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Abstract: This paper presents a state estimation framework that allows estimating the attitude,
full metric speed and the orthogonal metric distance of an IMU-camera system with respect to a
plane. The filter relies on optical flow- as well as gyroscope and accelerometer measurements. The
underlying assumption is that the observed visual feature lies on a static plane. The orientation
of the observed plane is not required to be known a-priori and is also estimated at run-time.
The estimation framework fuses visual and inertial measurements in an Extended Kalman
Filter (EKF). Experiments using a hand-held visual-inertial sensor successfully demonstrate
the performance of the filter. It is shown that the state estimate is converging correctly, even in
presence of substantial initial state errors. The minimal sensor suite, which is both light-weight
and low-cost, renders the framework an appealing choice for the use as a navigation system on
a wide range of robotic platforms, such as ground- or flying robots.
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1. INTRODUCTION

In recent years, a considerable body of work was presented
for position or velocity estimation of robots, in particular
unmanned aerial vehicles (UAV), in GPS-denied environ-
ments using vision sensors (? ),(2). Especially optical flow-
based approaches have received a lot of attention since
efficient real-time implementations are relatively straight
forward and can therefore be be run at high update rates
on light-weight, low-power micro-controllers. Additionally,
optical flow-based approaches are also able to handle
scenes with only little contrast (? ) - especially compared
to feature-based SLAM frameworks that require high-
contrast, salient features that can be tracked over longer
periods of time.

In (3), the authors use optical flow from a down-looking
camera to control a UAV in hovering and vertical landing.
They assume that the optical flow features lie on a horizon-
tal plane whose normal can be estimated with the UAVs
on-board IMU. Using this approach, they can compute the
ratio v

d between the translational velocity v in the camera
frame and orthogonal distance to the plane d. To resolve
this ambiguity and relating the estimation to metric units,
the authors of (? ) employ an ultrasound range sensor to
measure the distance d to the plane. In (4), the authors
estimate not only the ratio v

d , but also the normal vec-
tor of the plane using optical flow by incorporating the
continuous homography constraint.

In contrast to these approaches ((4)), in (1), the imple-
mentation of a Unscented Kalman Filter (UKF)-based
observer to estimate both the full metric velocity and dis-

? This work has been supported by the European Commission’s Sev-
enth Framework Programme (FP7) under grant agreements n.285417
(ICARUS), n.600958 (SHERPA) and n.266470 (myCopter).

Fig. 1. The sensor hardware used in the experiments:
Synchronized data from the global shutter camera and
the IMU is streamed to the onboard Intel Atom as well
as to external devices via GigE/USB3. The presented
experiments used only the data from one camera only.

tance to the plane as well as its normal vector is presented.
The estimator makes no assumption on the orientation of
the plane and does not rely on any distance or bearing
sensors. Instead, only optical flow and inertial sensors
are used as measurement input to the UKF. Using this
setup, it was shown in simulation that the filter is able not
only estimate the normal vector of the plane, but the full
attitude of the IMU-camera system with respect to the
plane.

In this paper, we describe the design and implementation
of a real-time Extended Kalman Filter (EKF), extending
the design of the UKF in (1). While the results in (1) were
purely simulation based, we describe experimental results
that were obtained by implementing this algorithm in a
visual-inertial sensor setup using a highly efficient c++
implementation. We are able to show the performance of
the filter in terms of robustness to outliers in the data-
association in the optical-flow tracker as well as state
initialization errors.



The structure of the paper is as follows. In section II,
the setup of the system is described. Section III discusses
the required sensors and the corresponding stochastic
models. In section IV, the estimation scheme, based on
the Extended Kalman Filter is discussed. Evaluation of
the estimation scheme and the discussion of the algorithm
and its limitation are found in section V.

Concerning the mathematical notation, all vectors and
matrices are written in bold text. We use a skew symmetric
matrix notation for the vector cross product a × b =
bacb. The canonical basis of R3 is denoted {e1, e2, e3}.
To describe rotations, we use quaternions of rotation in
Hamilton notation.

2. SYSTEM SETUP

Fig. 2. Schematic representation of the system setup. The
position and orientation (red) of the body frame {B}
are described in the inertial coordinate frame {I}. The
target plane passes through the origin of {I} and is
described by its normal vector η. The camera-IMU
sensor-system in the body frame {B} is pointed in
direction of the target plane observing at least one
target point P. The projection of P on the spherical
image plane of the camera is p.

As depicted in Fig. 2 the system consists of an IMU
(gyroscope and accelerometer) rigidly fixed to a spherical
camera. The body frame is denoted {B} and is attached
to the IMU-camera system. Its origin coincides with the
accelerometer of the IMU. The orientation of the body
frame with respect to the inertial frame {I} is defined by
the unit quaternion qbi . Equivalently, the same orientation
mapping can also be expressed using the rotation matrix
C defined by the quaternion qbi . The position and transla-
tional velocity of the body frame, expressed in the inertial
frame, are denoted ri ∈ R3 and vi ∈ R3 respectively. The
body angular rates are denoted ω ∈ R3.

The camera is observing a target plane which contains
visual features. We define P ∈ R3 to be the coordinate
of a visual feature on the target plane expressed in the
camera frame. Its corresponding coordinates projected on
the spherical image plane of the camera are p ∈ S2. The
target plane is defined by its normal η ∈ S2 expressed in
the inertial frame.

3. MEASUREMENT MODELS

This section discusses the employed visual and inertial
sensors and their corresponding stochastic measurement
models largely following the derivations of (1).

3.1 Accelerometer Model

The accelerometer output am ∈ R3 in the body frame
is composed of the gravity vector g = g e3 ∈ R3 in the
inertial frame, the true linear accelerations a ∈ R3 in the
inertial frame, a slowly time-varying bias ba ∈ R3 in the
body frame and zero-mean, white, Gaussian noise na ∈ R3.
The bias ba is modeled as a random walk process governed
by zero-mean, white, Gaussian noise nba ∈ R3. We can
write:

a = CT (am − ba − na) + g (1)

ḃa = nba (2)

The noises na and nba are specified by the corresponding
covariance matrices Qa and Qba respectively.

3.2 Gyroscope Model

The gyroscopes on the IMU measures the angular velocity
ωm ∈ R3 in the body frame which is composed of the true
angular speed ω ∈ R3, slowly time-varying bias bω ∈ R3

in the body frame and zero-mean, white, Gaussian noise
nω ∈ R3. As in the case of accelerometers, each bias is
modeled as a random walk process. We can write:

ω =ωm − bω − nω (3)

ḃω =nbω (4)

As in the case of accelerometers, gyroscope noises are spec-
ified by their corresponding diagonal covariance matrices
Qω and Qbω .

3.3 Camera Model

Since we assume that the camera is intrinsically calibrated,
we can map camera pixel coordinates φ ∈ R2 to their
corresponding position P ∈ R3 in the camera frame up to
a scaling factor λ

λP = cam(φ,θC) (5)
using some generic camera model cam, and the intrinsic
camera calibration parameter vector θC . Since we know
P only up to scale, we simply normalize it to obtain the
feature vector p ∈ S2 on the spherical image plane with
focal length f = 1

p =
P

|P|
. (6)

From now on, we consider the camera to be a bearing
vector sensor, i.e. it directly outputs feature vectors p.

3.4 Optical Flow

Since the camera is fixed to the vehicle and the observed
target point is considered to be stationary, the feature vec-
tor p inherits the dynamics of the vehicle. The dynamics
of the feature vector p can be expressed as ((5)):

u = −bωcp− πp
vb
|P|

(7)

where vb is the translational velocity of the camera ex-
pressed in the body frame 1 and the projection operator
1 In the actual hardware implementation the camera origin does
not coincide with the body frame origin. There we replace vb by the
camera velocity vc using the relation vc = vb + bωcrcb where rcb is
the baseline from the body frame- to the camera frame origin.



is defined as πp = (I3 − ppT ). The vector u ∈ R3 is the
optical flow corresponding to the feature vector p and can
be extracted from two consecutive images using a wide
range of algorithms, such as Lucas-Kanade (6). We model

Fig. 3. Schematic representation of the optical flow compu-
tation as seen from the body frame {B}. The camera,
moving with velocity v, observes a visual feature P
whose projection on the spherical image plane is p.
The optical flow uk+1 is calculated from the pro-
jected features at tk and tk+1. Its covariance ellipse
is Qu,k+1.

the measured optical flow um as being corrupted by zero-
mean Gaussian noise nu ∈ R3 specified by the covariance
matrix Qu:

u = um − nu. (8)
Since the camera output is not continuous, the optical
flow vector uk+1 at time tk+1 is approximated by uk+1 ≈
pk+1−pk

tk+1−tk , as depicted in Fig. 3. Since the feature vectors

during both time steps are on the unit sphere, the noise
of the optical flow vector is constrained to the surface
of the sphere. Therefore, we approximate the covariance
matrix Qu,k+1 as a flat ellipsoid tangent to the unit sphere

in direction of the average feature vector (pk+pk+1)
2 , as

depicted in Fig. 3.

3.5 Target Plane Model

Since we assume that the target plane contains the origin
of the inertial frame, it is sufficient to describe the plane by
its normal vector η expressed in the inertial frame. Since
the normal vector is of unit length, it has two degrees of
freedom. We can therefore parametrize the normal vector
using two angles α and β as:

η(α, β) =

[
sin (α) cos (β)
− sin (β)

cos (α) cos (β)

]
(9)

For the sake of readability, we replace η(α, β) by η from
now on. We consider the angles to be slowly time-varying
and model them as a random walk processes

α̇= nα (10)

β̇ = nβ (11)

with noises specified by their corresponding covariance
terms Qα and Qβ ;

4. EXTENDED KALMAN FILTER

4.1 State Dynamics and State Vector Representation

Using the sensor models defined in (1) - (4) and the
dynamics of the plane (10) - (11), the state dynamics can
be written as (1):

ṙi = vi (12)

v̇i = CT (am − ba − na) + g (13)

q̇bi =
1

2
Ω(ωm − bω − nω)qbi (14)

ḃω = nbω (15)

ḃa = nba (16)

α̇= nα (17)

β̇ = nβ (18)

The matrix Ω(ω) ∈ R4×4 relates the body angular rates
to the corresponding quaternion rate by

Ω(ω) =

[
0 −ωT
ω −bωc

]
. (19)

As a minimal state vector representation, we define the
18-element state vector

x = [ri vi q
b
i bω ba α β]T . (20)

For brevity, we omit the discussion of the error dynamics
and the derivation of the process noise covariance matrix
and refer the reader to (1).

4.2 Measurement Equation

We now have to express the optical flow equation (7) using
the estimated state vector x̂. The body angular rates ω̂ can
be written as

ω̂ = ωm − b̂ω. (21)
The velocity in the body frame v̂b can be written as

v̂b = Ĉv̂i. (22)

The computation of |P̂| is a bit more involved. By inspec-
tion of Fig. 1, we express the orthogonal distance of the

camera to the target plane d̂ using the position of the
camera in the inertial frame r̂i and the normal vector of
the plane η̂ as

d̂ = |r̂Ti η̂| (23)
Equivalently, since we assume that the observed visual

feature is lying on the plane, we can express d̂ as a function
of the feature coordinate P̂ in the body frame and the
plane normal vector η̂ in the world frame

d̂ = |P̂T (Ĉη̂)| (24)

Combining equation (6), (23) and (24), we can eliminate

d̂ and solve for |P̂|:

|P̂| =

∣∣∣∣∣ r̂Ti η̂

pT (Ĉη̂)

∣∣∣∣∣ . (25)

Expanding equations (21), (22) and (25) into the optical
flow equation (7), we can predict the measured optical flow
as

û = −b(ωm − b̂ω)cp−

∣∣∣∣∣pT (Ĉη̂)

r̂Ti η̂

∣∣∣∣∣πp(Ĉv̂i) (26)

Similarly, one can find the following expression for the
measured optical flow:

um = −b(ωm−bω−nω)cp+
pT (Cqi

η)

rTi η
πp(Cqi

vi)+nu .

(27)



In the case of the UKF in (1), the Jacobians of the
measurement equation are not required to be derived due
to the use of Sigma points. Since the EKF uses a linearized
measurement error model to compute the Kalman gain,
the measurement equations have to be linearized w.r.t
state. To this end, we define the error of the measurement
prediction, or innovation, as

δu = um − û (28)

which can be linearized to

δu = Hδx, (29)

where H is the observation matrix. Using additive error
terms for all states except for the rotation where we
employ the relation δq = q ⊗ q̂ ≈ [1 1

2δθ
T ]T using the

small angle approximation, with θ denoting the minimal
representation of the error in attitude. This leads to Cqi ≈
(I3 − bδθc)Cq̂i .

We obtain the measurement Jacobians:

H = [Hr Hv Hθ Hbω Hba Hα Hβ ] , (30)

where

Hr = −pT (Cq̂i η̂)

r̂Ti η̂
πp(Cq̂i

v̂i)η̂
T , (31)

Hv =
pT (Cq̂i η̂)

r̂Ti η̂
πpCq̂i , (32)

Hθ =
1

r̂Ti η̂
[πp(Cq̂i

v̂i)p
T bCq̂i

η̂c+pT (Cq̂i
η̂)πpb(Cq̂i

v̂i)c],

(33)
Hbω = −bpc, (34)

Hba = O3×3 , (35)

Hα = −
r̂Ti (CT

q̂i
p)T

(r̂Ti η̂)2
∂bη̂c
∂β̂

πp(Cq̂i
v̂i) cos(β̂), (36)

Hβ =
r̂Ti (CT

q̂i
p)T

(r̂Ti η̂)2

[
0 s 0
−s 0 −c
0 c 0

]
πp(Cq̂i v̂i) (37)

using s = sin(α̂) and c = cos(α̂).

4.3 Measurement Covariance Matrix

In Eq. (27) the true de-rotated optical flow measurement
um is perturbed by the pixel noise of the optical flow
extraction nu and the gyroscope noise nω introduced
via the de-rotation term bωcp. According to (1), the
covariance matrix of the de-rotated optical flow is the
sum of the gyroscope covariance Qω and the covariance
of the optical flow algorithm Qu. If multiple features are
extracted, the measurement covariance matrix is build by
stacking the covariance matrices of the de-rotated optical
flow vectors diagonally as

R =

Qu,1 + Qω . . . O3×3

...
. . .

...
O3×3 . . . Qu,N + Qω

 . (38)

4.4 Outlier Rejection

Before using the optical flow measurements in the update
step of the EKF, we want to robustly detect and reject
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Fig. 4. The observability properties of the system are also
reflected in the experimental results: The error in the
estimation of observable modes of the system (roll and
pitch) are significantly smaller than the errors in the
unobservable mode (yaw). This result highlights the
usability of the proposed approach for UAS attitude
control.

outlier measurements. We follow the approach in (9)
and employ a Mahalanobis-distance test to detect outlier
measurements. We compute the Mahalanobis distance as

χ2 = (um − û)TS−1(um − û), (39)

The matrix S is the innovation covariance of the EKF
as defined by eq. (77) in (8) and can be seen as a
weighting term depending on the confidence in the current
prediction. Measurements that exceed a certain threshold
χ2
th are rejected and are not employed in the update step

of the estimation scheme.

As in (1), to further increase robustness, each measure-
ment is checked for its signal-to-noise ratio. Thus, each
vector with a signal-to-noise ratio below a certain thresh-
old Ψ2

th was rejected as well:

uTm(Qu + Qω)−1um < Ψ2
th. (40)

4.5 Analysis of Extended Kalman Filter

The observability analysis, as conducted in (1), reveals
that the position in direction of the normal of the plane is
fully observable while the position in direction along the
plane is not observable. The remaining states, namely the
velocity and attitude with respect to the plane as well
as the accelerometer and gyroscope biases in the body
frame are also observable. However, these states are only
observable under the condition that (1) the system is
excited by accelerations on at least two independent axis
and (2) there is at least one optical flow measurement with
its feature vector p not parallel to the velocity vector in
the body frame. The requirement for the acceleration can
be explained using an intuitive argument: If the system
observes a constant optical flow, the observer cannot
distinguish the ratio between velocity and distance.

However, while the attitude is observable with respect to
the plane frame, this does not imply that it is fully observ-



able in the inertial frame. In fact, the rotation around the
gravity vector in the inertial frame is not observable. This
is due to the fact that the system has no measurement of
an absolute, inertial yaw angle. Therefore, the yaw angle
of the system in the inertial frame is not observable. The
roll- and pitch angles of the attitude in the inertial frame
are observable since the gravity vector acts as reference. If
a virtual measurement of the yaw-angle is introduced as
an additional measurement to the analysis, as suggested
in (11), the unobservable manifold of the attitude in the
inertial frame becomes observable. However, the use of an
inertial heading reference vector (e.g. from a magnetome-
ter) is not necessary if no globally consistent yaw angle
is required. For example, in a wall-following scenario, the
observer provides the relative attitude with respect to the
wall, which is enough information for yaw-stabilization.

5. IMPLEMENTATION AND EVALUATION

5.1 Implementation Optical Flow Algorithm

Using a custom-made optical flow algorithm, salient fea-
tures are detected by applying a FAST corner detector
in each frame. For every detected corner, a cornerness
function is applied to determine whether the corner is
significant. Feature correspondences between consecutive
frames are found using a patch-based correlation method.
The candidate pixel with the patch with the lowest sum
of absolute differences (SAD) then is chosen to be the
position of the feature in the second frame. The output
of the optical flow algorithm is depicted in Fig.5.

Fig. 5. Output of the optical flow algorithm taking 1ms
per frame on a single core Intel i7-2720QM.

5.2 Implementation Extended Kalman Filter

The open-source implementation of the multi-sensor Ex-
tended Kalman Filter (12) was employed in this work. To
this end, the state vector was extended to include the
wall parameters. Additionally, the versatile structure of
the filter enabled the straight-forward implementation of
the measurement equations as well as their corresponding
Jacobians.

5.3 Results

To validate the implemented EKF and to evaluate its per-
formance, the filter was tested on data that was recorded
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Fig. 6. Position estimate
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Fig. 7. Velocity estimate.

using the ASL visual-inertial SLAM sensor, with syn-
chronized camera and IMU. The pose of the sensor was
additionally tracked using a Vicon motion tracking system
at 200 Hz. By fusing the pose estimate of a Vicon motion
capture system in a EKF (12) using the same IMU data
as used for the optical flow EKF, we obtain ground truth
data for position, velocity, attitude and the IMU biases.

The experiment was performed using a down looking cam-
era at an altitude of approximately 1.3 m and performing
a see-saw motion in x-direction parallel to the ground
plane. For this experiment, the estimation of the planes
normal vector was disabled. Instead it was assumed that
it is horizontal, i.e. its normal vector is parallel to gravity.

The figures 6, 7, 8 and 9 show the evolution of the
filter estimates of the position, velocity, attitude and
the acceleration biases. The gyroscope biases converge
similarly and are omitted for space reasons.

All the observable states of the EKF have converged
after 17 s and remain close to the ground truth. The
filter estimate of the z position, which corresponds to the
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Fig. 8. Attitude estimate.
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Fig. 9. Accelerometer bias estimate.
distance to the ground, follows the ground truth after
convergence with an RMS error of 4.6 cm. At an altitude
of around 1.3 m, this is a relative error of less than 4 %.
The positions along the x and y axes are not observable.
Nevertheless, the drift of the estimates is low. The RMS
errors of the velocity estimates in x, y and z directions
are 0.030, 0.016 and 0.006 m/s respectively. Apart from the
unobservable rotation around the direction of gravity the
filter is able to accurately (See 4) estimate the attitude of
the IMU which is crucial for UAS stabilisation.

A video of the experiment can be found at
http://youtu.be/ieFseoBF1OU.

6. CONCLUSIONS

In this paper, we presented an implementation of a state
estimation framework that allows estimating the attitude,
full metric velocity and the orthogonal metric distance of
an IMU-camera system w.r.t. a plane. The filter relies
on optical flow- as well as gyroscope and accelerometer
measurements and does not require any range sensors.
Experiments in simulation successfully demonstrate the
performance of the filter as well as highlight the relevance

of the conclusions given by the observability analysis. The
experimental results successfully show convergence of the
filter in presence of substantial initial state offsets and
sensor noises present during the flight of a UAV.

This generic estimation framework can be used as a vision-
aided navigation system in a wide range of applications, on
a variety of robotic platforms. Due to the minimal sensor
configuration, which is both light-weight and low-cost, this
framework is an appealing choice to be used on weight-
sensitive robotic platforms such as UAVs.
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