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ABSTRACT

The Vehicle Routing Problem (VRP) serves as a fundamental optimization prob-
lem in modern logistics and supply chain management, where efficient solutions to
its large-scale multi-task variants are crucial for reducing transportation costs and
improving resource allocation efficiency. Although significant progress has been
made in intelligent solving approaches for small- and medium-scale VRPs, current
methods still face three major limitations when dealing with real-world large-scale
multi-task scenarios: 1) Neural heuristic models trained on small-scale datasets
struggle to generalize effectively to larger problem instances; 2) The computa-
tion time of traditional optimizers grows nonlinearly with problem scale, making
them impractical for real-time decision-making; 3) Current solution approaches
lack systematic mechanisms to handle the complex interactions and constraints
between multiple concurrent tasks in an integrated manner. To address these chal-
lenges, this paper proposes the MoE-Based Partitioning and Merging (PAML)
framework, with two key innovations: 1) A learnable and scalable implicit par-
titioner capable of handling multiple VRP variants, which optimizes partition-
ing strategies through end-to-end reinforcement learning, effectively overcoming
training data scale limitations; 2) A dynamic merging mechanism based on polar
angle clustering that enables intelligent control of subproblem sizes. This de-
sign allows efficient parallel solving of the partitioned VRP subproblems. Experi-
mental results demonstrate that across various synthetic and real-world multi-task
VRP variants of different scales, the PAML method shows remarkable improve-
ments over its base solver model: reducing route length by up to 48.71% for
2000-node problems and 20.66% for 1000-node problems. For real-world CVR-
PLIB instances, PAML achieves a 16.78% reduction in routing distance compared
to Multi-Task Vehicle Routing Solver with MoE (MVMoE) while delivering com-
parable performance to OR-Tools. Remarkably, PAML requires only one-tenth of
OR-Tools’ computation time (0.95s vs 14.23s on average).

1 INTRODUCTION

The Vehicle Routing Problem (VRP), first proposed by Dantzig & Ramser (1959), is a fundamen-
tal combinatorial optimization problem in logistics and supply chain management. With increas-
ing complexity of practical scenarios, VRP and its variants (CVRP, VRPTW, VRPB) have be-
come critically important research topics in operations research and artificial intelligence due to
their NP-hard characteristics. Traditional optimization methods, including exact algorithms and
heuristic/metaheuristic approaches, achieve good results for small-scale VRP instances (Aarts &
Jan Karel Lenstra, 2003; Naddef & Rinaldi, 2001; Cordeau et al., 2002), but lack generalization and
efficiency in large-scale, multi-task scenarios. In recent years, AI-driven approaches have emerged,
with neural heuristics offering end-to-end learning and good generalization. Notable advances in-
clude Graph Convolutional Neural Networks (Gasse et al., 2019), attention-based models (Kool
et al., 2019), and multi-task architectures like MoE models (Zhou et al., 2024; Shazeer et al., 2017).
For detailed reviews and evaluations, see Section Related Work.

Despite these advances, current methods still face significant challenges in large-scale multi-task
scenarios: limited multi-task optimization capabilities across diverse VRP variants with varying
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Large-scale VRP

Partitioning into origin subroutes

Heuristic Merging origin subroutes into a list of subproblems

Padding all merged subproblems to same length

Final VRP Solution

Combine

Solving suproblems in parallel

Subroute 4Subroute 3Subroute 2Subroute 1 Subroute N······

Subproblem 2Subproblem 1 Subproblem N 

Padded Subproblem 1

Subsolution 1

Padded Subproblem 2 Padded Subproblem N

Subsolution 2 Subsolution N

Figure 1: Our PAML framework. In the first phase (blue), the learning model splits the large VRP
into multiple small primitive subroutes while preserving the original constraints of the VRP, such as
capacity, maximum vehicle route length, backhaul demand, etc. Then, in the second stage (green),
the primitive subroutes are merged into subproblems according to the constraints. In the third stage
(yellow), all merged subproblems are padded to the same number of nodes. In the fourth stage (red),
all padded subproblems are solved in parallel.

constraints, computational inefficiency for real-time applications due to lengthy solving times, and
poor generalization from small training instances to large-scale problems due to insufficient global
structural understanding.

Given these limitations, we propose: Can we develop an AI-based solving method that adapts to
multi-task optimization, maintains high computational efficiency, and demonstrates stronger gen-
eralization capabilities? We attempt to achieve this through two key approaches: 1) Subproblem
Partition: To enhance generalization for large-scale multi-task VRPs, we adopt a partitioning strat-
egy. Inspired by the two-stage division approach of the Two-stage Dividing Method (TAM) (Hou
et al., 2023), we decompose a large problem into smaller, manageable multi-task subproblems, en-
abling parallel and more effective solving. 2) Mixture-of-Experts (MoE) Solving: To address the
challenges of multi-task optimization, we leverage a Mixture-of-Experts (MoE) architecture. Draw-
ing inspiration from the MVMoE model by Zhou et al. (2024), we use its ability to adaptively handle
diverse VRP variants and constraints to solve the partitioned multi-task subproblems.

Based on these ideas, we propose the MoE-Based Partitioning and Merging (PAML) framework.
Using a divide-and-conquer strategy, we intelligently decompose large-scale multi-task VRP into
smaller subproblems for parallel solving through an MoE-based partitioner. During development,
we innovatively introduce a dynamic merging mechanism for intelligent subproblem scale regula-
tion. The method consists of three stages: 1) Partition: PAML first employs a deep neural network
model based on the MoE architecture to partition VRP nodes into a list of initial subproblems. This
model is data-driven and adaptively learned, requiring no preset rules. It is trained end-to-end via
reinforcement learning (REINFORCE algorithm) to maximize subsequent solving rewards, with a
Greedy Rollout Baseline for training stability. 2) Merging: For the divided initial subproblem se-
quence, PAML then applies heuristic merging strategies based on geometric information (centroids,
polar angles relative to depot), merging subproblems according to preset parameters (fixed quantity
or target node count). Through this merging process, PAML can dynamically regulate to optimize
subproblem scale and quantity, balancing the divided subproblems’ ability to preserve global infor-
mation with their solving complexity. 3) Parallel Solving: Finally, the merged subproblems can be
solved in parallel using either traditional or AI methods.

The primary contributions of this project include: 1) We developed a Novel Three-Stage Partition-
Merge-and-Solve Framework specifically designed for large-scale, multi-variant VRPs. It effec-
tively combines deep learning-based implicit partitioning with high-performance multi-task sub-
problem solving mechanisms, enhancing the capability to solve complex VRP instances. 2) We
trained an Intelligent MoE-based Implicit Partitioner that has been applied to the task of implicit
VRP partitioning. This partitioner, trained via end-to-end reinforcement learning, can adaptively

2
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2 sub-routes merged into one sub-problem

Partition Merge Solve

(a) Origin VRP-24 (b) Partitioned 8 sub-
routes

(c) 4 sub-problems after 
merging (d) Final solution

Figure 2: A CVRP sample solved using our PAML method. (a): Origin CVRP instance. (b):
Subroutes generated after division. (c): Merged and Padded Subproblems. (d): Final solution.
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Figure 3: Solving cost (left, smaller is better) and solving time (right, smaller is better) on VRPs of
different sizes (200 to 500-nodes) using different methods. We can see that when the size of the VRP
is around 200 nodes, the PAML method (PAML adaptive+MVMoE), which solves the subproblems
using the MVMoE solver, outperforms each of the other methods, and also maintains an advantage
in terms of solving speed.

generate high-quality partition sequences based on problem characteristics, eliminating the need for
manually designed partitioning rules. 3) We propose and develop a subproblem merging method.
We have thoroughly studied and experimentally compared various geometrically-informed subprob-
lem merging strategies, and finally identified subproblem merging methods for various multi-task
VRPs of various sizes, which can dynamically regulate the size of the solved subproblems. This
allows for better matching with the preferred working range of subsequent subproblem solvers,
thereby improving overall solving efficiency and solution quality. 4) We have conducted systematic
experimental evaluations across multiple datasets (including generated benchmarks and real-world
public VRPs), with results demonstrating three key advantages: Multi-task capability shows ro-
bust generalization across diverse VRP variants through consistent solution quality improvements;
Large-scale performance achieves significant route length reductions of 3.40% (200-node) and
48.71% (1000-2000 nodes) compared to MVMoE Solver, while matching OR-Tools’ solution qual-
ity on real-world CVRPLIB instances (100-1000 nodes); and Computational efficiency maintains
just 10% of OR-Tools’ processing time for 200-node problems, delivers 91.20% faster computation
for 1000-2000 node problems, and realizes 93.32% time reduction (0.95s vs 14.23s) on real-world
cases with equivalent solution quality.

2 RELATED WORK

2.1 TRADITIONAL METHODS

Early research relied on local search methods (Aarts & Jan Karel Lenstra, 2003), which, while sim-
ple, often get trapped in local optima, limiting their effectiveness for complex instances. Branch-

3
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and-cut algorithms (Naddef & Rinaldi, 2001) provide exact solutions but suffer from high computa-
tional complexity at scale, making them impractical for large problems. Heuristic reviews (Cordeau
et al., 2002) cover savings algorithms, sweep methods, and graph-based approaches; these perform
well for small instances but prove inefficient for larger, real-world problems due to scalability is-
sues. While effective for small instances, these methods struggle with computational scalability and
generalization for modern large-scale VRPs.

2.2 AI METHODS FOR LARGE-SCALE VRP

AI techniques have significantly advanced VRP solving through Graph Convolutional Networks
(Gasse et al., 2019), attention models (Kool et al., 2019), and neural predictors (Accorsi & Vigo,
2021). Key innovations include Neural Large Neighborhood Search (Chen et al., 2020), learning-to-
delegate frameworks (Li et al., 2021), TAM’s route decomposition (Hou et al., 2023), and PolyNet’s
diverse solution learning (Hottung et al., 2024). CaDA (Li et al., 2025b) introduces constraint-
aware dual-attention for cross-problem VRP solving, achieving state-of-the-art results across 16
VRP variants through constraint prompts and selective attention mechanisms. While demonstrating
superior generalization, these methods often require substantial training resources.

2.3 MULTI-TASK VRP PROBLEMS

Recent advances in multi-task Vehicle Routing Problems focus on developing integrated architec-
tures capable of handling multiple constraints and variants. Key approaches include joint attention,
reinforcement learning, and Mixture-of-Experts models. Joint attention mechanisms capture depen-
dencies between tasks. Falkner & Schmidt-Thieme (2020) uses joint attention for multi-constraint
coordination. Reinforcement learning enables dynamic policy adaptation. Delarue et al. (2020)
demonstrates its robustness in varying scenarios. Mixture-of-Experts models specialize in different
problem variants; Zhou et al. (2024) proposes a multi-task MoE framework. These methods build
on foundational work: Shazeer et al. (2017) introduces efficient MoE routing, while Berto et al.
(2025b) develops a unified Transformer-based platform. The survey by Wu et al. (2025a) catego-
rizes paradigms and highlights challenges like generalization and comparison difficulties. Evalua-
tions show improved multi-task performance, though expert balancing and training stability remain
challenges, pointing to future work in adaptive gating and scalable training.

3 PRELIMINARY WORK

3.1 MARKOV DECISION PROCESS MODEL FOR VRP

We model the VRP as a Markov Decision Process (MDP) (S,A, T , R, γ) where states include node
positions and constraints, actions select customer nodes, and rewards are negative distances. The
goal is to maximize expected cumulative reward while respecting capacity and other constraints.

The policy pθ(at|st) parameterized by θ defines the probability of selecting action at in state
st. For the original VRP with n nodes, this policy generates a complete solution sequence
S = [a1, a2, . . . , an] that minimizes the total cost C(S) =

∑n−1
i=1 dai,ai+1

, where di,j denotes the
Euclidean distance between node i and node j, subject to constraints like

∑
i∈Sk

qi ≤ Q for each
vehicle route Sk. The full policy is expressed as:

pθ(S|s) =
n∏

t=1

pθ(at|st), (1)

where the sequence length is fixed to n. Mathematical formulations are in Appendix B.1.

3.2 TAM AND MVMOE

Hou et al. (2023)’s TAM decomposes problems into parallel small-scale TSPs via sequence-to-
sequence sub-route generation followed by parallel optimization. Zhou et al. (2024)’s MVMoE uses
MoE gating, multi-task loss, and REINFORCE optimization for multi-variant VRPs. While efficient
for small instances (<200 nodes), it degrades on larger problems due to training data limitations.
Its offline training enables real-time applications like dynamic scheduling. Technical details are in
Appendix B.2 and B.3.
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4 METHOD

4.1 GENERAL FORMULATION OF PAML
In PAML, we reformulate the VRP solving process as a three-stage policy that decomposes the
problem into subproblems, merges them, and solves them in parallel. The overall policy pθ(S

∗|s)
generates a partitioned and merged sequence leading to the best found solution S∗ for the initial
state s, where θ parameterizes the partitioner. The overall policy is expressed as:

pθ(S
∗|s) = pθ(π|s) · p(M|π) · p(S∗|M) (2a)

where

pθ(π|s) =
T∏

t=1

pθ(πt|st) (2b)

p(M|π) = δ(M = µ(ζ(π))) (2c)

p(S∗|M) =

l∏
j=1

δ(S∗
j = Ψ(Mj)) (2d)

In these expressions, π = [π1, π2, . . . , πT ] denotes the initial partition sequence with T steps in-
cluding separators, and st is the state at step t; m is the number of initial subproblems; Pk obtained
by splitting π at separators via P = ζ(π) = [P1, P2, . . . , Pm]; M = [M1,M2, . . . ,Ml] is the
vector of merged subproblems obtained by applying the merging function µ to the initial partition
P; l is the number of merged subproblems; S∗ = {S∗

1 , S
∗
2 , . . . , S

∗
l } denotes the set of best found

sub-solutions; and S∗
j is the best found sub-solution for Mj under subproblem solver Ψ. Here,

δ(·) denotes the Kronecker delta function, which equals 1 when the condition inside is satisfied
and 0 otherwise, representing deterministic operations in the merging and solving stages; ζ(·) is the
splitting function that partitions the sequence at separators; and µ(·) is the merging function that
consolidates the initial subproblems from P into a vector of merged subproblems.

This formulation evolves the original policy pθ(S
∗|s) by introducing decomposition: pθ(π|s) pro-

duces a sequence of nodes interspersed with separators, transforming the fixed-length sequence into
a variable-length one with delimiters; p(M|π) combines initial subproblems based on geometric
heuristics, further adapting the policy to handle grouped subsets; and p(S∗|M) applies a pre-trained
solver to each merged subproblem, enabling parallel evaluation.

This formulation enables parallel computation and improves generalization by reducing the effective
problem size while preserving global constraints.

4.2 DETAILED METHODOLOGY

4.2.1 GENERATING INITIAL SUBPROBLEM SEQUENCE

The partitioner generates a sequence π = [π1, π2, . . . , πT ] mixing customer nodes and separator
tokens (0), where T ≈ n+n/ntarget, ntarget denotes the target subproblem size. The policy becomes:

pθ(π|s) =
T∏

t=1

pθ(πt|st), (3)

with constraint masking:

Mask(at) =
{
0 if

∑
i∈Rt

qi + qat
≤ Q

−∞ otherwise,
(4)

where Rt denotes the set of nodes currently assigned to the active route at step t. Initial subproblems
are obtained by splitting at separators: P = ζ(π) = [P1, P2, . . . , Pm].

4.2.2 SUBPROBLEM MERGING

The merging stage consolidates initial subproblems P into M = [M1,M2, . . . ,Ml] using geomet-
ric heuristics. Subproblems are sorted by polar angle αk = arctan 2(ȳk−ydepot, x̄k−xdepot) relative
to depot, then merged using either fixed-number or target node count strategies. Here (x̄k, ȳk) de-
notes the centroid of the k-th initial subproblem. After merging, the consolidated subproblems M
are ready for parallel solving, where each Mj will be processed by a pre-trained solver to obtain the
optimal sub-solution S∗

j .
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4.2.3 PARALLEL SOLVING OF MERGED SUBPROBLEMS

The merged subproblems M are solved in parallel using a pre-trained multi-task solver. For each
Mj with size nj ≈ ntarget, pad to uniform size if needed and compute the sub-solution S∗

j that
minimizes the local cost C(S∗

j ) while satisfying subset constraints. The policy for solving adapts to
subsets:

p(S∗|M) =

l∏
j=1

δ(S∗
j = Ψ(Mj)), (5)

where Ψ is a fixed pre-trained solver that deterministically computes the best found solution for each
subproblem Mj . The overall solution is the concatenation calculated as:

S∗ =

l⊕
j=1

S∗
j , (6)

with total cost:

C∗
total =

l∑
j=1

C(S∗
j ). (7)

4.2.4 INFERENCE PIPELINE

The optimized inference flow (Fig. 2) is: 1) Partition: Generate initial sequence π via greedy decod-
ing with constraint masking. 2) Merge: Merge into M using target-size strategy (ntarget calibrated
per problem scale in Table 1). 3) Pad: Uniform padding for batch processing. 4) Solve: Solve all
subproblems in parallel to obtain S∗

j . 5) Combine: Concatenate sub-solutions S∗ =
⊕

S∗
i .

4.2.5 END-TO-END TRAINING OF THE PARTITIONER

The partitioner parameters θ are optimized using REINFORCE with greedy baseline πBL:

∇J(θ) = Eπ∼pθ

[
(R(π)−R(πBL))∇ log pθ(π)

]
, (8a)

where

R(π) = −
l∑

j=1

C(S∗
j ) + λ

l∑
j=1

(βcapVcap(Mj) + βtwVtw(Mj) + βrouteVroute(Mj)) , (8b)

with violation terms Vcap(Mj) = max(0,
∑

i∈Mj
qi−Q), Vtw(Mj) =

∑
i∈Mj

max(0, ti−li), and
Vroute(Mj) = max(0,Length(Mj)−Lmax) for capacity, time window, and route length constraints
respectively. The total loss incorporates MoE load balancing:

Ltotal = LRL + λmLMoE. (9)

Here Length(·) measures the total route length within a subproblem in the same units as C(·).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

5.1.1 DATA GENERATION

The data generation method is designed to cover vehicle routing problem (VRP) variants of vary-
ing scales and complexities to ensure the model’s generalization capability. Taking the classic Ca-
pacitated Vehicle Routing Problem (CVRP) as an example, the data generation process constructs
problem instances using a randomized approach. The geographical locations of nodes are generated
through uniform random sampling. For each problem instance, the depot coordinates are randomly
generated within a two-dimensional unit plane ([0, 1]× [0, 1]), while customer node coordinates also
follow a uniform distribution. For problems of different scales (e.g., 20, 50, 100, 200 nodes), the
generator dynamically adjusts the baseline capacity value. For instance, the baseline capacity is set
to 30 for 20-node problems, 40 for 50-node problems, 50 for 100-node problems, and up to 200
for 2000-node problems. As the problem size increases, the baseline capacity is scaled accordingly

6
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to ensure an appropriate level of difficulty. Customer demands are normalized by first generating
random integers between 1 and 10 and then dividing them by the baseline capacity, thereby trans-
forming demand constraints into continuous values within the [0, 1] range. For other VRP variants
(e.g., OVRP, VRPB), the generator extends the randomization logic of CVRP with problem-specific
constraints. For example, in the Vehicle Routing Problem with Backhauls (VRPB), 20% of cus-
tomer nodes are randomly selected as backhaul nodes, with their demand values set as negative to
distinguish them from linehaul deliveries. Additionally, the route length limit is uniformly set to 3.0
as a global constraint on vehicle travel distance.

5.1.2 BASELINE METHODS AND EVALUATION METRICS

We compare our proposed method with several baseline approaches: 1) MVMoE: Directly solv-
ing the full original VRP instance using the MVMoE solver. 2) OR-Tools: Solving the complete
original VRP instance using Google’s OR-Tools. 3) PAML+MVMoE: The original VRP instance
is decomposed using PAML and solved using MVMoE solver. 4) PAML+OR-Tools: The origi-
nal VRP instance is decomposed using PAML and solved using OR-Tools. The evaluation metrics
include solution quality (total route length, with smaller values being better) and computational effi-
ciency (solving time in seconds). We conduct experiments on both generated datasets and real-world
instances from CVRPLIB, with problem sizes ranging from 50 to 2000 nodes.

5.2 MAIN RESULTS
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Figure 4: Solving cost (smaller is better) and solving time (smaller is better) on CVRPs of different
sizes (100 to 1000-nodes) from CVRPLIB datasets using four different methods.

5.2.1 PERFORMANCE ON GENERATED DATA

We tested the solution results on five VRP variants (CVRP, OVRP, VRPB, VRPL, and VRPTW)
with problem sizes ranging from 50 to 2000. Our experimental results demonstrate that the PAML
method exhibits significant advantages in solving VRPs of varying scales, particularly when com-
bined with the MVMoE Solver: 1) For 400-node and smaller problems: PAML+MVMoE achieves
optimal performance, reducing route length by 3.40% compared to MVMoE Solver while maintain-
ing computation time at only 10% of OR-Tools. 2) For 500-node problems: Solution quality matches
OR-Tools while reducing route length by 8.67% compared to MVMoE Solver. 3) For 1000-node
problems: Route length reduced by 20.66% compared to MVMoE Solver, with computation time
under 1.58 seconds (92.23% faster than OR-Tools). 4) For 2000-node problems: Route length re-
duced by 48.71% compared to MVMoE Solver, with just 3.62 seconds computation time (91.20%
faster than OR-Tools).

Table 3 that presents detailed data for VRPs for all scales , and Figure 6 that shows the performance
of all methods on different VRP variants are included in Appendix D.2. The statistical analysis in
Figure 8 confirms the significance of these improvements, showing consistent performance gains
across problem scales with p ¡ 0.05 significance levels. Complete instance-level results and route
visualizations are available in Appendix D.3.
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5.2.2 PERFORMANCE ON REAL-WORLD CVRPS

To validate our method’s effectiveness in real-world scenarios with irregular customer distribu-
tions, we tested PAML on the CVRPLIB dataset. The results, shown in Figure 4, align with our
findings on generated data: 1) For medium-scale instances (200-400 nodes): PAML+MVMoE
achieves the shortest routing distances while maintaining solving times under 0.9 seconds, sig-
nificantly outperforming OR-Tools’ average time of 5.5 seconds. 2) For larger instances (100-
1000 nodes): PAML+MVMoE shows a 15.75% reduction in routing distance compared to MV-
MoE Solver (63261.76 vs 75091.50), with only a modest 6.43% increase compared to OR-Tools
(63261.76 vs 59438.02). Notably, the computational efficiency remains substantial, with average
solving time being merely 6.55% of OR-Tools’ (0.95s vs 14.50s).

Detailed results are provided in Appendix D.3. Table 4 provides detailed instance-level results,
Figure 7 illustrates the distribution of costs and computation times across methods, and Figure 8
further validates the statistical significance of these improvements across different problem scales.
Route visualizations are available in Appendix D.4.

5.3 ABLATION STUDIES
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Figure 5: Solving cost (left, smaller is better) and solving time (right, smaller is better) on VRPs of
different sizes (200 to 500-nodes) using all methods.

As shown in Figure 5, in order to assess the effectiveness of different components in our framework,
we conducted ablation studies focusing on the merging strategies. We compared three core ap-
proaches: 1) No Merging (PAML m1): Baseline approach solving the partitioner’s raw sub-routes
directly. 2) Fixed Number Merging (PAML m3): Merging a fixed quantity of sorted primitive
sub-routes. 3) Adaptive Merging (PAML adaptive): Merging based on a target node count.

Results for 1000-node VRPs when combined with MVMoE solver show: 1) MVMoE: Average
path length 79.69. 2) No Merging: Path length 80.48 (-0.98% improvement). 3) Fixed Subprob-
lem Number Merging: Path length 66.01 (17.09% improvement). 4) Adaptive Subproblem Size
Merging: Path length 63.23 (20.66% improvement). These results demonstrate that: 1) Merging is
essential for solution quality. 2) Fixed Subproblem Number Merging significantly improves over
no merging. 3) Adaptive Subproblem Size Merging consistently performs best across all problem
sizes. Detailed performance data is available in Appendix D.2.

5.4 ANALYSIS OF BEST SUBPROBLEM MERGE SIZE

Building on the ablation study results, we further analyzed the best target size parameter for Adaptive
Merging. While our solver model has a native training size of 50 nodes, experiments revealed that
uniformly decomposing large-scale VRPs into 50-node subproblems leads to global information
loss.
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Table 1: Best Subproblem Merge Size Information for Different VRP Variants and Problem Scales

Variant Problem Size Best SP Size Cost Avg SPs Avg Time

CVRP
200 100 23.22 2.00 0.27
500 125 41.96 4.00 0.64

1000 150 65.82 6.36 1.26
2000 300 128.95 6.00 2.58

OVRP
200 100 16.26 2.00 0.27
500 125 30.67 4.00 0.65

1000 150 51.40 6.04 1.27
2000 300 100.37 6.00 2.68

VRPB
200 100 18.44 2.00 0.29
500 125 34.07 4.04 0.68

1000 200 59.42 5.02 1.37
2000 300 119.76 6.30 2.78

VRPL
200 100 23.82 2.00 0.29
500 125 42.59 4.00 0.70

1000 150 67.35 6.24 1.37
2000 300 120.84 6.00 2.95

VRPTW
200 20 107.54 9.74 0.35
500 50 284.06 9.00 0.86

1000 50 572.59 18.00 1.72
2000 100 1184.47 17.18 3.57

As shown in Table 1, our systematic analysis shows that the best merging size exhibits a sublinear
relationship with the problem scale. For example, in CVRP with N=2,000, the best subproblem
merging target (Best SP Size, SP here means subproblem) is 300 (approximately 15% of the orig-
inal problem size). This finding balances the trade-off between retaining global information and
maintaining solver efficiency.

6 CONCLUSION

This paper introduces an innovative framework, named PAML, which employs a novel divide-and-
conquer strategy to efficiently solve large-scale, multi-variant Vehicle Routing Problems (VRPs).
The core innovation of this framework lies in the organic integration of two key technologies: an
intelligent, Mixture-of-Experts (MoE) based implicit partitioner trainable via end-to-end reinforce-
ment learning, and a dynamic subproblem merging mechanism based on polar angle clustering.
The partitioner dispenses with manually designed rules to adaptively generate high-quality division
schemes, while the merging mechanism intelligently regulates subproblem sizes, striking a delicate
balance between preserving global information and maintaining solver efficiency. This approach ef-
fectively overcomes the core challenges of computational complexity, generalization, and multi-task
optimization that plague existing methods for complex VRPs.

Comprehensive experimental results clearly demonstrate the superior performance and practical
value of the PAML framework, highlighted by three key advantages: 1) Real-time Computational
Efficiency: Compared to industry-standard optimizers like OR-Tools, PAML reduces computation
time to just one-tenth while maintaining high-quality solutions, showcasing its immense potential in
dynamic scenarios requiring rapid decision-making. 2) Strong Generalization to Large-Scale VRPs:
While the performance of the baseline MVMoE solver degrades significantly on instances with
thousands of nodes, the PAML framework exhibits robust generalization. It achieves up to a 48.71%
reduction in path cost compared to solving with MVMoE alone, proving its robustness as problem
scale increases. 3) Superior Multi-Task Optimization: Across various VRP variants, PAML consis-
tently delivers performance improvements. This is attributable to its MoE-based architecture, which
enables flexible adaptation to the unique constraints of different tasks, validating its effectiveness as
a universal VRP solving framework.

In summary, the PAML framework not only provides an efficient and scalable solution for large-
scale VRPs but, more importantly, establishes a new paradigm of synergistic design between neural
partitioning and expert models. This work offers valuable insights and reusable techniques for the
intelligent solving of other combinatorial optimization problems.
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