation

To learn this decomposition, we implement a TopK SAE13. We select this architecture over traditional
L1-regularised approaches due to its direct control over feature sparsity and its demonstrated ability
to achieve a superior fidelity-sparsity trade-off13. The encoder identifies the k most active features
for a given input, and the decoder then attempts to reconstruct the original vector using only this
small subset.

We train our SAEs on a dataset of 5 million molecular representations extracted from SMI-TED. We
curate this data from PubChem following the filtering and preparation protocol described by Soares
et al. 14 to ensure a highly similar data distribution (see Appendix S2.1.1). The training objective is to
minimise reconstruction loss (∥x− x̂∥22) while balancing sparsity and feature utilisation.

To identify an optimal model configuration, we perform a grid search over key hyperparameters,
including the dictionary expansion factor (the size of the feature dictionary relative to the input
dimension, e.g., 8×, 16×, 32×) and the sparsity level k ∈ {40, 80, 160}. This process allows us to
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map the Pareto frontier of models that optimally trade off reconstruction fidelity for sparsity. From
this frontier, we select a final model that demonstrates the most promising initial signs of feature
interpretability while ensuring its reconstructed vectors can still be successfully decoded back into
their original, chemically valid SMILES string (see Appendix S2.3 for further details).

We additionally prepare the ChEMBL3515, MITOTOX16, and MOSES17 datasets as per our filtering
and preparation protocol to investigate the interpretability of physicochemical, functional, and
structural concepts (see Appendix S2.1.2).

3 Results

We begin our analysis by profiling the features from our selected SAE (8× expansion, k = 80), which
is used for all subsequent investigations. We construct the feature landscape in Figure 2, which maps
each feature’s activation frequency, intensity, and volatility. This visualisation reveals a spectrum of
feature types from specialist features (left, rare but specific) to generalist features (right, common but
potentially polysemantic). For example, features 247 and 266 selectively detect specific chemical
substructures (highlighted in white), activating rarely but consistently across molecules sharing these
motifs, while features 80 and 429 activate frequently across structurally diverse molecules, suggesting
they encode broader chemical concepts or multiple properties.
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Figure 2: Feature landscape calculated on a 10k subset of the MOSES dataset. Each point represents
one SAE feature, mapped according to three metrics: (1) Activation frequency (x-axis) measures how
many molecules activate this feature, revealing whether it detects common or rare chemical attributes;
(2) Mean normalised activation (y-axis) quantifies the typical strength when the feature activates,
indicating its importance when present; (3) Coefficient of variation (colour gradient) represents
consistency of activation strength, with darker points showing more consistent behaviour.

3.1 Substructures

We test the claim that SAEs produce an interpretable feature vocabulary by evaluating if individual
features detect chemical concepts more effectively than individual neurons. A comparison of max
F1 scores for 14 functional groups (Table S3) shows that SAE features outperform neurons. This
result indicates that the features form a disentangled representation, isolating specific informational
components previously distributed across the latent space.

The performance gap between features and neurons is largest for motifs with low prevalence in the
training data. For instance, nitrate groups appear in only 5,167 of the 5 million molecules (0.1%).
The feature for detecting this rare group achieves a perfect F1 score of 1.000, while the best neuron
scores only 0.056. Large differences also exist for other low-prevalence motifs like acetylenic carbon
(0.933 vs. 0.079; 0.8% prevalence) and cyanamide (0.667 vs. 0.030; 0.1% prevalence). These results
suggest the SAE constructs new detectors from linear combinations of neurons, a necessary step when
the base model avoids dedicating single neurons to rare concepts. Visualisations of top-activating
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molecules for these features confirm their precision, as they activate exclusively on molecules with
the target substructure (Figure S4).

To establish a causal link between a feature and its correlated motif, we perform feature steering
via ablation. For a given molecule, we set the activation of a target feature to zero before decoding
the molecule from its modified latent representation. Examples of this ablation experiment for three
features are provided in Figure 3. This intervention produces a targeted and predictable modification;
for example, ablating the feature for a carbonyl group (Feature 758) selectively removes that group
from the molecular structure while preserving the core scaffold, and instead replaces it with a pentyl
chain. This result provides direct evidence that the feature causally encodes the information required
to generate the substructure, confirming its functional role in the model’s generative process.

Feature 758 – carbonyl → pentyl 

Feature 5006 – amine → methyl

Feature 518 – fluoride → methyl/hydroxyl/halide
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Figure 3: Examples of molecules with altered substructures highlighted before (green) and after (red)
steering. Steering is performed by setting the specified feature activation to zero.

3.2 Physicochemical Properties

Beyond local substructures, SAE features also provide a more disentangled representation of global
physicochemical properties. Comparing against raw neurons, Principal Component Analysis (PCA)
components, and Non-negative Matrix Factorisation (NMF) factors, we find each descriptor correlates
(Spearman’s ρ ≥ 0.3) with 6.40 ± 3.78 features, compared to 65.77 ± 51.07 neurons, 1.08 ± 1.29
PCA components, and 3.70 ± 5.37 NMF factors. While PCA appears most parsimonious, the 100
strongest descriptor relationships map to only 3 different PCA components versus 100 unique SAE
features, 5 NMF factors, and 69 unique neurons. This suggests PCA efficiently captures variance
but conflates multiple chemical concepts within single dimensions. The SAE representation’s lower
redundancy is confirmed by the mean pairwise correlation among features (0.016 ± 0.029), which
is an order of magnitude smaller than that of neurons (0.162 ± 0.122). The top three correlated
features are visualised in Figure S5, wherein steering of the top three activated molecules shows the
causal relationship between activation and descriptor. These results demonstrate that the SAE distils
the original neuron activations into a set of compact and decorrelated features, providing a more
interpretable basis for aligning the model’s internal representations with external physicochemical
descriptors than either the original neurons or standard dimensionality reduction techniques.

3.3 Functional Behaviour

Sections 3.1 and 3.2 establish that SAE features form a disentangled basis for substructures and
physicochemical properties. We now investigate if these features also represent higher-level functional
concepts. We first use a downstream prediction task, toxicity prediction on the MITOTOX dataset, to
compare the utility and efficiency of the SAE feature basis against the original neuron basis.
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We train multiple logistic regression models on both representations and find their predictive perfor-
mance to be nearly identical. Models trained on the 768 neuron activations yield a mean AUCpr of
0.603 ± 0.035, while models trained on the 6144 SAE features yield 0.606 ± 0.034, a statistically
insignificant difference (t = −0.34, p = 0.75). This result confirms that the SAE decomposition
is information-preserving for this task. However, the models differ in their sparsity. The logistic
regression procedure identifies 213 neurons (0.277% of variables) as significant predictors, whilst
requiring only 19 SAE features (0.003% of variables) to achieve the same performance (the top 3 of
which are visualised in Figure S7). This finding suggests the SAE isolates the relevant biological
signal into a more compact set of features.

We now present a case study that moves from this multi-feature abstraction to a single feature
associated with a specific pharmacological mechanism. We identify a feature that activates selec-
tively for three compounds – CHEMBL167248518, CHEMBL45461819, and CHEMBL36852220 –
which span distinct chemotypes (Figure S8). While two of the molecules are very close structural
analogues, the third exhibits relatively weak structural similarity to them, as measured by a Tanimoto
similarity that falls within the range expected under a null distribution of random molecular pairs (see
Appendix S4.3). There are molecules in the dataset that have higher Tanimoto similarities between
all three molecules that this feature does not activate for.

All three compounds have been reported to share activity for the µ-, κ-, and δ-opioid receptors,
according to both ZINC SEA21 in silico predictions and experimental ChEMBL bioactivity data.
The maximum common substructure (MCS) across the three molecules is also present in 247 other
molecules, suggesting that this feature cannot be explained by the MCS alone. This contrasts with
the majority of features, which appear to correspond to small, local structural motifs.

The presence of a feature that activates across both a morphinan-like scaffold (CHEMBL1672485)
and a distinct polycyclic scaffold family (CHEMBL454618/368522) suggests that the model is not
solely encoding local topological similarity, but instead captures higher-order abstractions that relate
to, though do not perfectly determine, shared pharmacological behaviour. The emergence of such
a latent feature points toward the model’s internal representations being sensitive to patterns that
integrate both structural and functional information across chemotypes, rather than reflecting purely
structural or purely functional groupings.

4 Conclusion

In this work, we demonstrate that SAEs can decompose the latent representations of a CLM into a
more interpretable feature basis. This disentanglement reveals a rich landscape of features spanning
local substructural motifs, global physicochemical descriptors, and high-level functional concepts. For
instance, we show that the SAE isolates the signal for toxicity into a far more compact representation
than the neuron basis, and that single features can group molecules by a shared pharmacological
function. Crucially, we show these features are also causally relevant, enabling targeted, step-wise
modifications to molecular structures through simple interventions – a capability not afforded by the
original, entangled neuron basis. This work provides evidence that the model’s internal representations
encode a rich hierarchy of functionally relevant chemical concepts and offers a path toward more
controllable and interpretable models.

Our approach, however, has several limitations. The interpretation of features remains a presently
unscaled process, and our analysis is confined to a single model architecture. The features discovered
are also contingent on the training data’s chemical space, and their generalisation to out-of-distribution
molecules remains an open question. Furthermore, while we compare our features to the raw neuron
basis, more robust baselines are needed to fully validate the decomposition’s effectiveness. Future
work should focus on four key directions. First, developing methods for the automated interpretation
of chemical features. Second, exploring applications in AI safety, where identifying and ablating
features correlated with undesirable properties (e.g., toxicity) could make models safer. Third,
investigating how features behave across different model architectures and scales. This includes
exploring concepts like feature splitting22, where a single feature at one SAE scale may decompose
into more fundamental sub-features at a finer scale. Finally, moving beyond simple ablation to
more sophisticated generative control, such as feature arithmetic, to enable multi-objective molecular
optimisation23. This work provides a foundational step toward building more transparent, trustworthy,
and controllable models for accelerated materials discovery.
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S1 Background and Related Work

S1.1 Mechanistic Interpretability

Mechanistic interpretability is an approach to reverse engineering neural networks with the goal
of understanding their internal computational mechanisms 24,25. A central challenge in this field is
the superposition hypothesis, which posits that models learn to represent more features than they
have neurons, compressing information efficiently. This compression is thought to give rise to
polysemanticity, where a single neuron activates for multiple, seemingly unrelated concepts, thus
obscuring its specific functional role. Sparse Autoencoders (SAEs) have emerged as a promising
methodology for addressing this issue8,9,10,11,12. By training an autoencoder to reconstruct a model’s
internal activations from a sparse, overcomplete feature dictionary, SAEs attempt to disentangle these
superimposed representations. The intended outcome is the identification of putatively monosemantic
features, where each feature vector ideally corresponds to a single, human-interpretable concept,
thereby rendering the model’s learned knowledge more amenable to systematic analysis.

S1.2 Chemistry Foundation Models

Foundational chemistry language models (CLMs) have evolved from natural language processing and
treat Simplified Molecular Input Line Entry System (SMILES) strings as the language of chemistry.
State-of-the-art foundation models such as Chemformer,4 ChemBERTa,5 MolT5,6, and SMI-TED7

are pretrained via self-supervised learning on large databases of SMILES strings for reconstruction
tasks. Models can then be fine-tuned with smaller labelled datasets towards specific chemical tasks,
such as property prediction, de novo molecular design, or retrosynthesis prediction.

S1.3 Related Work in Biological Sequence Models

The application of SAEs to biological language models provides the closest precedent to our work.
Simon and Zou 26 trained SAEs on ESM-227 embeddings, successfully extracting interpretable
features aligned with Swiss-Prot28 functional annotations. However, their approach fundamentally
differs from ours by operating on per-residue token embeddings, enabling position-specific analysis
within protein sequences. In contrast, molecular representations require handling entire chemical
structures encoded as fixed-dimensional vectors, necessitating different validation strategies. Parsan
et al. 29 extended SAE analysis to protein structure prediction through ESMFold27, demonstrating
steering capabilities for structural motifs. While their steering experiments parallel our molecular
steering results, the token-level granularity again distinguishes their approach. The absence of an
equivalent to Swiss-Prot annotations in chemistry – comprehensive, standardised functional labels
with extensive literature evidence – required us to develop novel validation frameworks spanning
multiple chemical abstraction levels.

S1.4 SMI-TED Architecture and Training

SMI-TED (SMILES-based Transformer Encoder-Decoder) is a 289M parameter transformer model
that novelly combines molecular token encoding with SMILES reconstruction capabilities7. Unlike
encoder-only models, SMI-TED employs a bidirectional transformer encoder (12 layers, 768 hidden
dimensions, 12 attention heads) coupled with a decoder that reconstructs complete SMILES strings
from learned representations.

The model processes SMILES through molecular tokenisation, decomposing chemical structures into
substructure tokens from a vocabulary of 2,993 SMILES tokens. Each token embedding xi ∈ R768

passes through transformer layers that incorporate rotary position embeddings (RoFormer)30, enabling
better capture of molecular topology. Critically, SMI-TED introduces a novel submersion-immersion
mechanism that maps token sequences to a unified molecular representation z ∈ R768:

z = LayerNorm (GELU(XW1 + b1))W2, (1)

where X ∈ RL×768 represents the sequence of L token embeddings, W1 ∈ RL×768, b1 ∈ R768,
and W2 ∈ R768×768. This latent representation enables both molecular property prediction and full
SMILES reconstruction - a capability that enforces learning of complete chemical information.
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S1.5 Sparse Autoencoders Formulation

An SAE can be generally defined by its encoder and decoder functions:

Encoder: h = fenc(x) ∈ Rn

Decoder: x̂ = fdec(h) ∈ Rd

}
SAE(x) = fdec(fenc(x)) = x̂ (2)

where fenc : Rd → Rn maps the input x to a high-dimensional latent space (n ≫ d) and fdec :
Rn → Rd reconstructs it. The model is trained by minimising a general loss function that balances
reconstruction fidelity with a sparsity-inducing term31:

L(x) = ∥x− x̂∥22︸ ︷︷ ︸
Reconstruction

+λS(h)︸ ︷︷ ︸
Sparsity

+ αLaux︸ ︷︷ ︸
Auxiliary

(3)

This general formulation captures most SAE architectures through their specific definitions of the
encoder fenc, sparsity penalty S(h), and inclusion of an auxiliary loss.

In almost all cases, the decoder is a linear transformation fdec(h) = Wdech+ bpre, where Wdec ∈
Rd×n. The architectures differ primarily in their encoder and loss configuration.

Traditional L1 SAEs10: the encoder is fenc(x) = ReLU(Wenc(x − bpre) + benc). Sparsity is
encouraged via the L1-norm (S(h) = ∥h∥1), and an auxiliary loss is generally not used (α = 0).

TopK SAEs13: the encoder is fenc(x) = TopK(ReLU(Wenc(x − bpre) + benc), k), where TopK
sets all but the k largest elements to zero. The explicit sparsity penalty is absent (λ = 0), and an
auxiliary loss is often included (α > 0) to encourage feature utilisation and prevent dead features.

Matryoshka SAEs32: the key innovation is in the reconstruction loss. Instead of a single term,
the loss is a sum over multiple nested dictionaries of increasing size, M = {m1,m2, . . . ,mn}. For
each size m ∈ M, a partial reconstruction x̂(m) is computed using only the first m latents and the
corresponding columns of the decoder matrix:

x̂(m) = Wdec,0:mh0:m + bpre (4)

The total reconstruction loss is the sum of the errors for each of these partial reconstructions:

Lrecon =
∑

m∈M
∥x− x̂(m)∥22 (5)

This objective forces earlier features to learn general concepts, while later features can specialise.

S2 Experimental Setup

S2.1 Data Curation

S2.1.1 PubChem Training Data

Following the exact curation procedure described by Soares et al. 14 , we independently filtered over
122 million molecules from PubChem (July 2025) using their reported filtering process: molecular
validity verification, canonicalisation, deduplication; additionally we performed desalting before
deduplication. After filtering, the dataset contained approximately 91 million molecules, from which
we uniformly sample 5 million molecules for SAE training. While we cannot guarantee identical
overlap with SMI-TED’s training data (as it was not publicly released), following the same curation
procedure should yield a dataset with highly similar distributional properties.

S2.1.2 Evaluation Data

The MOSES, ChEMBL35 and MITOTOX datasets were prepared identically to the PubChem training
data (see: Appendix S2.1.1). The final dataset sizes after preprocessing are provided in each section
below.
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MOSES MOSES17 is a diverse representation of drug-like small molecule space that includes
molecules optimised for drug development. We combine the MOSES test sets (N = 352,299) into
a single evaluation dataset for assessing feature generalisation beyond the training distribution,
providing a test of whether features learned on PubChem generalise to pharmaceutically relevant
chemistry.

ChEMBL ChEMBL is a data source of literature validated functional and physicochemical annota-
tions of molecules. In order to investigate functional relationships, we retrieved all small molecules
(< 500 Da) from ChEMBL35 15. Using the same preprocessing steps as the PubChem dataset, the
resultant dataset contained 1,981,621 molecules. Calculated properties such as LogD, and functional
measures such as binding affinity and targets were retrieved.

MITOTOX MITOTOX16 is a dataset of small molecules with related mitochondrial toxicity
annotations. A prepared subset was retrieved as per chemeleon-tox33, and resulted in 3,742 molecules;
529 of which were labelled toxic (14.1%).

Physicochemical Descriptors and Substructures For all molecules Mordred 2D descriptors34,35

(N = 1613) were calculated. For all molecules Atom Invariant Morgan fingerprints (radius = 2,
use_chirality = True) were used to generate their substructure sets. For calculating the Tanimoto
similarity distribution, a 4096-bit fingerprint size was used.

S2.2 SAE Training Details

We build atop the implementation of TopK SAEs by Samuel Marks and Mueller 36 , originally
developed for large language model interpretability. The official SMI-TED model is available on the
Hugging Face Hub37. Each sweep configuration required approximately 3 GPU hours on an NVIDIA
L4 GPU. During training, all molecular representations are normalised to have a unit mean squared
norm as per 38 .

Table S1: Hyperparameter configuration for TopK SAE Training. Values in parentheses represent the
grid search range.

Hyperparameter Value(s)
Dictionary Size Multiplier (8, 16, 32)
Learning Rate (lr) 0.0001
Top-K (k) (40, 80, 160)
AuxK Alpha (α) 0.03125
Training Epochs 80
Batch Size 256
Warmup Steps Fraction 0.05

The SAE training uses the Adam optimiser39 with β1 = 0.9, β2 = 0.999, and a learning rate schedule
that includes linear warmup followed by linear decay beginning at 80% of total training steps.

The Warmup Steps Fraction parameter controls the proportion of total training steps during which the
learning rate gradually increases from zero to its target value, implementing a learning rate warmup
schedule that helps stabilise early SAE training and improve convergence.

The AuxK Alpha parameter controls the weighting coefficient for the auxiliary loss term in TopK
SAE training, which encourages the model to use a broader set of features beyond just the top-k
activations to improve feature diversity and reduce dead neurons.

S2.3 Evaluation Methodology

A core challenge in mechanistic interpretability is that standard SAE training metrics are only proxies
for the true goal of discovering human-interpretable features, and developing robust interpretability
metrics remains an open problem24.

Our evaluation strategy is therefore twofold. First, we assess the SAE’s reconstruction fidelity - its
ability to preserve the essential chemical information from the original model. Second, we evaluate
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the chemical meaningfulness of the learned features using a hierarchical framework designed to probe
for specific, domain-relevant concepts.

S2.3.1 Reconstruction Fidelity Metrics

To measure how well the SAE’s reconstructed vector, x̂, preserves the information in the original
vector, x, we use a combination of standard and domain-specific metrics.

Our primary measure is functional fidelity, defined as the success rate of decoding an SAE-
reconstructed vector back into a chemically valid and equivalent SMILES string. This is a particularly
stringent criterion, as minor errors can render a SMILES string invalid. We measure this at two
levels: strict accuracy (exact canonical string matching) and stereo accuracy (chemical equivalence
ignoring stereochemistry). High functional fidelity thus provides direct evidence that our SAE
preserves the essential chemical information required by the foundation model. We supplement this
with several standard metrics, which we define in Table S2.

Table S2: Standard metrics used to evaluate SAE reconstruction fidelity.
Metric & Description Formula
L2 Reconstruction Loss
The primary training objective. ∥xi − x̂i∥22
Fraction of Variance Explained
Quantifies the variance of the original vector captured by
the reconstruction.

1− Var(xi−x̂i)
Var(xi)

Fraction Alive
The percentage of SAE features that activate on at least
one molecule in the validation set.

-

Delta Loss
Measures the preservation of the original model’s loss
landscape. LSMI-TED is the original model’s loss, com-
posed of a token prediction cross-entropy term and an
embedding MSE term7. A low ∆L indicates high preser-
vation.

∆L = LSMI-TED(x̂i)− LSMI-TED(xi)

S2.3.2 Framework for Evaluating Chemical Meaning

To systematically probe for chemical meaning, we validate features against hierarchical framework
designed to capture the multi-scale nature of molecular properties. This framework consists of three
categories: substructural patterns, which are local, discrete motifs such as functional groups and ring
systems; (2) physicochemical properties, which are global, often continuous, properties emerging
from the entire structure, like molecular weight or topological polar surface area, or systematic,
high-dimensional features that encode topological, electronic, and geometrical information such as
Mordred descriptors; and (3) functional relationships, which are abstract classifications, such as
pharmacological drug class, that may not be apparent from simple structural similarity alone.

We use a logistic regression framework with a fixed random seed and class-balanced weights for two
separate analyses. All models are trained and evaluated using a 5-fold cross-validation scheme.

Substructure Detection To evaluate how well individual features and neurons detect specific
functional groups, we train a separate logistic regression model for each feature and each neuron.
The model’s task is to predict the presence or absence of a single functional group. We report the
maximum F1 score achieved across the validation folds as the primary performance metric.

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

 F1 = 2 · Precision · Recall
Precision + Recall

(6)
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Physicochemical We calculate the pairwise Spearman correlation coefficient between each feature-
and neuron-descriptor pair, and apply identical analysis to PCA components and NMF factors (the
latter requiring a shift transformation to ensure non-negativity) extracted using scikit-learn40. Where
the set of descriptors is the Mordred 2D descriptors. Correlations with corresponding p-values < 0.05
were considered significant. The absolute value of the Spearman’s ρ was used to rank the strength of
the relationship.

Toxicity Prediction To assess the representational efficiency for a downstream task, we train two
multiple logistic regression models to predict toxicity on the MITOTOX dataset. One model uses
the complete set of SAE features as input, while the other uses all raw neuron activations. We
identify inputs that are significantly predictive of toxicity by selecting model coefficients with a
p-value < 0.05. The performance of each model is given by the area under the precision-recall curve
(AUCpr).

S3 Feature Characterisation

S3.1 Sparsity-Fidelity Trade-offs

To systematically evaluate SAE configurations, we analysed reconstruction quality and feature
utilisation across a representative subset of 10,000 molecules uniformly sampled from the MOSES
dataset (described in Appendix S2.1.2).

Figures S1–S3 characterise the trade-off space across expansion factors (8×, 16×, 32×) and sparsity
levels (40, 80, 160), revealing distinct operating regimes for each configuration.

The delta loss curves (Figure S1a) demonstrate an exponential relationship between sparsity and
downstream task preservation. Interestingly, expansion factor shows minimal impact on delta loss at
matched sparsity levels, suggesting that dictionary size primarily affects feature granularity rather
than reconstruction quality.

The plot of fraction of variance explained (Figure S1b) shows that reconstruction fidelity increases
with k, but with diminishing returns. This analysis informed our selection of k = 80 for the primary
model, as it captures a high proportion of the original vector’s variance (≈ 0.972) while a further
doubling of k to 160 yields only a marginal improvement (to ≈ 0.987).
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(a) Delta Loss vs. Sparsity Level. This plot shows
the change in the foundation model’s loss when using
the SAE-reconstructed vector instead of the original.
Lower values indicate better preservation of the original
model’s loss landscape. As expected, reconstruction
fidelity improves (delta loss decreases) as the number
of active features increases.
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(b) Fraction of Variance Explained vs. Sparsity Level.
This plot quantifies the proportion of the original ac-
tivation vector’s variance captured by the SAE’s re-
construction at different sparsity levels. Higher values
indicate a more faithful reconstruction of the original
vector. As expected, reconstruction fidelity improves
as the number of active features increases.

Figure S1: Sparsity-Fidelity Trade-off Across SAE Configurations.
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Figure S2: Feature activation frequency distributions across SAE hyperparameter configurations.
Each subplot shows the histogram of activation frequencies for individual SAE features, organised
by expansion factor (rows) and sparsity level (columns). Histograms use logarithmic binning and
scaling to visualise the characteristic heavy-tailed distribution of feature activations.

S3.2 SMILES Reconstruction Analysis
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(a) Comparison of SMILES reconstruction accuracy
across different SAE hyperparameter configurations.
Dark bars show strict accuracy (exact string matching),
while light bars show stereo accuracy (chemical equiv-
alence ignoring stereochemistry). The red dashed line
indicates baseline model performance without SAE
reconstruction. Results demonstrate how reconstruc-
tion accuracy varies with SAE architecture parameters,
with higher expansion factors generally maintaining
better accuracy recovery across sparsity levels.
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(b) Distribution of SMILES reconstruction error types
across SAE hyperparameter configurations. Box plots
show the percentage distribution of different error cat-
egories (valence errors, aromaticity errors, bond dupli-
cation, unclosed rings, parentheses errors, and syntax
errors) that occur when SAE-reconstructed embed-
dings are decoded back to SMILES strings. Error cate-
gories are classified using standardised RDKit parsing
error analysis to understand how SAE reconstruction
affects different aspects of molecular structure repre-
sentation.

Figure S3: Impact of SAE Hyperparameters on SMILES Reconstruction Fidelity.
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S4 Supplementary Results

S4.1 Substructures

A total of 14 common functional groups41 were retrieved in SMARTS format to provide a range of
substructures present in the dataset at varying prevalence. The SMARTS strings were used to identify
the presence/absence of the functional group. Some molecules contain the same functional group
multiple times, or multiple functional groups.

Steering was performed by intervening on the specified feature values, and setting the feature
activation to 0.

Table S3: Maximum F1 scores and prevalence in 5M PubChem for various functional groups
Functional Group Maximum F1 Prevalence (%)

Features Neurons
Alkyl Carbon 0.945 0.938 88.286
Acetylenic Carbon 0.933 0.079 0.758
Carbonyl group, High specificity 0.745 0.735 51.197
Cyanamide 0.667 0.030 0.086
Ether 0.792 0.655 36.245
Primary amine, not amide 0.697 0.431 8.613
Azo nitrogen 0.706 0.071 0.637
Nitrate 1.000 0.056 0.103
Hydroxyl 0.838 0.654 39.569
Peroxide groups 0.667 0.043 0.224
Phosphoric acid group 1 0.571 0.075 0.448
Thiol 0.900 0.135 0.982
Sulfide 0.700 0.344 7.907
Chloride (Carbon-attached) 0.802 0.533 21.258
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Figure S4: Top three activated molecules for the top correlated feature for functional groups chloride,
hydroxyl, nitrate, and acetylenic carbon. Molecules are then steered by setting the specified feature
activation to 0, and the altered substructure is highlighted before (green) and after (red) steering.
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S4.2 Physicochemical Properties

The top 3 feature-descriptor relationships, ranked by Spearman correlation, were selected. The top
3 molecules which had the highest activations for each corresponding feature were retrieved. The
feature activation was set to zero, and the corresponding descriptor was recalculated. These were
(with Spearman’s ρ): StsC; sum of tsC (ρ = 0.89), SMR_VSA7; MOE MR VSA Descriptor 7 (3.05
≤ x < 3.63) (ρ = 0.85)and Xch-3d; 3-ordered Chi chain weighted by sigma electrons (ρ = 0.75).
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Figure S5: Top three activated molecules for the top three feature-descriptor relationships: StsC,
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S4.3 Functional Behaviour

ChEMBL35 was subset to molecules with at least one Ki - ChEMBL target pair. For each feature, the
molecules for which the feature had a normalised activation > 0.5 were selected. The set intersection
of ChEMBL targets for this selection was calculated. Then the largest set was retrieved.

To establish a null distribution for assessing Tanimoto similarity (using radius-2, 4096-bit Feature-
AtomInv Morgan fingerprints, with chirality), we first estimate the required sample size of random
molecular pairs.

Given the equation for estimating a proportion (or similarity) with a given margin of error ϵ at a
confidence level of z:

m =
z2σ2

ϵ2
(7)

Using a pilot study variance estimate of σ̂ = 0.062, from 100,000 pairs a desired margin of error
of ϵ = 0.0001, and a 99% confidence level, we calculate a required sample size of approximately
2.6 million pairs. We subsequently sample 10 million random molecular pairs from the ChEMBL
dataset to construct a high-resolution empirical null distribution of Tanimoto similarity scores. This
distribution serves as the baseline for computing the statistical significance of observed similarity
values (see Figure S6).
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Figure S6: Distribution of Tanimoto Similarity (TS) across 10,000,000 unique pairs, sampled from
ChEMBL35. The TS of CHEMBL1672485 (A) and CHEMBL454618 (B) (A-B: 0.293) is shown in
orange, the TS of B and CHEMBL368522 (C) (B-C: 0.735) is shown in green. The corresponding
p-values drawn from a right-tailed empirical distribution.
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S5 Steering Stability

To evaluate the stability and causal influence of the learned representations, we conduct a series of
ablation experiments comparing the original SMI-TED neuron activations (dense representations)
with our SAE-derived features (sparse representations). The experiments are performed on a 10,000-
molecule subset of the MOSES dataset.

For the dense neuron representations, we intervene on each of the 768 neurons individually. For
each neuron, we identify the 100 molecules that elicit its highest and lowest activations. Assuming a
normal distribution of activations for a given neuron, we ablate its value to the distribution’s mean for
these selected molecules before decoding them back to SMILES strings. This intervention results
in minimal change: only 14 of the 768 neurons produce any invalid SMILES upon ablation, and no
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interventions result in a valid but different molecule. This suggests the dense representations are
highly robust, with chemical information distributed across many neurons, making individual neurons
non-critical for reconstruction.

Figure S9: Reconstruction rates of 100 molecules after ablation of 2501 active features on a 10k
subset of MOSES. After ablation of a feature, embeddings are decoded into either the original
SMILES ("Original", hue (left)), a different SMILES ("Steered", y-axis), or an invalid SMILES
("Invalid", x-axis). The variability in steered transformations are shown by the standard deviations of
Levenshtein distances between the original and steered SMILES strings (hue, right).

For the sparse SAE features, we perform a different intervention tailored to their sparse nature. For
each of the 2,501 active features, we select up to 100 molecules where that feature has a non-zero
activation. We then ablate the feature by setting its activation to zero, effectively “turning it off,”
before decoding. The outcomes are then categorised as: 1) Original: the decoded SMILES matches
the original, 2) Invalid: the decoded SMILES is chemically invalid, or 3) Steered: the decoded
SMILES is valid but different from the original.

In contrast to the dense neurons, the sparse features demonstrate significant steerability. We find that
interventions on 749 of the 2,501 active features successfully steer molecules to new, valid chemical
structures. As shown in Figure S9, this approach reveals a clear trade-off between feature stability
(valid reconstruction) and steerability, confirming that individual SAE features often represent specific,
manipulable chemical concepts. Levenshtein distances between the original and steered SMILES
strings are also used as an approximation for measuring the consistency of steering transformations
for a given feature42. The Levenshtein distance is a metric for measuring the difference between two
string sequences. As expected, the most stable and steerable features have a low standard deviation of
Levenshtein distances, indicating that steering most likely changes most molecules in the same way.
Features with a higher invalid reconstruction rate also have a higher standard deviation, indicating
that their steered changes are less consistent.
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