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ABSTRACT

In an era of “moving fast and breaking things”, regulators have moved slowly to
pick up the safety, bias, and legal debris left in the wake of broken Artificial Intelli-
gence (AI) deployment. While there is much-warranted discussion about how to
address the safety, bias, and legal woes of state-of-the-art AI models, rigorous and
realistic mathematical frameworks to regulate AI are lacking. Our paper addresses
this challenge, proposing an auction-based regulatory mechanism that provably
incentivizes devices (i) to deploy compliant models and (ii) to participate in the reg-
ulation process. We formulate AI regulation as an all-pay auction where enterprises
submit models for approval. The regulator enforces compliance thresholds and
further rewards models exhibiting higher compliance than their peers. We derive
Nash Equilibria demonstrating that rational agents will submit models exceeding
the prescribed compliance threshold. Empirical results show that our regulatory
auction boosts compliance rates by 20% and participation rates by 15% compared
to baseline regulatory mechanisms, outperforming simpler frameworks that merely
impose minimum compliance standards.

1 INTRODUCTION

The recent large-scale deployment of artificial intelligence (AI) models, such as large language
models (LLMs), has simultaneously boosted human productivity while sparking concern over safety
(e.g., hallucinations, bias, and privacy (Huang et al., 2025)). Many industry leaders, such as Google
and OpenAI, remain embroiled in controversy surrounding bias and misinformation (Brewster,
2024; Robertson, 2024; White, 2024), safety (Jacob, 2024; Seetharaman, 2024; White, 2023), as
well as legality and ethics (Bruell, 2023; Metz et al., 2024; Moreno, 2023) in their development and
deployment of LLMs. Furthermore, irresponsible LLM deployment risks the spread of misinformation
or propaganda by adversaries (Barman et al., 2024; Neumann et al., 2024; Sun et al., 2024). To date,
a consistent and industry-wide solution to oversee responsible AI deployment remains elusive.

Naturally, one solution to mitigate these dangers is to increase governmental regulation over AI
deployment. In the United States, there have been some strides, on federal (House, 2023) and state
levels (Information, 2024), to regulate the safety and security of large-scale AI systems (including
LLMs). While these recent executive orders and bills highlight the necessity to develop safety
standards and enact safety and security protocols, few details are offered. This follows a consistent
trend of well-deserved scrutiny towards the lack of AI regulation without providing an answer on
how to develop rigorous and realistic mathematical frameworks to achieve AI regulation.

We believe that a rigorous and realistic mathematical framework for AI regulation consists of four
key pieces: (a) the ability to model and to analyze participant decisions, (b) the existence of an
“optimal” participant equilibrium, (c) limited mathematical assumptions, and (d) straightforward
implementation of the framework by a regulator. This work takes a first step towards unlocking each
of these four keys, designing a regulatory framework to not only enforce strict compliance, e.g., safety
or ethical compliance, of deployed AI models, but simultaneously to incentivize the production of
more compliant AI models.

Specifically, we (a) formulate the AI regulatory process as an all-pay auction, where agents (enter-
prises) submit their models to a regulator. This novel auction-based regulatory mechanism leverages
a reward-payment protocol that (b) emits Nash Equilibria at which agents deploy models that are
more compliant than a prescribed threshold. Analysis of our auction-based approach (c) requires few
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Figure 1: Step-by-Step CIRCA Schematic. (Step 0) The regulator sets a compliance threshold,
ϵ, having corresponding price, pϵ, required to achieve ϵ. (Step 1) Agents evaluate their total value,
Vi, from model deployment value (vdi ) and potential regulator compensation (vpi ). Agents only
participate if their total value exceeds pϵ. (Step 2) Participating agents submit their models to the
regulator, accompanied by their bid bi, which reflects the amount spent to improve their model’s
compliance level. Models with bids below pϵ are automatically rejected. (Step 3) The submitted
models are randomly paired, and the more compliant model (i.e., the higher bid) in each pair wins.
In this example, agent 3 wins since b3 > b1. (Step 4) Winning models receive both a premium and
deployment value (i.e., agent 3 wins premium vp3 and deployment vd3 values), while losing models
receive only the deployment value (i.e., agent 1 only wins deployment value vd1 ).

assumptions. While inclusion of assumptions is non-ideal, the usage of these assumptions allows
us to advance AI regulation within a sparse, yet critical, area of research. We note, however, that
the two assumptions used in this work are used within existing regulatory and AI settings (Goulder
& Schein, 2013; Howe et al., 2024; Rajpurkar et al., 2016; Stavins, 2008; U.S. Food and Drug
Administration, 2022; Williams et al., 2018; Zaremba et al., 2025) (Section 3). Finally, our approach
is (d) simple and can easily be implemented by a regulator (Figure 1). Like existing regulatory
frameworks (Coglianese & Kagan, 2007; Powell, 2014; Van Norman, 2016), we only require the
regulator to: (i) prohibit deployment of models that fail to meet prescribed compliance thresholds,
and (ii) incentivize compliant model production and deployment by providing additional rewards to
agents that submit more compliant models than their peers.

We summarize our contributions as follows:

(1) AI Regulation: We propose a Compliance-Incentivized Regulatory-Centered Auction (CIRCA),
offering a novel approach towards AI regulation.

(2) Compliance-First: We establish, through derived Nash Equilibria, that agents are incentivized to
submit models surpassing the required compliance threshold.

(3) Effectiveness: Our empirical results show that CIRCA increases model compliance by over 20%
and boosts participation rates by 15% compared to baseline regulatory mechanisms.

2 RELATED WORKS

Regulation Frameworks for Artificial Intelligence. A handful of work focuses on regulation
frameworks for AI deployment (de Almeida et al., 2021; Jagadeesan et al., 2024; Rodríguez et al.,
2022). First, de Almeida et al. (2021) details the need for AI regulation and surveys existing proposals.
The proposals are ethical frameworks that express ethical decisions to make and dilemmas to address.
However, these proposals lack a mathematical framework to incentivize provably compliant models.
Rodríguez et al. (2022) utilize AI models to detect collusive auctions. This work is related to our
paper but in reverse: Rodríguez et al. (2022) applies AI to regulate auctions and to ensure that they
are not collusive. In contrast, our paper aims to use auctions to regulate AI deployment. Jagadeesan
et al. (2024) focuses on reducing barriers to entry for smaller companies that are competing against
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incumbent, larger companies. A multi-objective high-dimensional regression framework is proposed
to impose “reputational damage” upon companies that deploy unsafe AI models. This work allows
varying levels of safety constraints, where newer companies face less severe constraints in order
to spur their entry into the market, which is unrealistic in many settings and only considers simple
linear-regression models.

The closest related work to ours, Yaghini et al. (2024), proposes a regulation game for ensuring
privacy and fairness that is formulated as a Stackelberg game. This game is a multi-agent optimization
problem that is also multi-objective (for fairness and privacy). An equilibrium-search algorithm is
presented to ensure that agents remain on the Pareto frontier of their objectives (although this frontier
is estimated algorithmically). Notably, Yaghini et al. (2024) considers only one model builder (agent)
and multiple regulators that provide updates to the agent’s strategy. Here, a more realistic setup
is considered, where there are multiple agents and a single regulator whose goal is to incentivize
compliant model deployment. It falls out of the scope of a regulator’s job to collaborate with agents
to optimize their strategy. Furthermore, the mechanism proposed here is simple and efficient. No
Pareto frontier estimation or multiple rounds of optimization are required.

All-Pay Auctions. Compared to the dearth of literature in regulatory frameworks for AI, all-
pay auctions are well-researched (Amann & Leininger, 1996; Baye et al., 1996; Bhaskar, 2018;
DiPalantino & Vojnovic, 2009; Gemp et al., 2022; Goeree & Turner, 2000; Siegel, 2009; Tardos,
2017). These works formulate specific all-pay auctions and determine their equilibria. Some works
consider settings where agents have complete information about their rivals’ bids (Baye et al.,
1996) while others consider incomplete information, such as only knowing the distribution of agent
valuations (Amann & Leininger, 1996; Bhaskar, 2018; Tardos, 2017). One major application of
all-pay auctions are crowd-sourcing competitions. Many agents participate to win a reward, with
those losing incurring a small cost for their time, effort, etc. DiPalantino & Vojnovic (2009) is one of
the first works to model crowd-sourcing competitions as an all-pay auction. Further research, such as
Gemp et al. (2022), have leveraged AI to design all-pay auctions for crowd-sourcing competitions.
However, instead of crowd-sourcing, our paper formulates the AI regulatory process as an asymmetric
and incomplete all-pay auction. Previous analysis in this setting (Amann & Leininger, 1996; Bhaskar,
2018; Tardos, 2017) is leveraged to derive Nash Equilibria.

3 REGULATORY COMPLIANCE OF ARTIFICIAL INTELLIGENCE

There exists a regulator R with the compliance power to set and to enforce laws and regulations (e.g.,
U.S. government regulation on lead exposure). The regulator wants to regulate AI model deployment,
by ensuring that all models meet a compliance threshold ϵ ∈ (0, 1), e.g., the National Institute for
Occupational Safety and Health (NIOSH) regulates that N95 respirators filter out at least 95% of
airborne particles. If a model does not reach the compliance threshold ϵ, then it is deemed unsafe and
the regulator bars deployment. On the other side, there are n rational model-building agents. Agents
seek to maximize their own benefit, or utility.

Bidding & Evaluation. By law, each agent i must submit, or bid in auction terminology, its
model wi ∈ Rd for evaluation to the regulator before it can be approved for deployment. Let
S(w;x) : Rd → R+ output a compliance level (the larger the better) for model w given data x. In
effect, each agent, given its own data xi, bids a compliance level sAi := S(wi;xi) to the regulator.
Subsequently, the regulator, using its own data xR, independently evaluates the agent’s compliance
level bid as sRi := S(wi;xR). Agent and regulator evaluation data is assumed to be independent and
identically distributed (IID) xi, xR ∼ D.

Assumption 1. Agent and regulator evaluation data comes from the same distribution xi, xR ∼ D.

This assumption is realistic, because agents and regulators typically rely on standardized data collec-
tion processes (U.S. Food and Drug Administration, 2022) or widely accepted datasets (Rajpurkar
et al., 2016; Williams et al., 2018) for evaluation. This ensures a fair and unbiased assessment of
compliance. For example, FDA guidelines detail that data collection should assess efficacy and safety
across various subgroups, e.g., demographics, while also not changing “baseline data collection
determined by the clinical trial objectives” (U.S. Food and Drug Administration, 2022). In areas such
as Natural Language Processing, common datasets, or benchmarks, are employed to consistently
evaluate model comprehension (Rajpurkar et al., 2016; Williams et al., 2018), trustworthiness (Wang
et al., 2023), and security (Munoz et al., 2024) across various models. Therefore, it is reasonable to
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define agent i’s compliance level bid as si := Ex∼D[S(wi;x)]. The scenario where evaluation data
may be non-IID is addressed within Appendix G.

In regulatory settings, like the NIOSH example, a scalar compliance metric is often used. If multiple
compliance metrics must be monitored, S can be defined to aggregate and weigh the various metrics.
This too is realistic in AI. For example, LLM safety alignment literature uses a scalar-valued reward
to ensure a model is aligned (Christiano et al., 2017; Kaufmann et al., 2023; Ouyang et al., 2022).

Price of Compliance. We assume that there exists a strictly increasing function M : (0, 1) → (0, 1)
that determines the “price of compliance” (i.e., maps compliance into cost). Simply put, higher-
compliant models cost more to attain. Thus, we define the price of ϵ-compliance as pϵ := M(ϵ).

Assumption 2. ϵ > ϵ′ =⇒ M(ϵ) > M(ϵ′). A strictly increasing M maps compliance to cost.

One prominent existing example of this relationship is the cap-and-trade system that the Environ-
mental Protection Agency exercises to combat pollution (Goulder & Schein, 2013; Stavins, 2008).
Companies that pollute above a set emission threshold can reach compliance by purchasing al-
lowances, or pollution deficits, from other compliant companies. Thus, pollution compliance is
attained with greater cost. For an example within AI, models can achieve higher safety compliance
through Machine Unlearning (Liu et al., 2024) or AI Alignment (Dai et al., 2024). However, such
methods incur greater computational and data collection costs in exchange for improved compliance.
Furthermore, it has been found empirically that larger models and longer inference attain higher
levels of compliance in adversarial training, robustness transfer, and defense (Howe et al., 2024;
Zaremba et al., 2025). However, larger models and longer inference increase training and inference
costs. We validate the compliance-cost relationship empirically in Section 6.

Agent Costs. Realistically for agents, training a compliant model comes with added cost. Conse-
quently, each agent i must decide how much money to bid, or spend, bi to make its model compliant.
By Assumption 2, the compliance level of an agent’s model will be si = M−1(bi).

Agent Values. (1) Model deployment value vdi . While it costs more for agents to produce compliant
models, they gain value from having their models deployed. Intuitively, this can be viewed as the
expected value vdi of agent i’s model. The valuation for model deployment varies across agents
(e.g., Google may value having its model deployed more than Apple). (2) Premium reward value
vpi . Beyond value for model deployment, the regulator can also offer additional, or premium,
compensation valued as vpi by agents (e.g., tax credits for electric vehicle producers or Fast Track
and Priority Review of important drugs by the U.S. Food & Drug Administration). The regulator
provides additional compensation to agents whose models exceed the prescribed compliance threshold.
However, the value of this compensation varies across agents due to differing internal valuations.
It is unrealistic for the regulator to compensate all agents meeting the compliance threshold due
to budget constraints. Therefore, additional rewards are limited to a top-performing half of agents
surpassing the threshold. This ensures targeted compensation for agents enhancing compliance while
maintaining feasibility for the regulator.

Value Distribution. The total value for each agent i is defined as Vi := vdi + vpi , which represents the
sum of the deployment value and premium compensation. Although these values may vary widely
in practice, {Vi}ni=1 is normalized for all n agents to be between 0 and 1 for analytical tractability,
allowing a standardized range. Consequently, the price to achieve the compliance threshold ϵ is also
normalized to fall within the (0, 1) interval, i.e., pϵ ∈ (0, 1). The scaling factor λi ∼ Dλ(0, 1/2)
dictates the proportion of total value allocated to deployment versus compensation. Therefore, (i) the
deployment value is vdi := (1− λi)Vi, and (ii) the premium compensation value is vpi := λiVi. Both
Vi and λi are private to each agent, though the distributions DV and Dλ are known by participants.
The maximum allowable factor is set at λi = 1/2, reflecting the realistic constraint that compensation
should not exceed deployment value. Although Section 5 primarily considers λi ≤ 1/2, theoretical
extensions can be made for scenarios where λi > 1/2.

All-Pay Auction Formulation. Overall, agents face a trade-off: producing higher-compliant models
garners value, via the regulator, but incurs greater costs. Furthermore, in order to attain the rewards
detailed above, agents must submit a model with a compliance level at least as large as ϵ. This
problem is formulated as an asymmetric all-pay auction with incomplete information (Amann &
Leininger, 1996; Bhaskar, 2018; Tardos, 2017). An all-pay auction is used since agents incur
an unrecoverable cost, training costs, when submitting their model to regulators. The auction is
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formulated as asymmetric with incomplete information since valuations Vi are private and differ for
each agent.

Agent Objective. The objective, for each model-building agent i, is to maximize its own utility
ui. Namely, each agent seeks to determine an optimal compliance level to bid to the regulator bi.
However, given the all-pay auction formulation, agents may need to take into account all other agents’
bids b−i in order to determine their optimal bid b∗i ,

b∗i := argmax
bi

ui(bi; b−i). (1)

A major portion of this paper is constructing an auction-based mechanism, thereby designing the
utility of each agent, such that each participating agent maximizes its utility when each bids more
than “the price to obtain the minimum compliance threshold”, i.e., b∗i > pϵ. To begin, a simple
mechanism is provided, already utilized by regulators, that does not accomplish this goal, before
detailing the auction-based mechanism CIRCA that provably ensures that b∗i > pϵ for all agents.

4 RESERVE THRESHOLDING: BASE REGULATION

The simplest method to ensure model compliance is for the regulators to set a reserve price, or
minimum compliance level. This mechanism is coined the multi-winner reserve thresholding auction,
where the regulator awards a deployment reward, vdi , to each agent whose model meets or exceeds the
compliance threshold ϵ. Within this auction, each agent i’s utility is mathematically formulated as,

ui(bi; b−i) =

{
−bi if bi < pϵ,

vdi − bi if bi ≥ pϵ.
(2)

However, the formulation above is ineffective at incentivizing greater than ϵ-level compliance.

Theorem 1 (Reserve Thresholding Nash Equilibrium). Under Assumption 2, agents participating
in Reserve Thresholding Equation 2 have an optimal bid and utility of,

b∗i = pϵ, ui(b
∗
i ; b−i) = vdi − pϵ, (3)

and submit models with the following compliance level,

s∗i =

{
ϵ if ui(b

∗
i ; b−i) > 0,

0 (no submission) else.
(4)

When a regulator implements reserve thresholding, as formally detailed in Theorem 1, agents exert
minimal effort, submitting models that just meet the required compliance threshold ϵ. While this
approach ensures that all deployed models satisfy minimum compliance, it fails to encourage agents
to build models with compliance levels exceeding ϵ. Additionally, agents whose deployment rewards
are less than the cost of achieving compliance, i.e., vdi < pϵ, lack incentive to participate in the
regulatory process. That lack of incentive leads to reduced participation rates (Remark 1).

Remark 1 (Lack of Incentive). Each agent is only incentivized to submit a model with compliance
s∗i = ϵ. Our goal is to construct a mechanism that incentivizes agents to build models that possess
compliance levels exceeding the minimum threshold: s∗i > ϵ.

5 COMPLIANCE-INCENTIVIZED REGULATION: AUCTION-BASED APPROACH

To alleviate the lack of incentives within simple regulatory auctions, such as the one in Section 4, we
propose a regulatory all-pay auction that mandates an equilibrium where agents submit models with
compliance levels exceeding ϵ.

Algorithm Description. The core component of the auction is that agent compliance levels are
randomly compared against one another, with the regulator rewarding those having the superior
compliant model with premium compensation. Performing the randomization process multiple times
reduces the likelihood of unfair outcomes. Only agents with models that achieve a compliance level of
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Algorithm 1 Compliance-Incentivized Regulatory-Centered Auction (CIRCA)
1: Each agent i receives their total value Vi and partition ratio λi from “nature”
2: Agents determine their optimal bids b∗i and corresponding utility ui(b

∗
i ) ▷ via Corollaries 1 or 2

3: Agents decide to participate, the set of participating agents is P = {j ∈ [n]
∣∣ uj(b

∗
j ;b−i) > 0}

4: for participating agents j ∈ P do
5: Spend b∗j to build a model, with compliance sj = M−1(b∗j ), and submit it to the regulator
6: end for
7: Regulator verifies compliance levels, clearing models for deployment when sj ≥ ϵ ∀j ∈ P
8: Regulator pairs up models, awarding compensation to agents with the more compliant model

ϵ or higher are eligible to participate in the comparison process; models that do not meet this threshold
are automatically rejected. The detailed algorithmic block of CIRCA is depicted in Algorithm 1.

Agent Utility. The utility for each agent i is therefore defined as in Equation 5,

ui(bi; b−i) =
(
vdi + vpi · 1(bi>bj)

)
· 1(bi≥pϵ) − bi. (5)

Per regulation guidelines, the compliance criteria of an accepted model must at least be ϵ. Equation 5
dictates that values are only realized by each agent if its model produces a bid larger than the required
cost to reach ϵ-compliance, 1(bi≥pϵ). Furthermore, agents only realize additional compensation value
vpi from the regulator if their compliance level outperforms a randomly selected agent j, 1(bi>bj).
Any agent that bids bi = 1 will automatically win and realize both vpi and vwj . It is important to note
that the cost that every agent incurs when building its model is sunk: if the model is not cleared for
deployment, the cost −bi is still incurred. The agent utility is rewritten in a piece-wise manner below,

ui(bi; b−i) =


−bi if bi < pϵ,

vdi − bi if bi ≥ pϵ and bi < bj random bid bj ,

vdi + vpi − bi if bi ≥ pϵ and bi > bj .

(6)

By introducing additional compensation, vpi , and, crucially, conditioning it on whether an agent’s
model is more compliant than that of another random agent, it becomes rational for agents to bid
more than the price to obtain the minimum compliance threshold (unlike Theorem 1).

Incentivizing Agents to Build Compliant Models. We establish a guarantee that agents participating
in CIRCA maximize their utility with an optimal bid b∗i that is larger than “the price required to attain
ϵ compliance” (i.e., b∗i > pϵ) in Theorem 2 below. Furthermore, agents bid in proportion to the value
for additional compensation vpi that the regulator offers for extra-compliant models.

Theorem 2. Agents participating in CIRCA Equation 6 follow an optimal bidding strategy b̂∗i of,

b̂∗i := pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz > pϵ, (7)

where Fv(·) denotes the cumulative distribution function of the random premium reward variable
corresponding to the premium reward vpi = Viλi.

Theorem 2 applies to any distribution for Vi and λi on [0, 1] and [0, 1/2], i.e., Vi ∼ DV (0, 1) and
λi ∼ Dλ(0, 1/2), respectively. Determining specific optimal bids, utility, and model compliance
levels requires given distributions for Vi and λi. Analysis of all-pay auctions (Amann & Leininger,
1996; Bhaskar, 2018; Tardos, 2017), as well as many other types of auctions, often assume a Uniform
distribution for valuations. Therefore, our first analysis of CIRCA, below in Corollary 1, presumes
Uniform distributions for Vi and λi.

Remark 2 (Improved Model Compliance). Participating agents will submit models that are more
compliant than the regulator’s compliance threshold, s∗i = M−1

(
b∗i
)
> ϵ.

(Special Case 1) Uniform Vi and λi: Optimal Agent Strategy. Corollary 1 determines that a
participating agent’s optimal strategy to maximize its utility is to submit a model with compliance
levels larger than ϵ when their values Vi and λi come from a Uniform distribution.
Corollary 1 (Uniform Nash Bidding Equilibrium). Under Assumption 2, for agents having total
value Vi and scaling factor λi both stemming from a Uniform distribution, with vdi = (1−λi)Vi, and
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Figure 2: Validation of Uniform Nash Bidding Equilibrium. Agent utility is maximized when
agents follow the theoretically optimal bidding function shown in Equation equation 8. Across
varying compliance prices, pϵ = 0.25 (left), 0.5 (middle), 0.75 (right), agents attain less utility when
they deviate from the optimal bid (red line) derived in Corollary 1.

vpi = λiVi, their optimal bid and utility participating in CIRCA Equation 6 are b∗i := min{b̂∗i , 1},

b̂∗i =

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 ,

(8)

ui(b
∗
i ; b−i) =

{
2(vp

i )
2 ln(pϵ)

pϵ−1 + vdi − b∗i if 0 ≤ vpi ≤ pϵ

2 ,
2(vp

i )
2(ln(2pϵ)−1)+pϵ

pϵ−1 + vdi − b∗i if pϵ

2 ≤ vpi ≤ 1
2 .

(9)

Participating agents submit models with compliance,

s∗i :=

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no submission) else.
(10)

(Special Case 2): Beta Vi and Uniform λi: Optimal Agent Strategy. In many instances, a realistic
distribution for Vi is a Beta distribution with α, β = 2. This distribution is Gaussian-like, with the
bulk of the probability density placed in the middle. As such, it is realistic when agent values do not
congregate amongst one another and outliers (near 0 or 1) are rare. The performance of CIRCA in
this setting is analyzed in Corollary 2. Corollary 2 states that, under a Beta(2,2) distribution for Vi,
agent i maximizes its utility with an optimal bid b∗i larger than the price of ϵ compliance, b∗i > pϵ,
resulting in a model above the ϵ-compliance threshold. Furthermore, Corollaries 1 and 2 surpass the
baseline optimal bid b∗i = pϵ for Reserve Thresholding (Theorem 1).
Corollary 2 (Beta Nash Bidding Equilibrium). Under Assumption 2, let agents have total value Vi

and scaling factor λi stem from Beta (α, β = 2) and Uniform distributions respectively, with vdi =
(1− λi)Vi and vpi = λiVi. Denote the CDF of the Beta distribution on [0, 1] as Fβ(x) = 3x2 − 2x3.
The optimal bid and utility for agents participating in CIRCA Equation 6 are b∗i := min{b̂∗i , 1},

b̂∗i =

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
pϵ

2 ≤ vpi ≤ 1/2,
(11)

u(b∗i ; b−i) =

vdi +
6(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
− b∗i 0 ≤ vpi ≤ pϵ

2 ,

vdi +
vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

− b∗i
pϵ

2 ≤ vpi ≤ 1/2.
(12)

Participating agents submit models with compliance,

s∗i =

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no submission) else.
(13)

Remark 3 (Improved Utility & Participation). Through introduction of premium compensation,
agent utility is improved, in Equations 9 and 12, versus Reserve Thresholding in Equation 3. As a
result, more agents break the zero-utility barrier of entry for participation, boosting both overall
agent utility and participation rate.

The proofs of Theorems 1 and 2 as well as Corollaries 1 and 2 are found within Appendix D. Since
the premium compensation value vpi is a product of two random variables, the PDF and CDF of vpi
becomes a piece-wise function (as shown within Appendix D). As a result, the optimal bidding and
subsequent utility also becomes piece-wise in both Corollaries 1 and 2. Empirically, the correctness
of the computed PDF and CDFs are verified within Appendix E.
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Figure 3: Improved Compliance with Uniform & Beta Values. When total value stems from a
(left) Uniform Vi ∼ U(0, 1) or (right) Beta distribution Vi ∼ Beta(α = β = 2), agents bid more
compliant models in CIRCA than Reserve Thresholding.

6 EXPERIMENTS

Section 5 demonstrates that CIRCA creates incentives for any agents to submit compliant-exceeding
models and to participate at rates higher than the baseline Reserve Thresholding mechanism in
Section 4. Below, we validate these theoretical results empirically.

Experimental Setup. A regulatory setting with n = 100, 000 agents is simulated below. Each agent
i receives a random total value Vi from either a Uniform (Corollary 1) or Beta(2,2) (Corollary 2)
distribution. Each agent also receives a scaling factor λi that splits the total value into deployment
vdi = (1− λi)Vi and premium compensation vpi = λiVi values. Once private values are provided,
agents calculate their bid according to the optimal strategies in Theorems 1, 2 and Corollaries 1, 2.

Lack of Baseline Regulatory Mechanisms. To the best of knowledge, there are no other comparable
compliance mechanisms to regulate AI. As a result, the Reserve Threshold mechanism that is
proposed in Section 4 is used as a baseline. While simple, the Reserve Threshold mechanism is a
realistic baseline to compare against. For example, existing regulatory bodies, like the Environmental
Protection Agency (EPA), follow similar steps before clearing products (e.g., the EPA authorizes
permits for discharging pollutants into water sources once water quality criteria are met).

Verifiable Nash Bidding Equilibria. The first experimental goal is to validate that the theoretical
bidding functions found in Corollaries 1 and 2 constitute Nash Equilibria. That is, an agent receives
worse utility if it deviates from this bidding strategy if other agents abide by it. To test this, the
optimal bid for a single agent is compared versus 100, 000 others. The single agent’s optimal bid is
varied on a range up to ±50%. Note that comparisons only occur if the other agent’s bid is at least pϵ,
in order to accurately reflect how the auction mechanism in Algorithm 1 functions.

In Figures 2 and 8 (Appendix E), the average utility over all 100, 000 comparisons is plotted. One
can see that both the Uniform and Beta optimal-bidding functions maximize agent utility and thus
constitute Nash Equilibria. Utility decays much quicker when reducing the bid, since agents are (i)
less likely to win the premium reward and (ii) at risk of losing the value from deployment if the bid
does not reach pϵ. At a certain point, utility increases linearly once the agent continuously fails to bid
pϵ. The linear improvement stems from the agent saving the cost of its bid, −bi, shown in Equation 6.

Improved Agent Participation and Bid Size. For both Uniform and Beta(2,2) distributions, shown
in Figures 3 and 4, the proposed mechanism (CIRCA) increases participation rates and average bids
by upwards of 15% and 20% respectively. At the endpoints of possible price thresholds, pϵ = 0 and 1,
both mechanisms perform similarly. The reason is that at a low compliance threshold price pϵ ≈ 0,
agents are highly likely to have a total value Vi larger than a value close to zero. The inverse is true
for pϵ ≈ 1, where it is unlikely that agents will have Vi larger than a value close to 1. The proposed
mechanism shines when compliance threshold prices are in the middle; the premium compensation
offered by the regulator incentivizes agents to participate and bid more for the chance to win.

Compliance-Cost Case Study. Below, a case study is conducted to demonstrate that in
realistic settings, compliance is mapped to cost in a monotonically increasing way (as de-
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Figure 4: Improved Participation with Uniform & Beta Values. When total value stems from a
(left) Uniform Vi ∼ U(0, 1) or (right) Beta distribution Vi ∼ Beta(α = β = 2), agents participate at
a higher rate in CIRCA than Reserve Thresholding.

tailed in Assumption 2). While there are many compliance metrics to consider when gaug-
ing AI deployment, model fairness is analyzed, via equalized odds, for image classification
in this study. Equalized odds measures if different groups have similar true positive rates
and false positive rates (lower is better). Multiple VGG-16 models are trained on the Fair-
face dataset (Karkkainen & Joo, 2021) for fifty epochs (repeated ten times with different ran-
dom seeds), and consider a gender classification task with race as the sensitive attribute. Mod-
els with the largest validation classification accuracy during training are selected for testing.

Figure 5: Strictly Monotonic Compliance-
Cost Relationship. As the percentage of
minority class data increases (greater cost),
equalized odds metric improves (greater com-
pliance) on Fairface.

Many types of costs exist for training compliant
models, such as extensive architecture and hyper-
parameter search. In this study, the cost of an agent
acquiring more minority class data is considered. Ac-
quiring more minority class data leads to a larger and
more balanced dataset. Various mixtures of training
data are simulated, starting from a 95:5 skew and
scaling up to fully balanced training data with respect
to the sensitive attribute. In this study, equalized odds
performance is gauged on well-balanced test data for
the models trained on various mixtures of data. The
results of this case study are shown in Figure 5 and
Table 3 (Appendix E).

As expected, in Table 3, the equalized odds score
decreases (more compliant model) when collecting
more minority class data (increased cost). To adjust
equalized odds to fit into the setting where ϵ ∈ (0, 1),
the original equalized odds score are inverted and normalized. In Figure 5, one can see that compliance
level is indeed monotonically increasing with respect to the cost.

7 CONCLUSION

As AI models grow, the risks associated with their misuse become significant, particularly given their
opaque, black-box nature. Establishing robust algorithmic safeguards is crucial to protect users from
unethical, unsafe, or illegally-deployed models. In this paper, we present a regulatory framework
designed to ensure that only models deemed compliant by a regulator can be deployed for public use.
Our key contribution is the development of an auction-based regulatory mechanism that simultane-
ously (i) enforces compliance standards and (ii) provably incentivizes agents to exceed minimum
compliance thresholds. This approach encourages broader participation and the development of
more compliant models compared to baseline regulatory methods. Empirical results confirm that our
mechanism increases agent participation by 15% and raises agent spending on compliance by 20%,
demonstrating its effectiveness to promote more compliant AI deployment.
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ETHICS & IMPACT STATEMENT

Unchecked AI deployment runs the risk of unsafe consequences that can harm users and stoke
division within our society. It is imperative to outline and employ regulatory frameworks to mitigate
these dangers and ensure user safety. However, regulation in AI is heavily under-researched. The
goal of this paper is to take a step towards designing realistic and effective regulation to ensure AI
model compliance. We hope that the impact of our paper will spur future research into regulatory AI,
and soon provide a robust solution for governments to implement.

REPRODUCIBILITY STATEMENT

As this paper is mainly theoretical in nature, our reproducibility statement pertains to the assumptions
and proofs used to derive our Nash Equilibria. In Section 3, we introduce both of our assumptions and
detail why they are justifiable. In Appendix D, proofs of Theorems 1 and 2 as well as Corollaries 1 and
2 are well-detailed. Steps of all proofs are carefully documented to ensure that a reader can reproduce
our theoretical results on their own. Finally, we have provided the code for our experimental results
for viewing and reproduction. This code will become open-sourced after publication of the paper.
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A SUMMARY AND COMPARISON OF CONTRIBUTIONS

Table 1: Comparison of AI Regulation Frameworks
Feature CIRCA

(This Paper)
Jagadeesan et al.

(2024)
Yaghini et al.

(2024)
All-Pay Auctions

(General)
Overview Formulates AI

regulation as an
auction to derive
Nash Equilibria.

Penalizes larger
companies more

for unsafe AI
models.

Introduces a
multi-agent,

multi-objective
regulatory game.

Diverse
formulations of
all-pay auctions.

Regulatory
Scheme?

✓ ✗ ✓ ✗

Compliance-
Aware

Mechanism?

✓ ✗ ✓ ✗

Theoretical
Guarantees?

✓ ✗ ✗ ✓

Incentivizing
Over-

Compliance?

✓ ✗ ✗ ✗

Multiple
Model

Builders?

✓ ✓ ✗ ✓

Single Round
(Simple)?

✓ ✓ ✗ ✓

CIRCA introduces novel theoretical analysis of compliance-aware, all-pay auctions. Here are some of
the highlights:

1. Our main technical contribution is the introduction and equilibrium analysis of a compliance-
aware, multi-tiered all-pay auction, which has not been previously studied. While traditional
all-pay auctions have been explored in economic theory, prior work (e.g., Jagadeesan et al.
(2024), Yaghini et al. (2024)) either does not target compliance, lacks theoretical guarantees,
or does not use comparison-based mechanisms. Table 1 outlines these distinctions in detail.

2. Specifically, we introduce two key theoretical contributions:

• Theorem 1: Equilibrium analysis of a reserve-threshold-modified all-pay auction.

• Theorem 2: Equilibrium analysis under a novel pairwise comparison mechanism
(CIRCA) that rewards the more compliant of two randomly selected agents.

3. We also provide generalizability proofs under realistic value distributions (Corollaries 1
and 2). These results go beyond derivations and reflect new applications of game-theoretic
reasoning to regulatory.
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B NOTATION TABLE

Table 2: Notating and Defining all Variables Listed Within CIRCA.
Definition Notation
Regulator R

Number of Agents n

Compliance Threshold ϵ

Compliance-to-Cost Function M

Price of Attaining Compliance pϵ

Agent i Bid bi

Agent i’s Optimal Bid b∗i

All Other Agents Bids b−i

Agent i Utility ui

Agent i Model Compliance si

Total Value for Agent i Vi

Total Value Distribution DV

Agent i Scaling Factor λi

Scaling Factor Distribution Dλ

Deployment Value for Agent i vdi

Premium Compensation Value for Agent i vpi

Probability Density Function for Premium Compensation fv

Cumulative Distribution Function for Premium Compensation Fv

C BINARY AND DISCRETE COMPLIANCE IN CIRCA

Our framework still works within binary or discrete settings. This is important when dealing with
properties or metrics that are not continuous, like how the EU AI Act evaluates AI risk into minimal,
limited, high, and unacceptable tiers (Act, 2024). The rationale behind why CIRCA works for binary
or discrete settings is that models can still be ranked or compared against each other depending on
how well they satisfy the given metric or property.

For example, models can be separated into Pass/Fail categories, where the Pass category can be further
split into High/Medium/Low sub-categories. All models achieving at least Low Pass compliance are
cleared for deployment. While a model either complies or does not, the models can still be gauged on
how well they comply (e.g., High/Medium/Low). Since a ranking of models can still be generated,
premium rewards can be provided to higher-passing models.

In situations where the regulatory policy is black and white, for example “your model must be trained
with differential privacy”, CIRCA still holds as an ordering or ranking between models can still be
ascertained. In the example of differential privacy, any model that is trained with differential privacy
would be cleared for deployment. However, it is also true that differential privacy can be gauged by
a level of privacy ϵDP (not to be confused with our compliance threshold ϵ). Models with smaller
values of ϵDP will be provided additional premium rewards since they are more compliant (i.e., more
private). Thus, CIRCA would still incentivize agents to become more private even when there is a
binary compliance metric.
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D THEORETICAL PROOFS

Below, we provide the full proofs of our Theorems and Corollaries presented within our work.

D.1 PROOF OF THEOREM 1

Theorem 1 (Restated). Under Assumption 2, agents participating in Reserve Thresholding Equation 2
have an optimal bid and utility of,

b∗i = pϵ, ui(b
∗
i ; b−i) = vdi − pϵ,

and submit models with the following compliance level,

s∗i =

{
ϵ if ui(b

∗
i ; b−i) > 0,

0 (no submission) else.

Proof. From agent i’s utility within Reserve Thresholding, Equation 2, it is clear that ui(0) = 0. We
proceed to break the proof up into cases where agents have (1) a deployment value equal to or less
than the price of compliance pϵ and (2) a deployment value larger than pϵ.

Case 1: vdi ≤ pϵ. From Equation 2, if vdi ≤ pϵ then an agent will never attain positive utility,

max
bi∈(0,1]

vdi · 1bi≥pϵ
− bi ≤ max

bi∈(0,1]
pϵ · 1bi≥pϵ

− bi = max
bi∈[pϵ,1]

pϵ − bi = pϵ − pϵ = 0. (14)

argmax
bi∈(0,1]

ui(bi) = pϵ. (15)

For an agent with deployment value at most equal to pϵ, the upper bound on attainable utility when it
participates, i.e., bi ∈ (0, 1], is zero (Equation 14). This maximum utility is attained when bidding
bi = pϵ (Equation 15). Thus, agents have nothing to gain by participating, as they already start at
zero utility ui(0) = 0. As a result, agents will not submit a model, s∗i = M(0) = 0.

Case 2: vdi > pϵ. Similar steps to Case 1 above,

max
bi∈(0,1]

vdi · 1bi≥pϵ
− bi > max

bi∈(0,1]
pϵ · 1bi≥pϵ

− bi = max
bi∈[pϵ,1]

pϵ − bi = pϵ − pϵ = 0. (16)

b∗i = argmax
bi∈(0,1]

ui(bi) = pϵ −→ ui(b
∗
i ) = vdi − pϵ > 0. (17)

An agent with deployment value larger than pϵ will have a maximal utility that is non-negative
when it participates (Equation 16). Maximal utility is attained when bidding b∗i = pϵ (Equation 17).
Furthermore, at this optimal bid, the corresponding compliance level is s∗i = M−1(pϵ) = ϵ.

D.2 PROOF OF THEOREM 2

Theorem 2 (Restated). Agents participating in CIRCA Equation 6 will follow an optimal bidding
strategy b̂∗i of,

b̂∗i := pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz > pϵ,

where Fv(·) denotes the cumulative distribution function of the random premium reward variable
corresponding to the premium reward vpi = Viλi.

Proof. Before beginning our proof, we note that each agent i cannot alter its own valuation vpi for
winning the all-pay auction. Each valuation is private (unknown by other agents) and predetermined:
total reward Vi and partition factor λi are randomly selected from a given distribution D on [0, 1]
and [0, 1/2] respectively by “nature”. We define the cumulative distribution function for the auction
reward vpi = Viλi as Fv(·) and the probability distribution function as fv(·).
From Equation 6, we find that an agent i that does not participate (i.e., bi = 0) receives no utility,

ui(0) = 0. (18)
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An agent receives negative utility if its bid does not reach the price of compliance pϵ,

max
bi∈(0,pϵ)

ui(bi) < 0. (19)

Consequently, rational agents will either opt not to participate (notated as the set of agents N ) or
participate (notated as the set of agents P ) and bid at least pϵ. We define these groups as,

N = {i ∈ [n] | max
bi∈[0,1]

ui(bi) ≤ 0}, (20)

P = {i ∈ [n] | max
bi∈[0,1]

ui(bi) > 0}. (21)

From here, we only focus on agents i ∈ P which participate (i.e., have utility to be gained by
participating). As a result from Equations 18 and 19, Equation 21 transforms into,

P = {i ∈ [n] | max
bi∈[pϵ,1]

ui(bi) > 0}. (22)

The result of Equation 22 is that participating agents bid at least pϵ. This is important, as every
participating agent knows that all rival agents j they will possibly be compared against have bj ∈
[pϵ, 1]. Agents can dictate how much they bid, and we design our auction to ensure that agents bid in
proportion to their valuation.

Following previous literature (Amann & Leininger, 1996; Bhaskar, 2018; Tardos, 2017), we desire
a monotone increasing bidding function b(·) : [0, 1/2] → [pϵ, 1] that each agent follows. We will
prove that each agent i’s best strategy is to bid its own valuation b(vpi ) irrespective of other agent
bids (Nash Equilibrium). Using a bidding function transforms agent utility,

ui(bi) =
(
vdi + vpi · 1(if i wins auction)

)
· 1(if bi≥pϵ)︸ ︷︷ ︸

satisfied for agents i∈P

− bi,

= P
(
b(bi) > b(bj)

)
vpi − b(bi) + vdi , bj ∼ randomly sampled agent bid. (23)

Since b(x) is monotone increasing up to 1, agents bidding b = 1 automatically win, the utility
function above can be simplified as,

ui(bi) = vpi P
(
bi > bj

)
− b(bi) + vdi , bj ∼ randomly sampled agent bid,

= vpi Fv(bi)− b(bi) + vdi . (24)

Taking the derivative and setting it equal to zero yields,

d

dbi
ui(bi) = vpi fv(bi)− b′(bi) = 0. (25)

As agents bid in proportion to their valuation, we solve the first-order equilibrium conditions at
bi = vpi ,

b′(vpi ) = vpi fv(v
p
i ). (26)

Integrating by parts, and knowing ϵ is the minimum bid (b(0) = pϵ), reveals our optimal bidding
function,

b(vpi )− b(0) =

∫ x

0

vpi fv(v
p
i )dv

p
i ,

b(vpi )− pϵ = vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz,

b̂∗i = b(vpi ) : = pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz. (27)
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D.3 PROOF OF COROLLARY 1

Corollary 1 (Restated). Under Assumption 2, for agents having total value Vi and scaling factor λi

both stemming from a Uniform distribution, with vdi = (1− λi)Vi, and vpi = λiVi, their optimal bid
and utility participating in CIRCA Equations 6 are b∗i := min{b̂∗i , 1},

b̂∗i =

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 ,

ui(b
∗
i ; b−i) =

{
2(vp

i )
2 ln(pϵ)

pϵ−1 + vdi − b∗i if 0 ≤ vpi ≤ pϵ

2 ,
2(vp

i )
2(ln(2pϵ)−1)+pϵ

pϵ−1 + vdi − b∗i if pϵ

2 ≤ vpi ≤ 1
2 .

Participating agents submit models with compliance,

s∗i :=

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no submission) else.

Proof. Let vpi := Viλi, where Vi ∼ U [pϵ, 1] and λi ∼ U [0, 1/2]. The reason that Vi is within the
interval [pϵ, 1], is that all participating agents must have a value of at least pϵ or else they would not
have rationale to bid. The smallest value of Vi such that this is possible is pϵ, so it is the lower bound
on this interval. Our first goal is to find the PDF of vpi , fvp

i
(·).

We begin solving for fvp
i
(·) by using a change of variables. For the product of two random variables

v = x1 · x2, let y1 = x1 · x2 and y2 = x2. Thus, we find inversely that x2 = y2 and x1 = y1/y2.
Since x1 and x2 are independent and both uniform, we find that,

fy1,y2
(x1, x2) = (

1

1− pϵ
)(

1

1/2− 0
) =

2

1− pϵ
. (28)

When using the change of variables this becomes,

fy1,y2(y1, y2) = fy1,y2(x1, x2)|J | =
2

(1− pϵ)y2
, |J | =

∣∣∣∣ (1/y2 −y1/y
2
2

0 1

) ∣∣∣∣ = 1/y2 (29)

Marginalizing out y2 (a non-negative value) yields,

fy1
(y1) =

∫ ∞

0

2

(1− pϵ)y2
dy2. (30)

The bounds of integration depend upon the value of y1. The change of variable to the (y1, y2)
space, where 0 ≤ y1, y2 ≤ 1/2, results in a new region of possible variable values. This region is
a triangle bounded by the three vertices: (0, 0), (pϵ/2, 1/2), and (1/2, 1/2). Thus, the bounds of
marginalization depend upon the value of y1. For 0 ≤ y1 ≤ pϵ/2 we have,

fy1(y1) =

∫ y1/pϵ

y1

2

(1− pϵ)y2
dy2 =

2

(1− pϵ)
[ln(y2)

∣∣y1/pϵ

y1
] =

2 ln(pϵ)

(pϵ − 1)
. (31)

For pϵ ≤ y1 ≤ 1/2 we have,

fy1
(y1) =

∫ 1/2

y1

2

(1− pϵ)y2
dy2 =

2

(1− pϵ)
[ln(y2)

∣∣1/2
y1

] =
2 ln(2y1)

(pϵ − 1)
. (32)

Thus, as a piecewise function the PDF is formally,

fy1
(y1) =

{
2 ln(pϵ)
(pϵ−1) for 0 ≤ y1 ≤ pϵ

2 ,
2 ln(2y1)
(pϵ−1) for pϵ

2 ≤ y1 ≤ 1/2.
(33)

Now, the CDF is determined through integration,

Fy1(y1) =

∫ y1

0

fy1(y1)dy1 =

{
2y1 ln(pϵ)
(pϵ−1) for 0 ≤ y1 ≤ pϵ

2 ,
2y1(ln(2y1)−1)+pϵ

(pϵ−1) for pϵ

2 ≤ y1 ≤ 1/2.
(34)
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We can integrate the CDF to get,∫ y1

0

Fy1
(y1) =

{
y2
1 ln(pϵ)
(pϵ−1) for 0 ≤ y1 ≤ pϵ

2 ,
4y2

1(2 ln(2y1)−3)+8y1pϵ−p2
ϵ

8(pϵ−1) for pϵ

2 ≤ y1 ≤ 1/2.
(35)

Plugging all of this back into Equation 7 yields,

b̂∗i =

{
pϵ + vpi

2vp
i ln(pϵ)

pϵ−1 − (vp
i )

2 ln(pϵ)

pϵ−1 ,

pϵ + vpi
2vp

i (ln(2v
p
i )−1)+pϵ

(pϵ−1) − 4(vp
i )

2(2 ln(2vp
i )−3)+8vp

i pϵ−p2
ϵ

8(pϵ−1) ,

=

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 .

(36)

Since bi cannot be larger than 1, we cap the bidding function at one via,

b∗i := min{b̂∗i , 1}. (37)

The utility gained by agent i for using such a bidding function is,

u(b∗i ) =

{
vdi − b∗i +

2(vp
i )

2 ln(pϵ)

pϵ−1 for 0 ≤ vpi ≤ pϵ

2 ,

vdi − b∗i +
2(vp

i )
2(ln(2vp

i )−1)+pϵ

(pϵ−1) for pϵ

2 ≤ vpi ≤ 1/2.
(38)

When this utility is larger than 0, the agent will participate otherwise the agent will not submit a
model to the regulator. Finally, we can find the optimal compliance level by using Assumption 2,

s∗i := M−1
(
b∗i
)
. (39)

D.4 PROOF OF COROLLARY 2

Corollary 2 (Restated). Under Assumption 2, let agents have total value Vi and scaling factor λi

stem from Beta (α = β = 2) and Uniform distributions respectively, with vdi = (1 − λi)Vi and
vpi = λiVi. Denote the CDF of the Beta distribution on [0, 1] as Fβ(x) = 3x2 − 2x3. The optimal
bid and utility for agents participating in CIRCA Equation 6 are,

b∗i := min{b̂∗i , 1}, b̂∗i =

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
if pϵ

2 ≤ vpi ≤ 1
2 ,

u(b∗i ; b−i) =

vdi +
6(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
− b∗i for 0 ≤ vpi ≤ pϵ

2 ,

vdi +
vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

− b∗i for pϵ

2 ≤ vpi ≤ 1/2.

Participating agents submit models with compliance,

s∗i =

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.

Proof. Similar to Corollary 1, we begin solving for fvp
i
(·) using a change of variables. For the

product of two random variables v = x1 · x2, let y1 = x1 · x2 and y2 = x2. Inversely, x2 = y2 and
x1 = y1/y2. While x1 and x2 are independent, x1 comes from a Beta distribution and x2 from a
Uniform one. The PDF and CDF of a Beta distribution, with α = β = 2, on [0, 1] are defined as,

fβ(x) := 6x(1− x), (40)

Fβ(x) := 3x2 − 2x3. (41)

Now, the PDF over y1, y2 is defined as,

fy1,y2(x1, x2) = (
6x1(1− x1)

1− Fβ(pϵ)
)(

1

1/2− 0
) =

12x1(1− x1)

1− Fβ(pϵ)
. (42)
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When using the change of variables this becomes,

fy1,y2
(y1, y2) = fy1,y2

(x1, x2)|J | =
12y1(1− y1

y2
)

(1− Fβ(pϵ))y22
, |J | =

∣∣∣∣ (1/y2 −y1/y
2
2

0 1

) ∣∣∣∣ = 1/y2

(43)
Marginalizing out y2 (a non-negative value) yields,

fy1(y1) =
12y1

1− Fβ(pϵ)

∫ ∞

0

1

y22
− y1

y32
dy2. (44)

The bounds of integration depend upon the value of y1. The change of variable to the (y1, y2)
space, where 0 ≤ y1, y2 ≤ 1/2, results in a new region of possible variable values. This region is
a triangle bounded by the three vertices: (0, 0), (pϵ/2, 1/2), and (1/2, 1/2). Thus, the bounds of
marginalization depend upon the value of y1. For 0 ≤ y1 ≤ pϵ/2 we have,

fy1(y1) =
12y1

1− Fβ(pϵ)

∫ y1/pϵ

y1

1

y22
− y1

y32
dy2 =

12y1
1− Fβ(pϵ)

[− 1

y2
+

y1
2y22

∣∣y1/pϵ

y1
]

=
12y1

1− Fβ(pϵ)
[−pϵ

y1
+

p2ϵ
2y1

+
1

y1
− 1

2y1
] =

6(p2ϵ − 2pϵ + 1)

1− Fβ(pϵ)
. (45)

For pϵ ≤ y1 ≤ 1/2 we have,

fy1
(y1) =

12y1
1− Fβ(pϵ)

∫ 1/2

y1

1

y22
− y1

y32
dy2 =

12y1
1− Fβ(pϵ)

[− 1

y2
+

y1
2y22

∣∣1/2
y1

]

=
12y1

1− Fβ(pϵ)
[−2 + 2y1 +

1

y1
− 1

2y1
] =

6(4y21 − 4y1 + 1)

1− Fβ(pϵ)
. (46)

Thus, as a piecewise function the PDF is formally,

fy1
(y1) =


6(p2

ϵ−2pϵ+1)
1−Fβ(pϵ)

for 0 ≤ y1 ≤ pϵ

2 ,
6(4y2

1−4y1+1)
1−Fβ(pϵ)

for pϵ

2 ≤ y1 ≤ 1/2.
(47)

Now, the CDF is determined through integration,

Fy1
(y1) =

∫ y1

0

fy1
(y1)dy1 =


6y1(p

2
ϵ−2pϵ+1)

1−Fβ(pϵ)
for 0 ≤ y1 ≤ pϵ

2 ,
2y1(4y

2
1−6y1+3)+p2

ϵ(2pϵ−3)
1−Fβ(pϵ)

for pϵ

2 ≤ y1 ≤ 1/2.
(48)

We can integrate the CDF to get,∫ y1

0

Fy1(y1) =


3y2

1(p
2
ϵ−2pϵ+1)

1−Fβ(pϵ)
for 0 ≤ y1 ≤ pϵ

2 ,

8y1

(
2y3

1−4y2
1+3y1+p2

ϵ(2pϵ−3)
)
+p3

ϵ(4−3pϵ)

8(1−Fβ(pϵ))
for pϵ

2 ≤ y1 ≤ 1/2.
(49)

Plugging all of this back into Equation 7 yields,

b̂∗i =

pϵ + vpi
6vp

i (p
2
ϵ−2pϵ+1)

1−Fβ(pϵ)
− 3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
,

pϵ + vpi
2vp

i (4(v
p
i )

2−6vp
i +3)+p2

ϵ(2pϵ−3)

1−Fβ(pϵ)
− 8vp

i

(
2(vp

i )
3−4(vp

i )
2+3vp

i +p2
ϵ(2pϵ−3)

)
+p3

ϵ(4−3pϵ)

8(1−Fβ(pϵ))
,

=

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
if pϵ

2 ≤ vpi ≤ 1
2 .

(50)

Since bi cannot be larger than 1, we cap the bidding function at one via,
b∗i := min{b̂∗i , 1}. (51)

The utility gained by agent i for using such a bidding function is,

u(b∗i ) =

vdi − b∗i +
6(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
for 0 ≤ vpi ≤ pϵ

2 ,

vdi − b∗i +
vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

for pϵ

2 ≤ vpi ≤ 1/2.
(52)

When this utility is larger than 0, the agent will participate otherwise the agent will not submit a
model to the regulator. Finally, we can find the optimal compliance level by using Assumption 2,

s∗i := M−1
(
b∗i
)
. (53)
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E ADDITIONAL EXPERIMENTS

Within this section, we verify empirically that our computed PDF and CDFs in Corollaries 1 and
2 are correct. To accomplish this, we randomly sample and compute the product of Vi and λi fifty
million times. We then plot the PDF and CDF of the resultant products and compare it with our
theoretical PDF and CDF. The theoretical PDF and CDF for Corollary 1 are defined in Equations 33
and 34, while those for Corollary 2 are found in Equations 47 and 48. The results of these simulations,
which validate our computed PDFs and CDFs, are shown in Figures 6 and 7. To ensure correctness,
we perform testing on different values of pϵ. As expected, our theory lines up exactly with our
empirical simulations for both Corollaries as well as across varying pϵ. We note that all experiments
are computationally light, with all run locally on an M3 chip with 16GB of RAM.

Finally, we provide the full results of our case study in Section 6 in tabular form below.

Table 3: Equalized Odds as Minority Class Data Increases.
Minority Class % Mean Equalized Odds Score

5% 22.55
10% 22.31
15% 18.97
20% 17.46
25% 15.78
30% 15.44
35% 13.09
40% 11.01
45% 9.83
50% 9.38

Figure 6: Numerical validation of our derivations for fv(v
p
i ) and Fv(v

p
i ), where vpi := Viλi, for Vi

and λi coming from Uniform distributions (Corollary 1). The price of attaining ϵ is set as pϵ = 1/4
(top row) and pϵ = 1/2 (bottom row).
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Figure 7: Numerical validation of our derivations for fv(vPi ) and Fv(v
P
i ), where vpi := Viλi, for

Vi coming from a Beta distribution and λi from a Uniform distributions (Corollary 2). The price of
attaining ϵ is set as pϵ = 1/4 (top row) and pϵ = 1/2 (bottom row).

Figure 8: Validation of Beta Nash Bidding Equilibrium. Akin to the Uniform results, agent
utility is maximized when agents follow the theoretically optimal bidding function shown in Equation
equation 11. Across varying compliance prices, pϵ = 0.25 (left), 0.5 (middle), 0.75 (right), agents
attain less utility when they deviate from the optimal bid (red line) derived in Corollary 2.
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F REPEATING CIRCA AUCTIONS

The current auction structure (Algorithm 1) expects agents to submit a single model trained solely
for the upcoming auction. There is no expectation that the model will be reused for a future auction,
or indication that the model has been submitted to a previous auction. Looking towards the future,
we would like to design CIRCA to fit a repeatable auction structure, in which approved or rejected
models may be resubmitted in subsequent auctions.

Repeated Agent Utility. Previously, in Algorithm 1, agents start the regulatory process with zero
cost and value (i.e., they are building their models from scratch). In repeating CIRCA auctions, agent
cost and value are accumulated across all previous auction submissions. For example, if an agent
trains its already-accepted model further to attain a higher compliance level si, its total accumulated
training cost is M(si). This agent’s total value becomes the value its model gained from previous
auction submissions plus any value gained from the current auction.

By allowing repeated CIRCA auctions, an agent is able to repeatedly submit its model for regulatory
review. We note that repeated submissions decrease the value of model deployment; once an agent
earns the reward for deploying their model, subsequent deployments of the same model with improved
compliance levels can be realistically expected to earn less value than the initial deployment. We
characterize this loss in value for repeated submissions with an indicator function in the utility
function that only allows deployment value to be obtained once, on initial acceptance of a model.
While we allow agents to win premium rewards across multiple auctions, we note that a regulator can
curb this by either limiting the number of auction submissions per agent or the number of auctions
held per year. We now define the repeated CIRCA auction utility of agent i, who has participated in
a− 1 previous auctions, as:

ui,a(bi) =

(
a∑

n=1

νni

)
− bi, (54)

where νni , the value gained at the nth auction model i was submitted to, is formulated as:

νni =


vd,ni · 1(if νn−1

i = 0) if bnj ≥ pnϵ and bni < bnj randomly sampled bid bnj ,

vd,ni · 1(if νn−1
i = 0) + vp,ni if bni ≥ pnϵ and bni > bnj randomly sampled bid bnj ,

0 if n ≤ 0.

(55)

The repeated CIRCA auction setup creates a unique property for models in training. If an agent
intends to obtain a high compliance level, but an auction takes place mid-training, the agent is actually
incentivized to submit their model early if they have a chance at winning the premium reward. Though
the model may have a lower likelihood of earning the reward, there is no consequence for models
failing to attain the premium reward. Gaining value is strictly beneficial to agents, and accumulated
value helps offset the costs of training a model. This property only exists for the premium reward; the
deployment reward can only be obtained once, thus there is no incentive to submit early to earn it.

Repeated Optimal Bidding Function. Using the same assumptions for single-auction CIRCA,
namely Assumptions 1 and 2 along with private values, we can derive the bidding function for a
rational agent under a repeated CIRCA auction setting. We follow an equivalent setup to Lemma 1
with regards to the valuation of rewards, giving us the cumulative distribution function for vpi = Viλi

as Fv(·) and the probability distribution function as fv(·).
From our definition of utility ui,a(bi), we find that an agent i that does not participate (i.e., submitting
bi = 0) receives utility equal to νai . However, since bi = 0 will never be larger than pϵ (by definition),
it must be true that νai = 0 as well, since the model will never meet the required compliance threshold.
Therefore, a non-participating agent will always receive non-negative utility.

ui,a(0) = 0. (56)

Following closely to the proof of Theorem 2 in Appendix D, we find that participating agents i ∈ P
(with P defined in the previous proof) will now have a utility of,

ui,a(bi) = νai + vdi · 1(νa
i = 0) + vpi P

(
bi > bj

)
− b(bi), bj ∼ randomly sampled agent bid,

= νai + vdi · 1(νa
i = 0) + vpi Fv(bi)− b(bi). (57)
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Taking the derivative and setting it equal to zero yields,

d

dbi
ui,a(bi) = vpi fv(bi)− b′(bi) = 0. (58)

As agents bid in proportion to their valuation, we solve the first-order conditions at bi = vpi ,

b′(vpi ) = vpi fv(v
p
i ). (59)

Note, at this point in the proof the bidding function calculation is now equivalent to the calculations
found in Lemma 1. We can thus follow the same steps to reveal our optimal bidding function,

b(vpi ) : = pϵ + vpi Fv(v
p
i )−

∫ vp
i

0

Fv(z)dz, (60)

which is equivalent to the optimal bidding function derived in Lemma 1.

As the optimal bidding function is equivalent, calculations for the Nash Bidding Equilibrium are also
equivalent to those found in Corollary 1 and Corollary 2. The optimal bid and utility participating in
CIRCA Equation 6 under the assumptions of Corollary 1 will thus be,

b∗i := min{b̂∗i , 1}, b̂∗i =

{
pϵ +

(vp
i )

2 ln(pϵ)

pϵ−1 if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2(ln(2vp

i )−1/2)+p2
ϵ

8(pϵ−1) if pϵ

2 ≤ vpi ≤ 1
2 ,

ui,a(b
∗
i ; b−i) =

{
νai + vdi · 1(νa

i = 0) +
2(vp

i )
2 ln(pϵ)

pϵ−1 − b∗i if 0 ≤ vpi ≤ pϵ

2 ,

νai + vdi · 1(νa
i = 0) +

2(vp
i )

2(ln(2pϵ)−1)+pϵ

pϵ−1 − b∗i if pϵ

2 ≤ vpi ≤ 1
2 .

Agents participating in CIRCA under Corollary 1 submit models with the following compliance,

s∗i :=

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.

The optimal bid and utility participating in CIRCA Equation 6 under the assumptions of Corollary 2
will be,

b∗i := min{b̂∗i , 1}, b̂∗i =

pϵ +
3(vp

i )
2(p2

ϵ−2pϵ+1)

1−Fβ(pϵ)
if 0 ≤ vpi ≤ pϵ

2 ,

pϵ +
8(vp

i )
2
(
6(vp

i )
2−8vp

i +3
)
+p3

ϵ(3pϵ−4)

8(1−Fβ(pϵ))
if pϵ

2 ≤ vpi ≤ 1
2 ,

ui,a(b
∗
i ; b−i) =

νai + vdi · 1(νa
i = 0) +

6(vp
i )

2(p2
ϵ−2pϵ+1)

1−Fβ(pϵ)
− b∗i for 0 ≤ vpi ≤ pϵ

2 ,

νai + vdi · 1(νa
i = 0) +

vp
i

(
8(vp

i )
3−12(vp

i )
2+6vp

i +p2
ϵ(2pϵ−3)

)
1−Fβ(pϵ)

− b∗i for pϵ

2 ≤ vpi ≤ 1/2.

Agents participating in CIRCA under Corollay 2 submit models with the following compliance,

s∗i =

{
M−1(b∗i ) > ϵ if ui(b

∗
i ; b−i) > 0,

0 (no model submission) else.

G FUTURE WORK

While this work addresses key challenges in regulating AI compliance, several directions remain
open for future exploration:

(1) Model Evaluation: Creating a realistic protocol for the regulator to evaluate submitted model
compliance levels is important to ensure agents do not skirt around compliance requirements. While
we leave this problem for future work, one possible solution is that agents can either provide
the regulator API access to test its model or provide the model weights directly to the regulator.
Truthfulness can be enforced via audits and the threat of legal action.

(2) Extension to Heterogeneous Settings: Extending our mechanism to heterogeneous scenarios,
where evaluation data for agents and regulators differs, is a critical next step. Real-world data
distributions often vary across contexts, and understanding how these variations affect both model
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compliance and agent strategies will create a more robust regulatory mechanism. While explicit
protocols or mathematical formulations are left as future work, we have a few ideas. One idea could
be establishing a data-sharing framework between agents and the regulator, where each participating
agent must contribute part of (or all of) its data to the regulator for evaluation. If data can be
anonymized, then this would be a suitable solution. Another idea could be that the regulator collects
data on its own, and can compare its distribution of data versus each participating agents’ data
distribution. If distributions greatly differ, then the regulator could collect more data or resort to the
previous data-sharing method.
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