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ABSTRACT

Learning to autonomously assemble shapes is a crucial skill for many robotic
applications. Whereas the majority of existing part assembly methods focus on
correctly posing semantic parts to recreate a whole object, we interpret assembly
more literally: as mating geometric parts together to achieve a snug fit. By focusing
on shape alignment, rather than semantic cues, we can achieve across category
generalization and scaling. In this paper, we introduce a novel task, pairwise 3D
geometric shape assembly, and propose Neural Shape Mating (NSM) to tackle
this problem. Given point clouds of two object parts, NSM learns to reason about
their geometric structure and fit in order to predict a pair of 3D poses that tightly
mate them together. In addition, we couple the training of NSM with an implicit
shape reconstruction task, making NSM more robust to imperfect point cloud
observations. To train NSM, we present a self-supervised data collection pipeline
that generates pairwise shape assembly data with ground truth by randomly cutting
an object mesh into two parts, resulting in a dataset that consists of 19,226 shape
assembly pairs with numerous object meshes and diverse cut types. We train NSM
on the collected dataset and compare it with several point cloud registration methods
and one part assembly baseline approach. Extensive experimental results and
ablation studies under various settings demonstrate the effectiveness of the proposed
algorithm. Additional material available at: neural-shape-mating.github.io.

1 INTRODUCTION

The human-built world is filled with objects that are shaped to fit, snap, connect, or mate together.
Consider joining a broken figurine, or putting a pen in a cap, or inserting a plug into a socket are
all instances of geometric mating. To achieve object mating, humans rely on the ability to perceive
and reason about the fit between shapes. However, it is worth noting that while semantics of the
output may improve the solution, semantic understanding is not a necessacity to find geometric
solutions. This kind of geometric reasoning for pairwise object mating is foundational for 3D
reasoning and appears in many domains ranging from computer graphics (Li et al., 2012), animation,
3D design (Chen et al., 2015; Jacobson, 2017), and embodied interaction in robotics.

Many attempts to learn an algorithmic variant of this geometric reasoning have been attempted in ap-
plication specific domains: assembling a car or furniture (Lee et al., 2019), object assembly (Agrawala
et al., 2003), object packing (Wang & Hauser, 2019) and kitting (Zakka et al., 2020). Most of these
assembly algorithms rely on the semantic of each component to bring different parts together (Lee
et al., 2019). While promising results have been demonstrated, heavily relying on semantic infor-
mation (e.g., part segmentation), target shapes (Li et al., 2020) as guidance, and ground-truth part
pose annotation (Li et al., 2020; Huang et al., 2020) makes these methods application specific, hard
to scale, and difficult to generalize.

In this paper, we study the problem of 3D-assembly of unknown objects, where we focus on pairwise
shape mating without having semantic information or target shapes as guidance. As shown in Figure 1,
given a pair of shapes in the form of point clouds with random intial poses, we aim to find a suitable
mating configuration for them using geometric cues. The proposed task is more challenging yet
practical with potential applications in CAD and graphics for fracture reassembly (Zhang et al., 2015)
(e.g., reassembling fragments of a broken vase, where each fragment does not have a well defined
semantic meaning), robotic reassembly and object packing (Wang & Hauser, 2019; Goyal & Deng,
2020) (e.g., packing objects into a box, where the object arrangement requires reasoning about the fit
between adjacent objects).
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Figure 1: Pairwise 3D geometric shape assembly. Neural Shape Mating (NSM) takes a pair of point clouds of
the fractured shapes as input and predicts the assembled configuration as output. NSM learns to assemble shapes
with self-supervision and does not require semantic information or target shape as guidance during test time.

We formulate this task as a pose prediction problem and propose Neural Shape Mating (NSM), which
takes as input point cloud observations of the two shapes, reasons about their structures and the
fit, and predicts respective poses that bring them together using a transformer based architecture
to attend to assymetric correlations between local geometric cues. To account for imperfect point
cloud observations (e.g., noisy point clouds), we couple the training of NSM with an implicit shape
reconstruction task (Park et al., 2019b; Sitzmann et al., 2020). Furthermore, we also use an adversarial
shape prior evaluate the plausability of the generated shape. This joint learning scheme allows the
model to learn more robust features for reliable mating poses.

Furthermore, to train NSM, we present a self-supervised data collection pipeline that generates
pairwise shape assembly data with ground truth by randomly cutting an object mesh with different
cut types into two parts. We collect object meshes from the Thingi10K (Zhou & Jacobson, 2016) and
Google Scanned Objects (GoogleResearch, 2021) datasets and apply our data generation algorithm
to each object mesh. The resulting geometric shape assembly dataset covers a diverse set of cut
types applied to numerous object instances of three categories, combining a total of 19,226 shape
pairs suitable for evaluating the proposed task. We train NSM on the collected dataset in a self-
supervised fashion and compare our method with several point cloud registration algorithms and one
part assembly baseline approach. Extensive experimental results and ablation studies under various
settings demonstrate the effectiveness of the proposed algorithm.

Summary of contributions:

1. We introduce a novel task of pairwise 3D-assembly of unknown objects and propose a self-
supervised learning algorithm Neural Shape Mating which predicts mating configurations using
primarily geometric cues.

2. We collect a large-scale geometric shape assembly dataset for evaluating the proposed task. The
dataset and the data generation tools will be released to facilitate future research.

3. We benchmark the comparisons with several point cloud registration methods and one part
assembly baseline approach and provide a testbed that ensures reproducibility of the results.

4. Experimental results and analysis support our design choice and demonstrate the effectiveness
and robustness of our approach when presented with realistically noisy observations.

2 RELATED WORK

3D shape assembly. A distinct, but related, line of work investigates generative models that learn
to represent objects as concatenations of simple 3D shapes. Tulsiani et al. (2017) train per-class
models that generate objects by assembling volumetric primitives (cuboids). Khan et al. (2019) train
a single model that can generate cuboid primitives across all classes. Jones et al. (2020) model objects
with ShapeAssembly programs, learned by a VAE, which can be executed to generate 3D shapes as
concatenations of cuboids. These methods provide powerful abstractions – diverse objects can be
represented as different arrangements of a small set of shape primitives – and reveal correspondences
between objects by abstracting away details of local geometry. In contrast, we consider the problem
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of discovering plausible fits between shapes with complex geometry that do not correspond to any
semantic part or natural object decomposition. The validity of a fit relies on the alignment of detailed
local geometric features, which provide cues for assembly. The task that comes closest to our own
is part assembly - make a complete object from a set of parts. Li et al. (2020) learn to predict
translations and rotations for point cloud parts to assemble a target object specified by an image.
Huang et al. (2020) frame the part assembly problem as graph learning, inducing a relational prior,
and learn to assemble parts into complete objects by iterative message passing. Both methods use the
PartNet dataset (Mo et al., 2019), and thus the parts to assemble are always a reasonable semantic
decomposition of the target object. Shape is important in part assembly, but cues can also be taken
from part semantics directly, shortcutting the geometric cues. In contrast, we consider the problem of
learning to fit together pieces with no particular semantics and without a provided target.
Pose estimation. Existing pose estimation methods predict poses for known objects by aligning a
provided model with an observation (Besl & McKay, 1992; Zeng et al., 2017). Other learning based
approaches predict poses for novel objects as bounding box corners (Law et al., 2019) or semantic
keypoints (You et al., 2020; Wang et al., 2020) or mappings to a normalized coordinate space (Wang
et al., 2019a). Rather than estimating the current pose of an observed object, our problem requires
predicting a new pose that assembles the observed shapes into a whole object.
Learning shape priors. Our model includes an adversarial prior implemented by a discriminator
that learns to distinguish between ground-truth assembled shape pairs and the predicted assembly
results. Conditional generative adversarial networks (Goodfellow et al., 2014; Mirza & Osindero,
2014) have achieved impressive results on image generation tasks even when paired ground truth is
unavailable, as in unpaired image translation (Zhu et al., 2017), or when ground truth is available but
multiple plausible outputs exist, as in MUNIT (Huang et al., 2018). Even when the ground truth is
available and a unimodal correct output exists, adversarial losses lead to enhanced detail and more
realistic outputs, e.g., for super-resolution (Lucas et al., 2019). In our problem, we learn shape priors
with an adversarial loss that encourages our model to generate plausible assembly configurations.
Implicit shape reconstruction. A core problem in computer vision is reconstructing 3D shapes
from 2D observations. Rather than representing the reconstructed shapes as finite sets of points,
voxels, or triangles, a recent line of work aims to represent them as implicit functions parameterized
by neural networks. These encode shapes by their signed distance function (SDF) (Park et al., 2019b;
Sitzmann et al., 2020) or the indicator function (Mescheder et al., 2019), which are continuous,
differentiable and can be queried at arbitrary resolution. DeepSDF (Park et al., 2019b) learns a
generative model of SDFs for many shape classes with a feedforward neural network. Further
work (Genova et al., 2019; 2020) adds additional structure to further improve reconstruction accuracy
and memory efficiency. Importantly, for our purposes, the learned SDFs are able to capture fine-
grained geometric details that are necessary for accurately predicting shape fits. We follow a similar
approach to Karunratanakul et al. (2020) and Jiang et al. (2021) which take inspiration from implicit
reconstruction to improve performance on a pose prediction task (in their case grasping). Specifically,
as in Jiang et al. (2021), we include implicit reconstruction as an auxiliary task and show, through
ablation, that this improves performance on our main assembly task, suggesting significant synergies
between assembly and shape representations.
Point cloud registration. If we had access to additional information, our problem would reduce to
point cloud registration. Specifically, if we had a segmentation of the interface of each piece (the
subset of its surface that contacts the other piece in the assembled pose), computing the assembled
pose would reduce to aligning the paired interfaces. If, in addition, we were given correspondences
between these interfaces, alignment would become a well-characterized optimization problem solv-
able with the Procrustes method. Without correspondences, we are left with a registration problem.
Feature-free methods such as Iterative Closest Point (ICP) (Besl & McKay, 1992) approximate corre-
spondences simply as pairs of closest points. SparseICP (Bouaziz et al., 2013) improves robustness
to noise by distinguishing between inliers and outliers. Learning-based methods seek to approximate
correspondences in a learned feature space (Deng et al., 2018; Gojcic et al., 2019; Wang & Solomon,
2019). Different from the objectives of these registration approaches, our method is designed to
predict paired poses that bring two shapes together to form a whole object.

3 PROBLEM STATEMENT: PAIRWISE 3D GEOMETRIC SHAPE ASSEMBLY

We formulate the pairwise 3D geometric shape assembly task as a pose prediction problem. In this
task, we assume we are given the point cloud observations PA and PB of the two shapes SA and
SB , where PA = {pAi }Ni=1, pAi ∈ R3, PB = {pBj }Nj=1, pBj ∈ R3, and N denotes the number of
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Figure 2: Overview of Neural Shape Mating. Neural Shape Mating is composed of four main components:
a point cloud encoder E, a pose estimation module that consists of a Transformer network T and a regressor
network R, an implicit shape reconstruction module that learns signed distance functions (SDFs), and a
discriminator D for learning shape priors.

points in a point cloud. Shape SA and shape SB are the two parts of a whole object S. We aim
to learn a model that takes as input the two point clouds PA and PB and predicts an SE(3) pose
{(Rk, Tk) | Rk ∈ R3×3, Tk ∈ R3} for each point cloud Pk, where k ∈ {A,B}. The predicted SE(3)
poses will then be applied to transform each respective input point cloud. The union of the two
transformed point clouds

⋃
i∈{A,B}RiPi + Ti forms the shape assembly result.

4 METHOD: NEURAL SHAPE MATING

We describe Neural Shape Mating and the loss functions used to train our model in this section.

4.1 ALGORITHMIC OVERVIEW

Given two point clouds PA and PB , our goal is to learn a model that predicts SE(3) poses for the
input point clouds. We propose Neural Shape Mating, which comprises four components: 1) a point
cloud encoder, 2) a pose estimation network, 3) an implicit shape reconstruction network, and 4) an
adversarial shape prior module.

As shown in Figure 2, we first apply the point cloud encoder E to each input point cloud Pi to extract
the point feature fi for i ∈ {A,B}. Next, the point features are passed to the pose estimation network
for reasoning about cross-shape information and predicting SE(3) poses {Ri, Ti} for i ∈ {A,B},
and to the SDF network F for learning implicit shape reconstruction. The predicted SE(3) poses are
then applied to the respective input point cloud. The union of the two transformed point clouds forms
the assembly result. To learn plausible shape assembly results, we have a discriminator that takes as
input the predicted assembly result and the ground truth and distinguishes whether the input assembly
result looks visually realistic or not.
Point cloud encoder. There are several point cloud encoders such as PointNet (Qi et al., 2017a),
PointNet++ (Qi et al., 2017b), and DGCNN (Wang et al., 2019b) that are applicable for learning point
feature embeddings. In this work, we adopt DGCNN as our point cloud encoder E, since DGCNN
jointly considers local and global information during feature extraction.
Rotation representation. We follow prior work (Li et al., 2020) and use quaternion to represent
rotations.

The details of the pose estimation network, the adversarial shape prior module, and the implicit shape
reconstruction network are described in the following subsections.

4.2 POSE ESTIMATION FOR SHAPE ASSEMBLY

To predict an SE(3) pose for each point cloud, we have a feature correlation module T that captures
cross-shape information and a pose regressor R for pose prediction.

Given the encoded point features fA and fB as input, the feature correlation module T takes as
input the two point features fA and fB and computes features hA = {hA

i }Ni=1 and hB = {hB
j }Nj=1

as output, where hA
i ∈ Rd and hB

j ∈ Rd. To realize the feature correlation module, we select the
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Transformer network (Vaswani et al., 2017), as it allows the model to learn asymmetric cross-shape
information.

To predict SE(3) poses, we aggregate the feature hi to form the feature Hi ∈ Rd for i ∈ {A,B} and
aggregate the feature fi to form the feature Fi ∈ Rd for i ∈ {A,B}. The features Fi and Hi are then
concatenated and passed to the pose regressor R to predict as SE(3) pose {Ri, Ti} for i ∈ {A,B}.
In this work, we use quaternion to represent rotation.

To guide the learning of the pose estimation network, we have a pose loss Lpose, which is defined as

Lpose =
∑

i∈{A,B}

‖R>i RGT
i − I‖+ ‖Ti − TGT

i ‖, (1)

where RGT
i and TGT

i denote the ground-truth rotation and translation, respectively.

4.3 ADVERSARIAL LEARNING OF SHAPE PRIORS

Since the task we consider is multimodal in nature (i.e., two shapes can be assembled in many ways),
we propose to learn the global shape prior to further constrain the prediction space. We exploit the
idea that when the two point clouds are assembled using the predicted poses, the resulting assembly
result should look visually realistic like an object. Specifically, we cast this as an adversarial learning
problem and introduce a shape assembly discriminator D that takes as input the assembled point cloud
P pred =

⋃
i∈{A,B}RiPi+Ti and the ground-truth assembled one PGT =

⋃
i∈{A,B}R

GT
i Pi+TGT

i

and distinguishes whether the input assembly results are visually realistic or not.

To achieve this, we have an adversarial loss Ladv, which is defined as

Ladv = E[‖D(P pred)‖] + E[‖D(PGT)− 1‖]. (2)

Having the adversarial loss allows our model to predict SE(3) poses that result in visually realistic
assembly results.

4.4 IMPLICIT SHAPE RECONSTRUCTION

To account for the noise in point cloud sampling (i.e., same objects can be described by different point
clouds, and the point cloud capturing can be imperfect), we couple the learning of our model with a
shape reconstruction network. This is motivated by recent advances in implicit shape modeling (Park
et al., 2019a; Mescheder et al., 2019), where learning signed distance functions (SDFs) allows the
model to learn more robust shape representations. Specifically, we have an SDF network F that takes
as input the point features fA and fB , respectively, and a point p ∈ R3 in the 3D space, and predicts
the signed distance between point p and each respective shape SA and SB .

To train the SDF decoder, we have an SDF regression loss, which is defined as

LSDF =
∑

i∈{A,B}

‖SDF(p, Si)− SDFGT(p, Si)‖, (3)

where SDF(p, Si) and SDFGT(p, Si) denote the predicted and ground-truth SDF values between the
point p and the shape Si, respectively.

5 THE GEOMETRIC SHAPE ASSEMBLY DATASET FOR SELF-SUPERVISION

To train our model, we present a self-supervised learning pipeline that generates pairwise 3D
geometric shape assembly data with ground truth by randomly cutting an object mesh into two parts.
Mesh cutting. We normalize each object mesh by the longest bounding box length such that the
object mesh has a maximum bounding box length of 1 and the aspect ratio remains the same. To cut
the object, we use the mesh boolean functions provided by the libigl C++ library (Jacobson et al.,
2018). We construct a height field that will be used to intersect the object mesh for mesh cutting. The
height field can be parameterized by different functions. In our work, we define five different types
of functions, including a planar function, a sine function, a parabolic function, a square function,
and a pulse function. Each of these functions will result in a type of cut. We generate two types of
shapes when performing cutting: the solid shape and the shell shape. Figure 3 presents example data
generated by applying different types of cuts. More visual examples of our datasets are presented in
Figure 6, Figure 7, and Figure 8.
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Object Meshes Different Cut Types Random Pose Configurations
Solid ShapeShell Shape

Figure 3: Dataset overview. (Left) Our dataset is composed of object meshes from three categories. (Middle)
We define five different types of cut functions. Each object mesh can then be cut with many different ways using
varying parametric cut functions. (Right) Finally, each pair of parts can be randomized with an initial SE(3)
pose. In our dataset, we also generate solid and hollow/shell variations of each shape, when cutting a mesh to
create different mating interfaces for the same problem instance.

Table 1: Dataset statistics. We summarize the number of shape pairs of the Geometric Shape Assembly dataset.
Our dataset contains a large number shape pairs, covering a diverse combination of different shape types, object
categories, and cut types.

Category Number of Solid shape pairs Shell shape pairs

objects Plane Parabola Sine Square Pulse All Plane Parabola Sine Square Pulse All

Bag 28 50 50 50 42 40 232 190 190 190 190 190 950
Box 191 1,390 1,390 1,410 1,380 1,380 6,950 1,360 1,360 1,380 1,350 1,344 6,794
Jar 106 440 440 460 430 430 2,200 420 420 440 410 410 2,100
All 325 1,880 1,880 1,920 1,852 1,850 9,382 1,970 1,970 2,010 1,950 1,944 9,844

SDF ground truths. We uniformly sample 1,024 points on each of the resulting object part meshes.
We use the Fast Winding Numbers method (Barill et al., 2018) for computing ground-truth SDF
values. For each object part mesh, we sample 40,000 points that are close to the object surface for
learning the SDF network.

Pose transformation. Each point cloud is mean centered (i.e., the centroid of the point cloud is the
origin). During training, we randomly sample two rotations on the fly and apply them to transform
the poses of the two input point clouds, respectively.

Statistics. We use 3 shape categories: bag, box, and jar in initial dataset version used in this
paper due to computational reasons, however noting that the data generation procedure extends naively
to other shape categories, and NSM is category-agnostic both in training and testing. We collect object
meshes from the Thingi10K (Zhou & Jacobson, 2016) and Google Scanned Objects (GoogleResearch,
2021) datasets. The dataset statistics are summarized in Table 1.

6 EXPERIMENTAL RESULTS

We perform evaluations and analysis of NSM to answer the following questions:

1. How well does NSM perform when compared to point cloud registration methods and the graph-
network based assembly baseline approaches?

2. Can NSM generalize to unseen object categories and unseen cut types, without fine-tuning?

3. Does the performance deteriorate on more realistic, noisy point clouds?

4. How much do the adversarial, reconstruction and pose loss contribute to final performance?
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Table 2: Experimental results of geometric shape assembly. R and T denote Rotation and Translation,
respectively. Lower is better on all metrics. It is worth noting that many methods can get reasonably close in
position, but be completely off in orientation as demonstrated by the RMSE error in rotation. NSM outperforms
the best baseline in predicting the correct orientation by upto 5×.

Method MSE (R) RMSE (R) MAE (R) MSE (T ) RMSE (T ) MAE (T )

Solid Objects (×10−3)

ICP (point-to-point) (Besl & McKay, 1992) 9565.40 97.80 84.90 238.97 488.85 379.97
ICP (point-to-plane) (Besl & McKay, 1992) 9095.82 95.37 79.06 84.32 290.38 130.98
Sparse ICP (point-to-point) (Bouaziz et al., 2013) 6234.84 78.96 71.04 197.42 444.32 247.06
Sparse ICP (point-to-plane) (Bouaziz et al., 2013) 4164.25 64.53 59.13 186.40 431.74 227.86
DCP (Wang & Solomon, 2019) 8593.54 92.70 73.77 540.23 735.01 574.70
GNN Assembly (Li et al., 2020) 947.84 30.79 25.20 10.24 101.19 76.70
Neural Shape Mating (NSM) 49.45 7.03 5.63 9.17 98.42 73.20

Shell/Hollow Objects

ICP (point-to-point) (Besl & McKay, 1992) 11 186.87 105.77 102.90 823.32 907.37 840.77
ICP (point-to-plane) (Besl & McKay, 1992) 9424.92 97.08 89.03 722.61 850.07 813.37
Sparse ICP (point-to-point) (Bouaziz et al., 2013) 7533.89 86.80 83.14 516.67 718.80 660.59
Sparse ICP (point-to-plane) (Bouaziz et al., 2013) 7108.51 84.31 80.44 607.79 779.69 699.81
DCP (Wang & Solomon, 2019) 9400.10 96.95 87.07 635.37 778.06 605.33
GNN Assembly (Li et al., 2020) 787.53 28.06 23.02 14.81 121.69 94.91
Neural Shape Mating (NSM) 96.39 9.82 8.77 15.62 124.98 97.63

Input Ground truth ICP Sparse ICP DCP PartAssembly NSM

Figure 4: Visual results on pairwise 3D geometric shape assembly.

6.1 EXPERIMENTAL SETUP

Evaluation metrics. We follow the evaluation scheme from DCP (Wang & Solomon, 2019). We
compute the mean squared error (MSE), root mean squared error (RMSE), and mean absolute error
(MAE) between the predicted rotation and translation values and the ground truth values.

Baselines. We compare our model with several point cloud registration methods: ICP (Besl &
McKay, 1992), Sparse ICP (Bouaziz et al., 2013) and DCP (Wang & Solomon, 2019) as well as GNN
Assembly, a graph-based part assembly approach adapted from Li et al. (2020). The three registration
methods are all correspondence-based, that is, they approximate correspondences between point
clouds then find poses that minimize an energy based on those correspondences. ICP estimates
correspondences as closest points and proceeds to iterate between updating poses (from the latest
correspondences) and updating correspondences (from the latest poses). Since ICP weighs all
correspondences equally, it can be thrown off by a few bad points. Sparse ICP improves robustness
to noise by downweighting outliers. We include two variants of the ICP methods, one computing
distances point-to-point and the other point-to-plane. DCP is a deep learning-based method which
learns to compute correspondences from which a final pose is generated with SVD. GNN Assembly
is another deep-learning-based method, but predicts rotations and translations with a message passing
algorithm without correspondences (more details on both in Section 2). In each experiment, DCP,
GNN Assembly and Neural Shape Mating (Ours) are trained on the same ground truth pose data.

Implementation details. We implement our model using PyTorch (Paszke et al., 2019). We use
the ADAM (Kingma & Ba, 2014) optimizer for training. The learning rate is set to 1× 10−3. The
batch size is set to 4. We train our model on two NVIDIA P100 GPUs with 12GB memory each for
100 epochs. We use the Open3D implementation for the ICP method. The implementations of Sparse
ICP and DCP are from their official GitHub repository. We use the codebase from Li et al. (2020) for
GNN Assembly and remove the part segmentation network branch. We evaluate all methods on both
the solid shape and shell shape assembly settings.

6.2 PERFORMANCE EVALUATION AND COMPARISONS ON 3D GEOMETRIC SHAPE ASSEMBLY

E1. Comparison to existing approaches

We compare the performance of our NSM method with existing approaches on pairwise 3D geometric
shape assembly. In this evaluation, we use 80% of the shape pairs for training, 10% for validation
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Table 3: Generalization: Unseen categories geometric shape assembly. The training set contains shape pairs
from the bag and box categories. The test set contains shape pairs from the jar category. Results reported are on
solid objects. Results on shell/hollow objects are available in the appendix (Table 6).

Method MSE (R) RMSE (R) MAE (R) MSE (T ) RMSE (T ) MAE (T )

Solid Objects (×10−3)

ICP (point-to-point) (Besl & McKay, 1992) 16 378.88 127.98 113.78 598.88 773.87 724.10
ICP (point-to-plane) (Besl & McKay, 1992) 13 140.04 114.63 109.71 702.56 838.19 774.47
Sparse ICP (point-to-point) (Bouaziz et al., 2013) 9145.48 95.63 90.45 697.70 853.29 741.78
Sparse ICP (point-to-plane) (Bouaziz et al., 2013) 5326.96 72.99 68.14 578.83 760.80 714.43
DCP (Wang & Solomon, 2019) 19 692.49 140.33 106.10 612.43 782.58 615.04
GNN Assembly (Li et al., 2020) 1060.15 32.56 29.98 8.59 92.67 72.18
Neural Shape Mating (NSM) 140.82 11.87 10.33 9.41 97.02 75.70

Table 4: Generalization: Unseen cut types geometric shape assembly. The training set contains the planar,
sine, square and pulse cut types. The test set contains the parabolic cut type. Results reported are on solid objects.
Results on shell/hollow objects are available in the appendix (Table 7).

Method MSE (R) RMSE (R) MAE (R) MSE (T ) RMSE (T ) MAE (T )

Solid Objects (×10−3)

ICP (point-to-point) (Besl & McKay, 1992) 7436.99 86.24 80.09 441.31 664.31 570.90
ICP (point-to-plane) (Besl & McKay, 1992) 6171.52 78.56 72.30 401.14 633.43 583.41
Sparse ICP (point-to-point) (Bouaziz et al., 2013) 7053.14 83.98 77.04 704.81 839.53 679.91
Sparse ICP (point-to-plane) (Bouaziz et al., 2013) 3231.01 56.84 49.08 231.71 481.36 418.59
DCP (Wang & Solomon, 2019) 8538.16 92.40 73.51 544.28 737.75 576.42
GNN Assembly (Li et al., 2020) 1059.18 32.55 27.08 13.63 116.75 79.55
Neural Shape Mating (NSM) 135.82 11.65 10.21 13.41 115.82 79.63

and 10% for testing (metrics are reported on this holdout set). Table 2 present results on both solid
and shell shapes. Figure 4 presents a visual comparison between methods.

Quantiatively, results in both settings follow a similar pattern. NSM achieves the best rotation MSE
by an order of magnitude. For translation prediction, NSM and GNN Assembly both achieve strong
results, several orders of magnitude better the other methods.
Point-cloud registration methods. NSM outperforms registration methods by a large margin on
all metrics. This may be surprising as shape assembly and point cloud registration are similar
problems. In fact, shape assembly reduces to point cloud alignment given an interface segmentation.
Despite this, these results suggest that existing point cloud registration methods are insufficient for
the assembly task. In our qualitative results, we can see registration methods often attempt to overlay
pieces rather than assemble them and this matches our hypothesis that the poor performance of
registration methods is due to their correspondence assumptions. In point cloud registration, it is
assumed that the inputs correspond usually to a rigid transformation and some observation noise.
Even with outlier handling, they are unable to leave the non-interface portion of the surface out of
correspondence in order to precisely align the interface portions. More surprisingly, this may be true
even for learning-based methods like DCP, where the interpolation of correspondences may force
consideration of non-interface points. This is not a flaw in these methods, but highlights that shape
assembly is a distinct problem from registration, requiring more specialized method design.
Part Assembly. NSM outperforms GNN Assembly (Li et al., 2020) on rotation prediction and
performs similarly on translation prediction. The GNN Assembly architecture is designed for the
part assembly task where semantic cues are available and fine-grained surface details are not as
important for alignment. We hypothesize that our adversarial loss and the transformer architecture
are better-suited to the shape assembly task which relies on these details. These results support our
conviction that the shape assembly problem is distinct from point cloud registration and part assembly,
and that progress will require further investigation into the assembly task specifically.

E2. Generalization to unseen categories and cut types
Unseen categories. To test the generalization across categories, we train on the box and bag
categories and evaluate on the jar category. (See Table 1 for category details.) Table 3 presents
results on solid shapes and results on shell shapes are available in the appendix (Table 6). Notably,
NSM is category agnostic, and relies mainly on aligning surface geometry details than class-specific
semantic cues, we expected strong generalization. Compared to in-category testing, while the
performance degrades slightly for both solid shape and shell shapes, the overall trends remain similar.
Unseen cut types. To test the generalization across different cut types, we test on parabolic cuts
and train on the remaining 4 cut types. Table 4 presents results on solid shapes and the results on
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Input Ground truth ICP Sparse ICP DCP PartAssembly NSM

Figure 5: Visual results on noisy point cloud pairwise 3D geometric shape assembly.
Table 5: Ablation study on Neural Shape Mating model design choices. Testing performance with each loss
removed. The training and test sets remain the same as in the main experiment (as presented in Table 2).

Method MSE (R) RMSE (R) MAE (R) MSE (T ) RMSE (T ) MAE (T )

Solid Objects (×10−3)

NSM 49.45 7.03 5.63 9.17 98.42 73.20
NSM w/o Ladv 202.52 14.23 12.08 10.00 100.02 99.88
NSM w/o LSDF 137.03 11.71 10.78 11.43 106.92 100.04
NSM w/o Lpose 10 678.33 103.34 97.46 894.33 945.69 852.27

Shell/Hollow Objects

NSM 96.39 9.82 8.78 15.62 124.98 97.63
NSM w/o Ladv 154.93 12.45 11.03 20.78 144.16 129.08
NSM w/o LSDF 176.60 13.29 11.44 18.33 135.4 109.77
NSM w/o Lpose 6349.38 79.68 71.44 749.55 865.77 810.03

shell shapes are available in the appendix (Table 7). See Table 1 for cut type details. As with unseen
categories, the performance degrades somewhat for solid shape assembly and only slightly for shell
shape assembly. Otherwise the pattern of results remains similar.

E3. Evaluation on noisy point clouds

Real-world point-cloud data, e.g., captured by depth cameras, contains measurement error that the
point clouds in our training set do not. For our framework to be applicable to real world problems,
it must be robust to noise in the point cloud observations. To test robustness to noise, we train and
test the model on a noise-augmented version of our dataset. Gaussian noise with mean 0.0 and
standard deviation 0.05 is added to each point. While the performance of all methods, including ours,
does decline, NSM is still able to predict reasonable assembled poses as can be seen in Figure 5.
Full metrics on solid and shell shapes are available in the appendix (Table 8). The performance of
correspondence-based methods (ICP, Sparse ICP, and even learning-based DCP) all show large drops
in performance even when ground truth normals are provided.

E4. Ablation Study: Contribution of loss functions

To evaluate our design choices, we conduct an ablation study by removing a loss function at a time.
Table 5 presents the results of the solid shape and the shell shape assembly settings, respectively.
The training and test sets remain the same as in the main experiment (as presented in Table 2).
Performance declines significantly without the adversarial loss, confirming our hypothesis that the
adversarial loss prior can serve as a pose refinement or regularizer and improve predictions even
when we have ground truth available. Performance also declines without the implicit reconstruction
loss, suggesting that there are useful synergies between shape assembly and geometry reconstruction.
Without the pose loss, the model does not learn to assemble at all, which suggests adversarial training
with implicit shape reconstruction alone is not sufficient.

7 CONCLUSIONS

This paper introduces Neural Shape Mating, a framework for learning pairwise reasoning about
geometric shapes and the possible fits between them. Quantitative results show NSM is better suited
to the geometric shape assembly task than point cloud registration or part assembly methods, and
qualitative analysis suggests that this is because of the correspondence assumptions relied on by
registration methods and the differing representational requirements of semantic part assembly (which,
unlike geometric shape assembly, does not rely on local geometric details). Since NSM learns to
align geometric features, rather than semantic ones, it is able to generalize across categories and
across surface cut types. An ablation study suggests that the adversarial loss significantly improves
performance (even though ground truth is available) and the performance benefits of an auxiliary
implicit representation task suggest synergies between shape reconstruction and assembly. We hope
that this paper can convincingly establish geometric shape assembly as a meaningful task, distinct
from semantic part assembly, and that releasing our dataset and the details of our baseline will allow
the community to form around this important problem. Natural extensions of NSM would go beyond
pairwise assembly to consider the problem of assembling n-parts.
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REPRODUCIBILITY

The source code and the dataset will be made publicly available upon paper acceptance. We document
all details of the implementation and evaluation setting in section 6.1 and describe all necessary
components of our loss in the main text. We use the open source implementations of baselines for
ICP, Sparse ICP, and DCP for comparative evaluation.
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A APPENDIX: NETWORK ARCHITECTURES OF NSM

Point cloud encoder. We adopt DGCNN (Wang et al., 2019b) as our point cloud encoder.

Transformer network. Our Transformer network consists of an encoder, a decoder, and a 4-head
attention module. Both the encoder and the decoder consist of two fully connected layers.

Regressor. Our regressor consists of two fully connected layers.

Discriminator. We adopt DGCNN (Wang et al., 2019b) as our discriminator.

SDF network. Our SDF network consists of four fully connected layers.

B APPENDIX: ADDITIONAL RESULTS

Table 6: Generalization: Unseen categories geometric shape assembly. The training set contains shape pairs
from the bag and box categories. The test set contains shape pairs from the jar category.

Method MSE (R) RMSE (R) MAE (R) MSE (T ) RMSE (T ) MAE (T )

Solid Objects (×10−3)

ICP (point-to-point) (Besl & McKay, 1992) 16 378.88 127.98 113.78 598.88 773.87 724.10
ICP (point-to-plane) (Besl & McKay, 1992) 13 140.04 114.63 109.71 702.56 838.19 774.47
Sparse ICP (point-to-point) (Bouaziz et al., 2013) 9145.48 95.63 90.45 697.70 853.29 741.78
Sparse ICP (point-to-plane) (Bouaziz et al., 2013) 5326.96 72.99 68.14 578.83 760.80 714.43
DCP (Wang & Solomon, 2019) 19 692.49 140.33 106.10 612.43 782.58 615.04
GNN Assembly (Li et al., 2020) 1060.15 32.56 29.98 8.59 92.67 72.18
Neural Shape Mating (NSM) 140.82 11.87 10.33 9.41 97.02 75.70

Shell/Hollow Objects

ICP (point-to-point) (Besl & McKay, 1992) 12 915.19 113.64 107.11 710.02 842.63 759.93
ICP (point-to-plane) (Besl & McKay, 1992) 7280.53 85.33 81.04 698.83 835.96 749.98
Sparse ICP (point-to-point) (Bouaziz et al., 2013) 5680.34 75.37 68.07 491.83 646.78 587.09
Sparse ICP (point-to-plane) (Bouaziz et al., 2013) 4656.29 68.24 62.09 410.08 640.37 557.90
DCP (Wang & Solomon, 2019) 8706.93 93.31 74.61 611.24 781.82 616.52
GNN Assembly (Li et al., 2020) 898.80 29.98 22.32 13.14 114.64 88.22
Neural Shape Mating (NSM) 104.07 11.72 10.20 13.49 116.17 87.00

Table 7: Generalization: Unseen cut types geometric shape assembly. The training set contains the planar,
sine, square and pulse cut types. The test set contains the parabolic cut type.

Method MSE (R) RMSE (R) MAE (R) MSE (T ) RMSE (T ) MAE (T )

Solid Objects (×10−3)

ICP (point-to-point) (Besl & McKay, 1992) 7436.99 86.24 80.09 441.31 664.31 570.90
ICP (point-to-plane) (Besl & McKay, 1992) 6171.52 78.56 72.30 401.14 633.43 583.41
Sparse ICP (point-to-point) (Bouaziz et al., 2013) 7053.14 83.98 77.04 704.81 839.53 679.91
Sparse ICP (point-to-plane) (Bouaziz et al., 2013) 3231.01 56.84 49.08 231.71 481.36 418.59
DCP (Wang & Solomon, 2019) 8538.16 92.40 73.51 544.28 737.75 576.42
GNN Assembly (Li et al., 2020) 1059.18 32.55 27.08 13.63 116.75 79.55
Neural Shape Mating (NSM) 135.82 11.65 10.21 13.41 115.82 79.63

Shell/Hollow Objects

ICP (point-to-point) (Besl & McKay, 1992) 3288.33 57.34 51.09 643.02 801.89 749.34
ICP (point-to-plane) (Besl & McKay, 1992) 2125.47 46.10 40.33 547.10 739.66 613.38
Sparse ICP (point-to-point) (Bouaziz et al., 2013) 2409.10 49.08 42.94 332.10 576.28 497.70
Sparse ICP (point-to-plane) (Bouaziz et al., 2013) 1688.88 41.10 36.55 279.84 529.00 447.07
DCP (Wang & Solomon, 2019) 8493.38 92.16 73.56 570.54 755.34 586.35
GNN Assembly (Li et al., 2020) 1771.99 42.09 31.02 15.72 125.40 89.71
Neural Shape Mating (NSM) 119.14 10.91 9.43 16.21 127.33 90.72

13



Under review as a conference paper at ICLR 2022

Table 8: Experimental results of noisy point clouds geometric shape assembly.

Method MSE (R) RMSE (R) MAE (R) MSE (T ) RMSE (T ) MAE (T )

Solid Objects (×10−3)

ICP (point-to-point) (Besl & McKay, 1992) 20 349.02 142.65 134.08 894.44 945.75 851.67
ICP (point-to-plane) (Besl & McKay, 1992) 15 400.81 124.10 117.98 780.34 883.37 820.14
Sparse ICP (point-to-point) (Bouaziz et al., 2013) 6780.86 82.35 74.91 653.35 808.30 749.91
Sparse ICP (point-to-plane) (Bouaziz et al., 2013) 4882.80 69.88 61.09 630.05 793.76 723.30
DCP (Wang & Solomon, 2019) 13 592.30 116.59 105.04 733.82 856.63 776.21
GNN Assembly (Li et al., 2020) 1386.37 37.23 33.41 157.83 396.66 318.09
Neural Shape Mating (NSM) 357.25 18.90 15.66 137.89 371.34 329.95

Shell/Hollow Objects

ICP (point-to-point) (Besl & McKay, 1992) 16 869.59 129.88 120.12 884.07 940.25 857.73
ICP (point-to-plane) (Besl & McKay, 1992) 10 519.58 102.56 92.34 744.91 863.08 783.99
Sparse ICP (point-to-point) (Bouaziz et al., 2013) 8293.38 91.07 84.34 673.38 820.60 743.37
Sparse ICP (point-to-plane) (Bouaziz et al., 2013) 7584.84 87.09 80.10 579.01 760.93 697.71
DCP (Wang & Solomon, 2019) 7068.27 84.07 79.44 490.88 700.63 623.38
GNN Assembly (Li et al., 2020) 1582.77 39.78 31.00 42.17 205.35 183.98
Neural Shape Mating (NSM) 263.52 16.23 14.62 27.04 164.45 147.69

C APPENDIX: ADDITIONAL VISUAL EXAMPLES OF THE DATASET

Figure 6, Figure 7 and Figure 8 present additional visual examples of the geometric shape assembly
dataset.
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Figure 6: Visual examples. We present more visual examples of the shape pairs in the bag category.
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Figure 7: Visual examples. We present more visual examples of the shape pairs in the box category.
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Figure 8: Visual examples. We present more visual examples of the shape pairs in the jar category.
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