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ABSTRACT

Sharpness-Aware Minimization (SAM), which can be extended to a form of gradi-
ent regularization, is an effective technique for improving generalization by guid-
ing optimizers towards flat minima through parameter perturbations. However,
extending such regularization strategies to multi-step settings often leads to insta-
bility, where naive iterative updates degrade rather than enhance generalization.
To overcome this limitation, we propose Central-difference Momentum Looka-
head Regularization (CMLR), a framework that performs momentum lookahead
through central-difference probing of the loss landscape. By constructing the per-
turbation direction from symmetric gradient evaluations, CMLR realizes a mo-
mentum lookahead update that is inherently more robust and exhibits reduced
variance, while requiring no additional gradient evaluations. This design ensures
smooth optimization trajectories and reliable improvements at low computational
cost. We conduct a comprehensive theoretical analysis of CMLR and its founda-
tional versions (CLR, LR), presenting spectral analysis results, variance reduction
analysis, and establishing formal convergence guarantees, particularly under a mo-
mentum strategy. Empirically, we demonstrate that CMLR consistently improves
generalization across diverse architectures and datasets.

1 INTRODUCTION

A fundamental objective in deep learning is to discover model parameters that achieve strong gen-
eralization beyond mere minimization of training loss. This pursuit has motivated a line of work
culminating in the Sharpness-Aware Minimization (SAM) algorithm (Foret et al., |2020), which ex-
plicitly seeks parameters in flat regions of the loss landscape. SAM has demonstrated strong gener-
alization across numerous tasks (Chen et al., |2021; [Zhang et al., 2021), sparking follow-up studies
to improve its behavior (Bartlett et al., 2023} Du et al., 2022} Jiang et al., 2023; L1 & Giannakis}
2024; Sun et al., 2023 |Wen et al.| 2023).

However, SAM comes with a puzzling catch: trying to solve its inner optimization problem more
accurately, particularly with multi-step methods, often makes the final model generalize worse, not
better (Foret et al.| [2020; |[Andriushchenko & Flammarionl 2022} Kim et al., [2023b; Mordido et al.,
2024). A new perspective, viewing SAM through the lens of Gradient Regularization (GR), helps
explain why (Barrett & Dherin, 2021} Smith et al., 2021} [Zhao et al., |2022} |Reizinger & Huszar,
2023)). This view reveals that SAM is essentially using a simple forward-difference approximation
of the Hessian (a strategy we call FR) (Zhao et al., 2022} |Karakida et al., 2023). This type of ap-
proximation is known to be unstable, which likely causes the gradient estimates to become noisy and
unreliable during the multi-step ascent process, ultimately hurting performance (Liu et al.| 2022b).
We will therefore classify this generalization-enhancing regularization as a form of gradient regu-
larization and proceed to analyze its different variants.

Since the instability of SAM originates from its rough finite difference approximation, from the
perspective of feature decomposition, this can be explained as the gradient oscillating near the
saddle point (Kim et al., [2023a; [Tan et al., 2024b), leading to a tendency towards model sub-
optimal. Therefore, a more accurate central difference scheme and forward-looking mechanism
can ensure that the parameter update process can more firmly escape the saddle point, thereby
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guiding the model to improve generalization. We first replace the forward-difference with a
more precise central-difference scheme (CR). To test this hypothesis, we measure the stability of
the optimization path by calculating the cosine similarity between consecutive update directions
(clipped to [0,1]). Our experiments reveal a clear result: a higher concentration of similarity
scores away from O strongly correlates with better generalization, and our CR method produces
a much smoother optimization trajectory with consistently higher similarity, as shown in Figure [I]

A stable update is a great starting point,

but we also want the benefits of multi-step — sau
optimization that have proven successful " —a
in other SAM variants (Mordido et al.l | — rax
2024} [Tan et al, 20244l [Yu et al, [2024). \ - o

To achieve this, we embed our stable ‘g s
CR update within a momentum lookahead ~
mechanism (ML). However, this combi-
nation would be far too slow for practical
use. The key to making it efficient is our
final contribution: a lightweight momen- 7]
tum lookahead mechanism, which allows *w o * Cosine Similaity o 10
us to approximate future gradient infor-
mation with no extra computational cost. Figure 1: Distribution of optimizer update direction sta-
bility (smoothed for visual clarity). The figure illustrates
the distribution of cosine similarity between consecutive
update directions dj, during training for different optimiz-
CMLR: Forward-difference Momentumers using ResNet-18 trained on CIFAR-10. For LA-SAM,
. .. “FMLR, and CMLR, the parameter K was set to 2.
Lookahead gradient Regularization,

FMLR; Momentum Lookahead SAM, ML-SAM) is validated by our final results in Figure|l| The
test accuracies show a clear hierarchy (CMLR > FMLR > CR > FR > SAM > ML-SAM). Our
results highlight a key finding: while momentum lookahead helps the general FR framework, it
actually hurts performance in the specific case of SAM (ML-SAM), consistent with (Kim et al.,
2023b; Mordido et al [2024). This suggests the paradox is at its worst when the update, by setting
the regularization strength exactly equal to the size of the parameter perturbation neighborhood,
completely ignores the stabilizing influence of the base gradient. This is why CMLR succeeds;
because it starts with a much more stable central-difference foundation, it can fully take advantage
of the momentum lookahead mechanism.

2

The power of this complete approach
(result in Central-difference Momentum
Lookahead gradient Regularization,

Building on this foundation, we propose a multi-step generalization of this framework and introduce
a lightweight inner-loop momentum lookahead strategy. To avoid excessive computational overhead,
we incorporate a momentum lookahead mechanism that approximates future perturbations using
previously computed gradients, thus requiring no additional gradient evaluations. The resulting
method, Central-difference Momentum Lookahead Regularization (CMLR), promotes the training
stability of central-difference GR while enabling efficient multi-step updates.

The main contributions of this paper are summarized as follows:

* We propose CMLR, which is an optimizer that uses central differencing to perform mo-
mentum smoothing more stably in the loop within the Lookhead, avoiding the problem of
generalization degradation caused by multi-step exploration.

* We provide a comprehensive theoretical analysis for our proposed gradient regularization
and momentum lookahead strategies.

* We demonstrate through extensive experiments on various model architectures and diverse
datasets that CMLR significantly improves generalization performance.

2 BACKGROUND AND RELATED WORK

To understand our new perspective, let’s first consider the standard approach. Typically, training
a neural network means finding the weights w € W C R? that minimize the empirical risk on
a training dataset S = {(z;,v;)}7-, with (x;,y;) drawn i.i.d. from an underlying distribution D
over X x ). Using the per-data-point loss function [ : W x X x J — R, this goal is expressed
as: min,, L(w) = £ 3" 1(w, z;,y;). We assume that the loss function £ is twice differentiable

T n
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throughout the paper. For notational simplicity, unless otherwise specified, we use the shorthand
VL(w) for V, L(w) and || - || for the L2 norm,|| - ||2.

2.1 FLAT MINIMA

The geometric properties of the loss landscape are widely considered to be intrinsically linked to a
model’s generalization ability. A central tenet, originating from early theoretical work and bolstered
by extensive empirical studies (Hochreiter & Schmidhuber, |1997; |Keskar et al., [2016)), posits that
models converging to flat, wide minima generalize better than those in sharp, narrow valleys. While
this principle has been challenged by theoretical counter-examples showing that sharpness can be
sensitive to reparameterization (Dinh et al.|[2017)), a strong correlation between measures of flatness
and generalization performance is consistently observed in practice (Jiang et al., [2019). Among
these, Sharpness-Aware Minimization (SAM) (Foret et al., 2020) has emerged as a state-of-the-art
approach, whose core idea is to connect the training loss £(w) with the model’s generalization
bound. Instead of minimizing the loss at a single point w, SAM seeks parameters that reside in a
neighborhood of uniformly low loss by solving a min-max problem:

min Lsam(w) where  Lsan(w) 2 Hnﬁa)é L(w+e). (1)
w Ellp>p

As solving the inner maximization exactly is intractable, SAM approximates the solution with a first-
order perturbation £, In the standard setting where the L2 norm is used (p = 2), this perturbation
aligns with the direction of the gradient V.L(w). The final update is then performed using the
gradient at this perturbed point w + £:

VL
VLsam = VL(w+£€) where €= meZ;. (2)

2.2 THE NON-ROBUSTNESS PARADOX OF SAM

While SAM excels at finding flat minima, it presents a key paradox: trying to solve its inner op-
timization more accurately with multi-step methods often hurts generalization instead of helping
it (Foret et al., 2020} |Andriushchenko & Flammarion, [2022; Mordido et al.| [2024). The consen-
sus points to gradient instability as the main cause; during these multi-step updates, the model’s
parameters stray too far from their starting point (Kim et al.,|2023b; Mordido et al., 2024).

This fragility is well-documented. Recent studies have shown that SAM is sensitive to noisy, high-
variance gradients (Hassan et al., 2025) and operates on a dynamic “edge of robustness” that de-
pends on the gradient norm (Long & Bartlett, [2024). The theory of Gradient Regularization (GR)
offers a deeper explanation. It reveals that SAM’s core mathematical step—a forward-difference
approximation—is inherently unstable, struggling with both very small and very large perturbation
sizes (Karakida et al.,[2023). The multi-step approach effectively forces SAM into this problematic
small-step scenario, which likely explains the performance drop.

2.3 ROBUSTNESS AND EFFICIENCY ENHANCEMENTS

Research on improving SAM has largely focused on tackling two major challenges:

The first challenge, non-robustness, arises because noisy gradient estimates can make the training
process erratic. A popular strategy to counteract this is to ’smooth out” the trajectory. Many methods
take inspiration from the Lookahead optimizer (Zhang et all 2019), which works by averaging
recent model weights to prevent drastic jumps. Following this principle, approaches like SALA (Tan
et al., 2024a) and Lookbehind-SAM (Mordido et al.| 2024) have shown that using lookahead ideas
or aggregating information from past steps leads to a much more stable training process. Other
methods attack the problem more directly, either by adding explicit curvature regularization to the
objective (Wu et al.,|2024) or by cleaning up the gradient statistics themselves (Hassan et al.| [2025)).
The second challenge is efficiency. Standard SAM is expensive, essentially doubling the workload
by requiring two gradient computations for every single update. This has spurred the development
of a family of “efficient SAM” variants. Their common strategy is to cleverly reuse or approximate
gradients to cut down the computational overhead, making the benefits of sharpness-aware training
more accessible (Du et al., 2021} 2022; [Mi et al.} 2022} [Liu et al.} [2022a}, Jiang et al.l 2023} Wang
et al.l [2024; Becker et al., [2024]).
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3 METHODOLOGY

Our approach begins with a general framework for sharpness-aware methods that is based on Gra-
dient Regularization. Into this framework, we incorporate a lookahead mechanism to help steer the
optimization process. To keep things efficient, we also add an momentum accumulation strategy
that prevents high computational costs. Together, these components form our algorithm: Central-
difference Momentum Lookahead Regularization (CMLR).

3.1 GRADIENT REGULARIZATION (GR)

Gradient Regularization (GR) is a general approach to optimization where the training objective is
modified to penalize the gradient norm, thereby encouraging convergence to flatter regions of the
loss landscape (Barrett & Dherin, |2021}; |Smith et al., 2021; Zhao et al., 2022} |Karakida et al., 2023;
Reizinger & Huszar, |2023)):

min Lan () £ £(w) + N[ VL(w)]. ®

Calculating the exact gradient for the regularization term in Equation [3|requires expensive second-
order information, specifically a Hessian-vector product (Hochreiter & Schmidhuber, (1997} Jas-
trzebski et al., 2021)):

V2L(w)VL(w) @

IVL(w)]|

While this term can be computed exactly using Double Backpropagation (DB) in modern frame-
works like PyTorch, it’s known to be less computationally efficient than using a finite-difference
approximation (Karakida et al.;[2023)). Recent analyses have formally established that the SAM up-
date is equivalent to a first-order, forward-difference approximation of this term (Zhao et al.| 2022
Karakida et al., [2023)).

To formalize this connection, let’s consider the exact gradient of the GR objective from Equation[3]

Letv = % be the normalized gradient direction. The core idea of the forward-difference

approach is to approximate this costly second-order term using only first-order information. This
is achieved using the following approximation, derived from the first-order Taylor expansion of the
gradient function:

VIVL(w)| =

VL(w+ pv) — VL(w)

P
By substituting this approximation into the exact GR gradient, we obtain the update rule for Forward-
Difference Gradient Regularization (FR):

V2L(w)v =

+0(p). (&)

VLpr(w) £ VL(w) + A (W(w +pv) - Vﬁ(w)>

p
_ (1 - 2) VL (w) + %V/S(w + po). (6)

This formulation expresses the update as a weighted average of the gradients at the original point w

and the perturbed point w + pv. Notably, in the standard setting where the regularization strength is

set to be equal to the perturbation radius: A = p, the FR update simplifies to exactly V.L(w + pv).

This is precisely the gradient update rule used by SAM, thus confirming its role as a specific instance

of the GR framework.

The forward-difference scheme provides a first-order approximation with O(p) error. To achieve a

more accurate estimation of the regularized gradient, we instead employ the second-order central-

difference approximation. Its O(p?) accuracy is formally derived from the Taylor series expansion

of VL(w =+ pv):

VL(w+ pv) — VL(w — pv)
2p

Substituting this into the GR gradient objective yields our proposed Central-difference Gradient

Regularization (CR) update rule:

V2L (w)w = +0(p?). (7

VLer(w) £ VL(w) + % (VL(w + pv) = VL(w — pv)). (8)
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The core idea of this formulation is to shift the update’s focus. It relies more on the standard gradient
at the original point w with a central-difference scheme. This stands in sharp contrast to adversarial
methods like FR (Zhao et al., [2022) and CR-SAM (Wau et al.| [2024)), which still primarily rely on
the perturbed gradient.

Algorithm 1 CMLR

Require: Loss function £, training data GG, base optimizer .A, inner steps K, outer steps 7, initial
slow weights wy, batch size b, inner step size 7 j, outer step size «, perturbation radius p,
smoothing factor 5, and f.

1: fort=0,1,2,..., 7 —1do

2: Synchromze Welghts Wy,0 < Wi.

3:  Sample a mini-batch B C G with size b.

4:  Initialize perturbation: V0, go < VL(wy,0) on B.

5 fork=0,1,2,...,K — 1do

6.

7

8

Normalize perturbatlon Vg — ch\l

Compute central-difference gradients in parallel:

: Parallel do:

9: gy + VL(wty + piy) on B.
10: 9p +— VL(w — pty) on B.
11: End parallel.

A - -
12: Update direction: dj, < ’” gk + ’)279,@ .
13: Update fast weights: wt}]@+1 — A(we ks, Mt ko, die)-
14: Anticipating the next perturbation vector:
15: ﬁk%BS—F(BS_/BS).ﬁ'

+ _
16: Vgt1 < Brlk + (1725’6) < gﬁ + T )

llgg I~ Mg |l

17:  end for

18:  Update slow weights (Lookahead step): w¢11 < wy + a(wy, xk — wy)
19: end for

20: return wr

Ensure: CMLR trained model.

3.2 MOMENTUM LOOKAHEAD MECHANISM

The primary challenge of our Central-difference (CR) update (Equation 8] is its high computational
cost, requiring three gradient computations per step. To make the computation more feasible and
the momentum update more robust, we introduce a stable momentum accumulation mechanism.
This approach avoids explicitly computing the base gradient, relying instead solely on the ascent
and descent perturbation gradients. We then place it within the two-timescale Lookahead frame-
work (Zhang et al., |2019;[Yu et al.,[2024) to improve training stability. Prior works have suggested
that Lookahead-based variants of SAM are particularly effective in boosting generalization (Tan
et al.| 2024a; Mordido et al.| 2024)), which further motivates our integration. Although Lookahead’s
inner loop performs multiple updates, the computation remains feasible since no extra overhead
is introduced inside the inner iterations. This highlights that CMLR represents a principled and
effective integration, rather than a simple stacking of separate components.

At each inner-loop step k, the core efficiency gain comes from bypassing the explicit computation
of the base gradient VL(wy,). We approximate it using the average of the two perturbed gradients,
g5 £ VL(wi+pvy) and g, = VL(wy,—poy,), which are already required for the central difference.
This leads to a final update direction dj, that depends only on these two gradients, which can be
computed in parallel:

g +gr A _
di = k2 k+2(lj_gk)
prA L p—A _
= — —9, . 9
2 9 2 9 9

To prepare for the subsequent inner-loop step k£ 4 1 without additional cost, we anticipate the next
perturbation vector vy by using a moving average of the previously computed normalized gradi-
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ents, a strategy inspired by recent work on efficient SAM variants (Wang et al.| 2024)),

+ —
Vkt1 = Bruk + St ( gi + -k ) : (10)
2 gl llgx |

The fgst vyeights are then updated us- Tnner Loop ( = 0, .., K — 1) Outer Loop (k = 0, ., T — 1)
ing this direction, w; 41 = Wik — Fast Weight & Slow Weight &
nexdr. After K inner-loop steps, the Pertubation Updaie gk Lookahead
slow weights are updated in the direction —pbi / p. Pk o we
of the final fast weights, consistent with ® ® synchronization o
the Lookahead framework. The complete £ i
procedure, which synthesizes these com- ar Ik
ponents, is detailed in Algorithm[I} In ad- S d e gt e |
dition, we design a process toy example |
of the algorithm in Figure[2]
The divergent outcomes of applying synchronization o
Lookahead to FR and SAM highlight a o Wert
key mechanic. The FR update, d = Vi Wekr
(1- %)gk + %g,j , retains the base gra- . .
dient g as a stable anchor when \ # igk'gk
p, which allows Lookahead to effectively v
smooth the update trajectory. In the spe- vk:
cific case of SAM where A = p or dy, = P )
(1-2)gx +2g5 = g (k > 1) inFMLR, b wr
this anchor vanishes, leaving the update Legend
to depend solely on the noisy perturbed @ Observed/Update Weight —>  Weight Update Path

. + . . eqe . @ Perturbation Weight ~ —eeen Ascent Gradient
gradient g,”. Without this stabilizing ref- Descent Gradient oy Momentum

erence, Lookahead fails to improve per-
formance. Our CR, by contrast, provides
a robust, symmetric foundation that con-
sistently synergizes with the Lookahead
framework.

This effectively collapses the method into the standard Momentum Lookahead-SAM (ML-SAM),
where the regularizing influence of the base gradient is lost in subsequent inner-loop steps. Our CR
approach, by contrast, maintains its two-term structure due to the symmetric nature of its probes,
ensuring the regularization is applied consistently. This synergy makes the lookahead framework an
ideal counterpart to our central-difference strategy.

Figure 2: Toy example analysis of CMLR

4 CONVERGENCE ANALYSIS

In this section, we present the convergence analysis and variance spectral analysis conclusions of
CMLR, and place the complete convergence analysis and variance analysis of the basic version al-
gorithms (LR, CLR) in Appendix [B]and Appendix [C] Specifically, we analyze variance reduction in
the noisy quadratic model. To demonstrate the stabilizing effect of the Lookahead mechanism, we
adopt the regularized objective £(w) + 5||V.L(w)||? a standard and analytically tractable formula-
tion that simplifies the mathematics by using the squared gradient norm while preserving the core
optimization goal (Barrett & Dherin, [2021}; |Smith et al., 2021} |Karakida et al., 2023).

4.1 CONVERGENCE FOR GENERAL NON-CONVEX OBJECTIVES

To unify the dual-timescale loops into a single time frame, we employ a two-time-scale analy-
sis (Borkar, |1997; [Nedic & Ozdaglar, 2009; Wang et al., [2020). This results in a version of the for-
mal algorithm that differs only slightly in its presentation. Specifically, to unify the inner and outer
loops, the slow-weight update is synchronized with the final fast-weight update of the inner loop.
This change, driven by the need to synchronize the inner and outer loop weights, leads to an appar-
ent one-step reduction in the inner loop, but it does not substantially affect the final weight update.
To facilitate understanding, we provide a simplified version of the pseudocode in Algorithm 2| (Ap-
pendix [A). Finally, to formalize the synchronization scheme for the inner- and outer-loop weights,
we re-index the iterates as follows: y, = w; j represents the inner-loop “fast” weights with a single
global step counter s = tK + k, and w, = y|s/k |k are the outer-loop “slow” weights. Here, |-
denotes the floor function, which rounds its argument down to the nearest integer. The “middle”
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weights are defined as §s = ay, + (1 — a)w, which performs the update 511 = s — ansd(ys, &s)-
Our analysis views CLR as a stochastic gradient method on an implicit, non-smooth objective func-
tion: F(w) = L(w) + A|VL(w)]|.

We make the following standard assumptions for our analysis. We first provide a brief analysis of
the basic version (CLR), and then present the convergence analysis of the CMLR algorithm with
momentum mechanism with its full proof detailed in Appendix [B]and[C]

Theorem 4.1 (Convergence of CMLR for Non-Convex Objectives). Under the same conditions in
Theorem|B.6] the iterative sequence generated by CMLR satisfies:

lim inf B[[| VF (3)]%] = O(A). (11)

It is worth noting that the momentum strategy does not fundamentally alter the convergence guar-
antee under gradient regularization, which remains of the order O()). Instead, its primary impact
lies in refining the higher-order constant terms. For instance, two similar conclusions suggest that
momentum strategies are more likely to provide more accurate approximations for these high-order
constants, which are related to \, p, L1 and Lo. This is exemplified by the replacement of C; with
C1 in our analysis in Appendix

4.2 NOISY QUADRATIC ANALYSIS WITH GRADIENT REGULARIZATION

To understand the convergence properties of our proposed method, we extend the noisy quadratic
analysis framework from [Schaul et al.| (2013)); Wu et al.| (2018)); Zhang et al.| (2019). We analyze
the standard noisy quadratic model, £(z) = 1(z — ¢)T H(z — ¢), with ¢ ~ N(2*,X), where
H, % € R are assumed to be diagonal and x, c € R%, 2* = 0.

Here, we obtained the variance reduction conclusion of CMLR using spectral analysis, which is
detailed in Appendix |C} The v,g mentioned in the theorem comes from a simple extension of a
previous work, as shown in Appendix [B]

Theorem 4.2 (Variance Reduction with CMLR). Fix an eigenpair (q, 1) of H, with scalar pro-
jections T = quth’ Ctk = q"c and Vg = q"0p. Leta 2 1 — Ny, define Aeg £

(1 — a) + aa®, Beg 2 anu. Under Assumption Assumption IVL] > gmin and con-
diton in LemmalE.1} the steady-state variance of CMLR satisfies

4 H 4—|—M
vemLr < vLr(1+ V1) + 0(p||gL|_) (12)
where
ap oo l—af
()0 —- A2(1 —
o — 1—a? g X1=B) (13)

1_Agff gglin(l—i—ﬁ)’

Compared with the initial gradient-regularization estimator, the Lookahead step in LR already acts
as a variance-reduction mechanism, so vrg is smaller than the variance of the initial gradient-
regularization scheme. In Theorem the additional factor (1 + +/7)? in the bound for vonLR
arises from the momentum prediction strategy and corresponds to only a controllable O(\) variance
inflation, since (1 + 1/7)? = 1 + O(\). Combining these observations, by choosing \ sufficiently
small, the steady-state variance of CMLR in our bound can be made smaller than that of the ini-
tial gradient-regularization estimator. It should be noted that, while Lookahead itself contributes to
variance reduction through averaging, the variance reduction effect emphasized in our analysis is
mainly attributed to the central-difference gradient regularization, rather than the Lookahead gradi-
ent regularization alone.

5 EXPERIMENTS

To demonstrate the broad applicability of CMLR, we evaluate SGD, AdamW, SAM, CR-SAM (Wu
et al [2024), Lookbehind-SAM (Mordido et al., 2024), GSAM (Wang et all 2024), FMLR and
CMLR on the CIFAR-10 and CIFAR-100 datasets using the following models which include
widely-used CNNs such as ResNet-18 (He et al., [2016), VGG-16 (Simonyan & Zisserman, |2014)),
WideResNet-28-10 (Zagoruyko & Komodakis|, [2016), and PyramidNet-110 (Han et al., 2017), as
well as popular Vision Transformers (ViT-Ti and ViT-S) (Dosovitskiy et al.l 2020). To verify the
efficiency of the algorithm, provide analysis results and time comparisons for the same number of
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Table 1: Performance comparison of CMLR against baseline optimizers in CNN models (Test Ac-
curacy %).

CIFAR-10 (Test Accuracy %)

Optimizer

ResNet-18 ~ WRN-28-10 VGG-16-BN  PyramidNet-110
SGD 96.13+0.11 97.03x0.16 95.42+0.17 96.92+0.28
SAM 96.59+0.12 97.51x0.16 95.7510.13 97.59+0.29
CR-SAM 96.79+0.14 97.71:0.12 95.95:0.16 97.79:0.21
Lookbehind-SAM  97.09:0.13 98.01x0.11 96.25:0.15 98.09+0.22
GSAM 97.3410.12 98.26+0.13 96.51:0.14 98.35:0.23
FMLR 97.29:0.11 98.21:0.12 96.4610.15 98.37x0.19
CMLR (Ours) 97.84-0.11 98.63-0.13 97.12+0.18 98.91:0.11
Optimizer CIFAR-100 (Test Accuracy %)

ResNet-18 ~ WRN-28-10 VGG-16-BN  PyramidNet-110
SGD 78.34+0.21 82.07:0.17 75.13023 83.55:0.24
SAM 80.24+0.19 83.55:0.14 76.5210.12 84.76+0.13
CR-SAM 80.42+0.18 83.70:0.13 76.72+0.14 84.99:0.14
Lookbehind-SAM  80.74+0.17 84.03+0.12 77.02+0.13 85.28+0.15
GSAM 80.86:0.16 84.35:0.13 77.33:0.15 85.56+0.13
FMLR 80.90:0.18 84.2310.12 77.16:0.15 85.44+0.14
CMLR (Ours) 81.64=0.14 84.84-0.11 77.65:0.13 86.07+0.12

backpropagation iterations. To further validate the robustness and scalability of our method, we
also extended our experiments to the Tiny-ImageNet (Le & Yang| [2015) datasets—where Tiny-
ImageNet provides a 200-class, 64x64 downscaled subset of ImageNet for efficient benchmarking.
Additionally, we evaluated algorithms on eight NLP tasks from the GLUE benchmark (Wang et al.,
2018): CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, and RTE, using a standard Transformer-
based architecture (DistilBERT). Finally, we conducted ablation studies to analyze the algorithm’s
sensitivity to key hyperparameters, including regularization strength, the momentum accumulation
Lookahead strategy, and the step size of the slow weights. A detailed report of these studies is
provided in Appendix [{

5.1 CONVOLUTIONAL NEURAL NETWORK

For data augmentation, we first pad each training image by four pixels, take a random 32x32 crop,
and apply a random horizontal flip. We then apply Cutout, masking a random 16x16 region of the
image with zeros following|DeVries & Taylor| (2017)).

Our experimental setup is configured as follows. First, under the standard setting for SAM and
FR (Foret et al., 2020; Zhao et al.,[2022} L1 & Giannakis, |[2023)), we establish optimal general hyper-
parameters, including the initial learning rate 0.05, weight decay 0.001, and perturbation magnitude
(p € {0.01,0.05,0.1}). The learning rate is updated following a cosine annealing schedule. Second,
for the forward-difference gradient regularization optimizer, we adopt a grid search to determine the
optimal value. For our proposed central-difference gradient regularization optimizer (CMLR), we
configure the hyperparameters as follows: We hypothesize that this annealing strategy decreases
variance in the later stages of training, thereby enhancing generalization. The hyperparameter « is
selected from [0.7,1.0] and X is selected from [0.05,0.15]. By, is smoothly annealed from 0.9 up
to 0.99 over the course of training. For the integrated Lookahead mechanism, we provide the best
results: K=10 for GSAM, FMLR and CMLR and K=5 for Lookbehind-SAM, and more detailed
experimental results (K=2,5,10) are attached in the appendix. These relatively large values of K are
intentionally chosen to study whether Lookahead-style multi-step schemes can continue to improve
generalization as K increases, rather than to minimize wall-clock cost; a complementary compari-
son under matched gradient-evaluation budgets (equal compute) is reported later in our experiments.
With the exception of the PyramidNet-110 model, which was trained for 300 epochs with a batch
size of 256, all other models were trained for 200 epochs with a batch size of 128. The results are
summarized in Table [T}

To validate our momentum lookahead strategy, we first conduct a fair comparison in terms of com-
putational cost among several multi-step algorithms, namely Lookbehind-SAM, GSAM, FMLR and
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CMLR. We evaluate the accuracy trends of different algorithms after an equal number of backprop-
agation steps. Specifically, we plot the performance on ResNet-34/CIFAR-10 at 400, 800, 1200,
1600, and 2000 backpropagations. During the training middle process, it can be seen from Figure 3]
that our proposed CMLR is almost always optimal and consistently achieves superior accuracy for
the same computational budget. To further demonstrate this, we provide additional results on the
ResNet-50/CIFAR-100 dataset in the appendix, which exhibit a similar trend (see Figure[7).

Inner Loop=400 Inner Loop=800
100

Y (%)
Y (%)

Test Accuracy (%

o 50 100 150 200 250 300 350 400 0 100 200 300 400 500 600 700 800
Total Backpropagation Steps Total Backpropagation Steps.

Inner Loop=1200 Inner Loop=1600 Inner Loop=2000
100 100 100

y (%)
Y (%)

t A
Test Accurac,
tAC

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 1400 1600 0 250 500 750 1000 1250 1500 1750 2000
‘Total Backpropagation Steps ‘Total Backpropagation Steps Total Backpropagation Steps

CMLR FMLR GSAM Lookbehind-SAM SAM-N

Figure 3: Test accuracy versus backpropagation steps on ResNet-34/CIFAR-10. We compare five
algorithms under an equal number of backpropagation steps (400, 800, 1200, 1600, 2000) to provide
a fair measure of computational cost.

5.2 VISION TRANSFORMERS

We evaluated ViT-Tiny, ViT-Small, and ViT-Base models on both CIFAR-10 and CIFAR-100, with
all results averaged over three independent runs to ensure reproducibility. To align with the optimal
results reported in contemporary works (Dosovitskiy et al., |2020; |Zhao et al., [2024; [Yunl 2025)),
models were trained from scratch for 300 epochs using the AdamW optimizer (8; = 0.9, 82 =
0.999) and a cosine annealing scheduler with an initial learning rate of le-3. Additionally,We
applied a weight decay of 0.03 and standard data augmentations (4-pixel padding, random crop-
ping, and horizontal flipping). Finally, to align with prior experiments, the hyperparameters for our
method, CMLR, were selected from the following sets K = 10, « € [0.7,1.0], p € {0.05,0.1}, A €
[0.05,0.15] to demonstrate its cross-architecture robustness. The result can be seen in Table

5.3 TRANSFORMER ENCODER—BASED ARCHITECTURE

We evaluate all algorithms on eight natural language understanding tasks from the GLUE bench-
mark (Wang et al., 2018)), using a standard Transformer-based architecture (DistilBERT). These
tasks cover a broad range of linguistic phenomena, including sentiment classification (SST-2), lin-
guistic acceptability (CoLA), paraphrase detection (MRPC, QQP), semantic similarity (STS-B), and
natural language inference (MNLI, QNLI, RTE). Following GLUE protocol, we report task-specific
metrics: Matthews correlation for CoL A, F1 score for MRPC and QQP, Pearson correlation for STS-
B, and accuracy for the remaining tasks. Finally, we report an aggregate GLUE score computed as
the unweighted average over seven tasks, excluding STS-B.

We fine-tune each model using the AdamW optimizer with weight decay fixed at 0.01. For
GSAM, Lookbehind-SAM, FMLR, and CMLR, we set the lookahead step: K = 2. Hyper-
parameters are selected from the following ranges: p € {0.001,0.005,0.01,0.05,0.1},\ €
{0.001, 0.005,0.01,0.05,0.1}. For all methods, we use the same training setup, except for learning
rate, batch size, and number of epochs, which are tuned per task and detailed in Appendix [F}

All experiments initialize the model from the publicly available pre-trained DistilBERT-base-
uncased checkpoint, with a standard classification head or a regression output layer (for STS-B).
Comprehensive results for all eight tasks are summarized in Table
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Table 2: Performance comparison of CMLR against baseline optimizers in ViT models (Test Accu-
racy %).

CIFAR-10 (Test Accuracy %)

Optimizer

ViT-Tiny ViT-Small ViT-Base
AdamW 85.17+0.15 85.93+0.12 85.64+0.16
SAM 85.86+0.08 86.79+0.09 86.82+0.10
CR-SAM 86.08+0.09 86.96+0.11 87.00+0.12
Lookabehind-SAM 86.36+0.08 87.26+0.08 87.32+0.09
GSAM 86.69+0.17 87.48+0.08 87.58+0.09
FMLR 86.54+0.17 87.42+0.09 87.47+0.11
CMLR 86.95+0.07 87.81+0.09 88.30+0.08
Optimizer CIFAR-100 (Test Accuracy %)

ViT-Tiny ViT-Small ViT-Base
AdamW 58.87+0.23 61.39+0.21 61.75+0.28
SAM 60.16+0.16 62.15+0.15 62.29+0.20
CR-SAM 60.20+0.17 62.35+0.14 62.46+0.21
Lookbehind-SAM 60.57+0.16 62.63+0.13 62.78+0.19
GSAM 60.89+0.14 62.91+0.12 63.07+0.18
FMLR 60.81+0.25 62.84+0.12 62.91+0.18
CMLR 61.21+0.14 63.42+0.12 63.46+0.17

Table 3: Performance on GLUE tasks using DistilBERT. Best results per row are bolded. Metrics:
MCC for CoLA, F1 for MRPC and QQP, Pearson for STS-B, Accuracy for others.

Task AdamW SAM CRSAM GSAM LookbehindSAM FMLR CMLR
CoLA 56.69 57.69 58.29 59.03 58.79 58.97 59.19
SST-2 91.28 92.08 92.78 93.53 93.38 93.48 93.58
MRPC 89.15 89.85 90.45 91.19 90.95 91.13 91.35
STS-B 86.99 88.19 88.89 89.63 89.39 89.57 89.69
QQP 86.85 87.85 88.45 89.19 88.95 89.13 89.35
MNLI 82.17 83.17 83.87 84.62 84.47 84.57 84.67
QNLI 88.87 90.17 90.77 91.51 91.27 91.45 91.67
RTE 61.73 63.23 63.93 64.68 64.53 64.63 64.73
Avg (GLUE) 79.53 80.58 81.22 81.96 81.77 81.91 82.08

6 CONCLUSION

This paper presented a principled solution to the instability paradox in multi-step sharpness-
aware training, identifying perturbation gradient instability as the primary bottleneck and proposing
CMLR, an alternative built on a more robust foundation that replaces unstable approximations with
a more accurate central-difference scheme, embedded within an efficient, momentum Lookahead
framework; extensive empirical results validate this design, showing CMLR produces more stable
optimization trajectories and consistently outperforms existing gradient regularization methods on
benchmarks, while comprehensive convergence and variance reduction analyses further underscore
its theoretical rigor, with ablation studies confirming the critical roles of each component in achiev-
ing superior performance across diverse architectures including CNNs, Vision Transformers and
Transformer encoder—based architecture.

10
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A ALGORITHM

Algorithm 2 CMLR (simplified version for convergence analysis)

Require: Same inputs as Algorithm [I]
1: fort =0,1,...,7 —1do
2 Follow Algorithm|[I]until the (K — 2)-th inner step.
3:  Compute dx 1 as in line 12 of Algorithm 1]
4:  Synchronize fast and slow weights with Lookahead:

Wi41, Wy K < Wi + a(A(wt,Kfla Nek—1,dK—1) — wt)~

5: end for
6: return wr.
Ensure: CMLR trained model.

B DETAILED CONVERGENCE ANALYSIS FOR CLR

B.1 NECESSARY ASSUMPTIONS

Assumption B.1 (L-Smoothness of the Gradient). The loss function, L(w), is L1-smooth. And this
condition is equivalent to its Hessian matrix having a bounded norm, i.e., | V2L (w)|| < Ly.

IVL(w1) = VL(ws)|| < Laflwr = well (14)

Assumption B.2 (Gradient Oracle Properties). The stochastic gradient g(w; ) is an unbiased esti-
mator of the true gradient and has its variance bounded by o>.

Eelg(w;§)] = VL(w), Eelllg(w: &) — VLw)|"] < o (15)
Assumption B.3 (Lipschitz Continuous Hessian). The Hessian V2L (w) is Lo-Lipschitz continuous.
IV2L(w:) = V2L (ws)|| < Lafwy — wo| (16)

Assumption B.4 (Bounded Fourth Moment). The stochastic gradient has a bounded fourth moment.
AM > 0 such that

Ellg(w; &) — VL(w)[|* < M (17)

B.2 PROOF OF RELAXED DESCENT LEMMA

Lemma B.5 (Relaxed Descent Lemma). Under Assumptions 1 and 3, the sequence of iterates {{s}
generated by the GLEAP algorithm satisfies the following inequality:

L 2,2
Fljesr) SF(5) = am(VE (), d(ys: €)) + —57 d(s; &) + 2ALaam [d(ys &) (18)

Proof. The proof starts from the fundamental theorem of calculus applied to F:
1
F(y) = F@) = [ (VF(+tly ).y - o) e
0

1
:<VF(x),y—x>+/0 (VF(z+1t(y—x)) — VF(x),y —x)dt (19)

We bound the integrand using the Cauchy-Schwarz inequality and the relaxed smoothness property:
(VE(z +t(y —x)) = VF(z),y —2) < |[VF(z +t(y —2)) = VF(@)| - lly — =]
SIVL(z +t(y — x)) = VL) - |y — =]
+AMIVIVEE + iy = 2)[ + MVIVL@)) - [ly - =]
< Lutlly — ol* + 2ALyly — 2| (20)
Substituting this back into the integral:

1
Fly) = F(z) <(VF(z),y — x) +/0 (Latlly — a|* + 2AL [y — [|)dt

L
= (VE(x),y =) + 5 lly = 2l* + 2ALaly — 2] 1)

14
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Now, we let x = ¢ and y = ¢s+1. The update step is Js+1 — Js = —ansd(ys; Es):

F(?js-‘rl) < F(ys) =+ <VF(?;€)7 _O‘nsd(ys;gs» =+ %Hansd(ys§§s)”2 + 2)‘L1Hansd(ys;€s)”

Lia?n?

5 lld(ys; €)I1? + 2AL1ams || d(ys; &) |

(22)

= F(§s) — ans(VF(3s), d(ys; &) +

This completes the proof of the lemma. O

B.3 PROOF OF MAIN CONVERGENCE THEOREM

Theorem B.6 (Convergence of CLR for Non-Convex Objectives). Under Assumptions [BIB.3] if
the learning rate n; is sufficiently small and satisfies Zzio ns = oo and Z:io nE < oo forp > 2,
the iterates sequence generated by CLR satisfy:

lim inf B[[| VF (3)][%] = O(A). (23)
Proof. The proof begins by taking the total expectation of Equation [T8] We must bound the expec-

tation of the three terms on the right-hand side.
First, we bound the inner product term: Let B(y,) = E[d(ys,&s)] — VF(ys).

E[(VE(G), d(ys: )] = E(VF(§s), VE(ys)] + E[(VE (@), Blys) 24)
The first term of RHS:
EVF(.), VE@:)] = SEIIVF@)I) + SEIIVF@.)I”) - SEIIVF@.) ~ VE@,)|?
> CE(IVF@)I) + SEIVE@)IP] ~ LE(l5, — 57~ 27Ly @25)
where
- 2 oy 2 27 (5 VL(ys) 2
B{IVF(3s) ~ VF ()] < 2B VL) = VLI + M EIVA L) e S )
2 VL(yS) 2
+E[|V L(ys)mﬂ )
= 2I3E[[|9s — ysl|*] + 4AL1. (26)
The second term of RHS:
E(VF(G.), Bs)] > ~E(IVEG) B s
> ~2B(IVF@I - 5 EllBw)I] @)
where
B[l B (s)]
_ i VL(ys;gs) . . VL(ys§£s) w2 VL(Z/S)
= ARl (VE e 72 VY PRI 2 T Y P T e
i VL(ys§£s) - - VL(ys;gs) w2 . VL(ys;fs)
< Mllg, (Vv g e e T VR T R e v ) T Y M S R
2 . VL(ys§€s> w2 VL(ys)
TRV L NGyl e~ Y “ U WL <!
Lop?
<\ 5 +2)\L; (28)

Thus, we have:

E[(VF(§s), d(ys; €))] = 5(1 = e)E[[VF(5s)[1*] + %E[IIVF(Z/S)IIQ]

2 (29)
— L3(1 — @)’E[llys — y|s/x x |I*] — Ch.

15



Under review as a conference paper at ICLR 2026

A2L2pt 22212
where C; = lgjlp + S 20

Second, the squared norm of the update direction is bounded:
E[[|d(ys; &)II”] = E [Varg, (d(ys; &) + e, [d(ys; €)]II] (30)
To bound the variance, let §; = ¢(ys; &s) — VL(ys).
| A
E [Va‘rfs (d(ys; gb))] =E |E¢ ds + 7(6: — 65_)

o v ]

2

S S

B B 2
<E |E¢ 2||65||2+2H2);)(6+—5‘) H

L K !
<E (£, 20601+ 25 (1671 + 11 ||2>H
[ 2 )\2 2 2 2 )\2
<E|20°+ (0" +0%)| =20 [ 1+ — @31)
L p p

Thus, we have
/\2
E[|ld(ys; &)]1%] < 20° <1 + p2> +E [2[[VF(ys)[1* + 2[| B(ys)|I?]

= 2B [|IVF(y)[*] + Cs

(32)

where Cy = 202 (1 + 2;) + 2/\2(L2Tp2 +2L)%
Third, we handle the linear norm term using Jensen’s inequality and AM-GM:

Ellld(ys; €)M < VE[lld(ys; &)%)

v C2 + 2E[|VF (ys)]?] (33)
ez Ca+2E[|VF(ys)|?
=+
2 2&‘2
Substituting these bounds back into the expectation of Equation [I8] and summing over one outer
loop (k =0,..., K — 1) with a fixed learning rate 7; i, we get the main recurrence relation:

an K—1

N " LK "
EF(@ernr)] = E[F @)l < —— = (1 —e1) > EIIVEGercir)1?]
k=0

o AL amix |
B ( B ot - 1ﬂ<) ST EVE@exr)lI?)
€2 k=0

IN

IN

K-1

+ L1 — )’ amr > Ellyirx — yix|’] + CsK
k=0
(34)

where Cj collects constant error terms. The third term of RHS in Equation 34}

2
k—1

E [llyercor = vercIP] =B || 30 (=murcdiess)
3=0

k—1
2
<0k |k ldigcss|

=0

k—1

= ki G + 2knj Z E [[VF (yerc+5)|I°] (35)
=0
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Summing over k:

K-—1 K-—1 K-—1 K-—1
S [lvescn —will’] < Conie Y- K2+ 203 >k | D0 E[IVF ()]
k=0 k=0 k=1 3=0
(K-DKQ2K-1) , ) )
=Cy 5 Nk + K(K =) nig Y E[IVF(yire ;)] (36)
—— =0
Cy Cs
K-—1
= Cunyc + Csmiyc Z E[|VF (yerc1)]1%]
k=0

Next, we bound the second term of RHS in Equation [34}
K—1 K—1

Z E “|VF(ytK+k)”2] < 2E [||VF(Z7tK+k)H2] +2E U|VF(ytK+k) - VF@tK+k)||2]
k=0

ol
LL

< 2K [IVF (e 42)1?] + ALTE [[[yerc 41 — e 41l®] + 8AZL3

k=0
K—1 K—1
=23 E[IVF@urcr)?] +4L3(1 = @)* Y B [llyercx — v |*] + 8KN L]
k=0 k=0
(37)
By substituting into equation Equation [36] we can obtain:
K—1 K—1
Y E[IVFE@Gr+)lP] <2 ) E[IVF(@rc+r)|*] +8KN LT
k=0 k=0
K—1
+4L7(1 - o)? <C477t2K + CSU?KZ E[”VF(ytKJrk)HQD (38)
k=0
K—1 K-
— (14130 - 0)2Contic) Y- E[IVF(yurc4) 2] Z IV (Gercsi)l?]
k=0 k=0
ALY(1 — a)*Cunc + 8KN’LY
(39)
K—1 K-
== Z E[IVF(yer+)]?] Z IVF(Gix4))17] + Cr. (40)
k=0 k=0

where Cg, C7 are constants for a sufficiently small 7.
Substituting these bounds back into the main recurrence Equation [34] allows us to eliminate all

dependencies on the fast weights y; i . After collecting terms, we arrive at the simplified one-step
recurrence for the interpolated weights ¢:

K—
E[F(9@11)x)] — E[F (9 )] Z UIVE@ex+2))1*] + Co (4D
k=0
where
2AL
Cs =1~ 1)+ C < B A et ol S - 1L a)2aC5n3> 42)
2 2 €2
is a positive coefficient, and
2\L
Co =C3K + L3(1 — a)*aCyn® — C; (o;n — Lio®n® — 671007 —L3(1 - a)2a05773> (43)
2

17
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is a term collecting various constants and error terms.
To analyze the long-term behavior, we sum the inequality from ¢ = 0to 7" — 1:

Cs S BIIVF(fir0)l12) < BIF (1) — E[F(de41y)) + Co
=0
— 3 G S EIVEGr )P < 3 (BLF(G0r)] — ELF (sny,)]) + Z G @
t=0 =0 t=0

The first term on the right-hand side is a telescoping series, bounded by E[F(go)] — Fint. The sum
of Cy contains terms proportional to various powers of the learning rate and A.

TK—-1 TK—-1 TK—-1
Z O )E[IVF(§)[] < F(fo) = Fius + O(N) Y ma+0(1) Y (2 +---+13) (45)
s=0
TK 1

Dividing by > . ", " 7, and taking the limit 7' — oo, we leverage the learning rate conditions:
dns = 0 and Z nP < oo for p > 2. Under these conditions, the terms (F(4o) — Fint)/ D s
and (3" n?)/>" ns both converge to zero. The dominant non-vanishing term on the right-hand side
is therefore proportional to A. This leads to the conclusion:

lim inf ety ENVE@IZ _

TK 1
T— o0 Zs 0 Ms

< O(N) (40)

This result confirms that CLR converges to a neighborhood of a stationary point of the regularized
objective F'(w), with the size of this neighborhood governed by A. O

C DETAILED CONVERGENCE ANALYSIS FOR CMLR

For the sake of convenience, we provide some new variable definitions and supplementary expla-
nations before describing the theorem. In the gradient normalization step of the algorithm imple-

mentation, in order to avoid the denominator being 0, we add a small perturbation S.(z) = W
to replace H%\I in practical implementation. Moreover, we give other definitions following: 0 =

; A
— 5 A1 Ii g
Se(on)ur = S-(VL@O) r 2 3 (2 + 72 5)

Theorem 4.1 (Convergence of CMLR for Non-Convex Objectives). Under the same conditions in
Theorem|B.6] the iterative sequence generated by CMLR satisfies:

lim inf B[[| VF (4)]*] = O(A). (11)

Proof. Re estimate of B(y,) in Equation 28]

B(y) = A (ﬂ«:[wys o) ZVE S ) sg<vc<ys>>>

- e[ VA 2] VR0 Z 0] 2y,
+ /\(VQ‘C(ys)@s - vgﬁ(ys)‘é’a(v‘c(ys)))
= \NT1 + T») 47)

Bound for 7). By the third-order Taylor expansion (or Hessian-Lipschitz control) the central-
difference truncation is bounded pointwise by

I VL(ys + pds) — VL(ys — pds)
2p

for any unit vector v. Taking expectation yields

2
- VQ‘C(ys)@sH < sz

Lyp®

I7il < =2

(48)

18
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Bound for T5. We first consider that S, is max{1, 1/¢}-Lipschitz.

S.(x) - Se(y) = / DS.(y +t(x — y))(x — y) dt,

so that
15 (z) = Se(y)ll < sup [[DS(2)] [lz =yl
z€ER4
A direct calculation gives
1 T
DS.(z) = G :
Izl +e (=l + )l
hence .
+ ||z
DS:(2)| < .
ID5:() < o

Taking the supremum over ||z|| > 0 yields

1
18- () = S-(u) | < max {1, =} 2 —yll = Lylla =]l
where Ly £ max{1,1}. Applying this with # = 6, and y = VL(y,) and taking expectation yields
|E[0s] — Se(VL(Y:))|| < Ellos — Se(VL(Ys))|| < Ly(e) Elles]l- (49)

A A
where e; = U5 — ugs. Then we have:

|To|l < Ly Lg(e) Efles], (50)
Considering vs11 = Bs0s + (1 — Bs)gs, we have:
est1 = Se(Bsls + (1 — Bs)gs) — Us 41
= (Bt + (1= B)G) = S:(65) ) + (Sc(b:) = s, (51
where b, £ Bsus + (1 — B,)ts and %s = E[g,]. Using the Lipschitz property of S,
E[[S:(Bs0s + (1 — Bs)gs) — Se(bs)]]
< Ly (B.Elell + (1 - BENG, - a.]]),

< Ly(B.Elea]| + (1 — B)VE||7. — Elg.]|*)

< Ly(BBlleal + (1 By SEIS-(ah) — SUTLG|* + SEl.t07) - .92 )

< Ly(BElles]| + (1 - 5)y/L3Eg& — VL(y,)|]?)
< Ly(B.Elesll + (1= B.)Ls—) (52)

E[[Se(bs) — ust1ll < Ly(Bsllus = VL(ys+1)[| + (1 = Bs)las — VL(ys11) )
< LyBs([lus = VL) || + IVL(Ys) = VL(Ys+1) ) + Lp(1 = Bo)([[as — usl| + [[us — VL(ys+1)]])

< LBl e VAWl + Lanldal) + LU= B) (L 72 + llus = VE (o))
< Lyfo(e+ Lunlldol) + Ly(1 = 55) (L 7z 2+ Lunld, )
< Ly(e+ LinElds|| + (1 = Bs) Ly ). (53)
Combining the two bounds yields the recursion
Ellest1ll < LyBsElles|| + Lye + Ly LinEllds|| + 2L3(1 - B.) . (54)
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Elles|| < L B Bleol] + %(Me + LeLanElldy]| +2L3(1 - o) )
< ﬁ:iﬁf Ly LanElldy]| + i‘_f‘jﬁf (Lye 42030 - fo) %) (59)
BB < Maky T P oA Ll + 22
+ ALlLf%(Lfs +2L3 (1~ Bo) )
= C1oE||ds|| + Cna (56)

E||B(y,)|* = |EB|? + | B - EB|?
< 2CHE|dy|? +2CH) + 202 (B[ V2(ys) (05 — Edy)|* + EI|T1[1?)

2 2 2 27 2ml5 T >\2L304
< 2CE(ds||® + 20T, + 2A°LIE[[9s — Ed || + 13 (57)
Ellvs — Bu,||* = E[Var(vety | Fs)] + Var(E[veg1 | F)) (58)
First term:
E[Var(v,y1 | Fs)] = E[Var(Bs0s + (1 — B5)3s | Fs)]
= (1 - IBS)QE[VEH'(QS | ]:s)]
L20.2
< (-8, 27f
< (-5 (59)
(60)
Second term:
Var(E[vS+1 | f@]) = Var(,@sﬁs + (1 = Bs)E[gs | ‘7:9])
= B2Var(d,)
= ﬂEE”{’é - ]EﬁSHQ
< BzL?EHUs - EUSHQ (61)
Combining the two terms, let V 2 E||v, — Ev,]|2.
L352
Verr < BIL3V+ (1= 82)° =0 (62)
1— 2L20.2 1— 2K L2K
V. < ( Bo) f ( ﬂK71 f ) (63)

ST w0 )
E||B(ys)||2 S 2C(120E||ds||2 + C’12 (64)

where Cy = 202 + X2 L3 (1 — Bo)2L302(1 — B2 | L3K) /b(1 — B%_, L%) + *“522 Similar to the

derivation of Theorem [B.6] we can obtain the following recursive equation similar to Equation [34}
K—1

(1 —e1) ) ElIVE(Ger+x)ll’]

k=0

ani K
2

E[F(Ju+1)x)] — E[F (k)] < —

2AL C? s =
_ (antK _ Lia®n%e — 1K 21097 ) Z E[[VF(yex4n)lI?]  (65)

tK
2 135} €1 =0
K-1
L?(1 — a)? E - 2+ 5K
+Li(1 - a) aﬁtKZ Nyerctr — yerc |71 + Cs
k=0

20



Under review as a conference paper at ICLR 2026

2
1

where C5 = antKé'l + %anmég + 2 Lyamer (B + %),02 = C,,Cy = 2\L; + %f Then

1 €
we have:
K-l )
E[F (§(er1x)] — EF i) < —Cs > E[|[VFGurcsn)I*] + Co (66)
k=0
where
~ 2\L C? ~ - _
O = (L —en) + (TG — Lo — =t — SR Gy — Confe G (67)
g2 €1
- 2L C? -
Co = AN K (1 _ 61) _ (CW]tK . Llazan _ 10K 100”’”()07
2 2 €9 €1
+ L%(l — a)zantK6~’577t2KC~'7 + L%(l — a)QOth + C~'477t2K + Cs3K. (68)

and Cy = CYy, Cs = Cs, Cs = Cs, C = (. Similar to the derivation of Equation , we can obtain
a rough upper bound conclusion that is approximately consistent with Equation 6]
O

D DETAILED DERIVATION OF NOISY QUADRATIC ANALYSIS FOR LR

Our key insight is that this regularized objective is mathematically equivalent to a standard quadratic
model but governed by an regularized Hessian, H' = H + AH?, where \ represents the regular-
ization strength. This allows us to directly apply the variance analysis tools for stochastic gradient
descent (SGD) and Lookahead. Following the analysis framework, the asymptotic variance of the
inner optimizer (GR-SGD) converges to a fixed point, which we denote as V}3.

Theorem D.1 (Variance Reduction with LR). When applying the Lookahead optimizer to the
gradient-regularized noisy quadratic model, the asymptotic variance of the slow weights, V[, con-
verges to the following fixed point:

Vi = Ay ' (H')?? (69)
a? Agp, N

Vir = a?Agi + 2a(1 — ) A Vi 70)

where Ay, are defined as:
A = (I = (I =nH")") (71)

Here, H = H + NH? is the regularized Hessian, 1) is the inner learning rate, « is the slow weights
step size, and k is the number of inner loop steps.

Proof. We first introduce a gradient regularization term to this objective, creating a new objective
Lg(z):

Lr(e) = £(z) + %AHVﬁ(m)HQ (72)

The gradient of the original loss is V£(x) = H(x — ¢). Substituting this into the equation and
assuming H is symmetric (H " = H), we get:

Lr(a) = %(x O TH@— o)+ %/\(x _ O TH2 (2 — o)
- %(m—c)T(H+)\H2)(m—c) (73)

This shows that our regularized objective is equivalent to a standard noisy quadratic model with an
regularized Hessian, defined as H' = H + \H>.
And then, to simplify the derivation, let us first define the intermediate term 4y, as:

A =1— (I —~H"* (74)
The variance dynamics for the inner optimizer (R-SGD) are given by [Wu et al.| (2018]):
Vi) = (1=l V[z] 4 52 (H')S (75)
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To find the asymptotic variance fixed point, V;{, we set V[z(*V] = V[z®)] = Vii:
VR = (I = vyH')’Vg +7*(H')*% (76)
(I = (I —yH'))Vg = 7*(H')*S (77

Recognizing that the term on the left, I — (I — yH')?, is exactly Ay from our definition in Equa-
tion [/4

A Vi =~2(H')?*S (78)
Vi = Ay 1 (H')S (79
The dynamics for the Lookahead slow weights ¢; are given by Zhang et al.[{(2019):
k-1
V[desa] = [I - a i V[g,] +a? (ZU - vH’>2i> VA (H')?S (80)
i=0

Note that we have rewritten the first term using Ay: (1—a)[+a(I—yH')* = (1—a)[+a(I—-Ay) =
I — Oé.Ak.
To solve for the fixed point V';, we set V{ps1] = Vg = Vi'i:

o2 (Zi‘:ol(f _ ’YH/)2i> V2 (H')?S
Vie = [ [I— o] ey

Using the geometric series identity, the summation can be expressed with our notation:

k

|
—

i I—(I—~H"?

ToT e A (82)

(I =~H")?)

I
=]

Substituting this and the expression for V% back into the equation:
B CYQ.AQk.Ag_l (72(H/)2Z)
I—[I—aA)?
a2A2k

_ . A_l 2 Hl 22

T— (12— 20A;, + o2 A2) (Az " (H')5)
o a2A2k VX
B QOzAk — 042./4% GR
The denominator can be factored as 2a.Ay, — a? A7 = aAy (21 — aAy). To match the desired final
form, we return to the denominator manipulation from the original paper, but expressed with Ay :

*

LR

(83)

I-1(1 —a)I+a(I—7H’)k]2
=a* (I —(I-~H)*) +2a(1 —a) (I — (I —~H')¥)

= a? Ay, +2a(1 — a) Ay (84)
This gives the final, simplified expression as specified:
a2A2k
iR = Vi 85
LR = 07 o+ 2a(1— a) Ay (8
This completes the proof. O

The ratio is a multiplicative factor that is strictly less than 1 for any o € (0,1) and k& > 1. This
rigorously demonstrates that our method reduces the asymptotic variance compared to the inner
GR-SGD optimizer alone, which contributes to the improved stability and convergence we observe
in practice. The analysis of LR variance reduction followed the classical noise-propagation frame-
work as in prior works. In contrast, our CMLR analysis adopts a spectral decomposition approach:
we expand dynamics along each eigen-direction of H, thereby isolating both the data-induced vari-
ance and the additional contribution from momentum accumulation. Here, we provide the spectral
analysis theorem for CMLR variance reduction.
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E DETAILED DERIVATION OF NOISY QUADRATIC ANALYSIS FOR CMLR

A

we first define n(z) £ o> 8 = pHO,then we obtain H(w—c) = u,H(w—c)+ pHt — g" and
H(w—c)—pHd — g~.

Lemma E.1 (Second-Order Remainder Bound). Let u # 0. If ||s|| < &
remainder term R such that

+

g g u
= 4+ =— =2—+ R, (86)
lg*ll - Mg=Il [ull
with the strict norm bound
IRl = O(p*) (87)

Proof. We first use a second-order Taylor expansion for the normalized map n(z) at the point u:
1
n(u =+ s) = n(u) + Dny,(£s) + §D2nu+gi(is)(ﬂ:s, +s),

for some 64 € (0,1), where Dn,(h) = m(l — n(u)n(u) ")k . The first-order terms cancel out
exactly:Dny, (s) + Dn,(—s) = 0.
The remainder term R is therefore composed of the second-order terms:

1
R = 3 (D2nu+9+s(s, s) + D2nu,g_s(—s, —s)) .
For any z # 0, the second Fréchet derivative has the general upper bound given by:

| D?*ny (k)| < ( —nn' H HH ”Dnu(k’) n'h| +

H i ||” (Dr )"

[ (Dn (k)

\uTkI

_ T T
S ME 11 =nn{lopllAl] + ||Dnu( Mn Al +

ik | (nkn
< I
Tl IR0+ I

BN+

[
)(I al) + I ”( )P (R)HIA1])

&R+ &N

o1
"l ||2
=T ||2IIhIIHkII

where the operator I — n(u)n(u) ' is a projection onto the orthogonal complement of n(u), so its
operator norm is equal to its largest eigenvalue, which implies ||[I — nn'|/,, = 1. We also use

[[n(u)[| = 1 and the bound || Dy (k)| < [ Given the assumption |[s]| < 5 ]|ul], we have that:

lu ||2 lu H2

)T

lu=6ss|| > |lull — ||s|| = &||u. This allows us to bound each component of the remainder:
1 1
31D nut,5(5, )l < 51D Mucro, sllopllsll”
<. 2
=2 ||u+9 el
<1 ” ”2 H ”2
[— 2 2'
(3 H 2 “lal
Summing the bounds for the two terms via the triangle inequality yields the final result:
[Els
R|| <12 .
IRl < 1200

Therefore, substituting s = pHv and ||9]] = 1, we obtain
- H(w— H|?
N [Ty
lg*ll Mg~ I1H(w =)l [ H(w = <)
In other words, as long as || H (w — c)|| is bounded from below, this difference is O(p?).
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Now, we consider true gradient: g = u + s + £, where & satisfies Assumption
Theorem 4.2 (Variance Reduction with CMLR). Fix an eigenpair (q, 1) of H, with scalar pro-
jections ) = qut,k, Ctkx = q"c and Vg = q" 0y Leta & 1 — N, define Aeg £

(1 — ) + aa®, Beg £ anu. Under Assumption Assumption IVL|| > gmin and con-
diton in Lemmal[E.1} the steady-state variance of CMLR satisfies

4 H 4+M
vomrr < vLr(l+ V1) + O(%) 12)
where
14*@2K
2 2 2
) :a(nu)a — a2 T:MM a3)
R 1— A% ’ i1+ 5)

Proof. We present a concise derivation starting from the algorithmic updates (quadratic loss). For
the quadratic model one has the exact identity (no approximation)

g = H(wgp —c) £ pHoy, (88)
and therefore (using the coefficients %, % from the algorithm)
p+A p—A _ .
dp = % gr + 5, 9 = H(wsy, — ¢) + \Hy,. (89)

Projecting onto the eigenvector ¢ (write u for the eigenvalue) yields the scalar exact update for the
inner step:

Trpr1 = (L —nu)xe e +npeer — NAL Ok q. (90)

Thus the inner-step perturbation (momentum accumulation error) is exactly

Etk 2~ Dk g 1)
Unrolling the inner loop (as in the standard linear system expansion) gives the closed form for the
k-step output yj, = 4 :

k—1 k—1
yp = "z +np Z a1 ey, + Z a" ey, 92)
r=0 r=0

with @ = 1 — nu. The outer Lookahead update is ;1 = (1 — a)z; + ayg. Group the data-noise
part

k—1
SE By ey, (93)
r=0
and the momentum accumulation part
k—1 k—1
E, 2 aZak_l_Tam = —an)\uZak_l_T@nq. 94)
r=0 r=0

The variance recursion for the linear iteration yields, at stationarity,

Var(S) + Var(E) + 2Cov(S, E
UCMLR = (%) 1(_1)42 v ) 95)
eff

Identify Var(9S) to obtain v,g = Var(S)/(1 — A2;), which proves the decomposition veyrr =
vr + A with A as stated.
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It remains to bound Var(E) and Cov(S, E). By linearity and independence assumptions on the
sampled ¢, , (standard in this noise-model analysis),

k—1

Var(E) = o®n*\*u? Var( Zak_l_rf)r,q).
r=0
1— 2k
< P\ [~ sup Var(0y 4). (96)
Then we bound Var(d, q):
1
n(ut s+ &) = n(w) + Dnu(s, + &) + 5D, gt o, et (50 + &6 50+ &) 07)

_ _ 1 _ _
n(u—s,+&) =n(u) + Dny(—s, +&.) + §D2nu+0;(—sr+£;)(_sr +&7,—s-+&7) (98)

_ _ 1
n(g,") +1(g,) = 2n(u) + Dnu (&5 +67) + 5D, 4 gr (o ety (s &5 50 + )

2
RV
1, _ _
+ §D nu+9:(,sr+£:)(_s’r + é-r y —Sr + g’r‘ ) (99)
R
where (By Lemmal|E.T))
1 3
RW| <= s+ &)1
3 s+ &F11°
<8 + &F )2 = 66— (100)
2(|lull/2)? [[ul]?
_ -2
u
) - 2 21|+ 2 2 , 2 2l 2
O ¢ ) < o226 2l 20|
24]|s,. |2 + 12(|EF])? |1
_ 2l + 120617 4 1) 10
[Jull
By substituting into the momentum recursive equation, we obtain:
1— 1-—-
1 = Bor + (1= B)n(u) + Tﬁpnu(gr+ +&)+ Tﬂ(RQ) +R(®))
= pop + (1 = B)n(w) + nr + Yri1
(103)
with, 2 38 Dn, (8 +67),  pr 2 52(RY + RP)). Thus we have:
Yr+1 = BYr + 0+ pr. (104)

By Var(yr41,4) = BQVar(yrvq) + Var(ng + pg) + 28Cov(ye,ng + pg) and 25|Cov| <
28/ Var(y)Var(n + p), we obtain:

Var(n,) + sup,. Var(p,q) + 2sup, v/ Var(n,) Var(pr,q)

- (105)

Var(y,) <
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The first term of RHS in Equation [T03}

2
V() = Ella 0] < Ellan 2= (152 ) BlIDna(er + €I

1 3\2
< (*52) 1onle, BllE + &1

15)2 1 ) , o2
< (=2} . 2 a2=(1-p2 2
—<2 % = A e

and the second term of RHS in Equation [T03}
o (1=BY" 2024l [I*) + 202°E(I&F 12 + 17112
Blo P < (152)

[
Is-I* LB +1lE 1)
< 288(1 — B)? +72(1 - B) r r
[l [l
Iso|I* + M
<288(1—p)2 il T2
[
4
r M
o sl ¢
i
where C, £ 288(1 — 3)2. By Assumption we obtain
e M
sup Var(p,q) < C, (m)
2 C Jdt+M o 2,/C At + M
Vartoy < 178 7 Co Il M 2Ty o [l
L+8 ull> 1=52 ull 1= B2 |lul [l

Then we consider connecting ¥, ; and y,:
. T
Ur.q — an(u) = ((I - nnT)q) Yr + T7(~237
Var(dy,4) < 2 Var(((I —nn')q) "y,) + 2 Var(r (2))
< 2(|(1 = nn")g||* || Cov(yr)llop + 2 Var(rZ)
< 2| Cov(yr) op + 2 Var(r).

where
I Cov(yy)lop < trace(Cov(y,)) ZVar Yr.i)
<d- sup Var(yr;)
<d- V;r(yq).
Considering Var(r fn q) <sup, Var(p, ), we have
Var(v,4) < 2d - Var(y,) + QCPW

Considering [[u]] > gmin > 0, [|s,| < pl|H |, Let 7 £ JEE we have
HH|*+ M
vomer < vLr(l+ V1) + O(%)
_ 9 X0=5)
where 7 = 2d PEACETIE
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Table 4: Performance comparison of CMLR against multi-step optimizers (k=2,5,10) in CNN mod-
els (Test Accuracy %).

CIFAR-10 (Test Accuracy %)

Optimizer
ResNet-18 ~ WRN-28-10 VGG-16-BN  PyramidNet-110
Lookbehind-SAM (K=25) 03030 0§0tan 362801  k%n
96.92+0.14 97.88<0.15 96.08:0.16 97.93+0.22
enacas ST RGE B G0
96.85:0.13 97.82+0.14 96.02:0.16 97.88x021
meaaso G4 RIEE BT G
97.00:0.13 97.96+0.14 96.20:0.17 98.00:0.20
omrwasw P JE BET G
Optimizer CIFAR-100 (Test Accuracy %)
ResNet-18  WRN-28-10 VGG-16-BN  PyramidNet-110
Lookbehind-SAM (K=25) 09901 §3:0%01  790%0r &30
80.58=0.17 83.92+0.16 76.93:0.18 85.18+0.17
GSAM (K=25,10) Rokle  RaAED ST Bsen
80.62+0.18 83.88+0.17 76.90:0.18 85.12+0.18
mrmaso 0T BIEE pfEr R
81.18+0.16 84.30+0.16 77.35+0.17 85.70+0.17
Ol i

Table 5: Performance comparison of CMLR against baseline optimizers in CNN and ViT models on
Tiny-ImageNet (Test Accuracy %).

Tiny-ImageNet (Test Accuracy %)

Optimizer
ResNet-18 ViT-Ti VGG-16-BN

SAM 64.41+0.53 37.81+0.65 60.68+1.19
CR-SAM 64.82+0.51 38.57+0.53 61.28+1.16
Lookbehind-SAM 65.32+0.48 38.21+0.60 61.78+1.19
GSAM 67.07+0.26 39.15+0.58 63.12+1.31
FMLR 66.06+0.48 38.46+0.62 62.33+1.14
CMLR 68.44+0.40 40.23+0.57 65.84+1.15

F DETAILED EXPERIMENTAL RESULTS AND SETTING

We present the main results under the lookahead mechanism (K=2,5,10) in Table E[

For Tiny-ImageNet, we use AdamW with a learning rate of 1 x 1073, weight decay of 5 x 107°,
and fix the perturbation strength to p = 0.05. For CMLR we again keep K = 10, 85, = 0.9, 8. =0.99
fixed throughout all Tiny-ImageNet runs, and use o = 0.9 as the default. The choice of A follows the
same small-range search as in the CIFAR experiments. The experimental results are shown in the
Table

The parameter settings for fine-tuning the pre-trained DistilBERT model are shown in Table|[6]
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Table 6: Per-task hyperparameter configurations for DistilBERT fine-tuning.

Task Batch Size LR Epochs Other Params

CoLA 32 2e-5 10

SST-2 32 2e-5 3

MRPC 16 2e-5 5 p € {0.001,0.005,0.01,0.05,0.1}
STS-B 16 2e-5 5 A € {0.001,0.005,0.01,0.05,0.1}
QQP 32 2e-5 3 wd = 0.01

MNLI 32 2e-5 3 K=2

QNLI 32 2e-5 3

RTE 16 le-5 10

G ABLATION STUDY

G.1 REGULARIZATION STRENGTH

We analyze the sensitivity of CMLR to the regularization strength hyperparameter . A grid search
was performed over A in the range [0.05, 0.15] with a 0.01 step size on both CIFAR-10 and CIFAR-
100 datasets.

Figure A plots the final test accuracy as a function of X. The results show that performance is strong
and stable across this range on both datasets, with optimal accuracy consistently achieved when A
is approximately 0.1. This indicates that a moderate regularization strength is most effective. We
therefore select A = 0.1 as the default value for all main experiments.

G.2 INTERPOLATION COEFFICIENT

A key component of our CMLR algorithm is the momentum accumulation strategy used to effi-
ciently determine the perturbation vector for the next inner-loop step, vg1. This strategy calculates
a weighted average of the normalized “forward” gradient (from the ascent step, g,:r) and “backward”

gradient (from the descent step, g, ). To achieve this, we modify our base momentum accumulation
formula from Equation @by introducing an interpolation coefficient v;pierp:

95 9
713_ + (1 - 'Yinterp)k_> (115)
llgi | 19 |

Here, Yinterp balances the influence of the two directions: a value of 1.0 relies entirely on the
ascent gradient, while 0.0 relies solely on the descent gradient. We conducted an ablation study to
investigate the impact of this coefficient by training a ResNet-18 model on CIFAR-10 while varying
Yinterp from 0.0 to 1.0. As shown in FigureE], we found that model performance was strong across
a range of values, with optimal test accuracy achieved when ;,s¢-, Was approximately 0.1 or 0.8.
This indicates that while a blend of both directions is effective, a slight bias towards either the ascent
or descent gradient can be beneficial for guiding the subsequent perturbation.

Brvk + (1 - ﬁk) ('Yinterp

G.3 SLOW WEIGHTS STEP SIZE

We analyze the impact of the slow weights step size «, which controls the outer-loop Lookahead
update . We tested o values from 0.7 to 1.0 with a 0.05 interval on CIFAR-10 and CIFAR-100, using
a ResNet-18 model with K = 10. Each setting was averaged over five runs.

The error bar plot in Figure[6]shows the final test accuracy as a function of c.. The results indicate that
performance is strong and stable when « is in the [0.85, 1.0] range, with the optimal test accuracy
achieved at approximately o« = 0.9. Based on this finding, we use o = 0.9 in our main experiments.

G.4 EFFICIENCY GAINS

In addition to this primary analysis, we provide a direct measurement of the efficiency gains. We
compare CMLR against CLR, a variant that computes all three gradients per inner-loop step without
momentum. The results, shown in Table |7} confirm that CMLR increases throughput by approxi-
mately 45% while matching the final test accuracy of the naive CLR with a negligible difference.
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Figure 4: The impact of the hyperparameter A
on final test accuracy. The experiment was con-
ducted on ResNet-18 with the CIFAR-10/100

datasets.
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Figure 5: The impact of the hyperparame-
ter Yinterp 0N final test accuracy conducted on
ResNet-18 with the CIFAR-10 and CIFAR-100
datasets.

Table 7: Performance and relative training time
on CIFAR-10/100.

Method CIFAR-10 CIFAR-100
Acc. Rel. Train Acc. Rel. Train
(%) Time (%) Time

CLR 97.17 1.47 81.15 1.43

CMLR 97.10 1.00 81.05 1.00
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Table 8: Wall-clock breakdown per parameter update in ResNet34 model, CiFar10 dataset. Multi-
step methods are shown with sub-rows for different X' € {2, 5,10}. “Forward/Backward” counts the
number of total gradient evaluations; each requires one forward and one backward pass. ‘“Parallel”
indicates whether gradient evaluations can be done in parallel (e.g., for central difference).

Optimizer Setting(K) Forward/Backward Peak memory GPU time Parallel
Vanilla (SGD/AdamW) - 1 1.00x 1.00x X
SAM (two-pass) 1 2 1.28% 2.18x X
FR (GR view of SAM) 1 2 1.25x 2.26 X X
CR (GR view of SAM) 1 2 1.25x% 2.14x v
CR-SAM (Curvature Regularized) 1 3 1.08 x 2.00x v
2 4 1.06 x 3.03x X
Lookbehind-SAM (multi-step) 5 10 1.06 x 6.19x X
10 20 1.06 x 11.48 % X
2 4 1.03x 3.07x X
GSAM (multi-step) 5 10 1.03x 6.25% X
10 20 1.03x 11.39x X
2 4 1.25x% 3.56 x X
FMLR (FR-based Lookahead) 5 10 1.25% 7.48 % X
10 20 1.25x% 14.07x X
2 5 1.25x 3.42x v
CMLR (CR-based Lookahead) 5 11 1.25% 7.19%x v
10 21 1.25x 13.50% v
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Figure 7: Test accuracy versus backpropagation steps on ResNet-50/CIFAR-100. The comparison
involves five algorithms under the same backpropagation budgets (400, 800, 1200, 1600, 2000),
illustrating their performance trends.

DISCLOSURE OF LLM USAGE

We used a large language model (DouBao) solely for minor language polishing. All technical con-
tent, methodology, experiments, and analyses were developed entirely by the authors.
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