Under review as a conference paper at ICLR 2025

MECHANISTIC INTERPRETATIONS AT MULTIPLE
SCALES OF ABSTRACTION: REVISITING MODULAR
ADDITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Prior work in mechanistic interpretability has analyzed how neural networks solve
modular arithmetic tasks, but conflicting interpretations have emerged, question-
ing the universality hypothesis—that similar tasks lead to similar learned circuits.
Revisiting modular addition, we identify that these discrepancies stem from overly
granular analyses, which obscure the higher-level patterns that unify seemingly
disparate solutions. Using a multi-scale approach—microscopic (neurons), meso-
scopic (clusters of neurons), and macroscopic (entire network)—we show that all
scales align on (approximate) cosets and implement an abstract algorithm resem-
bling the approximate Chinese Remainder Theorem. Additionally, we propose a
model where networks aims for a constant logit margin, predicting O(log(n)) fre-
quencies—more consistent with empirical results in networks with biases, which
are more expressive and commonly used in practice, than the "7’1 frequencies de-
rived from bias-free networks. By uncovering shared structures across setups, our
work provides a unified framework for understanding modular arithmetic in neural
networks and generalizes existing insights to broader, more realistic scenarios.

inputs:
N7
/\‘\ o8
oupus: [0 |1 [= =] [0 1]~ -3
(a) Single neuron (b) Cluster: Superposition of neurons (c) Full network: Superposition of clusters

Figure 1: Analysis at three levels of abstraction: (a) per-neuron analysis reveals known algorithms
in the literature (b) inter-neuron interactions within a cluster reveal cosets, and (c) full network with
all clusters and inter-cluster interactions reveals an algorithm operating on cosets reminiscent of the
Chinese Remainder Theorem. (Neuron color indicates cluster membership.)

1 INTRODUCTION

The universality hypothesis is the claim that ‘Analogous features and circuits
form across models and tasks.” This hypothesis lays at the foundation of current efforts in mech-
anistic interpretability because it gives hope that reverse engineering neural networks will reveal
interpretations that can be applied to a large class of networks. Mechanistic interpretability aims to
uncover the precise mechanisms by which models transform inputs into outputs, offering insights
into how specific neurons, layers, or circuits contribute to a network’s overall function. Understand-
ing how these networks organize information, form abstractions, perform computations, and make
predictions is essential to building more trustworthy and reliable systems; moreover, such findings
can guide the development of theory.

We build on the work of Nanda et al| (2023al), (Chughtai et al.| (2023b), [Stander et al.| (2023), Zhong

(2024), which mechanistically studied and reverse-engineered neural networks trained on mod-
ular addition and other group operations. These works found conflicting algorithms—either due to

Under review as a conference paper at ICLR 2025

random variation in the training process or human interpretation itself-eventually raising doubts
about the universality of neural network representations when trained on group-theoretic tasks. It
is necessary to walk through the history of this problem in order to situate our work. The study of
modular addition by Nanda et al.| (2023a) was an attempt to mechanistically explain the surprising
“grokking” phenomenon observed in [Power et al.| (2022), where algorithmic tasks were found to
suddenly generalize long after memorizing the training set. By reverse engineering a model trained
to grok modular addition, Nanda et al|(2023a) discovered that it was possible to specify the com-
putations performed by a specific network in a human-understandable way. This key result opened
the door to a flood of research on the topic. Initially, Nanda et al.| (2023a) identified a ‘Fourier
multiplication’ algorithm, which later was generalized to the more general ‘Group Composition via
Representations’ (GCR) framework (Chughtai et al., 2023b), claimed to be universal for all groups.
However, subsequent studies have challenged this universality. Networks trained with different hy-
perparameters sometimes learned entirely different algorithms (e.g. The Clock, The Pizza, or made
use of Lissajous-like curves) (Zhong et al.l 2024). More definitively, [Stander et al.| (2023)—using
the exact same experimental setup as (Chughtai et al.| (2023b)—showed that GCR fails to describe
networks trained on the symmetric group, where coset-based structures (circuits) emerged instead.
Consequently, |Stander et al.| (2023) and [Zhong et al.|(2024) provide evidence that even on something
as simple as finite groups, there may be no universality in the algorithms neural networks learn.

This paper revisits the following fundamental question in
mechanistic interpretability: do neural networks trained Inspection
on group-theoretic tasks, such as modular addition, con-

verge to universal structures, and if so, what form do

these structures take? Focusing on modular addition, we 5

embark on a classification of network structures, with -

the aim to find a scale at which studying the network ~ © = w0 ~« w0 w0 0w
makes our interpretation robust to changes in hyperpa-

rameters and random initializations. Our analysis reveals
that regardless of whether the modulus is prime or com-
posite, neural networks may be implementing a “macro-
scopic” algorithm for modular addition through a pro-
cess resembling the Chinese Remainder Theorem, where |
neurons are organized into superimposed clusters repre- |
senting (approximate) cosets of (approximate) subgroups. o "
Within the context of modular addition, this macroscopic - 2
view both accounts for the variation seen inNanda et al. * 0

0 20 40 60 80 0 20 40 60 80

(2023a) and Zhong et al.|(2024) and also naturally draws mrasionned Bnbed A Prescthations Transformed DFT

a connection with the coset structures identified in the | 0 \
symmetric group (Stander et al., 2023)), which previously © 40\ “
disproved GCR’s (Chughtai et al., [2023b) claims of uni- 2l |
versality. While we do not claim to have established uni- ., ., o % 4% u . e

versality across all groups, our findings restore hope that

a coherent, abstract mechanism may exist. By identifying
coset structures in modular addition, we link and recon-
cile previously conflicting findings, suggesting that net-
works may indeed learn universal structures at the appro-
priate level of abstraction.

Figure 2: Comparing a simple neuron
and fine-tuning neuron before and after
transformation by a group isomorphism.
The fine-tuning neuron has its DFT con-
centrating strongest on (27, 35, 19).

Summary of contributions. 1) We reverse engineer net-

works trained on @ + b mod n for n prime and composite, deriving an explanation robust to obser-
vations at three levels of abstraction: neuron by neuron, clusters of neurons, and the entire network
at once (Fig. [I). As far as we are aware, composites have not been previously studied in detail. We
conduct extensive experiments on the embeddings, preactivations, postactivations and contributions
of neurons to the logits. Additionally, we study the distributions of what’s learned (frequencies,
phases, etc.) in the network over 100k seeds in order to identify general structures used by networks
learning modular addition. These identified structures correspond to two classes of neurons we call
“simple” and “fine-tuning” neurons. Simple neurons, in particular, play a key role in accounting for
the variation in algorithms seen across the literature. See Fig. [2] for the difference between the two.

Under review as a conference paper at ICLR 2025

2) We construct a mathematical model for simple neurons allowing us to develop a more general
framework than previous theoretical models that assume the network has no biases. This mathe-
matical model breaks down the network from embeddings, to neurons, to logits in such a way that
it accounts for and generalizes previous work. The values we observe in the embeddings and pre-
activations come from projections of representations. When a single neuron fires strongly on two
different inputs, we can interpret these inputs as being in a common “approximate coset”. In clus-
tering neurons and studying their contributions to logits, we find values consistent with an algorithm
that uses approximate cosets, and is able to reproduce features of both clock and pizza algorithms.
This is the first time the role of cosets has been identified in modular addition, which was, until
now, thought to make use of seemingly unrelated algorithms—i.e. GCR (the clock) and the Pizza
algorithms, thus connecting the literature under the umbrella of cosets.

3) We study the aforementioned clusters of neurons and give a toy model for how with superposition,
i.e. the network using linear combinations of neurons, the neural network efficiently expresses the
function. This model predicts O(logn) frequencies (clusters), which matches experimental results
in the literature, see Fig and improves on the previous model which uses O(n) (Gromov, |2023)).

2 RELATED WORK

Mechanistic interpretations of group-theoretic tasks, grokking and universality. Popularized
by works such as [Cammarata et al.| (2020), mechanistic interpretability has not only studied toy
settings like Nanda et al.| (2023b)); \Quirke et al.|(2023)); Zhang et al.|(2023)), but even tackled frontier
models and shed light into the origins of in-context learning (Olsson et al., 2022). The universality
hypothesis (Olah et al., [2020), (Li et al., 2015) asserts that different neural networks trained on
similar tasks will converge to similar features and circuits; it is a key open question in the field of
mechanistic interpretability. A common thread in attempts to interpret neural networks is the crucial
need for caution and precision in the interpretation process (Adebayo et al.l [2018}; Bolukbasi et al.,
2021} |Sun et al} 2023} |Poursabzi-Sangdeh et al., [2021; Jain & Wallace| |2019; Doshi-Velez & Kim,
2017). This has led to attempts to automate circuit discovery (Conmy et al., 2023 and understand
the dynamics of circuit formation during training (Hoogland et al., 2024))

Learning mathematical tasks. Mathematical tasks are valuable testbeds for studying neural net-
works due to their structural sparsity, which isolates key variables and simplifies analysis, and the
rich theoretical frameworks available to align human intuition with model representations. These
tasks have driven progress in understanding network properties, representations, and dynamics (EI-
hage et al., |2022). Modular addition, the focus of this paper, has been extensively studied: |Liu
et al.| (2022)) link grokking to structured representations; |Doshi et al.| (2023)) analyze generalizable
representations under corrupted labels; [Ding et al.|(2024) model interactions of competitive and co-
operative representations as linear differential equations; and He et al.|(2024) explore the emergence
of in-context learning and skill composition in modular arithmetic.

Theoretical models of grokking modular addition. Previous work, such as|Gromov| (2023), an-
alyzed two-layer quadratic networks without biases for modular arithmetic, showing that solutions
rely on Fourier features and deterministically use all (n — 1)/2 frequencies. Morwani et al.[(2024)
extended this by proving such solutions maximize the margin, while Mohamadi et al.|(2023) linked
margin maximization to the grokking phenomenon in similar bias-free networks. In contrast, our pri-
marily empirical work, supported by a heuristic theoretical model, incorporates biases and matches
experimental observations, showing that biased networks use only O(log(n)) frequencies to solve
modular addition, highlighting the subtleties of biases both in theory and in training dynamics for
this problem.

3 PRELIMINARIES

3.1 GROUP (REPRESENTATION) THEORY AND THE CHINESE REMAINDER THEOREM

A group (G, o) is the data of a set G with an associative binary operation o : G x G — G, an identity
element e, and the existence of inverse elements. Associativity implies that f o (goh) = (fog)oh
for any f,g,h € G. The identity e is characterized by e o g = go e = g for any g € G. Finally,

for g € G, the existence of inverses asserts that there is an element g~! € G suchthat go g~ = e.

Under review as a conference paper at ICLR 2025

A subset H of G is a subgroup if it is closed under the group operation o and forms a group on its
own. Subgroups partition G into equally sized disjoint subsets called cosets. A left coset is the set
gH = {gh : h € H}, and similarly, Hg is a right coset.

For example (Z, +), the integers under addition, forms a group, and the even integers form a sub-
group. The cyclic group C,, = {0, 1, ...,n — 1} under addition modulo n is a central object of study
in this paper. Subgroups of C,, take the form {0,m,2m,...,(n/m — 1)m} for divisors m of n,
which corresponds to “wrapping” C', at a coarser granularity.

A group homomorphism is a map f : G — H preserving the group operation: f(g og h) =
f(g) om f(h). If fis bijective, it is called an isomorphism.

A group representation is a homomorphism p : G — GL(V'), where GL(V) is the group of
invertible linear transformations on a vector space V over R or C. Representations link group
theory to linear algebra, enabling intuitive analysis via matrices. For example, the cyclic group
C., has complex representations p(k) = exp(2mi™") for m | n. These encode rotations in the
complex plane and correspond to the discrete Fourier transform (DFT). Real representations,
such as rotation matrices in R?, are derived from these complex representations. In this paper, we
draw heavily on the connection between representations of C), and the DFT to analyze how neural
networks encode modular addition.

The Chinese remainder theorem (CRT) states that if an integer n has factorisation n = g1z - - - g;
into pairwise coprime integers ¢;, then for any integers my,...,m;, the system of congruences
k =m; (mod ¢;) fori = 1,...,j has a unique solution modulo n. In the language of groups, one
would say that the map C,, — C, X ... x Cy,. mapping k to the vector (k mod ¢,k mod ¢a,.... k
mod ¢,) = (ki,...,k.) is a group isomorphism. One way of finding the solution of this set of
congruence relations is to find the preimage of each reduction mod ¢; and taking their intersection.
This intersection of sets will contain a single element which is the sought solution.

Remark 1. Here is an alternative perspective in a spirit closer to the operations performed by the
neural networks we study. Think of each congruence k = m; (mod ¢;) as defining a signal over
Cy,. To each congruence condition k = m; (mod g;), associate the function f; : C,, — R defined

by fi(k) = cos(2ﬂi@), which evaluates to 1 on the solution set of this congruence. Summing
these signals over all congruences,y ., fi(k), produces a function that peaks uniquely on the single
solution of the system of modular equivalences.

Example: Addition modulo 91. Consider n = 91 with prime factors 7 and 13. Suppose we are
solving (a +b) mod 91 = 10. Using CRT and cosets:

Compute 10 mod 7 = 3. The set of integers congruent to 3 mod 7 (a coset) is {3, 10, 17, 24, ...}
Compute 10 mod 13 = 10. The set of integers congruent to 10 mod 13 (a coset) is {10, 23, 36, ...}

The only number in the intersection of these two sets is 10, i.e. the unique solution modulo 91. To
use this to construct what the neural network is learning when trained on modular arithmetic, we do
the following: 1) fit a sine wave through these cosets with a frequency such that it peaks on each
value in the coset (in this case that frequency is the prime factor); 2) fit a sine wave through every
coset we did not mention, e.g. (mod 3 = 0, mod 3 = 2, etc); 3) when we cluster all sine waves
(neurons) with the same frequency, we get three clusters and the behavior shown in Figures [6] [I§]
and[32] This connects the CRT to the neural network’s learned representation of modular addition.

Approximate cosets. While CRT relies on exact cosets, neural networks often learn more flexible
structures that we term approximate cosets. Pick any c,v € C), and 1 < k < n, then the set
{¢, c+v,c+2v, ..., c+kv} is an approximate coset. In fact, we can show that the set of values a with
cos(2m fa/p) > d for a fixed value d (i.e. exceeds a fixed threshold) forms an approximate coset.
To see this, set v to be the modular inverse of f, thatis, vf =1 mod n, and pick the first positive
integer ¢ such that cos(2wc/n) > d but cos(2m(¢+1)/n) < d. Then we have cos(2rz/n) > d <
x € {—c, ..., c}, which means that cos(27 fa/n) > d <= a € {—cv, —cv+v, —cv+2v, ..., cv}. If
you introduce a phase shift to the cosine, then that just changes the starting point of the approximate
coset. Section [5.1] goes into more detail for the case when the frequency does not divide n, as will
be the case most of the time, and shown in Fig[3].

Under review as a conference paper at ICLR 2025

[27 fa
Activation Value COS(n)

Figure 3: Visualization of approximate cosets. The sinusoidal function cos ((27 fa)/n) is plotted
over the modular values a € C,, for n = 89 and frequency f = 7. Points where the cosine value
exceeds the threshold d = 0.8 are highlighted in blue, forming the approximate coset. The dashed
line represents the threshold level. This figure illustrates how neurons encode modular arithmetic
using thresholded sinusoidal activations.

Study Embeddings Neurons
Nanda et al.|(2023al) Rotation matrices “Clock”
Chughtai et al.| (2023b) Representation matrices Matrix mult.
Zhong et al.[(2024) Circular, Lissajous curves “Pizza”

Table 1: Different interpretations of neural network components across studies.

3.2 TASK DESCRIPTION AND MODEL

The task is to learn the labeling function o : C,, x C,, — C,, corresponding to addition modulo n
in the cyclic group C,,. The dataset is the n? pairs (a,b) with label ¢ = a + b mod n. We train
128-neuron (with biases) 1-hidden-layer ReLU networks with two embedding matrices (dimension
32), one for a and one for b, with n output logits. The training set is 5096 randomly selected pairs for
n = 91 and 4717 pairs for n = 89. The inputs a and b to the neural network select a column from
their respective embedding matrix, then these columns are concatenated, and the neural network
receives this concatenated vector as input. We train models using the Adam optimizer (Kingma &
Ba, 2015), with a learning rate of 0.008 and L2 weight decay of 0.0001 (Note we use ||@||3, not the
square root, where 8 is the weight vector of the network).

4 INVESTIGATING NETWORKS TRAINED ON MODULAR ADDITION

Diverging observations have been made across works. Despite these differences, a closer exam-
ination reveals that these networks exhibit invariances at three key points: embeddings, neuron
pre-activations, and logits. These invariances suggest a consistent high-level structure across mod-
els, even if the specific mechanisms vary. See Table [I]for a summary of the various interpretations
of networks across the literature at these key points.

While these invariances provide a unifying thread, the lack of a cohesive framework to explain
how they arise has led to confusion and conflicting interpretations. In the next section, we present
experimental findings that help us uncover these invariances and provide the foundation for our
unified CRT-inspired model.

4.1 OUR EXPERIMENTAL FINDINGS

Here we present evidence implying that since the network has the same distribution of learned
frequencies for both composite and prime moduli, it is likely to be using the same algorithm for
both cases. We also discuss the existence of fine-tuning neurons.

Inspecting the preactivations: simple and fine-tuning neurons. We split the preactivation for a
neuron into two parts: one coming from the column of the embedding matrix for a and the other from
b. This reproduces past findings in the literature that the preactivations are periodic functions (Pearce
et al., 2023). Furthermore, by taking the discrete Fourier transform (DFT) of the preactivations,
we find that most neurons have periodic functions that concentrate on a single frequency and its
negation mod n (and thus on a single complex representation of C,, and its conjugate). We call
these neurons “simple” neurons, but we discover an additional type of neuron which concentrates

Under review as a conference paper at ICLR 2025

on linear combinations of complex representations, made evident by 2| & Fig. 22]in[B:1.2] This type
of neuron does not show up in every random seed and thus, it is not necessary for it to be learned.
This is part of the reason that we call these neurons “fine-tuning neurons”, see Fig 2] to see the
difference between a simple and fine-tuning neuron. Note that the sum of two periodic functions is
another with the same frequency, so the postactivations are also periodic, but with the negative part
clipped to 0 by ReLU. We also perform an analysis of the phases that the periodic functions learned
by neurons are shifted by e.g. see Fig. [25a and Fig. [25b] which are relevant to section[A2]

mod 91 mod 89 él() if f =7 is learned if f =2 is learned
10k 10k B
o~ ot
3z 3]
g S 500 500
2 5k 5k S
O »
=
0 0 2 0 0
@) 0 10 20 30 40 0 10 20 30 40
Frequency Frequency Frequency Frequency
(@ (b)

Figure 4: a) Histograms of frequencies found across 100k random seeds for mod 91 (factors 7 and
13) and mod 89 are both uniform. b) The conditional histograms of frequencies over 100k seeds,
both mod 91. Left: if frequency 7 is found then neurons with f = 14 or f = 43 are less likely (note
that 2-43 = —7 (mod 91)). Right: if frequency 2 is present then frequencies 1 and 4 are less likely.

Investigating distribution of learned frequencies. Since previous work only studied prime mod-
uli, and given |[Stander et al.| (2023) discovered coset structure in the neurons: here our aim is to
determine whether neural networks learn coset structure for modular addition. For composite 7,
this would mean finding frequencies that exactly divide n. For prime n, we would be looking for
an approximate coset structure since n has no divisors. First, by training 100,000 neural networks
onn = 89 and n = 91 we show that the distribution of learned frequencies is uniform, see Fig
[a or Fig. [24] The uniformity across frequencies coprime to n is due to the existence of group
isomorphisms: if f is coprime to n, then replacing each x with fx mod n does not change the
group structure, and so the neural network cannot tell the difference between the two. This obser-
vation allows us to examine neurons with different frequencies from a more uniform perspective.
If the periodic function has frequency f, we will transform the x-values by multiplying them by
mx mod n. See Fig[2| for a visualization of this transformation applied to a simple neuron

and a fine-tuning neuron remapped by this process with n = 89.

Note, this process results in every neuron being remapped to a function with frequency ged(f, n),
which is 1 for most values of f. The preactivations for simple neurons are transformed by this pro-
cess into a standard sine wave with a phase shift, and those for fine-tuning neurons are transformed
into one half the period of a sine wave. This provides a “standard” reference frame for ease of
analysis of individual neurons of a given frequency, and allows us to display the difference between
simple and fine-tuning neurons to better understand their behaviour. Note that we cannot apply the
same group isomorphism to all neurons at the same time to standardize their frequencies in this way;
rather, each collection of neurons with the same frequency must be considered separately.

Investigating conditional distribution of frequencies. While the distribution of frequencies is
uniform on the whole, if we condition on any given frequency, the distribution of other frequencies
the network learns fails to be uniform (see Fig. Ab). In particular, we observe that if a network learns
f, itis less likely to learn 2 f and g modulo n. This supports the interpretation that the network is

learning an approximate CRT algorithm, due to frequencies with 2 f and % making it harder to lower
the loss if f is learned. This follows because they intersect, taking large values on the same logits

that are not the correct logit.

Clustering neurons. We cluster neurons based on their preactivations having the same frequency.
We inspect the contribution of these clusters to the output logits of the neural network, cluster by
cluster, see Fig. |§| and notice that the clusters shift their phase and magnitude based on (a,b).
We do this by decomposing the dot product into the linear combinations coming from neurons in

Under review as a conference paper at ICLR 2025

) mod 91 mod 89

§OOM 100M num clusters mod 91 num clusters mod 89

2 40k 40K

S 50M 50M E

S 520k 20k

0]

: hm.....___ .

Z % 40760 80 Y040 60 80 0o - 10 Y0 ~— -
Correct logit rank Correct logit rank Num clusters Num clusters

(a) (b)

Figure 5: a) Histograms of the correct logit rank if only a single cluster was trusted to output the
correct logit, i.e. if argmax of any one cluster was used as the output. b) The histogram of the
number of clusters found across 100k random seeds for n = 91 and n = 89.

a cluster to each logit. This is essentially the same process as previously explained for isolating
the preactivations from just embedding matrices a or just b. Finally, we assess the distribution of
logit correctness within clusters by examining the rank of the correct logit when logits are sorted by
decreasing magnitude. If the correct logit ranks 0, it implies that using the argmax over that cluster
would yield the correct result. Figure [5a]shows the correctness histogram over 20,000 training runs.

5 BRIDGING PERSPECTIVES FOR MODULAR ADDITION

In this section we will attempt to unify the literature and explain that the different conclusions by
different authors on this problem aren’t so different. By explicitly modeling single neurons similar
to (Gromov| (2023), we will explain why representations (Nanda et al., 2023a), (Chughtai et al.,
2023b); cosets (Stander et al.,|2023) and Lissajous-like curves |Zhong et al.|(2024) are seen by other
papers. Our interpretation applies to cyclic groups of both prime and composite order and is robust
to different batch sizes.

A model for simple neurons. Suppose we are trying to learn addition mod n. Label the input
embedding columns as Ay, ..., A,_1, By, ..., Bn_1, and the output logits as Dy, ..., D,_1. Let
w(U, V) be the dot product of all values from U with their edge weights leading to V. Here is a
model for a “simple neuron” N, with parameters f,s4,sp € C,, and positive real number o such
that for each k € C,, we have

w(Ag, N) = cos W, w(By, N) = cos M, w(N, Dy) = acos 2 h=sazsp)

n

We find experimentally that many neurons match this model quite closely. See Section for an
explanation of how to detect simple neurons. This model of simple neurons will be used in the
following section to show how the neuron’s activations are added to compute the correct output.

5.1 SIMPLE NEURONS LEARN COSETS

A neuron satisfying the above computes a trigonometric function that has its maxima on the elements
of a coset or “approximate coset”. If g := ged(f,n) > 1, the neuron has learned the coset of order g
containing s o +sp. More precisely: writingn = n’gand f = f'g for g = ged(f, n), we can rewrite

2nf — 2n[S0 if the input neurons are at positions a and b where a = 54 (mod n’) and b = sp

n n’
(mod n'), then the activation of the neuron has a maximum: cos nfla=sa) — cog M =1
The neuron points most strongly to every logit satisfying ¢ = s4 + sp (mod n’), because for all
such output logits cos M

C, that are congruent modulo n’.

= 1. We see that the neuron strongly associates elements of

Whether f is a divisor of the order n or not, the neuron will activate on what we defined as an
approximate coset. More precisely, we can ask the following: for a #Z s4 (mod n’), which values
of a have the largest activation? We have cos W very close to 1 if and only if f'(a — s4)
is very close to an integer multiple of n’; that is, say, f'(a — s4) = m (mod n’) for some integer

Under review as a conference paper at ICLR 2025

m with small absolute value. Letting d denote a modular inverse of ' mod n, this is equivalent to
a—sa =dm (mod n’). In other words, by taking a = s + dm for small integers m, the neuron
will be activated very strongly. Likewise if b = sg + dm/ for some other small integer m’. Now
this neuron will point most strongly to ¢ = s4 + sp (mod n') as discussed above, but if ¢ is a small
number of steps of size d away from s 4 + sp, it will still have large activation. To summarize: if you
can reach each of a, b, ¢ via a small number of steps of size d from s 4, sp, s4 + Sp, respectively,
then N fires strongly on inputs a, b, and points strongly at c.

Following (I} we can now present an idealised version of the further computations of the neural
network that finally compute the group operation as output. Assume that the network has neurons
that have learned frequencies fi,..., f, as described above. Adding the activations of each of
those neurons will superimpose signals that will interfere constructively at the correct answer and
destructively at all other answers; that is, the correct answer is identified as a unique element in
an intersection of approximate cosets. If the frequencies are relatively coprime and n = f; - - f;.,
then the global maximum of the output function recovers a unique solution to a system of modular
congruences, essentially recovering the Chinese remainder theorem; see Remark [T] In general, if
fi,-.., fr are not divisors of n, this superposition process is described in more depth in Section

5.2 A MODEL FOR WHAT THE NETWORK LEARNS — THE APPROXIMATE CRT ALGORITHM

In this section we provide a mathematical model that matches experimental results acquired under
typical machine learning conditions, i.e. the dataset is split into a training set and test set, and the
neural network is trained with hyperparameters found after hyperparameter tuning. This argument is
not a rigorous proof. This heuristic better aligns with our empirical results and those in the literature;

. . . 71
results suggesting networks learn closer to O(log(n)) frequencies than "7=.

Each simple neuron maximally activates a single output, namely s4 + sp (or possibly a coset con-
taining s4 + sp). However, if we combine the contributions from all simple neurons in a single
cluster (i.e. all with the same frequency f), we observe that the activation level can be maximized
at any desired output; more precisely, the activation level at output & given inputs ¢, j will be of the
form A cos (27 (f(k — i — j)/n)). Note this has been observed experimentally e.g. see Fig[25a)and
Fig. [6] and has also been previously noticed in the literature: see e.g. the last equation of section
3 in |Chughtai et al.|(2023a)). In fact, the analysis below still works even if ¢ + j is only somewhat
close to the maximal activation of the cluster (see @, though we assume the maximum is at ¢ + 5 for
simplicity. However, even in this case there will be many output neurons that all activate nearly as
strongly as the correct answer. To isolate a single answer, we use a superposition of sine waves of
multiple frequencies; we observe experimentally in Fig|[6that this process makes the correct answer
stand out from the rest.

In light of the above, if we fix input neurons i,j € C,, then combining the contributions from
all clusters (and assuming for the heuristic that the contributions from all clusters have the same

amplitude), the sum h(k) := >°;", cos (27Tf tk—i—j)) gives a model for the activation energy

at output neuron k. If k = i + 4, then h(k) takes on the maximum value m. If we want to guarantee
the neural net will consistently select k, we need to show that h(k) is significantly less than m for
all other values of k. We’ll assume a random model where m frequencies f1, ..., f,, are chosen
uniformly at random from 1,2,...,n — 1. Fix a parameter 0 < § < 1; we will compute an
approximation for the probability that m — h(k) > dm forall k # i+ j (mod m).

Let{z} =2 — |z + %J be the signed distance to the nearest integer and set d := k — ¢ — j. Then
using a Taylor expansion,

m — h(k) mécos <27r{j;id}) %mé (1 % (QW{JCZd})Q) 2772;2{%1}2.

Note that the Taylor approximation is quite bad when f;d/n is far from an integer, and if % is close
to an integer then {k} is close to 0. It is reasonable to expect that m — h(k) will be minimized when
the values f,d/n are all close to integers, in which case the approximation is more accurate.

Thus the condition m — h(k) > dm is related to the following condition: defining the vector
vi= %(fl, .oy fm) € [0,1]™, we need that for all 1 < d < n — 1, the point dv has distance at least

\/0m/2xw? away from any point in Z™. Note that nv is an integer point, so (n — d)v is always the

Under review as a conference paper at ICLR 2025

same distance from an integer point as dv is. Thus it suffices to require v to be at least é\ /om /272
away from a pointin 2Z™ ford = 1,...,n/2].

We compute an upper bound on the volume of the region to be avoided: that is, the set of all points
in [0,1]™ within %./6m /272 of a point of 2Z™ for some d = 1,...,n/2. For each d, there are
d™ points in this region, and each has a ball of radius é \/0m/2x? around it; the total volume of the
5m)"™/2 Thus the probability that

region to be avoided is therefore bounded above by m (ﬁ

m — h(k) > dm is approximately equal to 1 minus this value.

For a given n, let’s compute the value of m that makes this probability greater than, say, p.
m/2 m/2
n om 2m n
l—-———/—F7—— | — >p <= I'm/24+1) | — > .
9T (m/2 + 1) (%) r (m/2+)<(5m> 22

Taking a natural logarithm, applying Stirling’s approximation log, I'(z + 1) ~ zlog,(z) — z, and
solving for m,

2
log, T(m/2+1)+ % log, ((;;) > log, n — log, (2 — 2p)

2log, n — 2log, (2 — 2p)

log, (7/5) — 1
Thus if the number of neuron clusters m is greater than this expression, then with probability at least
p, the separation m — h(k) will be at least 6m. We see that the number grows linearly in log, n.

Choosing the parameters p and J can significantly change the precise value of m needed, and it’s
not clear which values most accurately model the true behavior of the neural net. As an example,
note that if we take § = 7/e® ~ 0.1564, and p = %, then this whole expression simplifies to just
m > log, n. Thus, if the neural net uses m = log, n neuron clusters, then this heuristic predicts
that it will guarantee a separation m — h(k) > 0.15m for all k # i 4+ j with 50% certainty. For
n = 89,91 we have log, n ~ 4.5, which agrees with the number of clusters found in Figures
and This process can be interpreted as an “approximate CRT;” see Remark [I| for the analogy.

5.3 CONNECTING OUR EXPERIMENTAL RESULTS WITH OUR MODEL

Our experimental findings show that the neurons concentrate on the complex representations of
the group thus learning periodic functions; see Fig. 2] Simple neurons concentrate on one complex
representation and fine-tuning neurons concentrate on multiple complex representations (Figs[2] 22).
Additionally, fine-tuning neurons have additive or subtractive relations with each other, see Fig. [29]
while simple neurons try to avoid these relations Fig. @bl Furthermore, we introduced a model for a
simple neuron that explains that the simple neurons are actually activating on (approximate) cosets.
The best way to see this is to relate it to the CRT which uses set intersection on cosets (see [3.1)),
whereas the network superimposes linear combinations of cosets onto the logits by using different
frequencies, thus giving the correct logit the highest value (guaranteeing its selection by argmax).
Furthermore, we show how using cosets in this way models the constructive and deconstructive
interference, explaining why the incorrect logits have low values instead of just why the correct logit
has a high value, see Fig. [6]and Section[5.2] We’d also like to point out that the pizza interpretation
is an implementation of the CRT see Fig. e.g. see Fig. 1 in|Zhong et al. (2024), “Same-label
predictions are spread over two slices of pizza” proceeds to list all points in the coset a + b = 5

mod 12, and see Section

Furthermore, the circular, non-circular and Lissajous-like curves found in [Zhong et al.| (2024)) are
predicted by our simple neuron model. Given two neurons in different clusters, i.e. with different
frequencies (f1, f2), a parametric plot of their activations (cos(2m f1t), cos(27 fot)) traces out a
Lissajous curve, i.e. non-circular embedding. We show that the non-circular embeddings in|[Zhong
et al| (2024) result from principal components belonging to different clusters (cosets) in[B.T]

Conjecture 1 is implied by our heuristic model in[5.2]and scaling experiments in Figures [30]and

Conjecture 1: when training with biases, cross entropy loss and Lo weight norm as a regularization
penalty, a good local minima for learning a + b mod n results in the neural network learning
O(log(n)) clusters of different frequencies in order to minimize the loss sufficiently.

Under review as a conference paper at ICLR 2025

6 CONCLUSION AND DISCUSSION

We have unified experimental findings with a model for an approximate CRT, demonstrating that
the following are different expressions of the same overall phenomenon: each neuron learns a pro-
jection of a representation, i.e., a phase-shifted representation, or an approximate coset of a specific
subgroup (learning a coset if the frequency is a prime factor). Furthermore, we demonstrate that
superimposing neurons to form clusters reveals that neurons come together to construct cosets that
are approximately equivariant to changes to the inputs of the network independently of whether the
network is a clock Figs. [6and [32] or pizza[T8] Thus, we show that the algorithm the model is using
to minimize the loss is reminiscent of the CRT—using linear combinations of cosets. Thus, it is the
case that the results found by [Nanda et al.| (2023a)); |Chughtai et al.| (2023b)); [Zhong et al.| (2024)) are
all true, yet simultaneously conflict with eachother. This is because the explanations are not robust
at multiple scales, giving rise to an interesting question: should we consider an interpretation to be
good only if it’s true at more than one scale of abstraction?

Furthermore, the result of |Stander et al.| (2023)) that networks trained on permutation groups are
learning cosets and not representations, is no longer a conflicting piece of evidence for a universality
hypothesis that neural networks learn similiar structures when trained on similar classes of data
(finite groups). We restore hope for the universality hypothesis to be true by showing that cosets —
not GCR - are core features in networks learning the cyclic group across a variety of hyperparameter
conditions. Our work revisits the conjecture, which was believed to be refuted, and shows that both
solutions can be unified, reopening the conjecture for consideration.

Reopened-conjecture 2: There is universality in the structures neural networks uncover when
trained on group operations. This universality involves coset circuits and approximate cosets.

It’s worth noting that researchers working on The approximate Chinese Remainder Theorem

. a=10, b=10 - Cluster 0 - f=8
new approaches to a theory for deep learning
have been in search of a model that appears | BES TTII‘ _ h A | h - "h ______ 1|H
to have learned features of an error-correcting °'|| I| || ||||| | || ||||| -|| | '||| ||'
code (Murfet, [2024). The aforementioned su- | | " |

Value

perpositions of approximate cosets is where X a=10, b=10 - Cluster 1 - f=25

these features are contained. We can see in T l

Fig. [5athat the ability of a single cluster to out- g 1f|| X | I| I| |I 1 Il
§

put the correct answer varies a lot. The reason

the neural network learns different frequencies

is a way of encoding redundant information to

ensure a large separation between the ultimate + ,l, - T i H 1 H, - ,|, |
; . on b || [Il

logit output and the second largest output. This | .|| | | | || || || || I || .,l |”

is reinforced by Fig. [27]finding that all weights . | ‘ ‘ | |

in a cluster can have a substantial amount of a=10, b=10 - Cluster 3 - f=42

multiplicative noise injected, without destroy- Hh; "

“1 “1 ““I I““I I““ |f

ing test accuracy. L | || et ||)

Future work should address Conjecture 1 as our ‘ ‘ ’

O(lOg(n)) model giVCS hints about how super- a=10, b=10 - Total - 'intersect' the above clusters like CRT
position is behind the unreasonable effective-

ness of neural networks. A model embracing I|I| | I||| 0 || | | | Il
it achieved results matching all experiments in || |I II|| |'|| ' ' |I|" I'|I| : '|||

the literature. Future interpretability research -0 S e e
should focus on Conjecture 2; especially our T olegs TR T
observation leading to it: that the only inter-

pretation that unifies all interpretations is true Figure 6: The approximate CRT visualized:
at multiple scales. If conjecture 2 is true it will Four clusters and their contributions to each out-

aid attempts in automating circuit discovery in put logit. The fifth row of plots is the final logit

trained networks and benefit Al safety research. values. The correct logit is in green with a star.
This random seed has f = {35, 25, 8,42}. Purple

bars are in the approximate coset of the cluster.

1 II Ii
|||||||||||I ||||||||l||| |||

a=10, b=10 - Cluster 2 - f=35

Value

0

Value

Value

10

Under review as a conference paper at ICLR 2025

REFERENCES

Julius Adebayo, Justin Gilmer, Michael
Muelly, Ian Goodfellow, Moritz Hardt, and
Been Kim. Sanity checks for saliency maps.
Advances in neural information processing systems, 31, 2018.

Tolga Bolukbasi, Adam Pearce, Ann Yuan,
Andy Coenen, Emily Reif, Fernanda Viégas,
and Martin Wattenberg. An interpretabil-
ity illusion for bert. arXiv preprint
arXiv:2104.07143, 2021.

Nick Cammarata, Shan Carter, Gabriel Goh,
Chris Olah, Michael Petrov, Ludwig Schu-
bert, Chelsea Voss, Ben Egan, and Swee Kiat
Lim. Thread: circuits. Distill, 5(3):e24,
2020.

Bilal Chughtai, Lawrence Chan, and Neel
Nanda. Neural networks learn representation
theory: Reverse engineering how networks
perform group operations. In ICLR 2023
Workshop on Physics for Machine Learning,
2023a.

Bilal Chughtai, Lawrence Chan, and Neel
Nanda. A toy model of universality: Re-
verse engineering how networks learn group
operations. In International Conference on
Machine Learning, pp. 6243-6267. PMLR,
2023b.

Arthur Conmy, Augustine Mavor-Parker, Aen-
gus Lynch, Stefan Heimersheim, and Adria
Garriga-Alonso. Towards automated cir-
cuit discovery for mechanistic interpretabil-
ity. Advances in Neural Information Process-
ing Systems, 36:16318—-16352, 2023.

Xiaoman Delores Ding, Zifan Carl Guo, Eric J
Michaud, Ziming Liu, and Max Tegmark.
Survival of the fittest representation: A case
study with modular addition. arXiv preprint
arXiv:2405.17420, 2024.

Darshil Doshi, Aritra Das, Tianyu He, and An-
drey Gromov. To grok or not to grok: Dis-
entangling generalization and memorization
on corrupted algorithmic datasets. arXiv
preprint arXiv:2310.13061, 2023.

Finale Doshi-Velez and Been Kim. Towards
a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608,
2017.

Nelson Flhage, Tristan Hume, Catherine Ols-
son, Nicholas Schiefer, Tom Henighan,
Shauna Kravec, Zac Hatfield-Dodds, Robert
Lasenby, Dawn Drain, Carol Chen, et al.
Toy models of superposition. arXiv preprint
arXiv:2209.10652, 2022.

11

Under review as a conference paper at ICLR 2025

Andrey Gromov. Grokking modular arithmetic.
arXiv preprint arXiv:2301.02679, 2023.

Tianyu He, Darshil Doshi, Aritra Das, and An-
drey Gromov. Learning to grok: Emergence
of in-context learning and skill composition
in modular arithmetic tasks. arXiv preprint
arXiv:2406.02550, 2024.

Jesse Hoogland, George Wang, Matthew
Farrugia-Roberts, Liam Carroll, Susan Wei,
and Daniel Murfet. The developmental land-
scape of in-context learning. arXiv preprint
arXiv:2402.02364, 2024.

Sarthak Jain and Byron C Wallace. Atten-
tion is not explanation. arXiv preprint
arXiv:1902.10186, 2019.

Diederik P. Kingma and Jimmy Ba. Adam:
A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun (eds.), 3rd
International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Pro-
ceedings, 2015. URL http://arxiv.
org/abs/1412.6980.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod
Lipson, and John Hopcroft. —Convergent
learning: Do different neural networks learn
the same representations? arXiv preprint
arXiv:1511.07543, 2015.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric
Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effec-
tive theory of representation learning. Ad-
vances in Neural Information Processing
Systems, 35:34651-34663, 2022.

Mohamad Amin Mohamadi, Zhiyuan Li, Lei
Wu, and Danica Sutherland. Grokking mod-
ular arithmetic can be explained by margin
maximization. In NeurIPS 2023 Workshop
on Mathematics of Modern Machine Learn-
ing,2023. URL https://openreview.
net/forum?i1d=QPMfCLnIgf.

Depen Morwani, Benjamin L. Edelman,
Costin-Andrei Oncescu, Rosie Zhao, and
Sham M. Kakade. Feature emergence
via margin maximization: case studies in
algebraic tasks. In The Twelfth International
Conference on Learning Representations,
2024. URL https://openreview.
net/forum?1id=19wDX850 jR.

Daniel Murfet. Simple versus short: Higher-
order degeneracy and error-correction.
https://www.lesswrong.com/posts/nWRj6Ey8e5siAEXbK/simple-
versus-short-higher-order-degeneracy-and-
error-1, 2024.

12

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=QPMfCLnIqf
https://openreview.net/forum?id=QPMfCLnIqf
https://openreview.net/forum?id=i9wDX850jR
https://openreview.net/forum?id=i9wDX850jR

Under review as a conference paper at ICLR 2025

Neel Nanda, Lawrence Chan, Tom Lieberum,
Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanis-
tic interpretability. arXiv preprint
arXiv:2301.05217, 2023a.

Neel Nanda, Andrew Lee, and Martin Wat-
tenberg. Emergent linear representations in
world models of self-supervised sequence
models. arXiv preprint arXiv:2309.00941,
2023b.

Chris Olah, Nick Cammarata, Ludwig Schu-
bert, Gabriel Goh, Michael Petrov, and Shan
Carter. Zoom in: An introduction to circuits.
Distill, 5(3):¢00024-001, 2020.

Catherine Olsson, Nelson Elhage, Neel Nanda,
Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yun-
tao Bai, Anna Chen, et al. In-context learn-
ing and induction heads. arXiv preprint
arXiv:2209.11895, 2022.

Adam Pearce, Asma Ghandeharioun, Nada
Hussein, Nithum Thain, Martin Wattenberg,
and Lucas Dixon. Do machine learning mod-
els memorize or generalize. People+ Al Re-
search, 2023.

Forough Poursabzi-Sangdeh, Daniel G Gold-
stein, Jake M Hofman, Jennifer Wortman
Wortman Vaughan, and Hanna Wallach.
Manipulating and measuring model inter-
pretability. In Proceedings of the 2021 CHI
conference on human factors in computing
systems, pp. 1-52, 2021.

Alethea Power, Yuri Burda, Harri Edwards,
Igor Babuschkin, and Vedant Misra.
Grokking: Generalization beyond overfitting
on small algorithmic datasets. arXiv preprint
arXiv:2201.02177, 2022.

Philip Quirke et al. Understanding ad-
dition in transformers. arXiv preprint
arXiv:2310.13121, 2023.

Dashiell Stander, Qinan Yu, Honglu Fan, and
Stella Biderman. Grokking group mul-
tiplication with cosets. arXiv preprint
arXiv:2312.06581, 2023.

Susu Sun, Lisa M Koch, and Christian F Baum-
gartner. Right for the wrong reason: Can
interpretable ml techniques detect spurious
correlations? In International Conference on
Medical Image Computing and Computer-
Assisted Intervention, pp. 425-434. Springer,
2023.

13

Under review as a conference paper at ICLR 2025

Shizhuo Dylan Zhang, Curt Tigges, Stella Bi-
derman, Maxim Raginsky, and Talia Ringer.
Can transformers learn to solve problems re-
cursively? arXiv preprint arXiv:2305.14699,
2023.

Zigian Zhong, Ziming Liu, Max Tegmark, and
Jacob Andreas. The clock and the pizza: Two
stories in mechanistic explanation of neural
networks. Advances in Neural Information
Processing Systems, 36, 2024.

14

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DETECTING SIMPLE NEURONS

Recall that a simple neuron comes with parameters f,sa,sp € C, and positive real number « such
that for each k € C,, we have

w(Ag, N) = cos 72”“]:;5*‘), w(By, N) = cos 2nflk=sp) w(N, D) = acos 2nflk—sa=sp)

n n

We verify that a neuron satisfies this model by using the fact that any function h : Z/nZ — C is

uniquely determined by its discrete Fourier transform (DFT) ﬁ(w) = Z;é h(k)e=?mwk/m which
then satisfies h(k) = L Zz;é h(w)e?™“k/™ Suppose we’re given a neuron N. We can compute
all dot products joining N to input and output neurons: w(Ay, N), w(By, N), and w(N, Dy,) for
allk=0,1,...,n— 1. We then compute the DFTs of these three functions. In order to be a simple
neuron, there must exist a single value f such that all three DFTs have large values at f and — f, and

negligible values elsewhere. We assume this condition going forward.

Consider h(k) = w(Ag, N). Since by assumption ﬁ(w) is close to zero except at f and — f, we

have h(k) = h(f)e2™ifk/m 4 h(—f)e=27ifk/m Note that the complex conjugate of this expression
is

RR) = A(— D)8 4 R e->mish/e,
Since all weights are real numbers, we have h(k) = h(k), so by uniqueness of DFT we must have
?L(*f) = E(f) Writing ﬁ(f) in polar form re'?, and setting t := — 22, we have
h(k) = rei®e2mifhin 4 g o=i0=2mifk/n
— e 2RiR= /0 | o =2mi(fk—t)/n

2 (fk—t)
i

= 2rcos
A similar argument holds for h(k) = w(Bg, N) and h(k) = w(N, Dy), so for some parameters
TA,TB,TD,tA,tB,tp we have w(Ay, N) = 2r4 cos W w(By, N) = 2rpcos M

w(N, Dy) = 2r¢ cos W Now check experimentally that 74 = rp and t4 + tp = tp (up
to small error). Note that we can rescale all the weights connected to N without changing how
the neural net operates: dividing all input weights by some positive constant 7, and multiplying the
output weights by 7, will not change the contributions to each output logit from that neuron. So
rescaling by 27 4 we have

w(Ag, N) = co ,w(Bg, N) = cos M,M(N,Dk) — acos 2r(fk —ta —tp)

2w (fk—ta)
g\ rA)
n n

for some positive a.

Now round ¢4 to the nearest integer multiple of g := ged(f,n), say ta =~ gma. By Bezout’s
identity we can write gm 4 = fsa + nua for some integers s, u 4, SO we have

27m(fk — fsa —nua) cos 2 f(k —sa)
n N n

2w f(k — —
, w(N, Dy) =~ cos mf(rfA SB),

w(Ag, N) = cos

27Tf(k - SB)
n

, and

w(Byg, N) & cos

showing that this neuron fits the model of a simple neuron.
Summarizing: to check that a neuron satisfies the simple model:

1. Compute the DFTs of ha(k) := w(Ag,N), hp(k) w(Bg,N), and hp(k) :=

w(N, D). Check that for some f, we have hy(w) = @(w) ~ hp(w) = 0 for all

w# f,—f.
2. Write the values of the DFT at f as
f/L;(f) = TAe—QﬂitA/n’ @(f) — TBe_thB/”’ El\)(f) _ TDe_Qﬂ-itD/n.

Check thatty +tg ~tpandry = rp.

If the above tests both hold, then we can replace N with a simple neuron without drastically changing
the functioning of the neural net.

15

Under review as a conference paper at ICLR 2025

A.2 EMBEDDINGS CONTAIN PROJECTIONS OF REPRESENTATIONS, NOT REPRESENTATIONS

Chughtai et al.| (2023b) discover representation values in the embedding matrix. The first step in
their GCR algorithm is not true in general. They state “Translates one-hot a, b to representation
matrices”. This is disproven by training with a mini-batch size equal to the modulus n and training
with a full batch size. See the difference in the distribution of the resulting embedding matrices
in Fig. [/l Furthermore, neurons in a cluster of frequency f have different phase shifts, and 2 x 2
rotation matrices in the embeddings doesn’t suffice to explain this behaviour.

Instead, the values found in the embedding matrix may encode scaled projections of a 2 x 2 rotation
matrix onto a one dimensional subspace. Note that such structure is implied by the hypothesis that
neural networks trained on group tasks learn representations, but is more general because of the
existence of both amplitude and phase shifts. To get an exact equivalence, we note that this neuron
structure can be obtained by an arbitrary scaled projection of representations. Suppose

_ (cos(2nfk/n) —sin(2rfk/n)
pk) = (sin(27rfk/n) cos(27rfk/n))

is a 2 x 2 matrix representation of C,,. If we apply p(k) to the vector (1,0) and then take the
dot product with (acos(2wfsq/n), —asin(2w fs,/n)) (which is the same as projecting onto the
subspace spanned by this vector and scaling by o) we obtain exactly

. : 2 f (k=
acos ZLE cos 2TLoa 4 o gin 2R g 2Tsa - acosw = aw(Ag, N).

n n

Thus we have explained the phase shifts of different neurons in a cluster, and shown that it’s not just
the components of p(k) that appear in the embeddings, but rather scaled projections of the repre-
sentations onto arbitrary 1-d subspaces. In our model of simple neurons we ignore the amplitude to
make the analysis simpler, but in general it does need to be included. See Fig[2| for example where
the amplitudes are greater than 2.

Inspecting the distribution of embedding matrix weights. Contrary to findings by Nanda et al.
(2023a); |Chughtai et al.| (2023b), we did not observe the 2x2 representation matrix values (used to
encode rotations) in our embedding matrices outside their reported training conditions. As shown in
Fig. [7] the distribution of embedding weights varies significantly between small and full batch size
and the tails of the distributions are quite different. In the case of small batch size, numbers can be
found in the range (-2, 2), whereas large batch size contains numbers between (-1.5, 1.5). Note that
we choose to remove weights that are between (-0.025, 0.025) to make it easier to see the tails of
the distribution; this was done due to 2.4million weights occurring within this range when training
with the small batch size. Specifically, in the small batch size regime, around 5% of the weights fell
outside the interval [—1, 1], including some weights larger than 2. These values are not consistent
with rotation matrix entries. Other than this, we could not identify any significant differences in the
core structures of what the neural net learns between the batch sizes.

Combining these experimental findings (Fig. [7) with this model (see explains that the embed-
ding matrices may contain scaled projections of representations. This explains the different shifts in
the periodic functions that can be seen in Figs[25a] 25b]and 23] which GCR (Chughtai et al., 2023b)
fails to explain.

16

Under review as a conference paper at ICLR 2025

batch size = train set size batch size =91
300k
@ 300k
3]
<)
0]
g 200k
3 200k
3
G
S
=
5 100k ‘ 100k
O .|I|||‘ "llll- 0 .-|I|||I|I|||||“ “|||||||II"|I--
peptETETEY pestgcRTnt
Magnitude Magnitude

Figure 7: The histograms of embedding weight magnitudes found across 10k random seeds for mod
91 provide evidence against rotation matrices. With batch-size 91 about 5% of the weights are > 1
or < -1, whereas when the batch size is the training set size fewer than 0.5% of the weights are >
1 or < -1. The bin with 0 was removed for batch size 91 due to so many dead weights obfuscating

the plot. The value was 2.4 mil, implying that small batches find sparse embeddings with larger
magnitude weights.

17

Under review as a conference paper at ICLR 2025

B MORE EXPERIMENTAL EVIDENCE

B.1 PRINCIPAL COMPONENT ANALYSES OF THE CONCATENATED EMBEDDING MATRIX

We replicate the results of [Zhong et al.| (2024) and add an additional Fourier transform plot next to
their PCA plots, which makes it obvious that the principal components map directly to one cosets
with some frequency. It can be seen that all non-circular embeddings and Lissajous embeddings are
caused by the two principal components coming from different cosets, as claimed in section[5.3] To
make this easy to understand, please see Fig. [8] showing this random seed has four clusters, with
key frequencies 35, 25, 8, 42.

Neurons [2] - Cluster 0 - Combined DFT Plot

Embedding A (DFT) Embedding B (DFT)
3s 56 35 56

150 150
o @
o 2]
2 2
= 100 £ 100
=3 =
@ &
= =

50 50

() m——— e e
0 20 40 60 80 0 20 10 60 80
Frequency Frequency

Neurons [3] - Cluster 1 - Combined DFT Plot

Embedding A (DFT) Embedding B (DFT)
25 66 25 66
100 100
80 80
v @
o o
2 &0 2 e
c =
& &
© by
= =
20 20
0 — A 0 " .
0 20 40 60 80 0 20 40 60 80
Frequency Frequency
Neurons [9] - Cluster 2 - Combined DFT Plot
Embedding A (DFT) Embedding B (DFT)
8 83 8 83
150 150
v @
° °
2 2
£ 100 = 100
) &
o T
= =
50 50
35 56
o — 0 e ¥ o Y
0 20 40 60 20 0 20 40 60 80
Frequency Frequency
Neurons [14] - Cluster 3 - Combined DFT Plot
Embedding A (DFT) Embedding B (DFT)
42 49 42 49
100 100
@ o
° T
2 2
= c
& 73
oy b
S 5o = 50
7 14 2
0 et 0
0 20
Frequency Frequency

Figure 8: DFT’s of neurons in each of the four clusters in this random seed. Cluster 0 has frequency
35, cluster 1 has frequency 25, cluster 2 has frequency 8 and cluster 3 is a fine tuning cluster with
frequencies on multiples of 7, 14, 21, 28, 35, 42.

Now below see replications of [Zhong et al(2024), with added DFT plots to support section 5.3}

18

Under review as a conference paper at ICLR 2025

Embedding B: DFT of PC1 vs PC2
5

Embedding B: PC1 vs PC2 120 3
& o
1.0 # e 100
0.5 t 4 # o 80
-
N £ 60
g e ¥ o
o5 = 40
¥ # 2
-1.0 W
ﬂ # 0 8 42 a9
-10 -05 00 0.5 1.0 15 0 20 40 60 80
PC1 Frequency (0 to 90)
(a) PC1 vs PC2 Scatter Plot (b) PC1 vs PC2 DFT

Figure 9: PCA and DFT for PC1 vs PC2 showing a circular embedding clustered into cosets. The
x and y axis of the left plot are the PC1 and PC2 values for the concatenated embedding matrix for
each point (a,b) mod 91 € (0,0), (1,1), ..., (90, 90). Note that this covers all output classes of the
neural network exactly once. Also note that the embedding here is showing 13 cosets with 7 points
in them each, i.e. all 13 cosets (a +b) mod 13 =4,i € {0,...,12} are in the plot. Both PC1 and
PC2 have f = 35 and since ged(35,91) = 7, a prime factor, it’s possible to learn the exact cosets.

Embedding B: DFT of PC1 vs PC3
56

Embedding B: PC1 vs PC3 .
2Y [3 68 1 60 83
©] 5 sés® z e 3
104 we B 13 ° a I
. oW [ry 47 [L4 50
7 78 22
2 ° °
59 3 T x
0.5 ° z 82] @ 40
© 2 66 el
43 49 18 >
m 54 2 K °s ° 37 .7¢1 =
O 00 w% s @ i 3 = 30
= 9% 5 : i
st g L 20
% il o
_ 7543 1 % ® 16 so 0% 10
L0 6:2% : ? £ 1 % ° 6 42
€ uw 8 0 IO R
-15
-1.0 =05 0.0 0.5 1.0 1.5 0 20 40 60 80
PC1 Frequency (0 to 90)
(a) PC1 vs PC3 Scatter Plot (b) PC1 vs PC3 DFT

Figure 10: PCA and DFT for PC1 (f = 35) vs PC3 (f = 8), a non-circular embedding.

Embedding B: DFT of PC1 vs PC4
35

Embedding B: PC1 vs PC4 60 56
88 8 2 7 5 66 3 83
T8 R ° 2 ‘g e °%
1.0 4 ° . &7 © 5 6
NS % 3 ° e 50
75 41 L] 56
05 ¢ % 52 %] 2 79 040
45
, % g% ¢ g
< ° ¥ 3 Y 39
€ % ¥ 3 s 5
3 ¢ ¢ ¢ =20
-0.5 ¢ 3 73 35 1
° ° 16 °, © e
%51 % @
70 13 4 . @ 61 27° 10
-1.0{ 36 2 °© 38 ® ° ©
2 g ? ° 5023 ® 3 7 R R
¥ [e 3T 9 0 and
-1.0 -0.5 0.0 0.5 1.0 1.5 0 20 40 60 80
PC1 Frequency (0 to 90)
(a) PC1 vs PC4 Scatter Plot (b) PC1 vs PC4 DFT

Figure 11: PCA and DFT for PC1 (f = 35) vs PC4 (f = 8), a non-circular embedding.

19

Under review as a conference paper at ICLR 2025

) Embedding B: DFT of PC2 vs PC3
Embedding B: PC2 vs PC3 92
e 3 & o 8 o ? 60 56 83
24 le
Loy &% 2 & 9 3 .
2.1 7.8 70. 36 2
0.5 3 . : g0
e 4 43 3
™ 00 3 37 s ° 54 % 'l = 30
9 e i $ ° S
o 8 65 & 29 ©
€p° °© ® . =
-0.5 ® s 19 72 38 20
] [} 4
F_004 2
»
10| g% ¥ % 4 i ® 10
[5:3 & © g ¥ 42 49
[y e ¢ 0 N
-1.5
-1.0 -05 0.0 0.5 1.0 0 20 40 60 80
PC2 Frequency (0 to 90)

(a) PC2 vs PC3 Scatter Plot
Figure 12: PCA and DFT for PC2 (f = 35) vs PC3 (f = 8), a non-circular embedding.

(b) PC2 vs PC3 DFT

Embedding B: DFT of PC3 vs PC4

Embedding B: PC3 vs PC4
v g WY % T
¢ . °%
] &
1.0 a0 100
»e ?390
i e°
0.5 ®° 80
8 2
L4 35
S ool % % £ 60
o0 ¥ 5
& & 40
-05 % I
% £
¥ R 20
-1.0 B
¢ % ﬁa.é.l ﬁ sé;;s ¢ 0 56 L_a/o
-15 -10 -0.5 0.0 0.5 1.0 0 20 40 60 80
PC3 Frequency (0 to 90)

(a) PC3 vs PC4 Scatter Plot
Figure 13: PCA and DFT for PC3 (f = 8) vs PC4 (f = 8), which is a circular embedding because

both PC’s come from the same frequency cluster.

(b) PC3 vs PC4 DFT

Embedding B: DFT of PC3 vs PC5

Embedding B: PC3 vs PC5 60 5
53 3546
1.0 13 ¢ we £ 3 2 1.32'47;
© %0 3 82 © 90° 50
©6 5o 0 71 3 s 25 66
° a e o 3
° a9 10
m © 8 e
0.5 y ® = ° B 40
. ® »
16 ® 67 (9]
° 3 ©
5 4 L]
B » G =]
n 8 © 45 =30
o 0.0 © 6 © 25 ° c
o 74] © 34 =
° g 36 29 ©
S 7 ® 120 = 20
189 a7 @
520 e .o
-0.5 209. 4 70 g
40 ® 5 ° % 10
° % Rt 3 12
62 ¢ 3 48
® 883777 Gep 55 42 33 220 35 42 49
10 S 5° 8 e % ° ©e o AN 90
-1.5 -1.0 -0.5 0.0 0.5 1.0 0 20 40 60 80
PC3 Frequency (0 to 90)

(a) PC3 vs PC5 Scatter Plot
Figure 14: PCA and DFT for PC3 (f = 8) vs PC5 (f = 25), a non-circular embedding.

20

(b) PC3 vs PC5 DFT

Under review as a conference paper at ICLR 2025

Embedding B: DFT of PC3 vs PC6

Embedding B: PC3 vs PC6 60 =
76 65 14 25
1.0 B 37 8 e % Cq.
w 2 Om ° ° 0% 50 2 -
L] [] 3.9 L] 9.0 2
e 28 Sy,
0.5 . 2% 40
17 57 [}
QO
®e T - 3 Lt -g
© H 3 230
8 0.0 3 °© 15 5 2 =
& 6.4 ° ¥® 5.6 13. %
% 37 © = 20
L] 2 °® 2
L 315.8 48 82 ©
-0.5 g 6 Oy
S 10
41 3 2 © o 89 0 N
38 78
_10] ® ¢ by ¥ R AT 0 /_J SO | I X L
-15 -1.0 -0.5 0.0 0.5 1.0 20 40 60 80
PC3 Frequency (0 to 90)

(a) PC3 vs PC6 Scatter Plot

(b) PC3 vs PC6 DFT

Figure 15: PCA and DFT for PC3 (f = 8) vs PC6 (f = 25), a non-circular embedding

Embedding B: DFT of PC4 vs PC5

Embedding B: PC4 vs PC5 5]
35 46 53
I A 2 LA
o1 % ws ° ° 2 ° 50 25 66
L2 61 © 5
%, ¢ ¥
051 ¢y e 40
RS 3 [J]
3 ° 67 o
143 5 e 43
°) S 3
N 85 P o =30
O 00] o 3 S c
a o ° ()]
¥ 23 # 63 % L1}
47 s ° ° o =20
L] é 576 ©
-0.5 8l 58 0 O,
700 @ 0 ° °
s © ® ® ‘%’ EY 10
19
348 % 8 n 3 P 42 49
-1.0 2.31.5 3 8.4 7.3 ©] ° & 0 A A Lo
-1.0 -0.5 0.0 0.5 1.0 0 20 40 60 80
PC4 Frequency (0 to 90)

(a) PC4 vs PC5 Scatter Plot

(b) PC4 vs PC5 DFT

Figure 16: PCA and DFT for PC4 (f = 8) vs PC5 (f = 25), a non-circular embedding.

Embedding B: DFT of PC5 vs PC6
25

Embedding B: PC5 vs PC6
a7 & 7556'5 541;; 8372
10 69 5.8 1... ° ° 3.2 &} 1‘6’1
R ° %’g 80
9.1 79
os| & 2%
o3 B 2 @ 60
% %€ | 3
© s | =
o 0.0 BES 2: g
a %@ 156 o 40
i w| =
82 39
-03 %19509 7 na © 20
T 08 °
L]
I] 5.*1.%34 - e gzﬁ? . 42 49
-1.0 -0.5 0.0 0.5 1.0 0 20 40 60 80
PC5 Frequency (0 to 90)
(a) PC5 vs PC6 Scatter Plot (b) PC5 vs PC6 DFT

Figure 17: PCA and DFT for PC5 (f = 25) vs PC6 (f = 25), a circular embedding as both PCs
come from the same frequency cluster.

21

Under review as a conference paper at ICLR 2025

B.1.1 PI1ZZA CLUSTERS LEARN THE APPROXIMATE CHINESE REMAINDER THEOREM TOO

We take model A, specifically model p99zdpze51.pt, from [Zhong et al| (2024) and make
Figure [T8] which shows that pizzas also output on approximate cosets and perform an approximate
CRT just like clocks. Note for example, that the output logits for the cluster with max freq = 15: has

maximum activation along an approximate coset 5—2 = 3.93, and if the neuron activates strongly at
a then it also activates strongly at a £ 4.

Output logits for cluster with max freq 15
Input a=7, b=10

Neuron 0 - Contributions from a (max freq = 15) Neuggn 0 - DFT Magnitude (Contributions from a)
5
Z I il |
|VTTTY[11“""H““‘
0 10 50 60
Output token index

Output Iogits for cluster with max freq 17
Input a=7, b=10

0

15

Al || UL
; LA
. | TN | || |
-10

0 10 20 30 40 50 60 0 10 20 30 40 50 60 -20
Frequency index

=
S

w
S

-
S
S

w
8

Logit value
1
& o

N
S

Pre-activation
°
Magnitude
1
L
s

|

N
=
S

)

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Frequency index

Neuron 1 - Contributions from a (max freq = 17) Neuron 1 - DFT Magnitude (Contributions from a)

IS

=

3
=
S

w
]
Logit value

-

Pre-activation
~
Magnitude
N
S

o
|

N

o

- . - Output token Index
Neuron 6 - Contributions from a (max freq = 3) Neuggn 6 - DFT Magnitude (Contributions from a) Output logits for cluster with max freq 3

4 Input a=7, b=10

5
. JUR, g
-5
-1
0 10 20 30 40 50 60 0 10 20 30 40 50 60 .
a Frequency index

Output token |ndex

@
3
-

3

=
3

2

»
S

H
Magnitude

Pre-activation

°
N
3
Logit value

o

Figure 18: This figure shows three neurons and their DFT’s, each from one of three clusters in model
A, from [Zhong et al.| (2024) for these experiments. Note that the pizza neurons (and clusters) are
also implementing the abstract approximate Chinese Remainder Theorem algorithm, despite their
low level differences with clocks.

Furthermore, consider that remapping the pizza neurons makes their behavior look almost identical
to simple neurons when they are remapped, see Figure [I9]

22

Under review as a conference paper at ICLR 2025

Neuron O - Normalized Frequency (Cluster max freq = 15)

2

Pre-activation

0 10 20 30 40 50 60
Remapped a

Neuron 1 - Normalized Frequency (Cluster max freq = 17)

Pre-activation
= N w -

o

0 10 20 30 40 50 60
Remapped a

Neuron 6 - Normalized Frequency (Cluster max freq = 3)

4

3

2

Pre-activation

o

10 20 30 40 50 60
Remapped a

Figure 19: Remapping the pizza neurons shown in Figureshows that they look identical to simple
neurons.

B.1.2 FINE-TUNING NEURONS ARE COMPOSED OF LINEAR COMBINATIONS OF
REPRESENTATIONS

We train a neural network with random seed 133 and discover a cluster of fine-tuning neurons. The
preactivations for two of these neurons are shown in Fig. 20]and the DFT’s for these two neurons are
shown in[21] We show that these neurons can be generated by linear combinations of representations
in Fig.

23

Under review as a conference paper at ICLR 2025

Cluster 3

Neuron 14 - Cluster 3 - Combined Pre-Activation Plot

Neuron 14 - Embedding A Neuron 14 - Embedding B

4 —e— Embedding A
—e— Embedding B

Pre-Activation Value
Pre-Activation Value

o 20 0 &0 80 o 20 a0 60 50

Input Value Input Value

Neuron 34 - Cluster 3 - Combined Pre-Activation Plot

Neuron 34 - Embedding A Neuron 34 - Embedding B

4 4 —e— Embedding A
—— Embedding B

Pre-Activation Value
Pre-Activation Value

o 20 0 60 80 o 20 a0 60 50

Input Value Input Value

Figure 20: This shows a cluster of fine-tuning neurons and shows the preactivations of the first two
neurons in the cluster. The x-axis is the input value into the network for a on the left, and the input
value for b on the right.

Cluster 3

Neuron 14 - Cluster 3 - Combined DFT Plot

Neuron 14 - Embedding A (DFT) Neuron 14 - Embedding B (DFT)
—e— Embedding A DFT
—e— Embedding B DFT
100 100
3 g
3 %
R g s
: H
o o
0 2 @ £) 0 2 2 £)
Frequency Frequency
Neuron 34 - Cluster 3 - Combined DFT Plot
Neuron 34 - Embedding A (DFT) Neuron 34 - Embedding B (DFT)
—e— Embedding A DFT
—e— Embedding B DFT
100 100
H H
5)
2 w0 2 w0
o 3
0 2 a &0 a0 0 20 0 &0 a0
Frequency Frequency

Figure 21: This shows the DFT’s of the preactivations of the fine-tuning neurons seen in Fig.
The x-axis is the frequency (from 0-90 because this is (¢ + b) mod 91. The y-axis shows that the
representations contributing are 42, 35, 28, 21, 14, 7 in descending order. Note the DFT is symmetric
about its midpoint so values after 45 contain the same information as the values up to 45.

24

Under review as a conference paper at ICLR 2025

1296 Infg2)= n:=91;

1297 For[i=1, i £10, i++,
phase = RandomReal([] ;

1298 vals = Table[Re[(EA (24 42x/91) +E~ (27 i35x/91) /2.5+EA (27 28 x/91) /10) EA (x I phase)], {x, 0, 90}];
Print[ListPlot[vals, Joined - True, PlotRange -+ All, Mesh - All]]

1299 .

1300 1sr

1301
10

1302

o Nl a
1305 ‘ww vm RSkl

1306 !
1307 .wi
1308
1309 Wl
1310 ol
1311

—
==

o
e
——e
=e

23
—
——
=e

i
——e
==

i
e

o KJ M

1313
1314 osf
1315
1316
1317 el
1318
1319
1320
1321
1322
1323
1324
1325 B.2 A CLUSTER OF SIMPLE NEURONS
1326
1327
1328
1329
1330
1331

—e
——e
I

-10f

Figure 22: Constructing a fine-tuning neuron. This diagram illustrates the step-by-step process of
constructing a fine-tuning neuron, highlighting that it is a linear combination of representations.

Pre-Activation Values for Neurons in Cluster

1332 Embedding A - Neurons 1-5 Embedding A - Neurons 6-10

1333
1334

1336 ’ 1* ‘ LR

Neuron Index
2 (Embedding A)
)

1335

in
n 46 (Embedding &)
n 49 Embedding A)
n 63 (Embedding &)
n 74 Embedding A)
n 88 (Embedding A)
109 (Embedding A)
n 113 Embedding A)
n 118 Embedding A)

0 20 40 0 80 0 20 40 60 EY

1337 Input Value Input Value

Embedding A - Neurons 1114 Embedding B - Neurons 1-5
1338 - ;

1339
1340

1341 i 2 i S 0 A 2L 2
1342 0 2 r 50 50 0) r 5 E

Input Value Input Value —e— Neuron ing B)

109 (Embedding B)
n 113 Embedding B)
—e— Neuron 118 (Embedding 8)

f "L{‘\'] , I i ‘.‘ “ !
AT [bl W

o 1 a0 AL ¥4l | VAU I
A TIM' "‘] NI
l'l’ A ’ 8 "' VAN BN I' k

S 1100 Al

1 343 Embedding B - Neurons 6-10 Embedding B - Neurons 11-14

1344
1345
1346 - ‘ \ i
1347 o B © w % o B P) w0
1348 Input Value Input Value

1349

Figure 23: an example cluster of 14 simple neurons of frequency 21.

25

Under review as a conference paper at ICLR 2025

B.2.1 REMAPPING EVERY NEURON IN THE CLUSTER TO PERIOD 1 BY APPLYING A GROUP
ISOMORPHISM

Pre-Activation Values for Neurons in Cluster

Embedding A - Neurons 1-5 Embedding A - Neurons 6-10
et Ao Neuron Index
o

o P el A /M —e— Neuron 2 (Embedding A)
§ 3 e —e— Neuron 13 (Embedding A)
= e . —e— Neuron 16 (Embedding A)
2 -~ 2 o —s— Neuron 31 (Embedding A)
3 g g Al

2 2A)

2 £ ing A)
=7 euron 43 (Embediing A)

Neuron 63 (Embedding A)

0 20 10 60 80 o 20 2 60 20 —e— Neuron 74 (Embedding A)

Input value Input value —— Neuron 88 Embecding A1
—o— Neuron 109 Embecting A
Embedding A - Neurons 11-14 Embedding B - Neurons 1-5 uron 109 (Embedding &)

—e— Neuron 13 (Embedding 8)

—— Neuron 16 (Embedding B)

—s— Neuron 31 (Embedding 8)
Neuron 36 (Embeddin

3
edding B)
—e— Neuron 46 (Embedding 8)

Neuron 49 (Embedding B)

Pre-Activation Value

Neuron 63 (Embedding B)

0 B © P o 0 20 w 5 %
Input Value Input Value
Embedding B - Neurons 6-10 Embedding B - Neurons 11-14
—— Neuron 118 Embedding)
2 g
§
0 g 0
<
’ ‘\""‘W e
0 » © o w0 0 20 w 5 %
Input Value Input Value

Figure 24: A cluster of simple neurons (from Fig. transformed so that all neurons have period 1.

B.3 INSPECTING THE PHASE SHIFTS OF THE PERIODIC FUNCTIONS LEARNED BY SIMPLE
NEURONS

Here we show how the phases of different neurons in a cluster overlap to give some more informa-
tion about how clusters of neurons function. See Fig 254 for the histograms of the phases of the
preactivations of the neurons in a cluster.

For a higher resolution view of what’s going on, see a 2d scatter plot created by grouping the phases
for each neuron’s a and b preactivations into a pair (phase-a, phase-b) and plotting the points for all
neurons in the cluster in the 2d plane as a black point, see Fig[25b] It’s worth noting that the phases
are nice and spread out uniformly like in Fig[25b]only about half the time.

26

Under review as a conference paper at ICLR 2025

Cluster 1: 14 neurons, frequency =21

Histogram of Phases for Cluster 1; 14 neurons, frequency =21

Phase Histograms for Cluster 1

Embedding A Phases (Cluster 1) Embedding B Phases (Cluster 1)
5

25
15

E
'

"
03
o 3 2 1 0 1 2 °

Phase (radians)

Count

(a) This shows a cluster of fine-tuning neurons and shows the preactivations of the first two neurons in the
cluster. The x-axis is the input value into the network for a on the left, and the input value for b on the right.

Different Neurons Phase_a Phase_b Pairs in Cluster 1

Phase_b

Phase_a

(b) This shows a 2d scatter plot created by grouping the phases for each neurons a and b preactivations into a
pair (phase-a, phase-b) and plotting the points for all neurons in the cluster in the 2d plane as a black point. In
this case, the cluster has 14 neurons of frequency 21.

Figure 25: Figures showing the histogram of phases, then the 2d scatter plot of phases for all 14
neurons in a simple neuron cluster of frequency 21.

B.3.1 HISTOGRAMS RECORDING AN UPPER BOUND ON THE COUNTS OF SEEING
FINE-TUNING CLUSTERS WITH A GIVEN FREQUENCY

Note that the next two histograms are created by recording frequencies with weights in the DFT
in the range of (7.5, 30). This is not a sufficient way to always detect fine tuning neurons, and
sometimes it will include simple neurons in its counts, however this is much more rare. If you
consider the ability for neurons with preactivations of specific frequencies to contaminate other
neurons frequencies slightly (because they may modify values in the embedding matrix by a small
amount), you will see where this counting method can go awry. It is however the case that usually,
the contamination coming from a different cluster of simple neurons is below 7.5. Thus, these plots
should not be considered “accurate” and just approximations.

These plots are still useful to show the relative frequency of simple neurons vs. fine tuning neurons.
The histogram of Frequencies found Fig. [a] found a uniform distribution with each frequency
showing up about 10k times. Removing the vast majority of contamination by filtering with 7.5
(usually the DFT magnitudes on other frequencies are 0 and if they aren’t near O then they are

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

less than 4 and there is a simple neuron making use of that frequency in a different cluster (i.e. a
simple neuron has one big spike with magnitude over 60 on that frequency). This gives us about
2200 fine-tuning neurons found with each frequency, including overcounting because fine-tuning
neurons make use of linear combinations of representations and thus their DFT usually has three
or more values in the range (7.5, 30). Thus the histograms of frequencies associated with fine-
tuning neurons are upper bounds on the number of clusters that are identified across 100k random
seeds to be fine-tuning neurons. Assuming the upper bound is reality and no overcounting occurs
(which it does), we would get about 43 x 2200 = 94600 clusters of fine tuning neurons found
in 100k training runs. Comparing this to the cluster frequencies histogram Fig. [fa] which shows
about 43 x 11500 = 494, 500 total clusters learned in 100k training runs. This includes fine tuning
neurons, so the empirical probability of observing a cluster of fine tuning neurons is at most around:

94600 =~ 0.23656. In reality it is smaller due to overcounting.

494,500—94600

Frequencies involved with fine-tuning neurons mod 91 Frequencies involved with fine-tuning neurons mod 89

200
W | ‘ I | | | ‘
o | | % g 0 1 B
Frequency

(a) The histogram of frequencies associated with fine- (b) The histogram of frequencies associated with
tuning neurons over 100k random seeds mod 91. fine-tuning neurons over 100k random seeds mod 89.
Note that 22 and 44 are least likely, with 13, 26, 39 Note that 23 and 43 are least likely

(prime factors) being less likely.

Figure 26: Comparison of histograms of frequencies associated with fine-tuning neurons over 100k
random seeds for mod 91 and mod §9.

28

Under review as a conference paper at ICLR 2025

B.4 NOISE AND ABLATION PLOTS

In this section we take the clusters from random seed 133 and we randomly inject multiplicative
scaling noise into every weight attached to neurons in the cluster. We do this by multiplying the
weight by e®, s ~ N (0,0), for o in [0.]

(a) Multiplicative Noise injected into every weight of every neuron in a cluster from a
normal distribution with std dev o.

(b) Multiplicative Noise injected into every weight of every neuron in a cluster from a
normal distribution with std dev o.

Figure 27: Note the neural network is robust to quite large amount of noise being injected. The loss
barely changes with when using a std dev of 0.225, which is a strong multiplicative scaling factor.

29

Under review as a conference paper at ICLR 2025

Mean Loss across Clusters with Ablation

umber of Ablations

(a) Ablation study showing the impact on the loss function with the removal of random
neurons in specific clusters of the network.

Mean Accuracy across Clusters with Ablation

Number of A

(b) Ablation study showing the impact on accuracy with the removal of random neurons
in specific clusters.

Figure 28: Results of the ablation study. The loss and accuracy metrics highlight the influence
of removing neurons randomly from a cluster, showcasing the importance of neurons within each
cluster

30

Under review as a conference paper at ICLR 2025

B.5 FINE-TUNING NEURONS LIKE ADDITIVE AND SUBTRACTIVE RELATIONS

(a) Fine-tuning Neuron Additive Relations given 15
is a frequency

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

(b) Fine-tuning Neuron Additive Relations given 7 is
a frequency

Figure 29: Side-by-side figures showing the fine-tuning neuron additive relations for two different
cases: if a neuron with frequency 15 is learned, frequencies that are multiples of 5 are all more likely
to be found. This is also true for 7, which is a prime factor of 91, which is the moduli.

31

Under review as a conference paper at ICLR 2025

B.6 SCALING THE NUMBER OF NEURONS IN THE LAYER ACHIEVES EXPERIMENTAL RESULTS
WITHIN O(log(n))

Histogram of Number of Clusters Found, num_neurons=128, batch_size=91 (Average = 4.97) Histogram of Number of Clusters Found, num_neurons=128, batch_size=5096 (Average = 5.63)

1400

1200

600
—_ m._ |

0

Frequency
Frequency

Number of Clusters Number of Clusters

Histogram of Number of Clusters Found, num_neurons=512, batch_size=91 (Average = 4.89) Histogram of Number of Clusters Found, num_neurons=512, batch_size=5096 (Average = 5.28)

1500

1500
l
[|

0 10

Frequency
Frequency

Number of Clusters Number of Clusters

Histogram of Number of Clusters Found, num_neurons=2048, batch_size=91 (Average = 4.33 Histogram of Number of Clusters Found, num_neurons=2048, batch_size=5096 (Average = 5.30;

1500 1500
1000 1000
s00 500
]| ™ []
|
o 2 2 I 0 2 n 6 .

o
0 10

Frequency
Frequency

Number of Clusters Number of Clusters

Histogram of Number of Clusters Found, num_neurons=8196, batch_size=91 (Average = 4.09) Histogram of Number of Clusters Found, num_neurons=8196, batch_size=91 (Average = 5.10)

1200

1000
500
P
00 500
B .
|| | o o
B > 3 s 0 o 0 > 4 o 0 1

0 1

Frequency
Frequency

Number of Clusters Number of Clusters

Figure 30: This figure shows that the scaling is always O(log(n)), even as the number of neurons
is increased from 128, to 512, to 2048, to 8196. The first column is batch_size=91 and the second
column is batch_size=5096, i.e. the entire training set size. All results are O(log(n)).

B.7 SCALING THE MODULI OF THE DATASET ACHIEVES EXPERIMENTAL RESULTS WITHIN
O(log(n))

32

Under review as a conference paper at ICLR 2025

number frequencies in trained model

Experimental results show logarithmic scaling.

¢

number frequencies in trained model

logz (x)
loge (x)
Data with std dev

=
o

0

— logz (x)
loge (x)
¢ Data with std dev

500

101

number frequencies in trained model

1000 1250 15
moduli

750

¢

00 1750 2000

number frequencies in trained model

logz (x)
loge (x)
Data with 99.9% CI

10F

10° 10°

moduli

10° 10t

— logz (x)
loge (x)
¢ Data with 99.9% Cl

0 250 500

1000 1250 15
moduli

750

00 1750 2000

10? 10°

moduli

10° 10!

Figure 31: This figure shows that the experimental scaling is reasonably upper bounded by log(n)
for networks trained on (a + b) mod n, agreeing with the O(log(n)) conjecture. This plot was
made by training 200 neural networks at each of the points, and taking the average and std deviation
of the number of clusters.

Number | Learning Rate | Batch Size | Weight Decay | Training Set Size
59 0.008 59 0.001 1770
113 0.004 113 0.0003 6780
193 0.003 193 0.0001 18914
310 0.0008 310 0.00008 46500
433 0.0006 433 0.00005 86600
499 0.0005 499 0.00003 124750
757 0.0003 757 0.0000085 280090
997 0.0003 997 0.0000015 498500

1409 0.00028 1409 0.0000009 986300
1999 0.00024 1999 0.0000008 2398800

Table 2: Experimental results with Adam optimizer across varying parameters for Figure

C SHOWING THAT IF YOU SHIFT (A,B) BOTH BY 2, THE CLUSTERS SHIFT BY

4

Here you can see that the clusters of neurons are approximately equivariant to shifts in the inputs,
i.e. the cosets shift with the inputs.

33

Under review as a conference paper at ICLR 2025

Breaking Down How Clusters Contribute to the Output Logits

a=10, b=10 - Cluster 0 a=12, b=12 - Cluster 0
\ H\H L
=
% 0 l H ” I ” |‘|ll| lHH O.Hh H| ” ”. |H|. |H‘ Hh
: PP
4 a=10, b=10 - Cluster 1 a=12, b=12 - Cluster 1
Z. | (0 BT ‘H
3
AT s TR R NA n AR AR
£ O‘I'II‘\ll'IH'll‘|l||||||l | "'HHHIHIH HII‘
S - 2
i a=10, b=10 - Cluster 2 i a=12, b=12 - Cluster 2
MYy uH dh h d m u\h LI
e | \W U' I ”W \ml ‘ \' Y H
S
a=10, b=10 - Cluster 3 - a=12, b=12 - Cluster 3
s 0l \H ‘|H|‘ H\\ o 0 0 i
é“m\l " O
e |1l H\ |l
S 2
a=10, b=10 - Total a=12, b=12 - Total
10 10
8
£ I\‘IH HH| ‘ HI‘ H|IH|I|||‘||‘ |H HH ‘
E O 0! | s A ||‘| Il II| ..
s ||"\ “ MI‘I\”'I'\I‘I‘ ‘I IHI |I‘ IH\ UIH i '“‘
-10 -10
u)" Wh U100 Chh= =D WwWwhbhRhUL A -1-1000
SChohEShouhohehohsohd SO OO DSOS o
Logits Logits

Figure 32: Here you can see that the clusters of neurons are approximately equivariant to shifts in the
inputs, i.e. the coset clusters shift with the inputs, implying the network has learned cosets that it’s
utilizing to intersect, via linear combinations, to perform the approximate CRT. This example was
chosen to show that the network did not learn a global minimum, i.e. cluster 3 has only 4 neurons,
which does not grant it enough expressivity to always be equivariant. Cluster 0 has frequency
35, making it a coset, Cluster 1 has frequency 25, making it an approximate coset, Cluster 2 has
frequency 8, making it an approximate coset, Cluster 3 has frequency 42, making it a coset. This is
the same random seed as the ablation study (Fig. ; Cluster 0 is doing the most.

34

	Introduction
	Related Work
	Preliminaries
	Group (representation) theory and the Chinese Remainder Theorem
	Task description and model

	Investigating networks trained on modular addition
	Our experimental findings

	Bridging perspectives for modular addition
	Simple neurons learn cosets
	A model for what the network learns — the approximate CRT algorithm
	Connecting our experimental results with our model

	Conclusion and Discussion
	Appendix
	Detecting simple neurons
	Embeddings contain projections of representations, not representations

	More Experimental Evidence
	Principal component analyses of the concatenated embedding matrix
	Pizza clusters learn the approximate Chinese Remainder Theorem too
	Fine-Tuning Neurons are composed of linear combinations of representations

	A cluster of simple neurons
	Remapping every neuron in the cluster to period 1 by applying a group isomorphism

	Inspecting the phase shifts of the periodic functions learned by simple neurons
	Histograms recording an upper bound on the counts of seeing fine-tuning clusters with a given frequency

	Noise and ablation plots
	fine-tuning neurons like additive and subtractive relations
	Scaling the number of neurons in the layer achieves experimental results within O((n))
	Scaling the moduli of the dataset achieves experimental results within O((n))

	Showing that if you shift (a,b) both by 2, the clusters shift by 4

