
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS ROBUST GRADIENT REGULARIZATION
WITH CENTRAL-DIFFERENCE AND MOMENTUM
LOOKAHEAD

Anonymous authors
Paper under double-blind review

ABSTRACT

Sharpness-Aware Minimization (SAM), which can be extended to a form of gradi-
ent regularization, is an effective technique for improving generalization by guid-
ing optimizers towards flat minima through parameter perturbations. However,
extending such regularization strategies to multi-step settings often leads to insta-
bility, where naive iterative updates degrade rather than enhance generalization.
To overcome this limitation, we propose Central-difference Momentum Looka-
head Regularization (CMLR), a framework that performs momentum lookahead
through central-difference probing of the loss landscape. By constructing the per-
turbation direction from symmetric gradient evaluations, CMLR realizes a mo-
mentum lookahead update that is inherently more robust and exhibits reduced
variance, while requiring no additional gradient evaluations. This design ensures
smooth optimization trajectories and reliable improvements at low computational
cost. We conduct a comprehensive theoretical analysis of CMLR and its founda-
tional versions (CLR, LR), presenting spectral analysis results, variance reduction
analysis, and establishing formal convergence guarantees, particularly under a mo-
mentum strategy. Empirically, we demonstrate that CMLR consistently improves
generalization across diverse architectures and datasets.

1 INTRODUCTION

A fundamental objective in deep learning is to discover model parameters that achieve strong gen-
eralization beyond mere minimization of training loss. This pursuit has motivated a line of work
culminating in the Sharpness-Aware Minimization (SAM) algorithm (Foret et al., 2020), which ex-
plicitly seeks parameters in flat regions of the loss landscape. SAM has demonstrated strong gener-
alization across numerous tasks (Chen et al., 2021; Zhang et al., 2021), sparking follow-up studies
to improve its behavior (Bartlett et al., 2023; Du et al., 2022; Jiang et al., 2023; Li & Giannakis,
2024; Sun et al., 2023; Wen et al., 2023).

However, SAM comes with a puzzling catch: trying to solve its inner optimization problem more
accurately, particularly with multi-step methods, often makes the final model generalize worse, not
better (Foret et al., 2020; Andriushchenko & Flammarion, 2022; Kim et al., 2023b; Mordido et al.,
2024). A new perspective, viewing SAM through the lens of Gradient Regularization (GR), helps
explain why (Barrett & Dherin, 2021; Smith et al., 2021; Zhao et al., 2022; Reizinger & Huszár,
2023). This view reveals that SAM is essentially using a simple forward-difference approximation
of the Hessian (a strategy we call FR) (Zhao et al., 2022; Karakida et al., 2023). This type of ap-
proximation is known to be unstable, which likely causes the gradient estimates to become noisy and
unreliable during the multi-step ascent process, ultimately hurting performance (Liu et al., 2022b).
We will therefore classify this generalization-enhancing regularization as a form of gradient regu-
larization and proceed to analyze its different variants.

Since the instability of SAM originates from its rough finite difference approximation, from the
perspective of feature decomposition, this can be explained as the gradient oscillating near the
saddle point (Kim et al., 2023a; Tan et al., 2024b), leading to a tendency towards model sub-
optimal. Therefore, a more accurate central difference scheme and forward-looking mechanism
can ensure that the parameter update process can more firmly escape the saddle point, thereby

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

guiding the model to improve generalization. We first replace the forward-difference with a
more precise central-difference scheme (CR). To test this hypothesis, we measure the stability of
the optimization path by calculating the cosine similarity between consecutive update directions
(clipped to [0, 1]). Our experiments reveal a clear result: a higher concentration of similarity
scores away from 0 strongly correlates with better generalization, and our CR method produces
a much smoother optimization trajectory with consistently higher similarity, as shown in Figure 1.

Figure 1: Distribution of optimizer update direction sta-
bility (smoothed for visual clarity). The figure illustrates
the distribution of cosine similarity between consecutive
update directions dk during training for different optimiz-
ers using ResNet-18 trained on CIFAR-10. For LA-SAM,
FMLR, and CMLR, the parameter K was set to 2.

A stable update is a great starting point,
but we also want the benefits of multi-step
optimization that have proven successful
in other SAM variants (Mordido et al.,
2024; Tan et al., 2024a; Yu et al., 2024).
To achieve this, we embed our stable
CR update within a momentum lookahead
mechanism (ML). However, this combi-
nation would be far too slow for practical
use. The key to making it efficient is our
final contribution: a lightweight momen-
tum lookahead mechanism, which allows
us to approximate future gradient infor-
mation with no extra computational cost.

The power of this complete approach
(result in Central-difference Momentum
Lookahead gradient Regularization,
CMLR; Forward-difference Momentum
Lookahead gradient Regularization,
FMLR; Momentum Lookahead SAM, ML-SAM) is validated by our final results in Figure 1. The
test accuracies show a clear hierarchy (CMLR > FMLR > CR > FR > SAM > ML-SAM). Our
results highlight a key finding: while momentum lookahead helps the general FR framework, it
actually hurts performance in the specific case of SAM (ML-SAM), consistent with (Kim et al.,
2023b; Mordido et al., 2024). This suggests the paradox is at its worst when the update, by setting
the regularization strength exactly equal to the size of the parameter perturbation neighborhood,
completely ignores the stabilizing influence of the base gradient. This is why CMLR succeeds;
because it starts with a much more stable central-difference foundation, it can fully take advantage
of the momentum lookahead mechanism.

Building on this foundation, we propose a multi-step generalization of this framework and introduce
a lightweight inner-loop momentum lookahead strategy. To avoid excessive computational overhead,
we incorporate a momentum lookahead mechanism that approximates future perturbations using
previously computed gradients, thus requiring no additional gradient evaluations. The resulting
method, Central-difference Momentum Lookahead Regularization (CMLR), promotes the training
stability of central-difference GR while enabling efficient multi-step updates.

The main contributions of this paper are summarized as follows:
• We propose CMLR, which is an optimizer that uses central differencing to perform mo-

mentum smoothing more stably in the loop within the Lookhead, avoiding the problem of
generalization degradation caused by multi-step exploration.

• We provide a comprehensive theoretical analysis for our proposed gradient regularization
and momentum lookahead strategies.

• We demonstrate through extensive experiments on various model architectures and diverse
datasets that CMLR significantly improves generalization performance.

2 BACKGROUND AND RELATED WORK

To understand our new perspective, let’s first consider the standard approach. Typically, training
a neural network means finding the weights w ∈ W ⊂ Rd that minimize the empirical risk on
a training dataset S = {(xi, yi)}ni=1 with (xi, yi) drawn i.i.d. from an underlying distribution D
over X × Y . Using the per-data-point loss function l : W × X × Y → R, this goal is expressed
as: minw L(w) = 1

n

∑n
i=1 l(w, xi, yi). We assume that the loss function L is twice differentiable

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

throughout the paper. For notational simplicity, unless otherwise specified, we use the shorthand
∇L(w) for ∇wL(w) and ∥ · ∥ for the L2 norm,∥ · ∥2.

2.1 FLAT MINIMA

The geometric properties of the loss landscape are widely considered to be intrinsically linked to a
model’s generalization ability. A central tenet, originating from early theoretical work and bolstered
by extensive empirical studies (Hochreiter & Schmidhuber, 1997; Keskar et al., 2016), posits that
models converging to flat, wide minima generalize better than those in sharp, narrow valleys. While
this principle has been challenged by theoretical counter-examples showing that sharpness can be
sensitive to reparameterization (Dinh et al., 2017), a strong correlation between measures of flatness
and generalization performance is consistently observed in practice (Jiang et al., 2019). Among
these, Sharpness-Aware Minimization (SAM) (Foret et al., 2020) has emerged as a state-of-the-art
approach, whose core idea is to connect the training loss L(w) with the model’s generalization
bound. Instead of minimizing the loss at a single point w, SAM seeks parameters that reside in a
neighborhood of uniformly low loss by solving a min-max problem:

min
w
LSAM(w) where LSAM(w) ≜ max

∥ε∥p≤ρ
L(w + ε). (1)

As solving the inner maximization exactly is intractable, SAM approximates the solution with a first-
order perturbation ε̂, In the standard setting where the L2 norm is used (p = 2), this perturbation
aligns with the direction of the gradient ∇L(w). The final update is then performed using the
gradient at this perturbed point w + ε̂:

∇LSAM = ∇L(w + ε̂) where ε̂ = ρ
∇L(w)
∥∇L(w)∥

. (2)

2.2 THE NON-ROBUSTNESS PARADOX OF SAM

While SAM excels at finding flat minima, it presents a key paradox: trying to solve its inner op-
timization more accurately with multi-step methods often hurts generalization instead of helping
it (Foret et al., 2020; Andriushchenko & Flammarion, 2022; Mordido et al., 2024). The consen-
sus points to gradient instability as the main cause; during these multi-step updates, the model’s
parameters stray too far from their starting point (Kim et al., 2023b; Mordido et al., 2024).
This fragility is well-documented. Recent studies have shown that SAM is sensitive to noisy, high-
variance gradients (Hassan et al., 2025) and operates on a dynamic ”edge of robustness” that de-
pends on the gradient norm (Long & Bartlett, 2024). The theory of Gradient Regularization (GR)
offers a deeper explanation. It reveals that SAM’s core mathematical step—a forward-difference
approximation—is inherently unstable, struggling with both very small and very large perturbation
sizes (Karakida et al., 2023). The multi-step approach effectively forces SAM into this problematic
small-step scenario, which likely explains the performance drop.

2.3 ROBUSTNESS AND EFFICIENCY ENHANCEMENTS

Research on improving SAM has largely focused on tackling two major challenges:
The first challenge, non-robustness, arises because noisy gradient estimates can make the training
process erratic. A popular strategy to counteract this is to ”smooth out” the trajectory. Many methods
take inspiration from the Lookahead optimizer (Zhang et al., 2019), which works by averaging
recent model weights to prevent drastic jumps. Following this principle, approaches like SALA (Tan
et al., 2024a) and Lookbehind-SAM (Mordido et al., 2024) have shown that using lookahead ideas
or aggregating information from past steps leads to a much more stable training process. Other
methods attack the problem more directly, either by adding explicit curvature regularization to the
objective (Wu et al., 2024) or by cleaning up the gradient statistics themselves (Hassan et al., 2025).
The second challenge is efficiency. Standard SAM is expensive, essentially doubling the workload
by requiring two gradient computations for every single update. This has spurred the development
of a family of ”efficient SAM” variants. Their common strategy is to cleverly reuse or approximate
gradients to cut down the computational overhead, making the benefits of sharpness-aware training
more accessible (Du et al., 2021; 2022; Mi et al., 2022; Liu et al., 2022a; Jiang et al., 2023; Wang
et al., 2024; Becker et al., 2024).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

Our approach begins with a general framework for sharpness-aware methods that is based on Gra-
dient Regularization. Into this framework, we incorporate a lookahead mechanism to help steer the
optimization process. To keep things efficient, we also add an momentum accumulation strategy
that prevents high computational costs. Together, these components form our algorithm: Central-
difference Momentum Lookahead Regularization (CMLR).

3.1 GRADIENT REGULARIZATION (GR)
Gradient Regularization (GR) is a general approach to optimization where the training objective is
modified to penalize the gradient norm, thereby encouraging convergence to flatter regions of the
loss landscape (Barrett & Dherin, 2021; Smith et al., 2021; Zhao et al., 2022; Karakida et al., 2023;
Reizinger & Huszár, 2023):

min
w
LGR(w) ≜ L(w) + λ∥∇L(w)∥. (3)

Calculating the exact gradient for the regularization term in Equation 3 requires expensive second-
order information, specifically a Hessian-vector product (Hochreiter & Schmidhuber, 1997; Jas-
trzebski et al., 2021):

∇∥∇L(w)∥ = ∇
2L(w)∇L(w)
∥∇L(w)∥

. (4)

While this term can be computed exactly using Double Backpropagation (DB) in modern frame-
works like PyTorch, it’s known to be less computationally efficient than using a finite-difference
approximation (Karakida et al., 2023). Recent analyses have formally established that the SAM up-
date is equivalent to a first-order, forward-difference approximation of this term (Zhao et al., 2022;
Karakida et al., 2023).
To formalize this connection, let’s consider the exact gradient of the GR objective from Equation 3.
Let v = ∇L(w)

∥∇L(w)∥ be the normalized gradient direction. The core idea of the forward-difference
approach is to approximate this costly second-order term using only first-order information. This
is achieved using the following approximation, derived from the first-order Taylor expansion of the
gradient function:

∇2L(w)v =
∇L(w + ρv)−∇L(w)

ρ
+O(ρ). (5)

By substituting this approximation into the exact GR gradient, we obtain the update rule for Forward-
Difference Gradient Regularization (FR):

∇LFR(w) ≜ ∇L(w) + λ

(
∇L(w + ρv)−∇L(w)

ρ

)
=

(
1− λ

ρ

)
∇L(w) + λ

ρ
∇L(w + ρv). (6)

This formulation expresses the update as a weighted average of the gradients at the original point w
and the perturbed point w+ ρv. Notably, in the standard setting where the regularization strength is
set to be equal to the perturbation radius: λ = ρ, the FR update simplifies to exactly ∇L(w + ρv).
This is precisely the gradient update rule used by SAM, thus confirming its role as a specific instance
of the GR framework.
The forward-difference scheme provides a first-order approximation with O(ρ) error. To achieve a
more accurate estimation of the regularized gradient, we instead employ the second-order central-
difference approximation. Its O(ρ2) accuracy is formally derived from the Taylor series expansion
of∇L(w ± ρv):

∇2L(w)v =
∇L(w + ρv)−∇L(w − ρv)

2ρ
+O(ρ2). (7)

Substituting this into the GR gradient objective yields our proposed Central-difference Gradient
Regularization (CR) update rule:

∇LCR(w) ≜ ∇L(w) +
λ

2ρ
(∇L(w + ρv)−∇L(w − ρv)) . (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The core idea of this formulation is to shift the update’s focus. It relies more on the standard gradient
at the original point w with a central-difference scheme. This stands in sharp contrast to adversarial
methods like FR (Zhao et al., 2022) and CR-SAM (Wu et al., 2024), which still primarily rely on
the perturbed gradient.
Algorithm 1 CMLR

Require: Loss function L, training data G, base optimizer A, inner steps K, outer steps T , initial
slow weights w0, batch size b, inner step size ηt,k, outer step size α, perturbation radius ρ,
smoothing factor βs and βe.

1: for t = 0, 1, 2, . . . , T − 1 do
2: Synchronize weights: wt,0 ← wt.
3: Sample a mini-batch B ⊂ G with size b.
4: Initialize perturbation: v0, g0 ← ∇L(wt,0) on B.
5: for k = 0, 1, 2, . . . ,K − 1 do
6: Normalize perturbation: v̂k ← vk

∥vk∥ .
7: Compute central-difference gradients in parallel:
8: Parallel do:
9: g+k ← ∇L(wt,k + ρv̂k) on B.

10: g−k ← ∇L(wt,k − ρv̂k) on B.
11: End parallel.
12: Update direction: dk ← ρ+λ

2ρ g+k + ρ−λ
2ρ g−k .

13: Update fast weights: wt,k+1 ← A(wt,k, ηt,k, dk).
14: Anticipating the next perturbation vector:
15: βk ← βs + (βe − βs) · k

K−1 .

16: vk+1 ← βkv̂k + (1−βk)
2

(
g+
k

∥g+
k ∥ +

g−
k

∥g−
k ∥

)
.

17: end for
18: Update slow weights (Lookahead step): wt+1 ← wt + α(wt,K − wt)
19: end for
20: return wT

Ensure: CMLR trained model.

3.2 MOMENTUM LOOKAHEAD MECHANISM

The primary challenge of our Central-difference (CR) update (Equation 8) is its high computational
cost, requiring three gradient computations per step. To make the computation more feasible and
the momentum update more robust, we introduce a stable momentum accumulation mechanism.
This approach avoids explicitly computing the base gradient, relying instead solely on the ascent
and descent perturbation gradients. We then place it within the two-timescale Lookahead frame-
work (Zhang et al., 2019; Yu et al., 2024) to improve training stability. Prior works have suggested
that Lookahead-based variants of SAM are particularly effective in boosting generalization (Tan
et al., 2024a; Mordido et al., 2024), which further motivates our integration. Although Lookahead’s
inner loop performs multiple updates, the computation remains feasible since no extra overhead
is introduced inside the inner iterations. This highlights that CMLR represents a principled and
effective integration, rather than a simple stacking of separate components.
At each inner-loop step k, the core efficiency gain comes from bypassing the explicit computation
of the base gradient ∇L(wk). We approximate it using the average of the two perturbed gradients,
g+k ≜ ∇L(wk+ρvk) and g−k ≜ ∇L(wk−ρvk), which are already required for the central difference.
This leads to a final update direction dk that depends only on these two gradients, which can be
computed in parallel:

dk =
g+k + g−k

2
+

λ

2ρ
(g+k − g−k)

=
ρ+ λ

2ρ
g+k +

ρ− λ

2ρ
g−k . (9)

To prepare for the subsequent inner-loop step k + 1 without additional cost, we anticipate the next
perturbation vector vk+1 by using a moving average of the previously computed normalized gradi-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ents, a strategy inspired by recent work on efficient SAM variants (Wang et al., 2024),

vk+1 = βkvk +
(1− βk)

2

(
g+k
∥g+k ∥

+
g−k
∥g−k ∥

)
. (10)

Figure 2: Toy example analysis of CMLR

The fast weights are then updated us-
ing this direction, wt,k+1 = wt,k −
ηt,kdk. After K inner-loop steps, the
slow weights are updated in the direction
of the final fast weights, consistent with
the Lookahead framework. The complete
procedure, which synthesizes these com-
ponents, is detailed in Algorithm 1, In ad-
dition, we design a process toy example
of the algorithm in Figure 2.
The divergent outcomes of applying
Lookahead to FR and SAM highlight a
key mechanic. The FR update, dk =
(1 − λ

ρ)gk + λ
ρ g

+
k , retains the base gra-

dient gk as a stable anchor when λ ̸=
ρ, which allows Lookahead to effectively
smooth the update trajectory. In the spe-
cific case of SAM where λ = ρ or dk =
(1− λ

ρ)g
+
k + λ

ρ g
+
k = g+k (k ≥ 1) in FMLR,

this anchor vanishes, leaving the update
to depend solely on the noisy perturbed
gradient g+k . Without this stabilizing ref-
erence, Lookahead fails to improve per-
formance. Our CR, by contrast, provides
a robust, symmetric foundation that con-
sistently synergizes with the Lookahead
framework.
This effectively collapses the method into the standard Momentum Lookahead-SAM (ML-SAM),
where the regularizing influence of the base gradient is lost in subsequent inner-loop steps. Our CR
approach, by contrast, maintains its two-term structure due to the symmetric nature of its probes,
ensuring the regularization is applied consistently. This synergy makes the lookahead framework an
ideal counterpart to our central-difference strategy.

4 CONVERGENCE ANALYSIS

In this section, we present the convergence analysis and variance spectral analysis conclusions of
CMLR, and place the complete convergence analysis and variance analysis of the basic version al-
gorithms (LR, CLR) in Appendix B and Appendix C. Specifically, we analyze variance reduction in
the noisy quadratic model. To demonstrate the stabilizing effect of the Lookahead mechanism, we
adopt the regularized objective L(w) + λ

2 ∥∇L(w)∥
2 a standard and analytically tractable formula-

tion that simplifies the mathematics by using the squared gradient norm while preserving the core
optimization goal (Barrett & Dherin, 2021; Smith et al., 2021; Karakida et al., 2023).

4.1 CONVERGENCE FOR GENERAL NON-CONVEX OBJECTIVES

To unify the dual-timescale loops into a single time frame, we employ a two-time-scale analy-
sis (Borkar, 1997; Nedic & Ozdaglar, 2009; Wang et al., 2020). This results in a version of the for-
mal algorithm that differs only slightly in its presentation. Specifically, to unify the inner and outer
loops, the slow-weight update is synchronized with the final fast-weight update of the inner loop.
This change, driven by the need to synchronize the inner and outer loop weights, leads to an appar-
ent one-step reduction in the inner loop, but it does not substantially affect the final weight update.
To facilitate understanding, we provide a simplified version of the pseudocode in Algorithm 2 (Ap-
pendix A). Finally, to formalize the synchronization scheme for the inner- and outer-loop weights,
we re-index the iterates as follows: ys = wt,k represents the inner-loop ”fast” weights with a single
global step counter s = tK + k, and ws = y⌊s/K⌋K are the outer-loop ”slow” weights. Here, ⌊·⌋
denotes the floor function, which rounds its argument down to the nearest integer. The ”middle”

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

weights are defined as ŷs = αys+(1−α)ws which performs the update ŷs+1 = ŷs−αηsd(ys, ξs).
Our analysis views CLR as a stochastic gradient method on an implicit, non-smooth objective func-
tion: F (w) = L(w) + λ∥∇L(w)∥.
We make the following standard assumptions for our analysis. We first provide a brief analysis of
the basic version (CLR), and then present the convergence analysis of the CMLR algorithm with
momentum mechanism with its full proof detailed in Appendix B and C.
Theorem 4.1 (Convergence of CMLR for Non-Convex Objectives). Under the same conditions in
Theorem B.6, the iterative sequence generated by CMLR satisfies:

lim inf
s→∞

E[∥∇F (ŷs)∥2] = O(λ). (11)

It is worth noting that the momentum strategy does not fundamentally alter the convergence guar-
antee under gradient regularization, which remains of the order O(λ). Instead, its primary impact
lies in refining the higher-order constant terms. For instance, two similar conclusions suggest that
momentum strategies are more likely to provide more accurate approximations for these high-order
constants, which are related to λ, ρ, L1 and L2. This is exemplified by the replacement of C1 with
C̃1 in our analysis in Appendix C.

4.2 NOISY QUADRATIC ANALYSIS WITH GRADIENT REGULARIZATION

To understand the convergence properties of our proposed method, we extend the noisy quadratic
analysis framework from Schaul et al. (2013); Wu et al. (2018); Zhang et al. (2019). We analyze
the standard noisy quadratic model, L̂(x) = 1

2 (x − c)⊤H(x − c), with c ∼ N (x∗,Σ), where
H,Σ ∈ Rd×d are assumed to be diagonal and x, c ∈ Rd, x∗ = 0.
Here, we obtained the variance reduction conclusion of CMLR using spectral analysis, which is
detailed in Appendix C. The vLR mentioned in the theorem comes from a simple extension of a
previous work, as shown in Appendix B.
Theorem 4.2 (Variance Reduction with CMLR). Fix an eigenpair (q, µ) of H , with scalar pro-
jections xt,k = q⊤wt,k, ct,k = q⊤c, and v̂k,q = q⊤v̂k. Let a ≜ 1 − ηµ, define Aeff ≜
(1 − α) + αaK , Beff ≜ αηµ. Under Assumption B.2, Assumption B.4, ∥∇L∥ ≥ gmin and con-
diton in Lemma E.1, the steady-state variance of CMLR satisfies

vCMLR ≤ vLR(1 +
√
τ)2 +O(ρ

4∥H∥4 +M

g4min

) (12)

where

vLR =
α2(ηµ)2σ2 1− a2K

1− a2

1−A2
eff

, τ = 2d
λ2(1− β)

g2min(1 + β)
, (13)

Compared with the initial gradient-regularization estimator, the Lookahead step in LR already acts
as a variance-reduction mechanism, so vLR is smaller than the variance of the initial gradient-
regularization scheme. In Theorem 4.2, the additional factor (1 +

√
τ)2 in the bound for vCMLR

arises from the momentum prediction strategy and corresponds to only a controllableO(λ) variance
inflation, since (1 +

√
τ)2 = 1 + O(λ). Combining these observations, by choosing λ sufficiently

small, the steady-state variance of CMLR in our bound can be made smaller than that of the ini-
tial gradient-regularization estimator. It should be noted that, while Lookahead itself contributes to
variance reduction through averaging, the variance reduction effect emphasized in our analysis is
mainly attributed to the central-difference gradient regularization, rather than the Lookahead gradi-
ent regularization alone.

5 EXPERIMENTS

To demonstrate the broad applicability of CMLR, we evaluate SGD, AdamW, SAM, CR-SAM (Wu
et al., 2024), Lookbehind-SAM (Mordido et al., 2024), GSAM (Wang et al., 2024), FMLR and
CMLR on the CIFAR-10 and CIFAR-100 datasets using the following models which include
widely-used CNNs such as ResNet-18 (He et al., 2016), VGG-16 (Simonyan & Zisserman, 2014),
WideResNet-28-10 (Zagoruyko & Komodakis, 2016), and PyramidNet-110 (Han et al., 2017), as
well as popular Vision Transformers (ViT-Ti and ViT-S) (Dosovitskiy et al., 2020). To verify the
efficiency of the algorithm, provide analysis results and time comparisons for the same number of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of CMLR against baseline optimizers in CNN models (Test Ac-
curacy %).

Optimizer CIFAR-10 (Test Accuracy %)

ResNet-18 WRN-28-10 VGG-16-BN PyramidNet-110

SGD 96.13±0.11 97.03±0.16 95.42±0.17 96.92±0.28

SAM 96.59±0.12 97.51±0.16 95.75±0.13 97.59±0.29

CR-SAM 96.79±0.14 97.71±0.12 95.95±0.16 97.79±0.21

Lookbehind-SAM 97.09±0.13 98.01±0.11 96.25±0.15 98.09±0.22

GSAM 97.34±0.12 98.26±0.13 96.51±0.14 98.35±0.23

FMLR 97.29±0.11 98.21±0.12 96.46±0.15 98.37±0.19

CMLR (Ours) 97.84±0.11 98.63±0.13 97.12±0.18 98.91±0.11

Optimizer CIFAR-100 (Test Accuracy %)

ResNet-18 WRN-28-10 VGG-16-BN PyramidNet-110

SGD 78.34±0.21 82.07±0.17 75.13±0.23 83.55±0.24

SAM 80.24±0.19 83.55±0.14 76.52±0.12 84.76±0.13

CR-SAM 80.42±0.18 83.70±0.13 76.72±0.14 84.99±0.14

Lookbehind-SAM 80.74±0.17 84.03±0.12 77.02±0.13 85.28±0.15

GSAM 80.86±0.16 84.35±0.13 77.33±0.15 85.56±0.13

FMLR 80.90±0.18 84.23±0.12 77.16±0.15 85.44±0.14

CMLR (Ours) 81.64±0.14 84.84±0.11 77.65±0.13 86.07±0.12

backpropagation iterations. To further validate the robustness and scalability of our method, we
also extended our experiments to the Tiny-ImageNet (Le & Yang, 2015) datasets—where Tiny-
ImageNet provides a 200-class, 64×64 downscaled subset of ImageNet for efficient benchmarking.
Additionally, we evaluated algorithms on eight NLP tasks from the GLUE benchmark (Wang et al.,
2018): CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, and RTE, using a standard Transformer-
based architecture (DistilBERT). Finally, we conducted ablation studies to analyze the algorithm’s
sensitivity to key hyperparameters, including regularization strength, the momentum accumulation
Lookahead strategy, and the step size of the slow weights. A detailed report of these studies is
provided in Appendix F.

5.1 CONVOLUTIONAL NEURAL NETWORK

For data augmentation, we first pad each training image by four pixels, take a random 32×32 crop,
and apply a random horizontal flip. We then apply Cutout, masking a random 16×16 region of the
image with zeros following DeVries & Taylor (2017).
Our experimental setup is configured as follows. First, under the standard setting for SAM and
FR (Foret et al., 2020; Zhao et al., 2022; Li & Giannakis, 2023), we establish optimal general hyper-
parameters, including the initial learning rate 0.05, weight decay 0.001, and perturbation magnitude
(ρ ∈ {0.01, 0.05, 0.1}). The learning rate is updated following a cosine annealing schedule. Second,
for the forward-difference gradient regularization optimizer, we adopt a grid search to determine the
optimal value. For our proposed central-difference gradient regularization optimizer (CMLR), we
configure the hyperparameters as follows: We hypothesize that this annealing strategy decreases
variance in the later stages of training, thereby enhancing generalization. The hyperparameter α is
selected from [0.7, 1.0] and λ is selected from [0.05, 0.15]. βk, is smoothly annealed from 0.9 up
to 0.99 over the course of training. For the integrated Lookahead mechanism, we provide the best
results: K=10 for GSAM, FMLR and CMLR and K=5 for Lookbehind-SAM, and more detailed
experimental results (K=2,5,10) are attached in the appendix. These relatively large values of K are
intentionally chosen to study whether Lookahead-style multi-step schemes can continue to improve
generalization as K increases, rather than to minimize wall-clock cost; a complementary compari-
son under matched gradient-evaluation budgets (equal compute) is reported later in our experiments.
With the exception of the PyramidNet-110 model, which was trained for 300 epochs with a batch
size of 256, all other models were trained for 200 epochs with a batch size of 128. The results are
summarized in Table 1.
To validate our momentum lookahead strategy, we first conduct a fair comparison in terms of com-
putational cost among several multi-step algorithms, namely Lookbehind-SAM, GSAM, FMLR and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CMLR. We evaluate the accuracy trends of different algorithms after an equal number of backprop-
agation steps. Specifically, we plot the performance on ResNet-34/CIFAR-10 at 400, 800, 1200,
1600, and 2000 backpropagations. During the training middle process, it can be seen from Figure 3
that our proposed CMLR is almost always optimal and consistently achieves superior accuracy for
the same computational budget. To further demonstrate this, we provide additional results on the
ResNet-50/CIFAR-100 dataset in the appendix, which exhibit a similar trend (see Figure 7).

Figure 3: Test accuracy versus backpropagation steps on ResNet-34/CIFAR-10. We compare five
algorithms under an equal number of backpropagation steps (400, 800, 1200, 1600, 2000) to provide
a fair measure of computational cost.

5.2 VISION TRANSFORMERS

We evaluated ViT-Tiny, ViT-Small, and ViT-Base models on both CIFAR-10 and CIFAR-100, with
all results averaged over three independent runs to ensure reproducibility. To align with the optimal
results reported in contemporary works (Dosovitskiy et al., 2020; Zhao et al., 2024; Yun, 2025),
models were trained from scratch for 300 epochs using the AdamW optimizer (β1 = 0.9, β2 =
0.999) and a cosine annealing scheduler with an initial learning rate of 1e-3. Additionally,We
applied a weight decay of 0.03 and standard data augmentations (4-pixel padding, random crop-
ping, and horizontal flipping). Finally, to align with prior experiments, the hyperparameters for our
method, CMLR, were selected from the following sets K = 10, α ∈ [0.7, 1.0], ρ ∈ {0.05, 0.1}, λ ∈
[0.05, 0.15] to demonstrate its cross-architecture robustness. The result can be seen in Table 2.

5.3 TRANSFORMER ENCODER–BASED ARCHITECTURE

We evaluate all algorithms on eight natural language understanding tasks from the GLUE bench-
mark (Wang et al., 2018), using a standard Transformer-based architecture (DistilBERT). These
tasks cover a broad range of linguistic phenomena, including sentiment classification (SST-2), lin-
guistic acceptability (CoLA), paraphrase detection (MRPC, QQP), semantic similarity (STS-B), and
natural language inference (MNLI, QNLI, RTE). Following GLUE protocol, we report task-specific
metrics: Matthews correlation for CoLA, F1 score for MRPC and QQP, Pearson correlation for STS-
B, and accuracy for the remaining tasks. Finally, we report an aggregate GLUE score computed as
the unweighted average over seven tasks, excluding STS-B.
We fine-tune each model using the AdamW optimizer with weight decay fixed at 0.01. For
GSAM, Lookbehind-SAM, FMLR, and CMLR, we set the lookahead step: K = 2. Hyper-
parameters are selected from the following ranges: ρ ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, λ ∈
{0.001, 0.005, 0.01, 0.05, 0.1}. For all methods, we use the same training setup, except for learning
rate, batch size, and number of epochs, which are tuned per task and detailed in Appendix F.
All experiments initialize the model from the publicly available pre-trained DistilBERT-base-
uncased checkpoint, with a standard classification head or a regression output layer (for STS-B).
Comprehensive results for all eight tasks are summarized in Table 3.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of CMLR against baseline optimizers in ViT models (Test Accu-
racy %).

Optimizer CIFAR-10 (Test Accuracy %)

ViT-Tiny ViT-Small ViT-Base

AdamW 85.17±0.15 85.93±0.12 85.64±0.16
SAM 85.86±0.08 86.79±0.09 86.82±0.10
CR-SAM 86.08±0.09 86.96±0.11 87.00±0.12
Lookabehind-SAM 86.36±0.08 87.26±0.08 87.32±0.09
GSAM 86.69±0.17 87.48±0.08 87.58±0.09
FMLR 86.54±0.17 87.42±0.09 87.47±0.11
CMLR 86.95±0.07 87.81±0.09 88.30±0.08

Optimizer CIFAR-100 (Test Accuracy %)

ViT-Tiny ViT-Small ViT-Base

AdamW 58.87±0.23 61.39±0.21 61.75±0.28
SAM 60.16±0.16 62.15±0.15 62.29±0.20
CR-SAM 60.20±0.17 62.35±0.14 62.46±0.21
Lookbehind-SAM 60.57±0.16 62.63±0.13 62.78±0.19
GSAM 60.89±0.14 62.91±0.12 63.07±0.18
FMLR 60.81±0.25 62.84±0.12 62.91±0.18
CMLR 61.21±0.14 63.42±0.12 63.46±0.17

Table 3: Performance on GLUE tasks using DistilBERT. Best results per row are bolded. Metrics:
MCC for CoLA, F1 for MRPC and QQP, Pearson for STS-B, Accuracy for others.

Task AdamW SAM CRSAM GSAM LookbehindSAM FMLR CMLR
CoLA 56.69 57.69 58.29 59.03 58.79 58.97 59.19
SST-2 91.28 92.08 92.78 93.53 93.38 93.48 93.58
MRPC 89.15 89.85 90.45 91.19 90.95 91.13 91.35
STS-B 86.99 88.19 88.89 89.63 89.39 89.57 89.69
QQP 86.85 87.85 88.45 89.19 88.95 89.13 89.35
MNLI 82.17 83.17 83.87 84.62 84.47 84.57 84.67
QNLI 88.87 90.17 90.77 91.51 91.27 91.45 91.67
RTE 61.73 63.23 63.93 64.68 64.53 64.63 64.73
Avg (GLUE) 79.53 80.58 81.22 81.96 81.77 81.91 82.08

6 CONCLUSION

This paper presented a principled solution to the instability paradox in multi-step sharpness-
aware training, identifying perturbation gradient instability as the primary bottleneck and proposing
CMLR, an alternative built on a more robust foundation that replaces unstable approximations with
a more accurate central-difference scheme, embedded within an efficient, momentum Lookahead
framework; extensive empirical results validate this design, showing CMLR produces more stable
optimization trajectories and consistently outperforms existing gradient regularization methods on
benchmarks, while comprehensive convergence and variance reduction analyses further underscore
its theoretical rigor, with ablation studies confirming the critical roles of each component in achiev-
ing superior performance across diverse architectures including CNNs, Vision Transformers and
Transformer encoder–based architecture.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In International conference on machine learning, pp. 639–668. PMLR, 2022.

David G.T. Barrett and Benoit Dherin. Implicit Gradient Regularization. In International Conference
on Learning Representations (ICLR), 2021.

Peter L Bartlett, Philip M Long, and Olivier Bousquet. The dynamics of sharpness-aware minimiza-
tion: Bouncing across ravines and drifting towards wide minima. Journal of Machine Learning
Research, 24(316):1–36, 2023.

Marlon Becker, Frederick Altrock, and Benjamin Risse. Momentum-sam: Sharpness aware mini-
mization without computational overhead. arXiv preprint arXiv:2401.12033, 2024.

Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29(5):
291–294, 1997.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
Vincent YF Tan. Efficient sharpness-aware minimization for improved training of neural net-
works. arXiv preprint arXiv:2110.03141, 2021.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
for free. Advances in Neural Information Processing Systems, 35:23439–23451, 2022.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 5927–5935, 2017.

Mohamed Hassan, Aleksandar Vakanski, Boyu Zhang, and Min Xian. Gcsam: Gradient centralized
sharpness aware minimization. arXiv preprint arXiv:2501.11584, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Stanislaw Jastrzebski, Devansh Arpit, Oliver Astrand, Giancarlo B Kerg, Huan Wang, Caiming
Xiong, Richard Socher, Kyunghyun Cho, and Krzysztof J Geras. Catastrophic fisher explosion:
Early phase fisher matrix impacts generalization. In International Conference on Machine Learn-
ing, pp. 4772–4784. PMLR, 2021.

Weisen Jiang, Hansi Yang, Yu Zhang, and James Kwok. An adaptive policy to employ sharpness-
aware minimization. arXiv preprint arXiv:2304.14647, 2023.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ryo Karakida, Tomoumi Takase, Tomohiro Hayase, and Kazuki Osawa. Understanding gradient
regularization in deep learning: Efficient finite-difference computation and implicit bias. In Inter-
national Conference on Machine Learning, pp. 15809–15827. PMLR, 2023.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Hoki Kim, Jinseong Park, Yujin Choi, and Jaewook Lee. Stability analysis of sharpness-aware
minimization, 2023a. URL https://arxiv.org/abs/2301.06308.

Hoki Kim, Jinseong Park, Yujin Choi, Woojin Lee, and Jaewook Lee. Exploring the effect of multi-
step ascent in sharpness-aware minimization. arXiv preprint arXiv:2302.10181, 2023b.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL https:
//api.semanticscholar.org/CorpusID:16664790.

Bingcong Li and Georgios Giannakis. Enhancing sharpness-aware optimization through variance
suppression. Advances in Neural Information Processing Systems, 36:70861–70879, 2023.

Bingcong Li and Georgios Giannakis. Enhancing sharpness-aware optimization through variance
suppression. Advances in Neural Information Processing Systems, 36, 2024.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12360–12370, 2022a.

Yong Liu, Siqi Mai, Minhao Cheng, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Random
sharpness-aware minimization. Advances in neural information processing systems, 35:24543–
24556, 2022b.

Philip M Long and Peter L Bartlett. Sharpness-aware minimization and the edge of stability. Journal
of Machine Learning Research, 25(179):1–20, 2024.

Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
sharpness-aware minimization stronger: A sparsified perturbation approach. Advances in Neural
Information Processing Systems, 35:30950–30962, 2022.

Gonçalo Mordido, Pranshu Malviya, Aristide Baratin, and Sarath Chandar. Lookbehind-SAM: k
steps back, 1 step forward. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=vCN5lwcWWE.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. IEEE Transactions on automatic control, 54(1):48–61, 2009.

Patrik Reizinger and Ferenc Huszár. Samba: Regularized autoencoders perform sharpness-aware
minimization. In Fifth Symposium on Advances in Approximate Bayesian Inference, 2023.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International confer-
ence on machine learning, pp. 343–351. PMLR, 2013.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Samuel L. Smith, Benoit Dherin, David G. T. Barrett, and Soham De. On the Origin of Implicit
Regularization in Stochastic Gradient Descent. In International Conference on Learning Repre-
sentations (ICLR), 2021.

Yan Sun, Li Shen, Shixiang Chen, Liang Ding, and Dacheng Tao. Dynamic regularized sharpness
aware minimization in federated learning: Approaching global consistency and smooth landscape.
In International Conference on Machine Learning, pp. 32991–33013. PMLR, 2023.

Chengli Tan, Jiangshe Zhang, Junmin Liu, and Yihong Gong. Sharpness-aware lookahead for accel-
erating convergence and improving generalization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024a.

12

https://arxiv.org/abs/2301.06308
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790
https://openreview.net/forum?id=vCN5lwcWWE

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chengli Tan, Jiangshe Zhang, Junmin Liu, Yicheng Wang, and Yunda Hao. Stabilizing sharpness-
aware minimization through a simple renormalization strategy, 2024b. URL https://arxiv.
org/abs/2401.07250.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupała, and Afra Alishahi (eds.), Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446/.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Lookahead converges to station-
ary points of smooth non-convex functions. In ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 8604–8608. IEEE, 2020.

Yili Wang, Kaixiong Zhou, Ninghao Liu, Ying Wang, and Xin Wang. Efficient sharpness-aware
minimization for molecular graph transformer models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Od39h4XQ3Y.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-aware minimization minimizes sharp-
ness? In The Eleventh International Conference on Learning Representations, 2023.

Tao Wu, Tie Luo, and Donald C Wunsch II. Cr-sam: Curvature regularized sharpness-aware min-
imization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38(6), pp.
6144–6152, 2024.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

Runsheng Yu, Youzhi Zhang, and James Kwok. Improving sharpness-aware minimization by looka-
head. In Forty-first International Conference on Machine Learning, 2024.

Juyoung Yun. Sharpness-aware minimization with z-score gradient filtering for neural net-
works. ArXiv, abs/2505.02369, 2025. URL https://api.semanticscholar.org/
CorpusID:278327066.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. Advances in neural information processing systems, 32, 2019.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving gen-
eralization in deep learning. In International conference on machine learning, pp. 26982–26992.
PMLR, 2022.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. When will gradient regularization be harmful? In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 61144–61158. PMLR, 21–27 Jul
2024.

13

https://arxiv.org/abs/2401.07250
https://arxiv.org/abs/2401.07250
https://aclanthology.org/W18-5446/
https://openreview.net/forum?id=Od39h4XQ3Y
https://openreview.net/forum?id=Od39h4XQ3Y
https://api.semanticscholar.org/CorpusID:278327066
https://api.semanticscholar.org/CorpusID:278327066

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ALGORITHM

Algorithm 2 CMLR (simplified version for convergence analysis)

Require: Same inputs as Algorithm 1.
1: for t = 0, 1, . . . , T − 1 do
2: Follow Algorithm 1 until the (K − 2)-th inner step.
3: Compute dK−1 as in line 12 of Algorithm 1.
4: Synchronize fast and slow weights with Lookahead:

wt+1, wt,K ← wt + α
(
A(wt,K−1, ηt,K−1, dK−1)− wt

)
.

5: end for
6: return wT .

Ensure: CMLR trained model.

B DETAILED CONVERGENCE ANALYSIS FOR CLR
B.1 NECESSARY ASSUMPTIONS

Assumption B.1 (L-Smoothness of the Gradient). The loss function, L(w), is L1-smooth. And this
condition is equivalent to its Hessian matrix having a bounded norm, i.e., ∥∇2L(w)∥ ≤ L1.

∥∇L(w1)−∇L(w2)∥ ≤ L1∥w1 − w2∥ (14)

Assumption B.2 (Gradient Oracle Properties). The stochastic gradient g(w; ξ) is an unbiased esti-
mator of the true gradient and has its variance bounded by σ2.

Eξ[g(w; ξ)] = ∇L(w), Eξ[∥g(w; ξ)−∇L(w)∥2] ≤ σ2 (15)

Assumption B.3 (Lipschitz Continuous Hessian). The Hessian∇2L(w) is L2-Lipschitz continuous.

∥∇2L(w1)−∇2L(w2)∥ ≤ L2∥w1 − w2∥ (16)

Assumption B.4 (Bounded Fourth Moment). The stochastic gradient has a bounded fourth moment.
∃M > 0 such that

E∥g(w; ξ)−∇L(w)∥4 ≤M (17)

B.2 PROOF OF RELAXED DESCENT LEMMA

Lemma B.5 (Relaxed Descent Lemma). Under Assumptions 1 and 3, the sequence of iterates {ŷs}
generated by the GLEAP algorithm satisfies the following inequality:

F (ŷs+1) ≤F (ŷs)− αηs⟨∇F (ŷs), d(ys; ξs)⟩+
L1α

2η2s
2
∥d(ys; ξs)∥2 + 2λL1αηs∥d(ys; ξs)∥ (18)

Proof. The proof starts from the fundamental theorem of calculus applied to F :

F (y)− F (x) =

∫ 1

0

⟨∇F (x+ t(y − x)), y − x⟩ dt

= ⟨∇F (x), y − x⟩+
∫ 1

0

⟨∇F (x+ t(y − x))−∇F (x), y − x⟩ dt (19)

We bound the integrand using the Cauchy-Schwarz inequality and the relaxed smoothness property:

⟨∇F (x+ t(y − x))−∇F (x), y − x⟩ ≤ ∥∇F (x+ t(y − x))−∇F (x)∥ · ∥y − x∥
≤ ∥∇L(x+ t(y − x))−∇L(x)∥ · ∥y − x∥
+ λ(∥∇∥∇L(x+ t(y − x))∥∥+ λ∥∇∥∇L(x)∥∥) · ∥y − x∥
≤ L1t∥y − x∥2 + 2λL1∥y − x∥ (20)

Substituting this back into the integral:

F (y)− F (x) ≤ ⟨∇F (x), y − x⟩+
∫ 1

0

(L1t∥y − x∥2 + 2λL1∥y − x∥)dt

= ⟨∇F (x), y − x⟩+ L1

2
∥y − x∥2 + 2λL1∥y − x∥ (21)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Now, we let x = ŷs and y = ŷs+1. The update step is ŷs+1 − ŷs = −αηsd(ys; ξs):

F (ŷs+1) ≤ F (ŷs) + ⟨∇F (ŷs),−αηsd(ys; ξs)⟩+
L1

2
∥αηsd(ys; ξs)∥2 + 2λL1∥αηsd(ys; ξs)∥

= F (ŷs)− αηs⟨∇F (ŷs), d(ys; ξs)⟩+
L1α

2η2s
2
∥d(ys; ξs)∥2 + 2λL1αηs∥d(ys; ξs)∥

(22)

This completes the proof of the lemma.

B.3 PROOF OF MAIN CONVERGENCE THEOREM

Theorem B.6 (Convergence of CLR for Non-Convex Objectives). Under Assumptions B.1-B.3, if
the learning rate ηs is sufficiently small and satisfies

∑∞
s=0 ηs = ∞ and

∑∞
s=0 η

p
s < ∞ for p ≥ 2,

the iterates sequence generated by CLR satisfy:

lim inf
s→∞

E[∥∇F (ŷs)∥2] = O(λ). (23)

Proof. The proof begins by taking the total expectation of Equation 18. We must bound the expec-
tation of the three terms on the right-hand side.
First, we bound the inner product term: Let B(ys) = E[d(ys, ξs)]−∇F (ys).

E[⟨∇F (ŷs), d(ys; ξs)⟩] = E[⟨∇F (ŷs),∇F (ys)⟩] + E[⟨∇F (ŷs), B(ys)⟩] (24)

The first term of RHS:

E[⟨∇F (ŷs),∇F (ys)⟩] =
1

2
E[∥∇F (ŷs)∥2] +

1

2
E[∥∇F (ys)∥2]−

1

2
E[∥∇F (ŷs)−∇F (ys)∥2]

≥ 1

2
E[∥∇F (ŷs)∥2] +

1

2
E[∥∇F (ys)∥2]− L2

1E[∥ŷs − ys∥2]− 2λL1 (25)

where

E[∥∇F (ŷs)−∇F (ys)∥2] ≤ 2E[∥∇L(ŷs)−∇L(ys)∥2] + 2λ(E[∥∇2L(ŷs)
∇L(ŷs)

∥∇L(ŷs)∥+ ε
∥2]

+ E[∥∇2L(ys)
∇L(ys)

∥∇L(ys)∥+ ε
∥2])

= 2L2
1E[∥ŷs − ys∥2] + 4λL1. (26)

The second term of RHS:

E[⟨∇F (ŷs), B(ys)⟩] ≥ −E[∥∇F ŷs)∥∥B(ys)∥]

≥ −ε1
2
E[∥∇F (ŷs)∥2 −

1

2ε1
E[∥B(ys)∥2]] (27)

where

E[∥B(ys)∥]

= λE[∥ 1

2ρ
(∇L(ys + ρ

∇L(ys; ξs)
∥∇L(ys; ξs)∥+ ε

)−∇L(ys − ρ
∇L(ys; ξs)

∥∇L(ys; ξs)∥+ ε
))−∇2L(ys)

∇L(ys)
∥∇L(ys)∥+ ε

∥]

≤ λE[∥ 1

2ρ
(∇L(ys + ρ

∇L(ys; ξs)
∥∇L(ys; ξs)∥+ ε

)−∇L(ys − ρ
∇L(ys; ξs)

∥∇L(ys; ξs)∥+ ε
))−∇2L(ys; ξs)

∇L(ys; ξs)
∥∇L(ys; ξs)∥+ ε

∥]

+ λE[∥∇2L(ys; ξs)
∇L(ys; ξs)

∥∇L(ys; ξs)∥+ ε
−∇2L(ys)

∇L(ys)
∥∇L(ys)∥+ ε

∥

≤ λ
L2ρ

2

6
+ 2λL1 (28)

Thus, we have:

E[⟨∇F (ŷs), d(ys; ξs)⟩] ≥
1

2
(1− ε1)E[∥∇F (ŷs)∥2] +

1

2
E[∥∇F (ys)∥2]

− L2
1(1− α)2E[∥ys − y⌊s/K⌋K∥2]− C1.

(29)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where C1 =
λ2L2

2ρ
4

18ε1
+

2λ2L2
1

ε1
+ 2λL1.

Second, the squared norm of the update direction is bounded:
E[∥d(ys; ξs)∥2] = E

[
Varξs(d(ys; ξs)) + ∥Eξs [d(ys; ξs)]∥2

]
(30)

To bound the variance, let δs = g(ys; ξs)−∇L(ys).

E [Varξs(d(ys; ξs))] = E

[
Eξs

[∥∥∥∥δs + λ

2ρ
(δ+s − δ−s)

∥∥∥∥2
]]

≤ E

[
Eξs

[
2∥δs∥2 + 2

∥∥∥∥ λ

2ρ
(δ+s − δ−s)

∥∥∥∥2
]]

≤ E
[
Eξs

[
2∥δs∥2 +

λ2

ρ2
(
∥δ+s ∥2 + ∥δ−s ∥2

)]]
≤ E

[
2σ2 +

λ2

ρ2
(σ2 + σ2)

]
= 2σ2

(
1 +

λ2

ρ2

)
(31)

Thus, we have

E[∥d(ys; ξs)∥2] ≤ 2σ2

(
1 +

λ2

ρ2

)
+ E

[
2∥∇F (ys)∥2 + 2∥B(ys)∥2

]
= 2E

[
∥∇F (ys)∥2

]
+ C2

(32)

where C2 = 2σ2
(
1 + λ2

ρ2

)
+ 2λ2(L2ρ

2

6 + 2L1)
2.

Third, we handle the linear norm term using Jensen’s inequality and AM-GM:

E[∥d(ys; ξs)∥] ≤
√

E[∥d(ys; ξs)∥2]

≤
√

C2 + 2E[∥∇F (ys)∥2]

≤ ε2
2

+
C2 + 2E[∥∇F (ys)∥2]

2ε2

(33)

Substituting these bounds back into the expectation of Equation 18 and summing over one outer
loop (k = 0, . . . ,K − 1) with a fixed learning rate ηtK , we get the main recurrence relation:

E[F (ŷ(t+1)K)]− E[F (ŷtK)] ≤ −αηtK
2

(1− ε1)

K−1∑
k=0

E[∥∇F (ŷtK+k)∥2]

−
(
αηtK
2
− L1α

2η2tK −
2λL1αηtK

ε2

)K−1∑
k=0

E[∥∇F (ytK+k)∥2]

+ L2
1(1− α)2αηtK

K−1∑
k=0

E[∥ytK+k − ytK∥2] + C3K

(34)
where C3 collects constant error terms. The third term of RHS in Equation 34:

E
[
∥ytK+k − ytK∥2

]
= E


∥∥∥∥∥∥
k−1∑
j=0

(−ηtKdtK+j)

∥∥∥∥∥∥
2


≤ η2tKE

k k−1∑
j=0

∥dtK+j∥2


≤ η2tKk

k−1∑
j=0

(
C2 + 2E

[
∥∇F (ytK+j)∥2

])
= k2η2tKC2 + 2kη2tK

k−1∑
j=0

E
[
∥∇F (ytK+j)∥2

]
(35)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Summing over k:

K−1∑
k=0

E
[
∥ytK+k − ytK∥2

]
≤ C2η

2
tK

K−1∑
k=0

k2 + 2η2tK

K−1∑
k=1

k

K−1∑
j=0

E
[
∥∇F (ytK+j)∥2

]
= C2

(K − 1)K(2K − 1)

6︸ ︷︷ ︸
C4

η2tK +K(K − 1)︸ ︷︷ ︸
C5

η2tK

K−1∑
j=0

E
[
∥∇F (ytK+j)∥2

]

= C4η
2
tK + C5η

2
tK

K−1∑
k=0

E[∥∇F (ytK+k)∥2]

(36)

Next, we bound the second term of RHS in Equation 34:
K−1∑
k=0

E
[
∥∇F (ytK+k)∥2

]
≤

K−1∑
k=0

2E
[
∥∇F (ŷtK+k)∥2

]
+ 2E

[
∥∇F (ytK+k)−∇F (ŷtK+k)∥2

]
≤

K−1∑
k=0

2E
[
∥∇F (ŷtK+k)∥2

]
+ 4L2

1E
[
∥ytK+k − ŷtK+k∥2

]
+ 8λ2L2

1

= 2

K−1∑
k=0

E
[
∥∇F (ŷtK+k)∥2

]
+ 4L2

1(1− α)2
K−1∑
k=0

E
[
∥ytK+k − ytK∥2

]
+ 8Kλ2L2

1

(37)

By substituting into equation Equation 36, we can obtain:
K−1∑
k=0

E
[
∥∇F (ytK+k)∥2

]
≤ 2

K−1∑
k=0

E
[
∥∇F (ŷtK+k)∥2

]
+ 8Kλ2L2

1

+ 4L2
1(1− α)2

(
C4η

2
tK + C5η

2
tK

K−1∑
k=0

E[∥∇F (ytK+k)∥2]
)

(38)

=⇒
(
1− 4L2

1(1− α)2C5η
2
tK

)K−1∑
k=0

E
[
∥∇F (ytK+k)∥2

]
≤ 2

K−1∑
k=0

E
[
∥∇F (ŷtK+k)∥2

]
+ 4L2

1(1− α)2C4η
2
tK + 8Kλ2L2

1
(39)

=⇒
K−1∑
k=0

E
[
∥∇F (ytK+k)∥2

]
≤ C6

K−1∑
k=0

E
[
∥∇F (ŷtK+k)∥2

]
+ C7. (40)

where C6, C7 are constants for a sufficiently small ηtK .
Substituting these bounds back into the main recurrence Equation 34 allows us to eliminate all
dependencies on the fast weights ytK+k. After collecting terms, we arrive at the simplified one-step
recurrence for the interpolated weights ŷ:

E[F (ŷ(t+1)K)]− E[F (ŷtK)] ≤ −C8

K−1∑
k=0

E[∥∇F (ŷtK+k)∥2] + C9 (41)

where

C8 =
αη

2
(1− ε1) + C6

(
αη

2
− L1α

2η2 − 2λL1αη

ε2
− L2

1(1− α)2αC5η
3

)
(42)

is a positive coefficient, and

C9 =C3K + L2
1(1− α)2αC4η

3 − C7

(
αη

2
− L1α

2η2 − 2λL1αη

ε2
− L2

1(1− α)2αC5η
3

)
(43)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

is a term collecting various constants and error terms.
To analyze the long-term behavior, we sum the inequality from t = 0 to T − 1:

C8

τ−1∑
l=0

E[∥∇F (ŷtτ+l)∥2] ≤ E[F (ŷtτ)]− E[F (ŷ(t+1)τ)] + C9

=⇒
T−1∑
t=0

C8

τ−1∑
l=0

E[∥∇F (ŷtτ+l)∥2] ≤
T−1∑
t=0

(
E[F (ŷtτ)]− E[F (ŷ(t+1)τ)]

)
+

T−1∑
t=0

C9 (44)

The first term on the right-hand side is a telescoping series, bounded by E[F (ŷ0)]− Finf . The sum
of C9 contains terms proportional to various powers of the learning rate and λ.

TK−1∑
s=0

O(ηs)E[∥∇F (ŷs)∥2] ≤ F (ŷ0)− Finf +O(λ)

TK−1∑
s=0

ηs +O(1)

TK−1∑
s=0

(η2s + · · ·+ η5s) (45)

Dividing by
∑TK−1

s=0 ηs and taking the limit T → ∞, we leverage the learning rate conditions:∑
ηs = ∞ and

∑
ηps < ∞ for p ≥ 2. Under these conditions, the terms (F (ŷ0) − Finf)/

∑
ηs

and (
∑

η2s)/
∑

ηs both converge to zero. The dominant non-vanishing term on the right-hand side
is therefore proportional to λ. This leads to the conclusion:

lim inf
T→∞

∑TK−1
s=0 ηsE[∥∇F (ŷs)∥2]∑TK−1

s=0 ηs
≤ O(λ) (46)

This result confirms that CLR converges to a neighborhood of a stationary point of the regularized
objective F (w), with the size of this neighborhood governed by λ.

C DETAILED CONVERGENCE ANALYSIS FOR CMLR
For the sake of convenience, we provide some new variable definitions and supplementary expla-
nations before describing the theorem. In the gradient normalization step of the algorithm imple-
mentation, in order to avoid the denominator being 0, we add a small perturbation Sε(z) ≜ z

∥z∥+ε

to replace z
∥z∥ in practical implementation. Moreover, we give other definitions following: v̂k =

Sε(vk), uk = Sε(∇L(yk)), g̃k ≜ 1
2

(
g+
k

∥g+
k ∥+ε

+
g−
k

∥g−
k ∥+ε

)
Theorem 4.1 (Convergence of CMLR for Non-Convex Objectives). Under the same conditions in
Theorem B.6, the iterative sequence generated by CMLR satisfies:

lim inf
s→∞

E[∥∇F (ŷs)∥2] = O(λ). (11)

Proof. Re estimate of B(ys) in Equation 28.

B(ys) = λ

(
E
[∇L(ys + ρv̂s)−∇L(ys − ρv̂s)

2ρ

]
−∇2L(ys)Sε(∇L(ys))

)

= λ(E
[∇L(ys + ρv̂s)−∇L(ys − ρv̂s)

2ρ

]
−∇2L(ys)v̂s)

+ λ(∇2L(ys)v̂s −∇2L(ys)Ŝε(∇L(ys)))
= λ(T1 + T2) (47)

Bound for T1. By the third-order Taylor expansion (or Hessian-Lipschitz control) the central-
difference truncation is bounded pointwise by

∥∇L(ys + ρv̂s)−∇L(ys − ρv̂s)

2ρ
−∇2L(ys)v̂s∥ ≤

L2ρ
2

6

for any unit vector v. Taking expectation yields

∥T1∥ ≤
L2ρ

2

6
. (48)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Bound for T2. We first consider that Sε is max{1, 1/ε}-Lipschitz.

Sε(x)− Sε(y) =

∫ 1

0

DSε

(
y + t(x− y)

)
(x− y) dt,

so that
∥Sε(x)− Sε(y)∥ ≤ sup

z∈Rd

∥DSε(z)∥ ∥x− y∥.

A direct calculation gives

DSε(z) =
1

∥z∥+ ε
I − zz⊤

(∥z∥+ ε)∥z∥
,

hence

∥DSε(z)∥ ≤
1 + ∥z∥
∥z∥+ ε

.

Taking the supremum over ∥z∥ ≥ 0 yields

∥Sε(x)− Sε(y)∥ ≤ max
{
1,

1

ε

}
∥x− y∥ = Lf∥x− y∥.

where Lf ≜ max{1, 1
ε}. Applying this with x = v̂s and y = ∇L(ys) and taking expectation yields∥∥E[v̂s]− Sε(∇L(ys))

∥∥ ≤ E∥v̂s − Sε(∇L(ys))∥ ≤ Lf (ε)E∥es∥. (49)

where es ≜ v̂s − us. Then we have:

∥T2∥ ≤ L1 Lf (ε)E∥es∥, (50)

Considering vs+1 = βsv̂s + (1− βs)g̃s, we have:

es+1 = Sε(βsv̂s + (1− βs)g̃s)− us+1

=
(
Sε(βsv̂s + (1− βs)g̃s)− Sε(bs)

)
+
(
Sε(bs)− us+1

)
, (51)

where bs ≜ βsus + (1− βs)ūs and ūs ≜ E[g̃s]. Using the Lipschitz property of Sε,

E∥Sε(βsv̂s + (1− βs)g̃s)− Sε(bs)∥

≤ Lf

(
βsE∥es∥+ (1− βs)E∥g̃s − ūs∥

)
,

≤ Lf (βsE∥es∥+ (1− βs)

√
E
∥∥g̃s − E[g̃s]

∥∥2)
≤ Lf (βsE∥es∥+ (1− βs)

√
1

2
E
∥∥Sε(g

+
s)− Sε(∇L(ys))

∥∥2 + 1

2
E
∥∥Sε(g

−
s)− Sε(∇L(ys))

∥∥2)
≤ Lf (βsE∥es∥+ (1− βs)

√
L2
fE∥g

±
s −∇L(ys)∥2)

≤ Lf (βsE∥es∥+ (1− βs)Lf
σ√
b
) (52)

E∥Sε(bs)− us+1∥ ≤ Lf (βs∥us −∇L(ys+1)∥+ (1− βs)∥ūs −∇L(ys+1)∥)
≤ Lfβs(∥us −∇L(ys)∥+ ∥∇L(ys)−∇L(ys+1)∥) + Lf (1− βs)(∥ūs − us∥+ ∥us −∇L(ys+1)∥)

≤ Lfβs(|
ε

∥∇L(ys)∥+ ε
∇L(ys)∥+ L1η∥ds∥) + Lf (1− βs)(Lf

σ√
b
+ ∥us −∇L(ys+1)∥)

≤ Lfβs(ε+ L1η∥ds∥) + Lf (1− βs)(Lf
σ√
b
+ ε+ L1η∥ds∥)

≤ Lf

(
ε+ L1η E∥ds∥+ (1− βs)Lf

σ√
b

)
. (53)

Combining the two bounds yields the recursion

E∥es+1∥ ≤ Lfβs E∥es∥+ Lfε+ LfL1η E∥ds∥+ 2L2
f (1− βs)

σ√
b
. (54)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E∥es∥ ≤ LK
f βK

K−1E∥e0∥+
1− LK

f βK
K−1

1− LfβK−1
(Lfε+ LfL1η E∥ds∥+ 2L2

f (1− β0)
σ√
b
)

≤
1− LK

f βK
K−1

1− LfβK−1
LfL1η E∥ds∥+

1− LK
f βK

K−1

1− LfβK−1
(Lfε+ 2L2

f (1− β0)
σ√
b
) (55)

E∥B(ys)∥ ≤ λL1Lf

1− LK
f βK

K−1

1− LfβK−1
LfL1η E∥ds∥+ λ

L2ρ
2

6

+ λL1Lf

1− LK
f βK

K−1

1− LfβK−1
(Lfε+ 2L2

f (1− β0)
σ√
b
)

= C10E∥ds∥+ C11 (56)

E∥B(ys)∥2 = ∥EB∥2 + ∥B − EB∥2

≤ (2C2
10E∥ds∥2 + 2C2

11) + 2λ2(E∥∇2(ys)(v̂s − Ev̂s)∥2 + E∥T1∥2)

≤ 2C2
10E∥ds∥2 + 2C2

11 + 2λ2L2
1E∥v̂s − Ev̂s∥2 +

λ2L2
2ρ

4

18
(57)

E∥vs − Evs∥2 = E
[
Var(vs+1 | Fs)

]
+Var

(
E[vs+1 | Fs]

)
(58)

First term:
E
[
Var(vs+1 | Fs)

]
= E

[
Var(βsv̂s + (1− βs)g̃s | Fs)

]
= (1− βs)

2E
[
Var(g̃s | Fs)

]
≤ (1− βs)

2
L2
fσ

2

2b
(59)

(60)
Second term:

Var
(
E[vs+1 | Fs]

)
= Var

(
βsv̂s + (1− βs)E[g̃s | Fs]

)
= β2

sVar(v̂s)

= β2
sE∥v̂s − Ev̂s∥2

≤ β2
sL

2
fE∥vs − Evs∥2 (61)

Combining the two terms, let Vs ≜ E∥vs − Evs∥2.

Vs+1 ≤ β2
sL

2
fVs + (1− βs)

2
L2
fσ

2

2b
(62)

Vs ≤
(1− β0)

2L2
fσ

2(1− β2K
K−1L

2K
f)

2b(1− β2
K−1L

2
f)

(63)

E∥B(ys)∥2 ≤ 2C2
10E∥ds∥2 + C12 (64)

where C12 = 2C2
11+λ2L2

1(1−β0)
2L2

fσ
2(1−β2K

K−1L
2K
f)/b(1−β2

K−1L
2
f)+

λ2L2
2ρ

4

18 Similar to the
derivation of Theorem B.6, we can obtain the following recursive equation similar to Equation 34:

E[F (ŷ(t+1)K)]− E[F (ŷtK)] ≤ −αηtK
2

(1− ε1)

K−1∑
k=0

E[∥∇F (ŷtK+k)∥2]

−
(
αηtK
2
− L1α

2η2tK −
2λL1αηtK

ε2
− C2

10αηs
ε1

)K−1∑
k=0

E[∥∇F (ytK+k)∥2]

+ L2
1(1− α)2αηtK

K−1∑
k=0

E[∥ytK+k − ytK∥2] + C̃3K

(65)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where C̃3 = αηtKC̃1 +
C2

10

ε1
αηtKC̃2 + 2λL1αηtK(ε22 + 2

ε2
), C̃2 = C2, C̃1 = 2λL1 +

C12

2ε1
. Then

we have:

E[F (ŷ(t+1)K)]− E[F (ŷtK)] ≤ −C̃8

K−1∑
k=0

E[∥∇F (ŷtK+k)∥2] + C̃9 (66)

where

C̃8 =
αηtK
2

(1− ε1) + (
αηtK
2
− L1α

2η2tK −
2λL1αηtK

ε2
− C2

10αηtK
ε1

)C̃6 − C̃5η
2
tKC̃6, (67)

C̃9 =
αηtK
2

(1− ε1)− (
αηtK
2
− L1α

2η2tK −
2λL1αηtK

ε2
− C2

10αηtK
ε1

)C̃7

+ L2
1(1− α)2αηtKC̃5η

2
tKC̃7 + L2

1(1− α)2αηtK + C̃4η
2
tK + C̃3K. (68)

and C̃4 = C4, C̃5 = C5, C̃6 = C6, C̃7 = C7. Similar to the derivation of Equation 45, we can obtain
a rough upper bound conclusion that is approximately consistent with Equation 46.

D DETAILED DERIVATION OF NOISY QUADRATIC ANALYSIS FOR LR
Our key insight is that this regularized objective is mathematically equivalent to a standard quadratic
model but governed by an regularized Hessian, H ′ = H + λH2, where λ represents the regular-
ization strength. This allows us to directly apply the variance analysis tools for stochastic gradient
descent (SGD) and Lookahead. Following the analysis framework, the asymptotic variance of the
inner optimizer (GR-SGD) converges to a fixed point, which we denote as V ∗

R .
Theorem D.1 (Variance Reduction with LR). When applying the Lookahead optimizer to the
gradient-regularized noisy quadratic model, the asymptotic variance of the slow weights, V ∗

LR, con-
verges to the following fixed point:

V ∗
R = A−1

2 η2(H ′)2Σ2 (69)

V ∗
LR =

α2A2k

α2A2k + 2α(1− α)Ak
V ∗
R (70)

where Ak are defined as:

Ak = (I − (I − ηH ′)k) (71)

Here, H ′ = H + λH2 is the regularized Hessian, η is the inner learning rate, α is the slow weights
step size, and k is the number of inner loop steps.

Proof. We first introduce a gradient regularization term to this objective, creating a new objective
L̂R(x):

L̂R(x) = L̂(x) +
1

2
λ∥∇L̂(x)∥2 (72)

The gradient of the original loss is ∇L̂(x) = H(x − c). Substituting this into the equation and
assuming H is symmetric (H⊤ = H), we get:

L̂R(x) =
1

2
(x− c)⊤H(x− c) +

1

2
λ(x− c)⊤H2(x− c)

=
1

2
(x− c)⊤(H + λH2)(x− c) (73)

This shows that our regularized objective is equivalent to a standard noisy quadratic model with an
regularized Hessian, defined as H ′ = H + λH2.
And then, to simplify the derivation, let us first define the intermediate term Ak as:

Ak = I − (I − γH ′)k (74)

The variance dynamics for the inner optimizer (R-SGD) are given by Wu et al. (2018):

V [x(t+1)] = (I − γH ′)2V [x(t)] + γ2(H ′)2Σ (75)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

To find the asymptotic variance fixed point, V ∗
R , we set V [x(t+1)] = V [x(t)] = V ∗

R :

V ∗
R = (I − γH ′)2V ∗

R + γ2(H ′)2Σ (76)

(I − (I − γH ′)2)V ∗
R = γ2(H ′)2Σ (77)

Recognizing that the term on the left, I − (I − γH ′)2, is exactly A2 from our definition in Equa-
tion 74:

A2V
∗
R = γ2(H ′)2Σ (78)

V ∗
R = A−1

2 γ2(H ′)2Σ (79)

The dynamics for the Lookahead slow weights ϕt are given by Zhang et al. (2019):

V [ϕt+1] = [I − αAk]
2
V [ϕt] + α2

(
k−1∑
i=0

(I − γH ′)2i

)
γ2(H ′)2Σ (80)

Note that we have rewritten the first term usingAk: (1−α)I+α(I−γH ′)k = (1−α)I+α(I−Ak) =
I − αAk.
To solve for the fixed point V ∗

LR, we set V [ϕt+1] = V [ϕt] = V ∗
LR:

V ∗
LR =

α2
(∑k−1

i=0 (I − γH ′)2i
)
γ2(H ′)2Σ

I − [I − αAk]
2 (81)

Using the geometric series identity, the summation can be expressed with our notation:

k−1∑
i=0

(
(I − γH ′)2

)i
=

I − (I − γH ′)2k

I − (I − γH ′)2
= A2kA−1

2 (82)

Substituting this and the expression for V ∗
GR back into the equation:

V ∗
LR =

α2A2kA−1
2

(
γ2(H ′)2Σ

)
I − [I − αAk]

2

=
α2A2k

I − (I2 − 2αAk + α2A2
k)
·
(
A−1

2 γ2(H ′)2Σ
)

=
α2A2k

2αAk − α2A2
k

· V ∗
GR (83)

The denominator can be factored as 2αAk − α2A2
k = αAk(2I − αAk). To match the desired final

form, we return to the denominator manipulation from the original paper, but expressed with Ak:

I −
[
(1− α)I + α(I − γH ′)k

]2
= α2

(
I − (I − γH ′)2k

)
+ 2α(1− α)

(
I − (I − γH ′)k

)
= α2A2k + 2α(1− α)Ak (84)

This gives the final, simplified expression as specified:

V ∗
LR =

α2A2k

α2A2k + 2α(1− α)Ak
V ∗
R (85)

This completes the proof.

The ratio is a multiplicative factor that is strictly less than 1 for any α ∈ (0, 1) and k ≥ 1. This
rigorously demonstrates that our method reduces the asymptotic variance compared to the inner
GR-SGD optimizer alone, which contributes to the improved stability and convergence we observe
in practice. The analysis of LR variance reduction followed the classical noise-propagation frame-
work as in prior works. In contrast, our CMLR analysis adopts a spectral decomposition approach:
we expand dynamics along each eigen-direction of H , thereby isolating both the data-induced vari-
ance and the additional contribution from momentum accumulation. Here, we provide the spectral
analysis theorem for CMLR variance reduction.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E DETAILED DERIVATION OF NOISY QUADRATIC ANALYSIS FOR CMLR

we first define n(z) ≜ z
∥z∥ , s ≜ ρHv̂,then we obtain H(w − c)→ u,H(w − c) + ρHv̂ → g+ and

H(w − c)− ρHv̂ → g−.
Lemma E.1 (Second-Order Remainder Bound). Let u ̸= 0. If ∥s∥ ≤ 1

2∥u∥, then there exists a
remainder term R such that

g+

∥g+∥
+

g−

∥g−∥
= 2

u

∥u∥
+R, (86)

with the strict norm bound

∥R∥ = O(ρ2) (87)

Proof. We first use a second-order Taylor expansion for the normalized map n(x) at the point u:

n(u± s) = n(u) +Dnu(±s) +
1

2
D2nu+θ±(±s)(±s,±s),

for some θ± ∈ (0, 1), where Dnu(h) =
1

∥u∥ (I − n(u)n(u)⊤)h . The first-order terms cancel out
exactly:Dnu(s) +Dnu(−s) = 0.
The remainder term R is therefore composed of the second-order terms:

R =
1

2

(
D2nu+θ+s(s, s) +D2nu−θ−s(−s,−s)

)
.

For any z ̸= 0, the second Fréchet derivative has the general upper bound given by:

∥D2nu(h, k)∥ ≤
∥∥∥∥ u⊤k

∥u∥3
(I − nn⊤)h

∥∥∥∥+ ∥∥∥∥ 1

∥u∥
Dnu(k)n

⊤h

∥∥∥∥+ ∥∥∥∥ 1

∥u∥
n(Dnu(k))

⊤h

∥∥∥∥
≤ |u

⊤k|
∥u∥3

∥I − nn⊤∥op∥h∥+
1

∥u∥
∥Dnu(k)∥|n⊤h|+ 1

∥u∥
∥n∥|(Dnu(k))

⊤h|

≤ ∥u∥∥k∥
∥u∥3

(1)∥h∥+ 1

∥u∥

(
∥k∥
∥u∥

)
(∥n∥∥h∥) + 1

∥u∥
(1)(∥Dnu(k)∥∥h∥)

≤ 1

∥u∥2
∥k∥∥h∥+ 1

∥u∥2
∥k∥∥h∥+ 1

∥u∥2
∥k∥∥h∥

=
3

∥u∥2
∥h∥∥k∥.

where the operator I − n(u)n(u)⊤ is a projection onto the orthogonal complement of n(u), so its
operator norm is equal to its largest eigenvalue, which implies ∥I − nn⊤∥op = 1. We also use
∥n(u)∥ = 1 and the bound ∥Dnu(k)∥ ≤ 1

∥u∥∥k∥. Given the assumption ∥s∥ ≤ 1
2∥u∥, we have that:

∥u± θ±s∥ ≥ ∥u∥ − ∥s∥ ≥ 1
2∥u∥. This allows us to bound each component of the remainder:

1

2
∥D2nu+θ+s(s, s)∥ ≤

1

2
∥D2nu+θ+s∥op∥s∥2

≤ 1

2
· 3

∥u+ θ+s∥2
∥s∥2

≤ 1

2
· 3

(12∥u∥)2
∥s∥2 = 6

∥s∥2

∥u∥2
.

Summing the bounds for the two terms via the triangle inequality yields the final result:

∥R∥ ≤ 12
∥s∥2

∥u∥2
.

Therefore, substituting s = ρHv and ∥v̂∥ = 1, we obtain∥∥∥∥ g+

∥g+∥
+

g−

∥g−∥
− 2

H(w − c)

∥H(w − c)∥

∥∥∥∥ ≤ 12
ρ2∥H∥2

∥H(w − c)∥2
.

In other words, as long as ∥H(w − c)∥ is bounded from below, this difference is O(ρ2).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Now, we consider true gradient: g±r = u+ s+ ξ±r , where ξ±r satisfies Assumption B.2.
Theorem 4.2 (Variance Reduction with CMLR). Fix an eigenpair (q, µ) of H , with scalar pro-
jections xt,k = q⊤wt,k, ct,k = q⊤c, and v̂k,q = q⊤v̂k. Let a ≜ 1 − ηµ, define Aeff ≜
(1 − α) + αaK , Beff ≜ αηµ. Under Assumption B.2, Assumption B.4, ∥∇L∥ ≥ gmin and con-
diton in Lemma E.1, the steady-state variance of CMLR satisfies

vCMLR ≤ vLR(1 +
√
τ)2 +O(ρ

4∥H∥4 +M

g4min

) (12)

where

vLR =
α2(ηµ)2σ2 1− a2K

1− a2

1−A2
eff

, τ = 2d
λ2(1− β)

g2min(1 + β)
, (13)

Proof. We present a concise derivation starting from the algorithmic updates (quadratic loss). For
the quadratic model one has the exact identity (no approximation)

g±k = H(wt,k − c)± ρHv̂k, (88)

and therefore (using the coefficients ρ+λ
2ρ , ρ−λ

2ρ from the algorithm)

dk =
ρ+ λ

2ρ
g+k +

ρ− λ

2ρ
g−k = H(wt,k − c) + λHv̂k. (89)

Projecting onto the eigenvector q (write µ for the eigenvalue) yields the scalar exact update for the
inner step:

xt,k+1 = (1− ηµ)xt,k + ηµ ct,k − ηλµ v̂k,q. (90)

Thus the inner-step perturbation (momentum accumulation error) is exactly

εt,k ≜ −ηλµ v̂k,q. (91)

Unrolling the inner loop (as in the standard linear system expansion) gives the closed form for the
k-step output yk ≜ xt,k:

yk = akxt + ηµ

k−1∑
r=0

a k−1−rct,r +

k−1∑
r=0

a k−1−rεt,r, (92)

with a ≜ 1 − ηµ. The outer Lookahead update is xt+1 = (1 − α)xt + αyk. Group the data-noise
part

S ≜ Beff

k−1∑
r=0

a k−1−rct,r, (93)

and the momentum accumulation part

Et ≜ α

k−1∑
r=0

a k−1−rεt,r = −αηλµ
k−1∑
r=0

a k−1−rv̂r,q. (94)

The variance recursion for the linear iteration yields, at stationarity,

vCMLR =
Var(S) + Var(E) + 2Cov(S,E)

1−A2
eff

. (95)

Identify Var(S) to obtain vLR = Var(S)/(1 − A2
eff), which proves the decomposition vCMLR =

vLR +∆ with ∆ as stated.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

It remains to bound Var(E) and Cov(S,E). By linearity and independence assumptions on the
sampled ct,r (standard in this noise-model analysis),

Var(E) = α2η2λ2µ2 Var
(k−1∑

r=0

a k−1−rv̂r,q

)
.

≤ α2η2λ2µ2 1− a2k

1− a2
sup
r

Var(v̂r,q). (96)

Then we bound Var(v̂r,q):

n(u+ sr + ξ+r) = n(u) +Dnu(sr + ξ+r) +
1

2
D2nu+θ+

r (sr+ξ+r)(sr + ξ+r , sr + ξ+r) (97)

n(u− sr + ξ−r) = n(u) +Dnu(−sr + ξ−r) +
1

2
D2nu+θ−

r (−sr+ξ−r)(−sr + ξ−r ,−sr + ξ−r) (98)

n(g+r) + n(g−r) = 2n(u) +Dnu(ξ
+
r + ξ−r) +

1

2
D2nu+θ+

r (sr+ξ+r)(sr + ξ+r , sr + ξ+r)︸ ︷︷ ︸
R

(1)
r

+
1

2
D2nu+θ−

r (−sr+ξ−r)(−sr + ξ−r ,−sr + ξ−r)︸ ︷︷ ︸
R

(2)
r

(99)

where (By Lemma E.1)

∥R(1)
r ∥ ≤

1

2
· 3

∥u+ θ+r (sr + ξ+r)∥2
∥sr + ξ+r ∥2

≤ 3

2(∥u∥/2)2
∥sr + ξ+r ∥2 = 6

∥sr + ξ+r ∥2

∥u∥2
(100)

∥R(2)
r ∥ ≤ 6

∥ − sr + ξ−r ∥2

∥u∥2
(101)

∥R(1)
r ∥+ ∥R(2)

r ∥ ≤ 6
2∥sr∥2 + 2∥ξ+r ∥2 + 2∥sr∥2 + 2∥ξ−r ∥2

∥u∥2

=
24∥sr∥2 + 12(∥ξ+r ∥2 + ∥ξ−r ∥2)

∥u∥2
(102)

By substituting into the momentum recursive equation, we obtain:

vr+1 = βvr + (1− β)n(u) +
1− β

2
Dnu(ξ

+
r + ξ−r) +

1− β

2
(R(1)

r +R(2)
r)

= βvr + (1− β)n(u) + ηr + yr+1

(103)

with ηr ≜ 1−β
2 Dnu(ξ

+
r + ξ−r), ρr ≜ 1−β

2 (R
(1)
r +R

(2)
r). Thus we have:

yr+1 = βyr + ηr + ρr. (104)

By Var(yr+1,q) = β2Var(yr,q) + Var(ηq + ρq) + 2βCov(yq, ηq + ρq) and 2β|Cov| ≤
2β
√
Var(y)Var(η + ρ), we obtain:

Var(yq) ≤
Var(ηq) + supr Var(ρr,q) + 2 supr

√
Var(ηq)Var(ρr,q)

1− β2
(105)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The first term of RHS in Equation 105:

Var(ηq) = E[(q⊤ηr)2] ≤ E[∥ηr∥2] =
(
1− β

2

)2

E[∥Dnu(ξ
+
r + ξ−r)∥2]

≤
(
1− β

2

)2

∥Dnu∥2op · E[∥ξ+r + ξ−r ∥2]

≤
(
1− β

2

)2

· 1

∥u∥2
· 4σ2 = (1− β)2

σ2

∥u∥2
(106)

and the second term of RHS in Equation 105:

E∥ρr∥2 ≤
(
1− β

2

)2

· 2(24
2∥sr∥4) + 2(122E(∥ξ+r ∥2 + ∥ξ−r ∥2)2)

∥u∥4

≤ 288(1− β)2
∥sr∥4

∥u∥4
+ 72(1− β)2

E(∥ξ+r ∥2 + ∥ξ−r ∥2)2

∥u∥4

≤ 288(1− β)2
∥sr∥4 +M

∥u∥4

= Cρ
∥sr∥4 +M

∥u∥4
(107)

where Cρ ≜ 288(1− β)2. By Assumption B.4, we obtain

sup
r

Var(ρr,q) ≤ Cρ

(
∥sr∥4 +M

∥u∥4

)
(108)

Var(yq) ≤
1− β

1 + β
· σ2

∥u∥2
+

Cρ

1− β2

∥sr∥4 +M

∥u∥4
+

2
√

Cρ

1− β2

σ

∥u∥

√
∥sr∥4 +M

∥u∥4
(109)

Then we consider connecting v̂r,q and yq:

v̂r,q − q⊤n(u) =
(
(I − nn⊤)q

)⊤
yr + r(2)r,q , (110)

Var(v̂r,q) ≤ 2 Var
(
((I − nn⊤)q)⊤yr

)
+ 2 Var(r(2)r,q)

≤ 2 ∥(I − nn⊤)q∥2 ∥Cov(yr)∥op + 2 Var(r(2)r,q)

≤ 2 ∥Cov(yr)∥op + 2 Var(r(2)r,q). (111)

where

∥Cov(yr)∥op ≤ trace(Cov(yr)) =
d∑

i=1

Var(yr,i)

≤ d · sup
i

Var(yr,i)

≤ d ·Var(yq). (112)

Considering Var(r
(2)
r,q) ≤ supr Var(ρr,q), we have

Var(v̂r,q) ≤ 2d ·Var(yq) + 2Cρ
∥sr∥4 +M

∥u∥4
(113)

Considering ∥u∥ ≥ gmin > 0, ∥sr∥ ≤ ρ∥H∥, Let τ ≜ Var(E)
Var(S) ,we have

vCMLR ≤ vLR(1 +
√
τ)2 +O(ρ

4∥H∥4 +M

g4min

) (114)

where τ = 2d λ2(1−β)
g2
min(1+β)

.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 4: Performance comparison of CMLR against multi-step optimizers (k=2,5,10) in CNN mod-
els (Test Accuracy %).

Optimizer CIFAR-10 (Test Accuracy %)

ResNet-18 WRN-28-10 VGG-16-BN PyramidNet-110

Lookbehind-SAM (K=2,5) 96.95±0.13 97.90±0.12 96.10±0.16 97.95±0.23
97.09±0.13 98.01±0.11 96.25±0.15 98.09±0.22

GSAM (K=2,5,10)
96.92±0.14 97.88±0.15 96.08±0.16 97.93±0.22
97.12±0.13 98.05±0.14 96.30±0.15 98.12±0.22
97.34±0.12 98.26±0.13 96.51±0.14 98.35±0.23

FMLR (K=2,5,10)
96.85±0.13 97.82±0.14 96.02±0.16 97.88±0.21
97.14±0.12 98.07±0.13 96.31±0.15 98.18±0.20
97.29±0.11 98.21±0.12 96.46±0.15 98.37±0.19

CMLR (K=2,5,10)
97.00±0.13 97.96±0.14 96.20±0.17 98.00±0.20
97.46±0.12 98.30±0.13 96.65±0.17 98.50±0.19
97.84±0.11 98.63±0.13 97.12±0.18 98.91±0.11

Optimizer CIFAR-100 (Test Accuracy %)

ResNet-18 WRN-28-10 VGG-16-BN PyramidNet-110

Lookbehind-SAM (K=2,5) 80.60±0.18 83.90±0.16 76.90±0.19 85.15±0.18
80.74±0.17 84.03±0.12 77.02±0.13 85.28±0.15

GSAM (K=2,5,10)
80.58±0.17 83.92±0.16 76.93±0.18 85.18±0.17
80.75±0.16 84.20±0.15 77.15±0.17 85.40±0.16
80.86±0.16 84.35±0.13 77.33±0.15 85.56±0.13

FMLR (K=2,5,10)
80.62±0.18 83.88±0.17 76.90±0.18 85.12±0.18
80.78±0.17 84.10±0.16 77.05±0.17 85.30±0.16
80.90±0.18 84.23±0.12 77.16±0.15 85.44±0.14

CMLR (K=2,5,10)
81.18±0.16 84.30±0.16 77.35±0.17 85.70±0.17
81.42±0.15 84.56±0.14 77.50±0.15 85.88±0.15
81.64±0.14 84.84±0.11 77.65±0.13 86.07±0.12

Table 5: Performance comparison of CMLR against baseline optimizers in CNN and ViT models on
Tiny-ImageNet (Test Accuracy %).

Optimizer Tiny-ImageNet (Test Accuracy %)

ResNet-18 ViT-Ti VGG-16-BN

SAM 64.41±0.53 37.81±0.65 60.68±1.19

CR-SAM 64.82±0.51 38.57±0.53 61.28±1.16

Lookbehind-SAM 65.32±0.48 38.21±0.60 61.78±1.19

GSAM 67.07±0.26 39.15±0.58 63.12±1.31

FMLR 66.06±0.48 38.46±0.62 62.33±1.14

CMLR 68.44±0.40 40.23±0.57 65.84±1.15

F DETAILED EXPERIMENTAL RESULTS AND SETTING

We present the main results under the lookahead mechanism (K=2,5,10) in Table 4.
For Tiny-ImageNet, we use AdamW with a learning rate of 1 × 10−3, weight decay of 5 × 10−5,
and fix the perturbation strength to ρ = 0.05. For CMLR we again keep K = 10, βs = 0.9, βe = 0.99
fixed throughout all Tiny-ImageNet runs, and use α = 0.9 as the default. The choice of λ follows the
same small-range search as in the CIFAR experiments. The experimental results are shown in the
Table 5
The parameter settings for fine-tuning the pre-trained DistilBERT model are shown in Table 6.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 6: Per-task hyperparameter configurations for DistilBERT fine-tuning.

Task Batch Size LR Epochs Other Params
CoLA 32 2e-5 10
SST-2 32 2e-5 3
MRPC 16 2e-5 5 ρ ∈ {0.001, 0.005, 0.01, 0.05, 0.1}
STS-B 16 2e-5 5 λ ∈ {0.001, 0.005, 0.01, 0.05, 0.1}
QQP 32 2e-5 3 wd = 0.01
MNLI 32 2e-5 3 K=2
QNLI 32 2e-5 3
RTE 16 1e-5 10

G ABLATION STUDY

G.1 REGULARIZATION STRENGTH

We analyze the sensitivity of CMLR to the regularization strength hyperparameter λ. A grid search
was performed over λ in the range [0.05, 0.15] with a 0.01 step size on both CIFAR-10 and CIFAR-
100 datasets.
Figure 4 plots the final test accuracy as a function of λ. The results show that performance is strong
and stable across this range on both datasets, with optimal accuracy consistently achieved when λ
is approximately 0.1. This indicates that a moderate regularization strength is most effective. We
therefore select λ = 0.1 as the default value for all main experiments.

G.2 INTERPOLATION COEFFICIENT

A key component of our CMLR algorithm is the momentum accumulation strategy used to effi-
ciently determine the perturbation vector for the next inner-loop step, vk+1. This strategy calculates
a weighted average of the normalized ”forward” gradient (from the ascent step, g+k) and ”backward”
gradient (from the descent step, g−k). To achieve this, we modify our base momentum accumulation
formula from Equation 10 by introducing an interpolation coefficient γinterp:

βkvk + (1− βk)

(
γinterp

g+k
∥g+k ∥

+ (1− γinterp)
g−k
∥g−k ∥

)
(115)

Here, γinterp balances the influence of the two directions: a value of 1.0 relies entirely on the
ascent gradient, while 0.0 relies solely on the descent gradient. We conducted an ablation study to
investigate the impact of this coefficient by training a ResNet-18 model on CIFAR-10 while varying
γinterp from 0.0 to 1.0. As shown in Figure 5, we found that model performance was strong across
a range of values, with optimal test accuracy achieved when γinterp was approximately 0.1 or 0.8.
This indicates that while a blend of both directions is effective, a slight bias towards either the ascent
or descent gradient can be beneficial for guiding the subsequent perturbation.

G.3 SLOW WEIGHTS STEP SIZE

We analyze the impact of the slow weights step size α, which controls the outer-loop Lookahead
update . We tested α values from 0.7 to 1.0 with a 0.05 interval on CIFAR-10 and CIFAR-100, using
a ResNet-18 model with K = 10. Each setting was averaged over five runs.
The error bar plot in Figure 6 shows the final test accuracy as a function of α. The results indicate that
performance is strong and stable when α is in the [0.85, 1.0] range, with the optimal test accuracy
achieved at approximately α = 0.9. Based on this finding, we use α = 0.9 in our main experiments.

G.4 EFFICIENCY GAINS

In addition to this primary analysis, we provide a direct measurement of the efficiency gains. We
compare CMLR against CLR, a variant that computes all three gradients per inner-loop step without
momentum. The results, shown in Table 7, confirm that CMLR increases throughput by approxi-
mately 45% while matching the final test accuracy of the naive CLR with a negligible difference.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 4: The impact of the hyperparameter λ
on final test accuracy. The experiment was con-
ducted on ResNet-18 with the CIFAR-10/100
datasets.

Figure 5: The impact of the hyperparame-
ter γinterp on final test accuracy conducted on
ResNet-18 with the CIFAR-10 and CIFAR-100
datasets.

Figure 6: The impact of the hyperparameter α
on final test accuracy conducted on ResNet-18
with the CIFAR-10 and CIFAR-100 datasets.

Table 7: Performance and relative training time
on CIFAR-10/100.

Method CIFAR-10 CIFAR-100

Acc.
(%)

Rel. Train
Time

Acc.
(%)

Rel. Train
Time

CLR 97.17 1.47 81.15 1.43
CMLR 97.10 1.00 81.05 1.00

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 8: Wall-clock breakdown per parameter update in ResNet34 model, CiFar10 dataset. Multi-
step methods are shown with sub-rows for different K ∈ {2, 5, 10}. “Forward/Backward” counts the
number of total gradient evaluations; each requires one forward and one backward pass. “Parallel”
indicates whether gradient evaluations can be done in parallel (e.g., for central difference).

Optimizer Setting(K) Forward/Backward Peak memory GPU time Parallel

Vanilla (SGD/AdamW) – 1 1.00× 1.00× ✗
SAM (two-pass) 1 2 1.28× 2.18× ✗
FR (GR view of SAM) 1 2 1.25× 2.26× ✗
CR (GR view of SAM) 1 2 1.25× 2.14× ✓
CR-SAM (Curvature Regularized) 1 3 1.08× 2.00× ✓

Lookbehind-SAM (multi-step)
2 4 1.06× 3.03× ✗
5 10 1.06× 6.19× ✗
10 20 1.06× 11.48× ✗

GSAM (multi-step)
2 4 1.03× 3.07× ✗
5 10 1.03× 6.25× ✗
10 20 1.03× 11.39× ✗

FMLR (FR-based Lookahead)
2 4 1.25× 3.56× ✗
5 10 1.25× 7.48× ✗
10 20 1.25× 14.07× ✗

CMLR (CR-based Lookahead)
2 5 1.25× 3.42× ✓
5 11 1.25× 7.19× ✓
10 21 1.25× 13.50× ✓

Figure 7: Test accuracy versus backpropagation steps on ResNet-50/CIFAR-100. The comparison
involves five algorithms under the same backpropagation budgets (400, 800, 1200, 1600, 2000),
illustrating their performance trends.

DISCLOSURE OF LLM USAGE

We used a large language model (DouBao) solely for minor language polishing. All technical con-
tent, methodology, experiments, and analyses were developed entirely by the authors.

30

	Introduction
	Background and Related Work
	Flat Minima
	The Non-robustness Paradox of SAM
	Robustness and Efficiency Enhancements

	Methodology
	Gradient Regularization (GR)
	Momentum Lookahead Mechanism

	Convergence Analysis
	Convergence for General Non-Convex Objectives
	Noisy Quadratic Analysis with Gradient Regularization

	Experiments
	Convolutional neural network
	Vision Transformers
	Transformer encoder–based architecture

	Conclusion
	Algorithm
	Detailed Convergence Analysis for CLR
	Necessary Assumptions
	Proof of Relaxed Descent Lemma
	Proof of Main Convergence Theorem

	Detailed Convergence Analysis for CMLR
	Detailed Derivation of Noisy Quadratic Analysis for LR
	Detailed Derivation of Noisy Quadratic Analysis for CMLR
	Detailed experimental results and setting
	Ablation Study
	Regularization Strength
	Interpolation Coefficient
	Slow Weights Step Size
	Efficiency Gains

