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Abstract
Multiwinner voting is the study of electing a fixed-
size committee given individual agents’ prefer-
ences over candidates. Most research in this field
has been limited to a static setting, with only one
election over a fixed set of candidates. However,
this approach overlooks the dynamic nature of
applications, where candidate sets are subject to
change. We extend the study of proportionality
in multiwinner voting to dynamic settings, allow-
ing candidates to join or leave the election and
demanding that each chosen committee satisfies
proportionality without differing too much from
the previously selected committee. We consider
approval preferences, ranked preferences, and the
proportional clustering setting. In these settings,
we either provide algorithms making few changes
or show that such algorithms cannot exist for var-
ious proportionality axioms. In particular, we
show that such algorithms cannot exist for ranked
preferences and provide amortized and exact al-
gorithms for several proportionality notions in the
other two settings.

1. Dynamic Committee Selection
Given diverse preferences of agents, a central subject of re-
search in artificial intelligence, collective decision-making,
and social choice theory is the task of choosing a subset
of possible candidate items that proportionally represents
the agents’ preferences. Applications include clustering
(Caragiannis et al., 2024; Kellerhals and Peters, 2024), fa-
cility location (Jung et al., 2020), query answering, and
top-k selection protocols (Behar and Cohen, 2022; Islam
et al., 2024), or democratic innovations like participatory
budgeting (Peters et al., 2021) or civic participation plat-
forms (Fish et al., 2024). Most of the previously mentioned
papers derive their models from the basic social choice task
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of multiwinner voting: n voters submit preferences over a
subset of candidates, from which k need to be selected. For
instance, in the classical centroid clustering problem, the
voters correspond to the points to be clustered, the candi-
dates are the possible cluster centers, k is the number of
cluster centers to be selected, and the preferences are de-
rived from the distances between the points and the cluster
centers.

In the vast majority of settings studied so far, multiwinner
voting is “one-shot”: voters and candidates are given, and
the task is to make one selection only. However, assuming
such a static setting might be too restrictive for real-world
applications (a concern raised, for instance, by Boehmer and
Niedermeier, 2021; Elkind et al., 2024). In election settings,
candidates might concede their seat and then need to be
replaced (Gallagher, 1996); in hiring settings, candidates
could apply for the job or decline offers at any time during a
hiring procedure (Brill et al., 2023); and in facility location
problems, new possible locations might open up.

As a possible application, consider the setting of civic partic-
ipation platforms (Halpern et al., 2023; Fish et al., 2024). A
website (such as https://pol.is, studied by Halpern
et al.) wants to curate a slate of representative new com-
ments on its homepage. In this setting, the comments corre-
spond to candidates, and the voters correspond to the users
of the website. The voters express which comments they
like, for instance, by up- or down-voting them. Such a set-
ting, however, is inherently “online”, as new comments get
posted, and old comments get removed when they become
out-of-date. Our work studies if it is possible to maintain
a slate of representative comments, while only making a
small amount of changes with each update.

We follow in the footsteps of recent work in the match-
ing (Matuschke et al., 2019; Bernstein et al., 2019), and
clustering (Bhattacharya et al., 2024; Łącki et al., 2024) lit-
erature and study dynamic multiwinner voting. In particular,
we study low recourse dynamic proportional multiwinner
voting and answer the following question: can we select
proportional committees such that after the candidate set
changes, we can restore proportionality by altering the orig-
inal committee slightly?

In a recent paper Chen, Hatschka, and Simola (2024) exam-
ined a highly related problem: given two different commit-
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tees, can we transform one of the committees into the other
by swapping candidates in and out of the committee. How-
ever, their study focuses only on committees elected by spe-
cific scoring rules in an approval-based setting, and provides
results exclusively limited to computational intractability
and fixed parameter tractability. Crucially, while some scor-
ing rules always select proportional committees, Chen et al.
(2024) only require that the in-between committees have
bounded score differences. However, simply bounding the
differences in scores does not guarantee that the committees
selected in-between are actually proportional. In contrast,
our work focuses on guaranteeing proportionality itself.

Our Results We study the dynamic preservation of pro-
portionality in three common settings, where preferences are
modeled via linear orders, approval ballots, and distances
in a metric space. We further distinguish between the three
classical dynamic frameworks where the candidate set can
iteratively grow, decrease, or both. For linear orders, we
show that the popular axiom of proportionality for solid
coalitions (PSC) (Dummett, 1984) can be maintained in
the incremental framework, but not in the decremental or
fully-dynamic framework, where the number of required
replacements after a single deletion may be arbitrarily large.
For approval ballots, we provide fully-dynamic algorithms
that satisfy the notions of PJR+ and O(log(k))-EJR+ (Brill
and Peters, 2023) while requiring, on average, two changes
per time-step. Additionally, we show that in the incremental
setting α-EJR+ can be satisfied for constant α > 1 with the
average number of swaps per time-step being constant and
independent of k. For proportional clustering, we obtain a
fully-dynamic algorithm that achieves a 4.24-proportional
fair outcome and a 5 approximation to the q-core (Kellerhals
and Peters, 2024; Ebadian and Micha, 2025). Surprisingly,
this meets the currently best known upper bound on the q-
core of non-dynamic algorithms. Hence, we achieve results
that are more positive than one might anticipate based on
Chen et al. (2024), especially in proportional clustering and
for the incremental setting.

Further Related Work Proportionality in the static mul-
tiwinner voting setting is well studied. In detail, we refer to
Lackner and Skowron (2023) for a recent book on approval-
based multiwinner voting and to the works of Aziz and Lee
(2020; 2021; 2022), Brill and Peters (2023), and Bardal et al.
(2025) for proportionality with ranked preferences. Further,
we refer to Chen et al. (2019) for the introduction of propor-
tional fairness in clustering; to (Micha and Shah, 2020; Li
et al., 2021; Kalayci et al., 2024) for follow-up work; and to
(Aziz et al., 2024; Kellerhals and Peters, 2024) for relating
it to multiwinner voting and the problem of individual fair
clustering (Jung et al., 2020; Mahabadi and Vakilian, 2020).

As for other online models of multiwinner voting, our work

is related to Do et al. (2022). In their approval-based setting,
candidates appear in an online manner and have to be irre-
vocably chosen or rejected at each time-step. The difference
is that in our model (i) the committee needs to satisfy the
proportionality notion at every step of the online process
and (ii) chosen candidates can be taken off the committee
or even off the feasible set again. Further, Brill et al. (2023)
consider a model in which they assume that the set of can-
didates is known in advance, but the actual availability of
the candidates is unclear and needs to be requested via an
invitation to the committee. Similarly to Do et al. (2022),
candidates are added irrevocably. Further, the preferences
over all candidates are known in advance. In a series of
works Deltl et al. (2023); Bredereck et al. (2022; 2020) con-
sidered the complexity of the sequential committee selection
problem. In their model, the rules select one committee per
time-step, while constantly satisfying requirements such as
optimizing egalitarian welfare or scores, subject to the com-
mittees not changing drastically over time. Most problems
studied in these works are computationally intractable and
thus the authors instead study the parameterized complexity
of several related problems.

2. Model and Notation
In this section, we first introduce a general static framework,
then expand it to be dynamic. Setting-specific definitions
are in the corresponding sections.

Static Framework Throughout the paper, we denote by
N = [n] the set of voters and by C∗ = {ci : i ∈ N} the set
of candidates. A preference profile P contains the voters’
preferences over the candidates in C. Further, when given
some C ⊆ C∗, we denote the restriction of P to C by P |C .
The exact form of P and P |C depends on the setting and we
provide according definitions in each corresponding section.
Roughly speaking,

(i) with ordinal preferences, each voter i ∈ N has a linear
order over C∗;

(ii) with proportional clustering, preferences are given via
distances in a pseudometric space (N ∪ C∗, d); and

(iii) with approval preferences, each voter i ∈ N has an
approval set Ai ⊆ C∗.

Given a target size k, a profile P , and a finite set C ⊆ C∗

of size at least k, the goal is to select a committee W ⊆ C
of size k. For each k ∈ N, C ⊆ C∗ with |C| ≥ k, and
preference profile P , the tuple I = (C,P |C , k) constitutes
an (approval/ordinal/clustering) instance. A static voting
rule f takes instances I as input and outputs a committee
f(C,P |C , k) ⊆ C of size k. Throughout the paper we write
that a group N ′ ⊆ N of voters is ℓ-large, if |N ′| ≥ ℓn

k .
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Intuitively, for an outcome to be proportional, every ℓ-large
group of voters should be represented with ℓ candidates in
the outcome.

Online Algorithms We introduce three settings for dy-
namic algorithms. In each of these, a sequence of instances
with varying candidate sets is given, and the algorithm is
only allowed to use information up to the current time-step.

First, in the incremental setting, we are given a set C0 of
m ≥ k candidates together with a stream of candidates
c1, c2, . . . , appearing over time. Accordingly, the voters’
preferences are revealed incrementally. For this purpose, let
t ∈ N denote a time-step and Ct = C0∪{c1, . . . , ct} be the
set of available candidates at this time-step. Formally, an
incremental algorithm f takes as input (Ct, P |Ct , k, t) and
outputs a committee f(Ct, P |Ct , k, t) ⊆ Ct of target size
k.

Next, in the decremental setting, we start with some set
of candidates C0 = {c1, . . . , cm}, m ≥ k, and the vot-
ers reveal their preferences over C0 immediately. How-
ever, the order in which candidates drop out of the elec-
tion is not known to f in advance. Formally, any sequence
(Ct)t=0,...,m−k, with |Ct| = m−t and Ct ⊂ Ct−1 is admis-
sible and a decremental algorithm f takes as input instances
of the form ((Cs)s≤t, P |C0

, k, t) and outputs a committee
f(Ct, P |C0

, k, t) ⊆ Ct of target size k.

In the fully-dynamic setting, the candidates can both join
and leave. As in the decremental setting, we start with
C0 = {c1, . . . , cm} for some m ≥ k. However, the only
requirement on the sequence (Ct)t≥0, apart from |Ct| ≥ k,
is that Ct+1 is obtained from Ct by adding or removing one
candidate for all t ∈ N. A fully-dynamic algorithm takes
as input ((Cs)s≤t, P |⋃

s≤t Cs
, k, t) and outputs a committee

f((Cs)s≤t, P |⋃
s≤t Cs

, k, t) ⊆ Ct of target size k.

Let a (fully-dynamic/decremental/incremental) algorithm
f be given. Once a sequence (Ct)t is fixed, the complete
input of f can be derived from the tuple (P, k, t), and for
brevity we hence write f(P, k, t) in all three frameworks.
Note that, despite this shorthand notation, f can only use
information that is available up to time-step t and has finite
input. Often, even P and k will be clear from the context,
in which case we abbreviate f(t).

Let X be any proportionality axiom. An algorithm f satis-
fies X if f(P, k, t) satisfies X for all k, t, and P . A (fully
dyamic/decremental/incremental) algorithm f is robust, if
for all (fully dyamic/decremental/incremental) instances we
have |f(P, k, t) ∩ f(P, k, t + 1)| ≥ k − 1. Finally, we
say that an algorithm makes amortized ℓ changes if after t
rounds

∑t−1
t′=0(k − |f(P, k, t′) ∩ f(P, k, t′ + 1)|) ≤ t · ℓ.

Throughout the paper, we will reference well-known rules
from the static multiwinner voting setting to illustrate that

the dynamic problems add a layer of depth that has yet to
be accounted for. Their definitions and all missing proofs
and examples are in the appendix.

3. Ordinal Preferences
In this section, we first introduce ordinal preferences. Then,
we show that the axiom of proportionality for solid coali-
tions can be satisfied robustly in the incremental setting, but
not in the decremental setting. We further give asymptotic
lower bounds for the number of replacements that are re-
quired to restore proportionality after a single deletion, and
present negative results for a notion called “rank justified
representation”.

An ordinal preference profile P = (≻i)i∈N is a collection
of complete, strict orders ≻i over C∗. We hence write ≻
instead of P in this section. We define P |C = ≻|C as
the restriction of each ≻i to C. Given a profile ≻ and
a set C ⊆ C∗, we say that a set of voters N ′ ⊆ N is
a solid coalition over a set S ⊆ C of candidates if for
any i ∈ N ′ it holds that S ≻i C \ S, i.e., S forms a
prefix of that voter’s preferences. A committee W satisfies
Proportionality for Solid Coalitions (PSC) (Dummett, 1984)
if for every ℓ-large group of voters N ′ that is a solid coalition
over some S ⊆ C, it holds that |W ∩ S| ≥ min(|S|, ℓ). If
W violates PSC due to an ℓ-large solid coalition N ′ over S
with |W ∩ S| < min(ℓ, |S|), we say that (N ′, S, ℓ) (or N ′)
is a witness for the violation. PSC is a thoroughly studied
axiom and, e.g., is satisfied by the popular and widely used
single transferable vote (STV). The eminent social choice
theorist Tideman argued for PSC as the reason for STV
being proportional: “It is the fact that STV satisfies PSC
that justifies describing STV as a system of proportional
representation.” (Tideman, 1995, page 28)

As an illustration of PSC consider the following example
with n = 4 voters and k = 3:

c1 ≻1 c2 ≻1 c3 ≻1 c4 ≻1 c5

c3 ≻2 c1 ≻2 c2 ≻2 c5 ≻2 c4

c4 ≻3 c1 ≻3 c5 ≻3 c3 ≻3 c2

c3 ≻4 c2 ≻4 c1 ≻4 c4 ≻4 c5.

Here, the committee W = {c2, c3, c4} satisfies PSC. How-
ever, W ′ = {c3, c4, c5} violates PSC due to the witness
({1, 2, 4}, {c1, c2, c3}, 2), as |W ′ ∩ {c1, c2, c3}| < 2.

As our first main result, we give a polynomial time incremen-
tal rule satisfying PSC. Our proof entails an even stronger
statement: for each committee W satisfying PSC and each
newly added candidate c that causes a violation, there is
always a single candidate c′ ∈W who can be swapped with
c to restore PSC. Therefore, it is possible to, for instance,
initialize the committee by running STV and then fix PSC
violations whenever they appear.
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Theorem 3.1. There exists a robust incremental algorithm
satisfying PSC.

Proof. Fix an ordinal profile ≻ and target size k. Let Ct =
C0 ∪ {c1, . . . , ct} denote the set of candidates that joined
until time-step t. We will denote by f(t) the committee
selected at this time. For t = 0, let f(t) be any committee
satisfying PSC.

For t > 0, let f(t − 1) satisfy PSC with regard to Ct−1.
We will show that f(t− 1) still satisfies PSC at time-step
t, or that by adding ct to f(t − 1) and removing another
candidate, PSC can be restored. To this end, we consider
the set W = f(t− 1) ∪ {ct} and the resulting committees
W−c = W \ {c} for c ∈W . Rephrased, our goal is to show
that W−c still satisfies PSC at time t for some c ∈W . Note
that c here can also be the newly added candidate ct.

To reach this goal, we conduct a counting argument: for
each c ∈W with W−c violating PSC, we “reserve” a unique
1
k -fraction of the voters. As there are k + 1 candidates in
W , there hence exists at least one candidate for which we
could not have reserved such a 1

k -fraction and thus no PSC
violation occurs when we remove this candidate from W .

To show this, we need the two following claims about poten-
tial PSC witnesses. Let c ∈ W be such that W−c violates
PSC at time t due to some witness (Nc, S, ℓ).

Claim 1: c ∈ S, i.e., all voters in Nc rank c above Ct \ S.

To prove the claim, we consider a case distinction:

Case 1 is that ct /∈ S, which implies that the voter set Nc is
a solid coalition for the candidate set S ⊆ Ct−1 in time-step
t− 1. Further, of course, Nc is ℓ-large independent of the
time-step. Since f(t − 1) satisfies PSC at time t − 1, we
have |f(t−1)∩S| ≥ min(|S|, ℓ). By choice of the witness
(Nc, S, ℓ), we have |W−c ∩ S| < min(|S|, ℓ). This implies
|W−c∩S| < |f(t−1)∩S|, which is only possible if c ∈ S,
showing our claim in this case.

Case 2 is that ct ∈ S, which implies that the voter set Nc

is a solid coalition for the candidate set S \ {ct} ⊆ Ct−1

in time-step t − 1 (and still is ℓ-large). Since f(t − 1)
satisfies PSC at time t− 1, we have |W ∩ S| − 1 = |f(t−
1) ∩ (S \ {ct})| ≥ min(|S| − 1, ℓ), where the equal sign
follows from ct ∈W ∩ S and ct /∈ f(t− 1). This implies
|W ∩S| ≥ min(|S|−1, ℓ)+1 ≥ min(|S|, ℓ) > |W−c∩S|,
which is only possible if c ∈ S.

Claim 2: |W ∩ S| ≤ ℓ.

By choice of the witness (Nc, S, ℓ), we have |W−c ∩ S| <
min(|S|, ℓ) ≤ ℓ. This directly implies |W ∩ S| ≤ |W−c ∩
S|+ 1 ≤ ℓ, proving Claim 2.

Now we are ready for the main argument. Assume for
contradiction that for all c ∈W , the committee W−c does

not satisfy PSC. Fix any c ∈W . Then, there exist witnesses
(N ′, S, ℓ) of W−c violating PSC and we can exhaustively
list all of them. Consider only the witnesses for W−c with
maximal candidate set size |S|, and among these choose
a witness that maximizes the size of the solid coalition
|N |. For each c ∈ W , we denote this “maximal” witness
via (Nc, Sc, ℓc). We will now arrive at a contradiction by
iteratively assigning a 1

k -fraction of the voters to each c in
W . For this, enumerate W = {d1, . . . , dk+1}. For d1, we
can assign it to any 1

k -fraction of the voters that is contained
in Nd1

, which must exist since Nd1
must be at least 1-large

to be a witness. For j ≥ 2, let injective voter assignments
be made for all candidates with smaller index, i.e., dx with
1 ≤ x < j. To prove that there is still at least a 1

k -fraction
of the voters from Ndj unassigned, we use the following
claim to count the number of dx with assignments in Ndj

.

Claim 3: For all x < j with Ndx ∩ Ndj ̸= ∅, we have
Ndx = Ndj and Sdx = Sdj .

Let i ∈ Ndx ∩ Ndj be given. Since Sdx and Sdj are both
prefixes of the relation ≻i, one must be a subset of the
other. Without loss of generality, assume Sdx

⊆ Sdj
. We

first show that the voter set Ndj
is not only a witness for a

PSC violation of W−dj
, but also for a violation of W−dx

.
Applying Claim 1, we obtain dx ∈ Sdx

⊆ Sdj
and dj ∈ Sdj

.
Combining this fact with (Ndj , Sdj , ℓdj ) being a witness
yields

min(|Sdj
|, ℓdj

) > |Sdj
∩W−dj

| = |Sdj
∩W−dx

|.

Hence, (Ndj
, Sdj

, ℓdj
) is also a witness for the PSC vio-

lation of W−dx
. Since we chose Sdx

to be maximal, it
must be that Sdx

= Sdj
and the prefixes coincide. Thus,

(Ndj ∪ Ndx , Sdx , ℓdx) is also a witness for the PSC viola-
tion of W−dx . Since we chose Ndx to be inclusion maximal
among witnesses, it must be that Ndx = Ndj ∪Ndx , imply-
ing Ndx

⊇ Ndj
. Applying the same argument to W−dj

, we
obtain Ndj

⊇ Ndx
which concludes the proof of Claim 3.

Each dx with x < j that is assigned some voters in Ndj

satisfies Ndx
∩Ndj

̸= ∅. By Claim 1 and 3, it follows that
dx ∈ Sdj

∩W . However, by Claim 2, |W ∩ Sdj
| ≤ ℓdj

.
Since dj itself is contained in W ∩ Sdj , at most ℓdj − 1
different dx with x < j can have been assigned to some
voters in Ndj

. Since each of these dj is assigned to n
k voters

and |Ndj
| ≥ ℓdj

n
k , there is still at least a 1

k -fraction of the
voters unassigned, which we can assign to dj . This proves
that we can assign each c ∈ W to some 1

k -fraction of N .
Since W contains k+1 candidates, this implies that there are
k+1
k ·n > n voters in total, the desired contradiction. Hence,

there exists a c ∈W such that W−c satisfies PSC.

The approach of Theorem 3.1 does not work for deleting a
candidate—if we choose poorly, we may need to replace the
entire committee after a single deletion.
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Example 1. A size k committee satisfying PSC may require
k additions to restore PSC after a single deletion. For this,
consider the following profile with n = k.

a1 ≻1 b1 ≻1 a2 ≻1 · · · ≻1 ak ≻1 ∗
a1 ≻2 b2 ≻2 a2 ≻2 · · · ≻2 ak ≻2 ∗

...

a1 ≻k bk ≻k a2 ≻k · · · ≻k ak ≻k ∗

The committee W = {a1, . . . , ak} satisfies PSC. However,
after removing a1, all candidates bi would need to be added.

Similarly, commonly used rules that satisfy PSC fail to
distinguish between robust and non-robust committees. We
provide an example in the appendix.
Observation 1. The single transferable vote (STV) and the
expanding approvals rule (EAR) of Aziz and Lee (2020) can
select committees that are not robust to a single deletion for
PSC, even when such committees exist.

While in Observation 1 a robust committee exists, there are
instances where any algorithm satisfying PSC is not robust
and requires at least Ω(log(log(k))) changes to restore PSC.
This precludes the existence of a robust decremental—let
alone fully-dynamic—PSC algorithm.
Proposition 3.2. There does not exist a robust decremental
PSC algorithm. After a single deletion, any algorithm may
require Ω(log(log(k))) replacements to restore PSC.

Finally, in the appendix, we also show that for the “rank-
based” axioms recently introduced by Brill and Peters
(2023) an even stronger lower bound of Ω(

√
k) holds and

that this lower bound also extends to incremental setting.
Theorem 3.3. There is no incremental or decremental al-
gorithm satisfying the rank-JR axiom of Brill and Peters
(2023) and making o(

√
k) changes amortized per round.

4. Proportional Clustering
Secondly, we turn to proportional clustering. Here, candi-
dates and voters are situated in a space (N ∪ C∗, d) with d
being a pseudometric. Hence, the distance function d : N ∪
C∗×N ∪C∗ → R≥0 satisfies symmetry: d(x, y) = d(y, x)
and the triangle inequality: d(x, y) ≤ d(x, z) + d(z, x) for
all voters and candidates x, y, z ∈ N ∪ C∗. For finite
C ⊆ C∗, we denote by d|C the natural restriction of d to
the finite subdomain N ∪C ×N ∪C. In proportional clus-
tering, the most prominent proportionality notion is that of
proportional fairness (Chen et al., 2019). An outcome (or
clustering or committee) W is said to be γ-proportionally
fair for some γ ≥ 1 and some instance (C, d|C , k), if there
is no unselected candidate c ∈ C \W and 1-large group
N ′ ⊆ N of voters such that

min
c′∈W

d(i, c′) > γ d(i, c) for all i ∈ N ′.

Proportional fairness, however, only looks at deviations to
single candidates. This prompted several strengthenings
(Ebadian and Micha, 2025; Kalayci et al., 2024; Aziz et al.,
2024) dealing with deviations to multiple candidates instead.
As it is closest in spirit to proportional fairness, we focus
here on the q-core as introduced by Ebadian and Micha
(2025). Given an instance over some candidate set C ⊆ C∗,
a committee W is said to be in the α-q-core for some q ∈ [k]
and α ≥ 1 if for all other candidate subsets C ′ ⊆ C the
following holds: there are strictly less than |C′|

k n voters
i ∈ N for which their q-th closest candidate in W is α-
times farther away than their q-th closest candidate in C ′.
For q = 1 this is equivalent to proportional fairness.

Unlike for the ordinal and approval settings, in the clustering
setting proportionality can only be approximated, not per-
fectly satisfied. Several existing algorithms, such as Greedy
Capture (Chen et al., 2019) or the Spatial Expanding Ap-
provals Rule (Aziz et al., 2024), achieve a constant factor
approximation to proportional fairness or the core. How-
ever, these algorithms rely on a generalization of rank-JR
— of which we have shown that it does not admit a robust
algorithm — to proportional clustering (Kellerhals and Pe-
ters, 2024). We circumvent this and design a fully-dynamic
algorithm achieving a constant factor approximation to pro-
portional fairness. In essence, proportional clustering is
easier than proportional multiwinner voting, as voters share
a metric space with the candidates. By clustering similar
voters into groups, we preempt the clustering of candidates.
Using this, we obtain a fully-dynamic algorithm that is 4.24-
proportionally fair and in the 5-q-core. Surprisingly enough,
the 5-q-core bound is equal to the current best bound in the
offline setting (Kellerhals and Peters, 2024).

Theorem 4.1. There exists a robust fully-dynamic algorithm
achieving a 2 +

√
5 ∼ 4.24-proportional fair outcome and

satisfying the 5-q-core for any q ∈ [k].

Proof. We begin with a pre-clustering phase similar to the
spatial expanding approvals rule (Aziz et al., 2024). We
assign each voter i ∈ N a budget bi = k

n and initialize
a counter x = 1. Then we continuously increase a real
parameter δ from 0 on. Whenever there is a set of voters
N ′ ⊆ N of diameter at most δ such that N ′ has a total
budget of at least 1, we create a cluster Nx = N ′ for these
voters, decrease their budgets by a total of 1, and increase
the counter x by 1. If multiple clusters could be created
for the same δ but compete with each other for the budget,
we break ties arbitrarily. This leads to clusters N1, . . . , Nk

(with clusters potentially overlapping). To focus on the vot-
ers that positively contributed to the clusters, we denote by
pi(x) ≥ 0 the contribution of voter i to the cluster Nx.1

1This algorithm for “pre-clustering” the voters can additionally
be seen as a generalization of the recently proposed algorithm for
finding a proportional non-centroid clustering by Caragiannis et al.
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For a given cluster of voters Nx and any candidate c we
let d(Nx, c) = min{d(i, c) : i ∈ N and pi(x) > 0}. To
initialize a committee, we consider the clusters N1, . . . , Nk

in order. For each cluster Nx we pick among the so far
unchosen candidates some cx minimizing d(Nx, cx). To
dynamically determine whether we need to modify the com-
mittee at each time step, we say that a cluster Nx envies
another cluster Ny if d(Nx, cy) < d(Nx, cx).2 By our enu-
meration, it is clear that for the initial assignment and all
x, y ≤ n, cluster Ny can only envy Nx if x < y. Further,
the selected committee contains the distance minimizers for
all clusters N1, . . . Nk. We will in each step ensure that this
invariant remains true.

When we delete a candidate c we either do (i) nothing if c
is not picked by any cluster or (ii) if c is picked by cluster
Nx we let Nx repick the closest current unchosen candi-
date d. Since every cluster Ny with y ̸= x prefers their
current candidate to d, we re-enumerate them with Nx is
renamed to Nk and the former Nx+1, . . . , Nk renamed to
Nx, . . . , Nk−1. Still, for x, y ≤ n, Ny can only envy Nx if
x < y.

If a candidate c gets added, we first check if there is any
cluster Nx for which d(Nx, c) < d(Nx, cx), i.e., c is closer
than the picked candidate for this cluster. If there is not, we
do not add c. If there is, however, such a cluster Nx, we
assign c to such a cluster Nx∗ with the smallest index x∗

and store cx∗ as the interim candidate. As long as the set
of Ny with y > i∗ are assigned their current choices or cx∗ ,
Nx∗ only envies clusters with y′ < i. Now, in ascending
order, every Ny with y > i gets to choose between keeping
their current candidate cy or exchanging it for the current
interim candidate, thus making cy the new interim candidate.
If Ny keeps cy, then it will not envy any Nz with z > y
after the process since they will be assigned to some c>y

or the interim candidate that Ny prefers less to cy. If Ny

swaps cy for the interim candidate, then it still will not envy
any N>y after the process because each will obtain some
c≥y. After Nk made their choice, we discard the current
interim candidate and obtain a new committee containing
c with just one swap on the currently selected set, but up
to k re-assignments of clusters to selected candidates. Still,
this time without re-enumeration, for x, y ≤ n, Ny can only
envy Nx if x < y.

Now we are ready to show that this procedure is always
ρ-proportional fair. Let W be any committee throughout the
online process, c be any unselected candidate, and N ′ be a
group of voters deviating to c of size at least n

k . Let δ be
the diameter of N ′. Then, in the first step of the procedure,

(2024) to also handle groups of larger sizes than n
k

.
2We now perform a procedure similar to the envy-cycle elimi-

nation from fair division, see, e.g., the survey of Amanatidis et al.
(2023).

we know that at least one of the agents in N ′ pays for a
preprocessed cluster N ′′ of diameter at most δ. Let i be this
agent and let j be the agent furthest away from c in N ′ (note
that this might be i again). Since N ′′ did not pick c, c is
not a (unique) minimizer of d(N ′′, ·). We know that there
must be an agent h ∈ N ′′ with d(h,W ) ≤ d(N ′′, c) ≤
d(i, c). Further, by the triangle inequality we can bound the
distance between any two elements of N ′ by their respective
distances to c, so it must hold that δ ≤ 2d(j, c). Thus, we
get that

ρ ≤ min

(
d(i,W )

d(i, c)
,
d(j,W )

d(j, c)

)
≤ min

(
d(i, h) + d(h,W )

d(i, c)
,
d(j, i) + d(i,W )

d(j, c)

)
≤ min

(
δ + d(i, c)

d(i, c)
,
d(i, c) + d(j, c) + d(i,W )

d(j, c)

)
≤ min

(
2d(j, c) + d(i, c)

d(i, c)
,
3d(j, c) + 2d(i, c)

d(j, c)

)
≤ min

x≥0

(
2x+ 1, 3 +

2

x

)
= 2 +

√
5.

and therefore the improvement through c is bounded by
2 +
√
5.

For the α-q-core, let N ′ ⊆ N be an ℓ-large deviating coali-
tion and C ′ ⊆ C of size |C ′| = ℓ be the set of candidates
the coalition deviates to. For a given agent i ∈ N we de-
fine dq(i, C ′) to be the distance of the agent to their q-th
closest member of C ′. Following Kellerhals and Peters
(2024, Lemma 9) there is a candidate c ∈ C ′ and a subset
N ′′ ⊆ N such that c is in the top-q choices among C ′ of
everyone in N ′′ with N ′′ being of size at least q n

k . Let
i ∈ N ′′ be the agent among N ′′ with the largest dq(i, C ′).
Since the agents in N ′′ have a total budget of q there must
at least exist q clusters bought partially by agents from
N ′′. Similar to the first part of this proof, the diameter of
at least q of these clusters is smaller than the diameter of
N ′′. We know that these clusters must have chosen q of the
cluster centers in W . Since the diameter of N ′′ is at most
d(i1, i2) ≤ d(i1, c) + d(c, i2) ≤ dq(i1, C

′) + dq(i2, C
′) ≤

2dq(i, C ′) the diameter of each of these clusters is also at
most 2dq(i, C ′). Since each agent in N ′′ is also at most
dq(i, C ′) away from an unselected cluster center, the cluster
center selected must also be at most dq(i, C) away from
someone in the group and thus at most 3dq(i, C ′) away
from the member of N ′′. However, since the diameter of
N ′′ is at most 2dq(i, C ′) this implies that agent i is at most
a distance of 5dq(i, C ′) away from q cluster centers in W ,
therefore showing that W is in the 5-q-core.

While the initial pre-clustering is not tractable, it is possible
to adapt this step to obtain a polynomial time constant factor
approximation with slightly larger constant.
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5. Approval Preferences
In this section, we assume that we are given an approval
profile A = (Ai)i∈N , and we call Ai ⊆ C∗ the approval
ballots. We define A|C = (Ai ∩ C)i∈N . Throughout this
section, we refer to subsets W ⊆ C of size |W | ≤ k as
subcommittees. For approval preferences, we call a set
N ′ ⊆ N of voters ℓ-cohesive if |

⋂
i∈N ′ Ai| ≥ ℓ. Since the

original paper of Aziz et al. (2017) defining the axiom of
justified representation, a plethora of works have focused
on defining new possible axioms or extending the original
ones of Aziz et al. (see for instance the recent book of
Lackner and Skowron, 2023). We focus here on two natural
variants introduced by Brill and Peters (2023). We say that
a committee W satisfies

• proportional justified representation+ (PJR+) if for
every ℓ ∈ [k] and 1-cohesive and ℓ-large group N ′ it
holds that

⋂
i∈N ′ Ai ⊆W or |

⋃
i∈N ′ Ai ∩W | ≥ ℓ.

• extended justified representation+ (EJR+) if for every
ℓ ∈ [k] and 1-cohesive and ℓ-large group N ′ it holds
that

⋂
i∈N ′ Ai ⊆W or |Ai∩W | ≥ ℓ for some i ∈ N ′.

Further, α-EJR+ with α > 1 requires that for every ℓ ∈ [k]
and 1-cohesive and α · ℓ-large group N ′ there exists an
i ∈ N ′ with |Ai ∩W | ≥ ℓ or it holds that

⋂
i∈N ′ Ai ⊆W .

Example 2. First, we give an example of a committee sat-
isfying EJR+, for which removing any candidate from the
committee, forces at least two changes, even for PJR+ to be
satisfied. For this, consider the following simple instance
with k = 2, two voters, and respective approval sets {a, b}
and {b, c}. Further, there is a candidate d approved by no
one. The committee {b, d} satisfies EJR+, but after the
removal of b, only the committee {a, c} satisfies PJR+.

A similar incremental example can also be created. Consider
an instance with k = 3 and six voters having approval sets
{a, b}, {a, c}, {a, d}, {a, e}, {f}, {f}. Consider the com-
mittee {b, c, d} before f becomes feasible. After the addi-
tion of f to the instance, we would need to remove one of
b, c, d, for whom the voter approving it, together with the
voter approving {a, e} would witness a PJR+ violation.

PJR+ Nonetheless, we now construct robust incremental
and almost robust fully dynamic PJR+ algorithms. We
require the following notion by Brill and Peters (2024),
which is related to priceability (Peters and Skowron, 2020).

A subcommittee W ⊆ C of size at most k is maximally
affordable if there exists a payment system (pi)i∈N : C →
R≥0 satisfying the following constraints

C1 pi(c) = 0 if c /∈ Ai for all c ∈ C and i ∈ N

C2
∑

c∈C pi(c) ≤ k
n for all i ∈ N

C3
∑

i∈N pi(c) = 1 for all c ∈W

C4
∑

i∈N pi(c) = 0 for all c /∈W

C5
∑

i∈N : c∈Ai

(
k
n −

∑
d∈C pi(d)

)
< 1 for all c /∈W .

Maximally affordable subcommittees always exist, as e.g.,
the non-exhaustive output of the MES rule is maximally
affordable. Further, it is easy to see that any committee W ′

that contains a maximally affordable subcommittee W ⊆
W ′ satisfies PJR+ (Brill and Peters, 2023, Proposition 10).

Corollary 5.1. Every completion of a maximally affordable
subcommittee satisfies PJR+.

Our goal is to maintain supersets of maximally affordable
subcommittees dynamically. First, we use this approach
to provide a robust incremental PJR+ algorithm, which, in
essence, works the same way as the algorithm of Do et al.
(2022), who show that PJR+ is satisfiable in their online
committee selection setting.

Theorem 5.2. There exists a robust incremental PJR+ al-
gorithm.

The proof also shows that once a maximally affordable
committee of size k has been instantiated, no further modifi-
cations are required to maintain PJR+ in all time steps.

Using affordability, however, does not yield a robust decre-
mental PJR+ algorithm. In fact, no such algorithm exists.

Theorem 5.3. There does not exist a robust decremental
PJR+ algorithm.

Nonetheless, we can utilize maximally affordable commit-
tees to construct a fully-dynamic PJR+ algorithm making
two changes per iteration amortized, meaning that the total
number of changes up to any time-step t is at most 2t.

Theorem 5.4. There exists a robust fully-dynamic PJR+
algorithm making amortized 2 changes per iteration.

EJR+ While our previous result shows that one can nearly
achieve PJR+ in a fully-dynamic manner, PJR+ in itself is
quite a weak axiom for approval-based multiwinner voting
(see for instance Peters and Skowron, 2020, Example 6).
The strongest alternative to PJR+ which is still achievable
in polynomial time is EJR+. However, EJR+ is not nearly
as well understood as PJR+, which is significantly easier to
achieve. Consequentially, fewer rules are known to satisfy
EJR+. As any committee satisfying EJR+ also satisfies
PJR+, our impossibility result in Theorem 5.3 also applies
to EJR+.

As our first positive result we build upon an approximation
result from Do et al. (2022) and show that a O(log(k))-
approximation of EJR+ is possible in a fully-dynamic setting

7
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making amortized two change per iteration. This in essence
works similar to Theorem 5.4.

Theorem 5.5. There exists a fully-dynamic Θ(log(k))-
EJR+ algorithm making amortized two changes per iter-
ation.

While Theorem 5.5 considers fully dynamic algorithms, it
only provides an approximation factor depending on k. If
we turn to the incremental setting, we can obtain α-EJR+
bounds for constant α > 1. Especially, the following result
implies an incremental algorithm satisfying 2-EJR+ making
amortized 2 changes per iteration.

Theorem 5.6. For any α > 1 there exists an incremental
α-EJR+ algorithm making amortized α

α−1 changes.

While achieving a robust algorithm satisfying exact EJR+
seems difficult, we are able to provide a committee that is
robust with respect to a single added candidate. That is,
for any committee W selected by the rule, and any added
candidate c′ there exists a candidate c ∈ W ∪ {c′} such
that (W ∪ {c′}) \ {c} satisfies EJR+. This rules out strong
negative results for incremental algorithms, akin to Proposi-
tion 3.2 for PSC in the decremental setting.We achieve this
by modifying the greedy justified candidate rule (GJCR) of
Brill and Peters (2023) to be “locally stable”.

Theorem 5.7. There exists an incremental EJR+ algorithm
that is robust with respect to a single addition.

The modification is necessary even for this single step, as we
give examples in the appendix that all known rules satisfying
EJR+ are not robust with respect to a single addition. This
leads us to the open question whether there is an incremental
algorithm for EJR+ that remains robust beyond the first step.

Open Question 1. Is there a robust (amortized) incremental
algorithm satisfying EJR+?

We further remark that all commonly considered rules satis-
fying EJR+ fail to distinguish between decrementally robust
and unrobust committees.
Example 3. Consider the profile with 2× {a1, . . . , a5, x},
2× {a1, . . . , a5, y}, 1× {a1, . . . , a5}, 2× {b1, . . . , b4, x},
2×{b1, . . . , b4, y}, 1×{c1, . . . , c4, x}, 1×{c1, . . . , c4, y},
2 × {c1, . . . , c4} and fix k = n = 13. Then, all rules
known to satisfy EJR+ (MES, GJCR, and PAV) can choose
the committee {a1, . . . , a5} ∪ {b1, . . . , b4} ∪ {c1, . . . , c4}.
However, after the deletion of some ai, we would need to
add both x and y to the committee to restore EJR+.

It remains unknown whether we can select an EJR+ com-
mittee that is robust to a single deletion, and whether there
is a fully-dynamic or decremental algorithm satisfying a
constant approximation to EJR+.

Open Question 2. Is there an algorithm satisfying EJR+
that is robust with respect to a single deletion? Does there

exist a fully-dynamic algorithm satisfying O(1)-EJR+ mak-
ing amortized O(1) changes per round?

6. Conclusion and Open Questions
We study proportionality in multiwinner voting for dynamic
candidate sets, with voter preferences given via linear orders,
distances in a metric space, or approval ballots. Depending
on the setting and whether new candidates join, old candi-
dates drop out, or both, we provide algorithms that make
small amounts of changes while upholding proportionality
or show that no such algorithm can exists by providing a
lower bound on the changes necessary. An overview of our
results can be seen in Table 1.

Our work leaves open several questions and possible future
research directions. As a “meta” future research direction,
we highlight that the understanding of EJR and EJR+ as
axioms is still quite narrow. For instance, despite extensive
research, it is still an open question whether there always
exists a ranking satisfying EJR for every prefix of the rank-
ing (Skowron et al., 2017; Chandak et al., 2024) or whether
there is a safe querying procedure for EJR (Brill et al., 2023).
Furthering the understanding of EJR and EJR+, e.g., by
developing different rules or characterizations of rules satis-
fying EJR+ might shed further light on it and help to resolve
the open questions regarding EJR and EJR+.

As a further point, we restrict ourselves to dynamic candi-
date sets. A natural extension would be a setting in which
not only the candidates, but also the voters are dynamic.
This gives some additional difficulties. For instance, adding
or deleting voters, changes the quota n

k throughout the pro-
cess. Deciding whether it is feasible to deal with this, is an
interesting possibility for future work.
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Axiom Incremental Decremental and Fully-Dynamic

PSC ✓ ✗Ω(log(log(k))) lower b.
rank-JR ✗Ω(

√
k) lower b. ✗Ω(

√
k) lower b.

Proportional Fairness ✓4.24-approx ✓4.24-approx
q-Core ✓5-approx ✓5-approx

PJR+ ✓ ✗, ✓(amort. 2-changes)
EJR+ ✓2-approx (amort. 2-changes) ✓O(log(k))-approx (amort. 2-changes)

Table 1. An overview of our results. A ✓ indicates that a robust (amortized/approximately optimal) dynamic algorithm exists for the
respective problem and input type. An ✗ indicates that no fully-dynamic algorithm can exist.
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J. Łącki, B. Haeupler, C. Grunau, V. Rozhoň, and R. Ja-
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Algorithm 1 Greedy Justified Candidate Rule (GJCR) (Brill
and Peters, 2023)
W ← ∅ for ℓ in k, . . . , 1 do

while there is c /∈W : |{i ∈ Nc : |Ai ∩W | < ℓ}| ≥ ℓn
k

do
Add candidate c maximizing |{i ∈ Nc : |Ai∩W | <
ℓ}| to W

end
end
return W

A. Appendix: Multiwinner Voting Rules
In this section, we provide brief definitions of the mentioned
rules.

Rules for approval ballots. Proportional approval voting
(PAV) is the rule that assigns a score of H(|Ai ∩W |) to
each ballot Ai and committee W , where H(j) is the j-
th harmonic number. It then chooses the committees that
maximize the sum of scores over the entire profile A.

The method of equal shares (MES) assigns each voter a bud-
get of k

n . Each candidate can be bought into the committee
for a cost of 1. MES proceeds iteratively and selects the
next candidate by maximizing the minimal budget over the
buyers after the purchase.

The greedy justified candidate rule (GJCR) also proceeds
iteratively, by choosing the candidate currently causing the
largest violation of EJR+. See Algorithm 1.

Rules for ranked ballots. Single transferable vote (STV)
selects the candidates iteratively. Fixing n as the initial
number of voters and starting with an empty committee,
it adds any candidate c that is top ranked at least n

k times.
(It does not matter which one if there are multiple such
candidates.) STV then deletes this share of supporters of c
and c itself from the profile. In case that no candidate is top
ranked sufficiently many times, instead a candidate with the
lowest amount of supporters is eliminated from the profile.

The Expanding approvals rule (EAR) also assembles the
committee step by step. It assigns each voter a budget of
1 and proceeds rank by rank. If there is a candidate, for
whom the voters giving it at most that rank have a budget
of at least n

k , that candidate is added to the committee and
the budget of these voters is decreased by n

k . Otherwise, the
rank gets increased by 1.

B. Missing Proofs for Section 3
We examine the notion of rank-JR and present the missing
proofs for PSC.

B.1. Rank Justified Representation

A voter i has rank rank(i, c) for candidate c if this candi-
date is the rank(i, c)th closest candidate to this voter. An
outcome W satisfies rank justified representation (rank-
JR), if there is no rank r ≤ m, no 1-large set of vot-
ers N ′ ⊆ N and set of candidates C ′ ⊆ C such that
rank(i, c) ≤ r for all i ∈ N ′ and c ∈ C ′ as well as
|{c ∈ W : rank(i, c) ≤ r for some i ∈ N ′}| ∩ W = ∅.
In the following example with n = 4 voters and k = 2, all
committees satisfy PSC, but due to r = 2, only committees
containing b satisfy rank-JR (Brill and Peters, 2023).

a ≻ b ≻ e ≻ d ≻ c

d ≻ b ≻ c ≻ e ≻ a

c ≻ b ≻ e ≻ d ≻ a

e ≻ b ≻ d ≻ c ≻ a

For rank-JR, we show that neither incremental nor decre-
mental rules can be robust.

Theorem B.1. There is no robust incremental or decremen-
tal rank-JR algorithm.

Proof. We give the following example with n = 12 voters,
m = 13 candidates C = {c1, . . . , c6, c′1, . . . , c′6, c}, and
k = 6. We show that the removal of c1 from C is incompat-
ible with decremental rank-JR and the addition of c1, c′1 to
C \ {c1, c′1} is incompatible with incremental rank-JR:

1. c1 ≻ c2 ≻ . . .

2. c1 ≻ c3 ≻ . . .

3. c2 ≻ c5 ≻ c . . .

4. c3 ≻ c4 ≻ c . . .

5. c5 ≻ c6 ≻ c . . .

6. c4 ≻ c6 ≻ c . . .

1′. c′1 ≻ c′2 ≻ . . .

2′. c′1 ≻ c′3 ≻ . . .

3′. c′2 ≻ c′5 ≻ c . . .

4′. c′3 ≻ c′4 ≻ c . . .

5′. c′5 ≻ c′6 ≻ c . . .

6′. c′4 ≻ c′6 ≻ c . . .

Note that this instance is symmetric with regard to ranking
candidates ci and c′i. We first show the following claim,
which is crucial for both proofs:

Claim 1: If a committee W satisfies rank-JR on C, then
|W ∩ {c2, c3, c′2, c′3}| ≤ 1. To show this claim, first let a
committee W be given with {c2, c3} ⊆ W . Since c1, c

′
1

are top ranked twice, c1, c′1 ∈W . Further, voters 5, 6 share
candidate c6 at position r = 2 and thus one of {c4, c5, c6}
must be contained in W . Since |W | = 6, W can only
contain one of the candidates {c′2, . . . , c′6}. Thus, there are
always {i′, j′} ⊂ {3′, . . . , 6′} obtaining none of their three
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most preferred candidates, leading to the desired violation
of rank-JR for W with r = 3. Now, let a committee W be
given with |W ∩ {c2, c3}| = 1 and |W ∩ {c′2, c′3}| = 1. We
have to show that W violates rank-JR. Again, c1, c′1 ∈ W .
Further, voters 5, 6 share candidate c6 at position r = 2
and thus one of {c4, c5, c6} must be contained in W . Since
the same argument holds for voters 5′, 6′, the committee W
already contains 6 candidates and c /∈ W . Note however,
no matter how we choose the candidates, there will be one
voter i ∈ {3, 4, 5, 6} not obtaining any of their top three
ranked candidates: If we choose c5 (c4), voter 6 (voter 5) is
unhappy. If we choose c6, voter 3 or voter 4 will be unhappy
as we can only choose one of {c2,3 }. By applying the same
argument, we obtain j ∈ {3′, 4′, 5′, 6′} for which W does
not contain any of their top three candidates. Since i, j both
have c as their third most-preferred candidate, {i, j} induces
a rank-JR violation for W and r = 3. This concludes the
proof of the claim.

The following is clearly true: Claim: If a committee W 2 on
C \ {c1, c′1} satisfies rank-JR, then {c2, c3, c′2, c′3} ⊂W 2.

For the incremental rank-JR violation, we see the following:
Any rule f satisfying rank-JR on C2 = C \ {c1, c′1} must
return W 2 containing {c2, c3, c′2, c′3}. For C1 = C \ {c′1},
thus |W 1 ∩ {{c2, c3, c′2, c′3}}| ≥ 3 and thus for C0 = C
we have |W 0 ∩ {{c2, c3, c′2, c′3}}| ≥ 2. This implies that f
fails rank-JR by our Claim 1.

For decremental rank-JR, apply Claim 1 to obtain that wlog
W ∩ {c2, c3} = ∅. Deleting c1 now requires the addition of
both c2, c3, as desired.

We generalize this approach to show that for any t there is
an instance in which at least t changes must be made after
deleting a single candidate. This provides steeper lower
bounds than for PSC.

Theorem 3.3. There is no incremental or decremental al-
gorithm satisfying the rank-JR axiom of Brill and Peters
(2023) and making o(

√
k) changes amortized per round.

Proof. We now create a profile in which each committee
satisfying rank-JR must add t candidates b1, . . . bt after the
deletion of some candidate a to maintain rank-JR. Consider
the following instance consisting of t blocks (Bi)i≤t, each
Bi consisting of t(t+ 1) voters with the following 3t voter
types (vji )j≤3t:

1× v1i : ai ≻ b1i ≻ . . .

. . .

1× vti : ai ≻ bti ≻ . . .

(t− 1)× vt+1
i : b1i ≻ c1i ≻ . . .

. . .

(t− 1)× v2ti : bti ≻ cti ≻ . . .

1× v2t+1
i : c1i ≻ d1i ≻ c ≻ . . .

. . .

1× v3ti : cti ≻ dti ≻ c ≻ . . .

We set k = t(t + 1) and thus n
k = t. For now, consider

a fixed block Bi, i ∈ [t]. First, we notice that ai needs
to be included to satisfy rank-JR, as there are t voters top
ranking it. To not need t additions after the deletion of ai,
we include some b

x(i)
i with x(i) ≤ t for each i. Further,

we claim that c cannot be chosen: for each i ∈ [t], j ∈
[t] \ {x(i)} to satisfy the (t− 1) voters vt+j

i and the voter
v2t+j
i we need to include one of bji , c

j
i , d

j
i to satisfy rank-JR.

All additions so far considered for Bi, this enforces t + 1
candidates. Iterating over all blocks, we overall enforce
t(t + 1) candidates, filling the committee and leaving c

unchosen. But then the set of t voters (v2t+x(i)
i )i≤t witness

a rank-JR violation, as they all rank candidate c on rank 3.

For the incremental case consider the same profile before
the addition of (ai)i≤t

1× v1i : b1i ≻ . . .

. . .

1× vti : bti ≻ . . .

(t− 1)× vt+1
i : b1i ≻ c1i ≻ . . .

. . .

(t− 1)× v2ti : bti ≻ cti ≻ . . .

1× v2t+1
i : c1i ≻ d1i ≻ c ≻ . . .

. . .

1× v3ti : cti ≻ dti ≻ c ≻ . . .

Clearly, we must choose all bij for i, j ≤ t, i.e., t2 candidates.
However, after adding a1, . . . , at, we can similarly to the
decremental case prove that at most < t candidates of the
form bij can be contained in a committee satisfying rank-
JR. This constitutes > t2 − t replacements in t rounds,
hence in some round there must have been t− 1 = Ω(

√
k)

replacements.

This further raises the question whether the bound is tight.

Open Question 3. Is there an incremental or decremen-
tal algorithm satisfying rank-JR making at most O(

√
k)

changes amortized per round?

B.2. PSC

Observation 1. The single transferable vote (STV) and the
expanding approvals rule (EAR) of Aziz and Lee (2020) can
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select committees that are not robust to a single deletion for
PSC, even when such committees exist.

Proof. For an example of STV failing this, consider the
following instance

a ≻ b ≻ · · ·
a ≻ c ≻ · · ·
b ≻ a ≻ x

x ≻ y ≻ · · ·
c ≻ a ≻ x

y ≻ x ≻ · · ·

Here, with k = 3 STV could first select a and delete the
first two voters who top-rank a from the profile. Then delete
b, select x, and delete voters three and four who at this time
rank x on top. Finally, delete e and choose y. Now if a
withdraws, both b and c need to be added. We note that
the same committee could also be selected by EAR. This
instance, however, admits a robust committee, for instance
{a, b, x} is robust to a single deletion.

Proposition 3.2. There does not exist a robust decremental
PSC algorithm. After a single deletion, any algorithm may
require Ω(log(log(k))) replacements to restore PSC.

Proof. Let t < s ∈ N with r =
(
s
t

)
Consider the fol-

lowing instance over the candidate set C = {a1, . . . ar} ∪
{b1, . . . , bs}:

a1 ≻ b1

· · ·
a1 ≻ bt

a2 ≻ b2

· · ·
a2 ≻ bt+1

. . .

ar ≻ bs−t+1 ≻ · · ·
. . .

ar ≻ bs ≻ · · ·
(t− 1)× b1

. . .

(t− 1)× bs

To be more precise, for each subset of t candidates from
B, i.e., each B′ ∈

(
B
t

)
, we add one voter ranking ai(B′)

first and b ∈ B′ second. This yields tr voters. Then, for
each i ≤ s we add t − 1 voters ranking bi first. This adds

further (t − 1)s voters. Whenever s is a multiple of t, we
can set k = r + t−1

t s. Thus, a set of voters is 1-large if
it has cardinality ≥ t. PSC now implies that a1, . . . , ar
must all be chosen. Further, if in the next time step ai is
deleted, then PSC enforces that all candidates b in the subset
B′(i) ⊂ B are chosen. Since any ai could be deleted, this
means that for the committee to guarantee PSC after one
deletion, s− 1 candidates from B must already be chosen
in this round. Clearly, s− 1 + r > t−1

t s+ r = k. Choose
s = t2. Then, s− 1 + r − k = 1

t s− 1 = t− 1. So at least
t−1 candidates bi remain unchosen. If the corresponding aj
gets deleted, at least t− 2 additions are necessary to restore
PSC. For the asymptotic bound, observe k ∈ Θ(r) = Θ(st).
Thus, there is a constant c ∈ R>0 with k ≤ ct2t, which

implies
√

k
c ≤ tt and thus log(

√
k
c ) ≤ t log(t), and finally

W (log(
√

k
c )) ≤ t for the product log function W . Thus,

the number of additions necessary to restore PSC have a
lower bound of Ω(log(log(k))).

C. Missing Proofs for Section 5
We first remark that the modification to GJCR is truly nec-
essary to obtain a committee that is robust with respect to a
single addition.
Proposition C.1. GJCR, MES, and PAV can elect commit-
tees that are not robust with respect to a single addition.

Proof. Consider the following approval profile with ap-
proval sets 1 × {a1, . . . , a4}, 3 × {a1, . . . , a4, x}, 2 ×
{b1, . . . , b5, x}, 3 × {b1, . . . , b5}, 1 × {c1, . . . , c4}, 3 ×
{c1, . . . , c4, y}, 2× {d1, . . . , d5, y}, 3× {d1, . . . , d5} with
n = 18 = k. Here a possible MES committee is all candi-
dates except for x and y. However, now adding a candidate
approved by the three voters voting for only b candidates and
the three voters only voting for d candidates, would require
one other candidate to be removed. If an a or c candidate
is removed that candidate witnesses an EJR+ violation. If
a b or d candidate gets removed, the corresponding voters
approving x or y witness an EJR+ violation, as consist of 5
voters, but only approve 4 candidates in the outcome.

To extend this to PAV consider the same instance, consisting
of 6 copies of 3 × {a1, . . . , a4}, 1 × {a1, . . . , a4, x}, 4 ×
{b1, . . . , b5, x}, 1× {b1, . . . , b5} with n = 54 = k Here, a
optimal PAV committee would choose the copies of the a
and b candidates, as adding the x candidate for an a candi-
date would decrease the PAV score by − 3

4 + 4
6 < 0 while

adding the x candidate for a b candidate would leave the
PAV score unchanged. However, adding a candidate ap-
proved exactly by the {b1, . . . , b5} voters, would need this
candidate to be included, leading to the same contradiction
as in the first case.

Corollary 5.1. Every completion of a maximally affordable
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subcommittee satisfies PJR+.

Proof. Let W = {c1, . . . , cℓ} be maximally affordable w.r.t
some (pi)i. Then clearly, ℓ ≤ k as the voters only have
budget k in total. Assume for contradiction there is a viola-
tion of PJR+ for W based on size-k largeness, i.e., some
c ∈ C \W with some N ′ ⊆ N such that c ∈

⋂
i∈N ′ Ai and

|
⋃

i∈N ′ Ai ∩W | < ℓ despite |N ′| ≥ ℓnk for some ℓ ∈ N.
The total amount of budget spent by N ′ is thus at most ℓ− 1
with their starting budget being at least ℓnk

k
n = ℓ. This is

the desired contradiction as C5< is violated.

Theorem 5.2. There exists a robust incremental PJR+ al-
gorithm.

Proof. The first k candidates that arrive we take into our
committee W 0 = C0. We create a partition of W 0 =
X0 ∪ Y 0 into a maximally affordable committee X0 and a
disposable part Y 0. For this, initialize both sets as empty
and assign a total budget of k equally among all voters, i.e.,
k
n to every voter. They will proceed to buy candidates, each
for the price of 1, into X0 as follows: As long as there is a
candidate c such that Nc has a total budget of ≥ 1 to afford
it, add c to X0, and subtract the budget of 1 off any of these
voters in any way such that the budgets are not exceeded.
Store this subtracted amount as pi(c). By finiteness of the
budget, this process must terminate after a finite number
of steps. Clearly, C1 to C4 are satisfied for X0. Further,
C5< is satisfied as else the candidate violating the inequality
would be bought into the committee and the process cannot
have already terminated. Clearly, |X0| ≤ k as the voters
only have budget k in total. Now, set Y 0 = C0 \X0. This
concludes the induction start.

For the induction step, let two disjoint sets Xt, Y t ⊆ Ct

given such that their union is of size k and Xt is maximally
affordable in Ct with cost function pt (and thus satisfies
PJR+ with respect to size k largeness). Let now a new
candidate c∗ be added, i.e., Ct+1 = Ct∪{c∗}. If Xt is still
maximally affordable, we can set Xt+1 = Xt, Y t+1 = Y t,
and pt+1 = pt. Else, there must be c ∈ Ct+1 such that
one of the conditions is violated. Since C1 to C4 did not
change, it must be C5< and c = c∗. Thus, Nc∗ can afford to
buy c∗ into the committee. Set Xt+1 = Xt ∪ {c∗}. Clearly,
since there was budget left to buy c∗, we have |Xt| < k and
thus |Y t| > 0. Thus, remove an arbitrary element y ∈ Y t,
i.e., set Y t+1 = Y t \ {y}, Set pi(c∗) as the amount of
budget that was taken from voter i to finance c∗. It is easy to
check that W t+1 satisfies all 5 axioms and thus is maximally
affordable. This concludes the induction step.

Theorem 5.3. There does not exist a robust decremental
PJR+ algorithm.

Proof. Consider an instance with a set of 12 voters N =
{1, . . . , 12}, target size k = 6, and a set of

(
12
2

)
candi-

dates C = {ci,j : i, j ∈ N, i < j}, one candidate for
each pair of voters. First, assume that the chosen com-
mittee is {c1,2, c3,4, c5,6, c7,8, c9,10, c11,12} (or equivalently
any other committee covering all voters). Now let the first
deleted candidate be c1,2. Let c′ be the replacement candi-
date. We distinguish two cases. Firstly, if c′ is not approved
by 1 or 2, we can assume without loss of generality that it is
c6,7. Then after deleting candidate c3,4, in order to restore
PJR+ one would need to cover at least three of 1, 2, 3, 4 as
otherwise one of 1, 2 together with one of 3, 4 would wit-
ness a PJR+ violation. This is impossible with just a single
candidate. Therefore, c′ has to be approved by either 1 or 2.
Without loss of generality, we can assume that it is c2,3.

Next, we delete c5,6. In order for c1,5 or c1,6 to not witness a
PJR+ violation, we need to cover voter 1. If we include nei-
ther c1,5 nor c1,6, this leaves 5 and 6 uncovered. Therefore,
after deleting for instance c9,10 in the last step, we would
again need to cover at least 3 of the uncovered voters, which
is impossible with a single candidate. Hence, without loss of
generality, we added c1,5. We will immediately delete this
candidate again, leaving all three of 1, 5, 6 uncovered. In
order, for 1 and 6 not to witness a PJR+ violation, we need
to cover at least one of them. If we add c1,6 we immedi-
ately delete it again. Now dependent on which candidate we
add, we can either delete c7,8, c9,10, or c11,12 and again get
four uncovered voters, witnessing a PJR+ violation, which
cannot be repaired with a single candidate. If we did not
add c1,6 two of 1, 5, 6 are again uncovered and dependent
on which candidate we added deleting c7,8, c9,10, or c11,12
gets us four uncovered voters leading to a PJR+ violation.

Similarly, if we started with a committee leaving one voter
uncovered, for instance {c1,2, c3,4, c5,6, c7,8, c9,10, c10,11},
after deleting c1,2 we need to cover voter 12. If we do it with
c1,12, we can delete this candidate again immediately. If we
then add c2,12 and delete it immediately, we are left with
four uncovered voters in any case, thus witnessing a PJR+
violation. If we do not add c2,12 both c1,2 are uncovered
leading to a PJR+ violation after deleting c3,4. Similarly,
if we did not add c1,12 in the first place, the voters 1 and
2 are uncovered. Thus, after deleting an appropriate next
candidate, PJR+ cannot be restored.

Theorem 5.4. There exists a robust fully-dynamic PJR+
algorithm making amortized 2 changes per iteration.

Proof. Our goal is to maintain a maximally affordable sub-
committee throughout the process. Let C0 be the initial
candidate set. We compute an affordable subcommittee M0

of maximum size for C0 and fill the remaining seats arbitrar-
ily to initialize some committee W0 = M0 ∪D0 with D0

consisting of discardable candidates and initialize k tokens.
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For t ≥ 0, at the start of the next time step t + 1, we add
two tokens. When some candidate c ∈ Ct is deleted from
Ct+1, there are three cases. If c /∈ Wt, we set Dt+1 = Dt

and Mt+1 = Mt; if c ∈ Dt, we refill Dt+1 by replacing c
with an arbitrary candidate d ∈ Ct+1 \Wt and remove a
token; and if c ∈Mt, we first refund the budgets spent on c.
Then, iteratively, we refill Mt+1 starting from Mt by adding
affordable candidates and dispose any candidate from Dt, as
well as one token, until no candidate is affordable. If we do
not add any candidate this way, we instead add d /∈Wt to Dt

to obtain Dt+1, remove a token, and set Mt+1 = Mt \ {c}.
Whenever some candidate c /∈ Ct gets added to Ct+1, we
check whether this candidate is affordable. If it is, we add it
to W ′

t to obtain Mt+1 and remove any d ∈ Wt \Mt ̸= ∅,
as well as a token.

Clearly, Mt is maximally affordable and hence Wt satisfies
PJR+ in each time step t. To see that we need at most
2 changes per round amortized, note that in each round
we add two 2 tokens. Hence, it suffices to show that the
token count is always non-negative. Let k′ = |M0| be the
size of the initial committee and t′ be the number of added
candidates. We claim that at each time-step t, there are
at least k′ + t′ − |Mt| tokens left. At time-step 0 this is
clearly true, as we have not added any candidates or tokens
yet. Thus, assume that it holds at time-step t. If we add a
candidate ct+1, we increase the number of tokens by at least
one. Thus, the invariant still holds. If we delete a candidate
not in the committee, the invariant is also still true, as we
have just added two tokens. Similarly, if we delete from
Dt we add two tokens and remove one. Thus, finally, if we
delete a candidate from Dt we add new candidates until we
reach a final maximally affordable subcommittee Mt+1. As
the size of the original maximally affordable subcommittee
was k′ and as we just added t′ candidates, we know that
Dt+1 ≤ k′ + t′. Therefore, the invariant still holds, even
after deleting a candidate from Dt.

Theorem 5.5. There exists a fully-dynamic Θ(log(k))-
EJR+ algorithm making amortized two changes per iter-
ation.

Proof. Let H(n) denote the n-th harmonic number. Con-
sider for the start a modified GJCR that considers groups
of size ≥ H(k)ℓnk instead of ≥ ℓnk . Again, this rule can
be modeled via a budget of k

n for each voter, which the
voters then all uniformly spend when they can buy a candi-
date, which all have a unit cost. To show that on C0 GJCR
computes at most k candidates, observe that each voter can
buy at most 1 candidate for violations with ℓ = 1, 2 for
violations with ℓ ≤ 2 and so on. For a violation w.r.t. ℓ, the
price the voter pays it at most k

nℓH(k) . In total, this yields∑
ℓ≤k

k
nℓH(k) =

k
n . So, no voter overspends, and since the

total budget was k, we have a committee of size≤ k. We fill
up the remaining places with placeholders. Now, if a can-
didate is added and creates a violation of H(k)-EJR+ w.r.t.
some ℓ ≤ k, then each voter that is part of this violation
can have spent at most

∑
j≤ℓ

k
njH(k) . To buy this candi-

date into the committee, they spend at most ≤ k
nℓH(k) and

thus no one overdraws their budget. Especially, since the
budget was not fully used before, there are placeholders in
the committee. Replace one of them with the newly added
candidate, then H(k)-EJR+ is restored. Conversely, if a
candidate c is deleted and this creates violations of H(k)-
EJR+, we can reimburse the voters who previously bought
the candidate into the committee. With the same argument
as in the instantiation and the addition of a candidate, we
obtain that each voter has sufficient budget to buy the can-
didates causing the violations into the committee. There
can be multiple of these changes to the committee after a
single deletion. However, note that for ℓ ≤ k changes to
be made, there must have been ℓ total budget that was not
used or freed beforehand. If the budget was freed, at most
ℓ corresponding dummy candidates have been added to W
before. Together, these are at most 2ℓ changes, preceeded
by ℓ rounds in which the budget was freed or not used.

Theorem 5.6. For any α > 1 there exists an incremental
α-EJR+ algorithm making amortized α

α−1 changes.

Proof. Let α > 1 be given. For small k with k ≤ α
α−1 ,

we can replace the entire committee in each step and triv-
ially obtain the result. Else, we have k > α

α−1 , implying
k(1 − α) < −α and thus k

α < k − 1, which finally leads
to the desired ⌈ kα⌉ < k. Begin by running any EJR+ rule
for the committee size ⌈ kα⌉ and select k − ⌈ kα⌉ other can-
didates arbitrarily. For the next k − ⌈ kα⌉ steps, while there
is a candidate arriving who witnesses an α-EJR+ violation,
include them in exchange for one of the arbitrarily added
candidates. Afterwards, recompute a committee of size ⌈ kα⌉
satisfying EJR+ and add them into the committee by ex-
cluding arbitrary candidates. After k − ⌈ kα⌉+ 1 steps, we
thus have made at most k replacements. This leads to amor-
tized k

k−⌈ k
α ⌉+1

= k
k−(⌈ k

α ⌉−1)
< k

k− k
α

= 1
1−( 1

α )
= α

α−1 ,
replacements per round which concludes the proof.

Theorem 5.7. There exists an incremental EJR+ algorithm
that is robust with respect to a single addition.

Proof. To show this theorem, we use Algorithm 2. In
essence, Algorithm 2 runs the GJCR with an additional
local swapping step at the end. This local swapping step
tries to maximize the number of voters covered in each it-
eration. As Algorithm 2 produces one possible outcome of
GJCR, it satisfies EJR+.
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Algorithm 2 Locally Stable GJCR
W ← ∅ Nactive ← ∅ for ℓ in k, . . . , 1 do

Wℓ = ∅ do
while there is c /∈W : |{i ∈ Nc : |Ai∩W | < ℓ}| ≥
ℓn
k do

Choose c maximizing |{i ∈ Nc : |Ai ∩W | <
ℓ}\Nactive| Wℓ ←Wℓ∪{c} W ←W ∪{c}
Nactive ← Nactive ∪ {i ∈ Nc : |Ai ∩W | < ℓ}.

end
while there was a change in the last iteration;
for c ∈Wℓ, c′ /∈W do

if |{{i ∈ Nc′ : |Ai ∩W \ {c}| < ℓ}| ≥ ℓn
k

and |i ∈ Nc′ : |Ai ∩ W \ {c}| = 0}| > |i ∈
Nc : |{Ai ∩W \ {c}| = 0}| then

Wℓ ←Wℓ ∪ {c′} \ {c} W ←W ∪ {c′} \ {c}
Nactive ← {i ∈ N : |Ai ∩W | > 0}

end
end

end
return W

If Algorithm 2 outputs less than k candidates, the theorem
follows, as we can simply include the new candidate in the
committee with a single swap, swapping out an irrelevant
candidate. Thus, assume it outputs k candidates and let c
be the newly added candidate witnessing an EJR+ violation.
Let N ′ ⊆ Nc be the set of voters witnessing the violation
with |N ′| ≥ ℓnk and |Ai ∩ W | < ℓ for all i ∈ N ′. If
|Ai ∩W | = 0 it is easy to see that the committee could not
have been of size k. Therefore, every voter in N ′ approves
at least one candidate. Let i ∈ N ′ be any such voter and let
ℓi = |Ai ∩W |. Let c′ be any arbitrary candidate in Ai ∩W
and consider the committee W ′ := W \ {c′}∪ {c}. Further,
assume that W ′ does not satisfy EJR+ with its violation
being witnessed by candidate c′′ for threshold ℓ′′ and set
N ′′ ⊆ Nc′′ . We distinguish two cases:

Case 1: ℓ′′ > ℓi. Then, in iteration ℓ′′ some voter in N ′′

must approve at least ℓ′′ candidates, one of which must
be c′. Therefore, c′ got bought in an iteration before ℓi a
contradiction.restatable

Case 2: ℓ′′ < ℓi. Then, someone in N ′′ must approve of c′.
Since ℓ′′ < ℓi this voter must approve less than ℓi candidates
in iteration ℓi and must therefore have contributed to buying
ℓi. Thus, this voter approves at least ℓi − 1 candidates in
W ′ contradicting ℓ′′ < ℓi.

Case 3: ℓ′′ = ℓi. Let N ′′
1 = {j ∈ N ′′ : c′ ∈ Aj}. If N ′′

1 =
N ′′ this set must necessarily include i who still approves
ℓ′′ candidates in the outcome, a contradiction. Therefore,
there is a j ∈ N ′′ \N ′′

1 . However, since for GJCR to select
k candidates, every “buyer” of c′ must approve exactly ℓi
candidates. Otherwise, in the price-system constructed by

GJCR, one of these “buyers” must pay less than k
n , leading

to a contradiction that we selected k candidates (see Brill
and Peters (2023, Proposition 8) for a full proof). Therefore,
we could have swapped c′′ with c′ increasing the number
of covered voters in iteration ℓi by at least 1, as there is
no voter who go down to 0 approvals after the removal of
c′. (The implicit assumption here is that ℓi is at least 2,
which must be true, as otherwise j approves nothing, and
we would not have selected k candidates.)
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