

000 TOWARDS ROBUST GRADIENT REGULARIZATION 001 WITH CENTRAL-DIFFERENCE AND MOMENTUM 002 LOOKAHEAD 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Sharpness-Aware Minimization (SAM), which can be extended to a form of gradi-
014 ent regularization, is an effective technique for improving generalization by guid-
015 ing optimizers towards flat minima through parameter perturbations. However,
016 extending such regularization strategies to multi-step settings often leads to insta-
017 bility, where naive iterative updates degrade rather than enhance generalization.
018 To overcome this limitation, we propose Central-difference Momentum Looka-
019 head Regularization (CMLR), a framework that performs momentum lookahead
020 through central-difference probing of the loss landscape. By constructing the per-
021 turbation direction from symmetric gradient evaluations, CMLR realizes a mo-
022 mentum lookahead update that is inherently more robust and exhibits reduced
023 variance, while requiring no additional gradient evaluations. This design ensures
024 smooth optimization trajectories and reliable improvements at low computational
025 cost. We conduct a comprehensive theoretical analysis of CMLR and its founda-
026 tional versions (CLR, LR), presenting spectral analysis results, variance reduction
027 analysis, and establishing formal convergence guarantees, particularly under a mo-
028 mentum strategy. Empirically, we demonstrate that CMLR consistently improves
029 generalization across diverse architectures and datasets.

030 1 INTRODUCTION

031 A fundamental objective in deep learning is to discover model parameters that achieve strong gen-
032 eralization beyond mere minimization of training loss. This pursuit has motivated a line of work
033 culminating in the Sharpness-Aware Minimization (SAM) algorithm (Foret et al., 2020), which ex-
034 plicitly seeks parameters in flat regions of the loss landscape. SAM has demonstrated strong gen-
035 eralization across numerous tasks (Chen et al., 2021; Zhang et al., 2021), sparking follow-up studies
036 to improve its behavior (Bartlett et al., 2023; Du et al., 2022; Jiang et al., 2023; Li & Giannakis,
037 2024; Sun et al., 2023; Wen et al., 2023).

038 However, SAM comes with a puzzling catch: trying to solve its inner optimization problem more
039 accurately, particularly with multi-step methods, often makes the final model generalize worse, not
040 better (Foret et al., 2020; Andriushchenko & Flammarion, 2022; Kim et al., 2023b; Mordido et al.,
041 2024). A new perspective, viewing SAM through the lens of Gradient Regularization (GR), helps
042 explain why (Barrett & Dherin, 2021; Smith et al., 2021; Zhao et al., 2022; Reizinger & Huszár,
043 2023). This view reveals that SAM is essentially using a simple forward-difference approximation
044 of the Hessian (a strategy we call FR) (Zhao et al., 2022; Karakida et al., 2023). This type of ap-
045 proximation is known to be unstable, which likely causes the gradient estimates to become noisy and
046 unreliable during the multi-step ascent process, ultimately hurting performance (Liu et al., 2022b).
047 We will therefore classify this generalization-enhancing regularization as a form of gradient regu-
048 larization and proceed to analyze its different variants.

049 Since the instability of SAM originates from its rough finite difference approximation, from the
050 perspective of feature decomposition, this can be explained as the gradient oscillating near the
051 saddle point (Kim et al., 2023a; Tan et al., 2024b), leading to a tendency towards model sub-
052 optimal. Therefore, a more accurate central difference scheme and forward-looking mechanism
053 can ensure that the parameter update process can more firmly escape the saddle point, thereby

guiding the model to improve generalization. We first replace the forward-difference with a more precise central-difference scheme (CR). To test this hypothesis, we measure the stability of the optimization path by calculating the cosine similarity between consecutive update directions (clipped to $[0, 1]$). Our experiments reveal a clear result: a higher concentration of similarity scores away from 0 strongly correlates with better generalization, and our CR method produces a much smoother optimization trajectory with consistently higher similarity, as shown in Figure 1.

A stable update is a great starting point, but we also want the benefits of multi-step optimization that have proven successful in other SAM variants (Mordido et al., 2024; Tan et al., 2024a; Yu et al., 2024). To achieve this, we embed our stable CR update within a momentum lookahead mechanism (ML). However, this combination would be far too slow for practical use. The key to making it efficient is our final contribution: a lightweight momentum lookahead mechanism, which allows us to approximate future gradient information with no extra computational cost. Figure 1: Distribution of optimizer update direction stability (smoothed for visual clarity). The figure illustrates the distribution of cosine similarity between consecutive update directions d_k during training for different optimizers using ResNet-18 trained on CIFAR-10. For LA-SAM, CMLR; Forward-difference Momentum Lookahead Regularization, FMLR, and CMLR, the parameter K was set to 2.

The power of this complete approach (result in Central-difference Momentum Lookahead gradient Regularization, CMLR; Forward-difference Momentum Lookahead Regularization, FMLR; Momentum Lookahead SAM, ML-SAM) is validated by our final results in Figure 1. The test accuracies show a clear hierarchy (CMLR > FMLR > CR > FR > SAM > ML-SAM). Our results highlight a key finding: while momentum lookahead helps the general FR framework, it actually hurts performance in the specific case of SAM (ML-SAM), consistent with (Kim et al., 2023b; Mordido et al., 2024). This suggests the paradox is at its worst when the update, by setting the regularization strength exactly equal to the size of the parameter perturbation neighborhood, completely ignores the stabilizing influence of the base gradient. This is why CMLR succeeds; because it starts with a much more stable central-difference foundation, it can fully take advantage of the momentum lookahead mechanism.

Building on this foundation, we propose a multi-step generalization of this framework and introduce a lightweight inner-loop momentum lookahead strategy. To avoid excessive computational overhead, we incorporate a momentum lookahead mechanism that approximates future perturbations using previously computed gradients, thus requiring no additional gradient evaluations. The resulting method, Central-difference Momentum Lookahead Regularization (CMLR), promotes the training stability of central-difference GR while enabling efficient multi-step updates.

The main contributions of this paper are summarized as follows:

- We propose CMLR, which is an optimizer that uses central differencing to perform momentum smoothing more stably in the loop within the Lookhead, avoiding the problem of generalization degradation caused by multi-step exploration.
- We provide a comprehensive theoretical analysis for our proposed gradient regularization and momentum lookahead strategies.
- We demonstrate through extensive experiments on various model architectures and diverse datasets that CMLR significantly improves generalization performance.

2 BACKGROUND AND RELATED WORK

To understand our new perspective, let's first consider the standard approach. Typically, training a neural network means finding the weights $w \in \mathcal{W} \subset \mathbb{R}^d$ that minimize the empirical risk on a training dataset $\mathcal{S} = \{(x_i, y_i)\}_{i=1}^n$ with (x_i, y_i) drawn i.i.d. from an underlying distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$. Using the per-data-point loss function $l : \mathcal{W} \times \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, this goal is expressed as: $\min_w \mathcal{L}(w) = \frac{1}{n} \sum_{i=1}^n l(w, x_i, y_i)$. We assume that the loss function \mathcal{L} is twice differentiable

108 throughout the paper. For notational simplicity, unless otherwise specified, we use the shorthand
 109 $\nabla\mathcal{L}(w)$ for $\nabla_w\mathcal{L}(w)$ and $\|\cdot\|$ for the L2 norm, $\|\cdot\|_2$.
 110

111 2.1 FLAT MINIMA

112 The geometric properties of the loss landscape are widely considered to be intrinsically linked to a
 113 model’s generalization ability. A central tenet, originating from early theoretical work and bolstered
 114 by extensive empirical studies (Hochreiter & Schmidhuber, 1997; Keskar et al., 2016), posits that
 115 models converging to flat, wide minima generalize better than those in sharp, narrow valleys. While
 116 this principle has been challenged by theoretical counter-examples showing that sharpness can be
 117 sensitive to reparameterization (Dinh et al., 2017), a strong correlation between measures of flatness
 118 and generalization performance is consistently observed in practice (Jiang et al., 2019). Among
 119 these, Sharpness-Aware Minimization (SAM) (Foret et al., 2020) has emerged as a state-of-the-art
 120 approach, whose core idea is to connect the training loss $\mathcal{L}(w)$ with the model’s generalization
 121 bound. Instead of minimizing the loss at a single point w , SAM seeks parameters that reside in a
 122 neighborhood of uniformly low loss by solving a min-max problem:
 123

$$124 \min_w \mathcal{L}_{\text{SAM}}(w) \quad \text{where} \quad \mathcal{L}_{\text{SAM}}(w) \triangleq \max_{\|\varepsilon\|_p \leq \rho} \mathcal{L}(w + \varepsilon). \quad (1)$$

126 As solving the inner maximization exactly is intractable, SAM approximates the solution with a first-
 127 order perturbation $\hat{\varepsilon}$. In the standard setting where the L2 norm is used ($p = 2$), this perturbation
 128 aligns with the direction of the gradient $\nabla\mathcal{L}(w)$. The final update is then performed using the
 129 gradient at this perturbed point $w + \hat{\varepsilon}$:
 130

$$131 \nabla\mathcal{L}_{\text{SAM}} = \nabla\mathcal{L}(w + \hat{\varepsilon}) \quad \text{where} \quad \hat{\varepsilon} = \rho \frac{\nabla\mathcal{L}(w)}{\|\nabla\mathcal{L}(w)\|}. \quad (2)$$

134 2.2 THE NON-ROBUSTNESS PARADOX OF SAM

136 While SAM excels at finding flat minima, it presents a key paradox: trying to solve its inner opti-
 137 mization more accurately with multi-step methods often hurts generalization instead of helping
 138 it (Foret et al., 2020; Andriushchenko & Flammarion, 2022; Mordido et al., 2024). The consen-
 139 sus points to gradient instability as the main cause; during these multi-step updates, the model’s
 140 parameters stray too far from their starting point (Kim et al., 2023b; Mordido et al., 2024).

141 This fragility is well-documented. Recent studies have shown that SAM is sensitive to noisy, high-
 142 variance gradients (Hassan et al., 2025) and operates on a dynamic “edge of robustness” that de-
 143 pends on the gradient norm (Long & Bartlett, 2024). The theory of Gradient Regularization (GR)
 144 offers a deeper explanation. It reveals that SAM’s core mathematical step—a forward-difference
 145 approximation—is inherently unstable, struggling with both very small and very large perturbation
 146 sizes (Karakida et al., 2023). The multi-step approach effectively forces SAM into this problematic
 147 small-step scenario, which likely explains the performance drop.

148 2.3 ROBUSTNESS AND EFFICIENCY ENHANCEMENTS

149 Research on improving SAM has largely focused on tackling two major challenges:

150 The first challenge, non-robustness, arises because noisy gradient estimates can make the training
 151 process erratic. A popular strategy to counteract this is to “smooth out” the trajectory. Many methods
 152 take inspiration from the Lookahead optimizer (Zhang et al., 2019), which works by averaging
 153 recent model weights to prevent drastic jumps. Following this principle, approaches like SALA (Tan
 154 et al., 2024a) and Lookbehind-SAM (Mordido et al., 2024) have shown that using lookahead ideas
 155 or aggregating information from past steps leads to a much more stable training process. Other
 156 methods attack the problem more directly, either by adding explicit curvature regularization to the
 157 objective (Wu et al., 2024) or by cleaning up the gradient statistics themselves (Hassan et al., 2025).
 158 The second challenge is efficiency. Standard SAM is expensive, essentially doubling the workload
 159 by requiring two gradient computations for every single update. This has spurred the development
 160 of a family of “efficient SAM” variants. Their common strategy is to cleverly reuse or approximate
 161 gradients to cut down the computational overhead, making the benefits of sharpness-aware training
 162 more accessible (Du et al., 2021; 2022; Mi et al., 2022; Liu et al., 2022a; Jiang et al., 2023; Wang
 163 et al., 2024; Becker et al., 2024).

162 **3 METHODOLOGY**
 163

164 Our approach begins with a general framework for sharpness-aware methods that is based on
 165 Gradient Regularization. Into this framework, we incorporate a lookahead mechanism to help steer the
 166 optimization process. To keep things efficient, we also add an momentum accumulation strategy
 167 that prevents high computational costs. Together, these components form our algorithm: Central-
 168 difference Momentum Lookahead Regularization (CMLR).

169 **3.1 GRADIENT REGULARIZATION (GR)**

170 Gradient Regularization (GR) is a general approach to optimization where the training objective is
 171 modified to penalize the gradient norm, thereby encouraging convergence to flatter regions of the
 172 loss landscape (Barrett & Dherin, 2021; Smith et al., 2021; Zhao et al., 2022; Karakida et al., 2023;
 173 Reizinger & Huszár, 2023):

$$175 \min_w \mathcal{L}_{\text{GR}}(w) \triangleq \mathcal{L}(w) + \lambda \|\nabla \mathcal{L}(w)\|. \quad (3)$$

177 Calculating the exact gradient for the regularization term in Equation 3 requires expensive second-
 178 order information, specifically a Hessian-vector product (Hochreiter & Schmidhuber, 1997; Jas-
 179 trzebski et al., 2021):

$$180 \nabla \|\nabla \mathcal{L}(w)\| = \frac{\nabla^2 \mathcal{L}(w) \nabla \mathcal{L}(w)}{\|\nabla \mathcal{L}(w)\|}. \quad (4)$$

182 While this term can be computed exactly using Double Backpropagation (DB) in modern frame-
 183 works like PyTorch, it's known to be less computationally efficient than using a finite-difference
 184 approximation (Karakida et al., 2023). Recent analyses have formally established that the SAM up-
 185 date is equivalent to a first-order, forward-difference approximation of this term (Zhao et al., 2022;
 186 Karakida et al., 2023).

187 To formalize this connection, let's consider the exact gradient of the GR objective from Equation 3.
 188 Let $v = \frac{\nabla \mathcal{L}(w)}{\|\nabla \mathcal{L}(w)\|}$ be the normalized gradient direction. The core idea of the forward-difference
 189 approach is to approximate this costly second-order term using only first-order information. This
 190 is achieved using the following approximation, derived from the first-order Taylor expansion of the
 191 gradient function:

$$192 \nabla^2 \mathcal{L}(w)v = \frac{\nabla \mathcal{L}(w + \rho v) - \nabla \mathcal{L}(w)}{\rho} + O(\rho). \quad (5)$$

194 By substituting this approximation into the exact GR gradient, we obtain the update rule for Forward-
 195 Difference Gradient Regularization (FR):

$$197 \begin{aligned} \nabla \mathcal{L}_{\text{FR}}(w) &\triangleq \nabla \mathcal{L}(w) + \lambda \left(\frac{\nabla \mathcal{L}(w + \rho v) - \nabla \mathcal{L}(w)}{\rho} \right) \\ 198 &= \left(1 - \frac{\lambda}{\rho} \right) \nabla \mathcal{L}(w) + \frac{\lambda}{\rho} \nabla \mathcal{L}(w + \rho v). \end{aligned} \quad (6)$$

201 This formulation expresses the update as a weighted average of the gradients at the original point w
 202 and the perturbed point $w + \rho v$. Notably, in the standard setting where the regularization strength is
 203 set to be equal to the perturbation radius: $\lambda = \rho$, the FR update simplifies to exactly $\nabla \mathcal{L}(w + \rho v)$.
 204 This is precisely the gradient update rule used by SAM, thus confirming its role as a specific instance
 205 of the GR framework.

206 The forward-difference scheme provides a first-order approximation with $\mathcal{O}(\rho)$ error. To achieve a
 207 more accurate estimation of the regularized gradient, we instead employ the second-order central-
 208 difference approximation. Its $\mathcal{O}(\rho^2)$ accuracy is formally derived from the Taylor series expansion
 209 of $\nabla \mathcal{L}(w \pm \rho v)$:

$$210 \nabla^2 \mathcal{L}(w)v = \frac{\nabla \mathcal{L}(w + \rho v) - \nabla \mathcal{L}(w - \rho v)}{2\rho} + O(\rho^2). \quad (7)$$

212 Substituting this into the GR gradient objective yields our proposed Central-difference Gradient
 213 Regularization (CR) update rule:

$$215 \nabla \mathcal{L}_{\text{CR}}(w) \triangleq \nabla \mathcal{L}(w) + \frac{\lambda}{2\rho} (\nabla \mathcal{L}(w + \rho v) - \nabla \mathcal{L}(w - \rho v)). \quad (8)$$

216 The core idea of this formulation is to shift the update’s focus. It relies more on the standard gradient
 217 at the original point w with a central-difference scheme. This stands in sharp contrast to adversarial
 218 methods like FR (Zhao et al., 2022) and CR-SAM (Wu et al., 2024), which still primarily rely on
 219 the perturbed gradient.

Algorithm 1 CMLR

221 **Require:** Loss function \mathcal{L} , training data G , base optimizer \mathcal{A} , inner steps K , outer steps T , initial
 222 slow weights w_0 , batch size b , inner step size $\eta_{t,k}$, outer step size α , perturbation radius ρ ,
 223 smoothing factor β_s and β_e .
 224 1: **for** $t = 0, 1, 2, \dots, T - 1$ **do**
 225 2: Synchronize weights: $w_{t,0} \leftarrow w_t$.
 226 3: Sample a mini-batch $B \subset G$ with size b .
 227 4: Initialize perturbation: $v_0, g_0 \leftarrow \nabla \mathcal{L}(w_{t,0})$ on B .
 228 5: **for** $k = 0, 1, 2, \dots, K - 1$ **do**
 229 6: Normalize perturbation: $\hat{v}_k \leftarrow \frac{v_k}{\|v_k\|}$.
 230 7: Compute central-difference gradients in parallel:
 231 8: Parallel do:
 232 9: $g_k^+ \leftarrow \nabla \mathcal{L}(w_{t,k} + \rho \hat{v}_k)$ on B .
 233 10: $g_k^- \leftarrow \nabla \mathcal{L}(w_{t,k} - \rho \hat{v}_k)$ on B .
 234 11: End parallel.
 235 12: Update direction: $d_k \leftarrow \frac{\rho + \lambda}{2\rho} g_k^+ + \frac{\rho - \lambda}{2\rho} g_k^-$.
 236 13: Update fast weights: $w_{t,k+1} \leftarrow \mathcal{A}(w_{t,k}, \eta_{t,k}, d_k)$.
 237 14: Anticipating the next perturbation vector:
 238 15: $\beta_k \leftarrow \beta_s + (\beta_e - \beta_s) \cdot \frac{k}{K-1}$.
 239 16: $v_{k+1} \leftarrow \beta_k \hat{v}_k + \frac{(1-\beta_k)}{2} \left(\frac{g_k^+}{\|g_k^+\|} + \frac{g_k^-}{\|g_k^-\|} \right)$.
 240 17: **end for**
 241 18: Update slow weights (Lookahead step): $w_{t+1} \leftarrow w_t + \alpha(w_{t,K} - w_t)$
 242 19: **end for**
 243 20: **return** w_T
 244 **Ensure:** CMLR trained model.

 245
 246 3.2 MOMENTUM LOOKAHEAD MECHANISM
 247

248 The primary challenge of our Central-difference (CR) update (Equation 8) is its high computational
 249 cost, requiring three gradient computations per step. To make the computation more feasible and
 250 the momentum update more robust, we introduce a stable momentum accumulation mechanism.
 251 This approach avoids explicitly computing the base gradient, relying instead solely on the ascent
 252 and descent perturbation gradients. We then place it within the two-timescale Lookahead frame-
 253 work (Zhang et al., 2019; Yu et al., 2024) to improve training stability. Prior works have suggested
 254 that Lookahead-based variants of SAM are particularly effective in boosting generalization (Tan
 255 et al., 2024a; Mordido et al., 2024), which further motivates our integration. Although Lookahead’s
 256 inner loop performs multiple updates, the computation remains feasible since no extra overhead
 257 is introduced inside the inner iterations. This highlights that CMLR represents a principled and
 258 effective integration, rather than a simple stacking of separate components.

259 At each inner-loop step k , the core efficiency gain comes from bypassing the explicit computation
 260 of the base gradient $\nabla \mathcal{L}(w_k)$. We approximate it using the average of the two perturbed gradients,
 261 $g_k^+ \triangleq \nabla \mathcal{L}(w_k + \rho v_k)$ and $g_k^- \triangleq \nabla \mathcal{L}(w_k - \rho v_k)$, which are already required for the central difference.
 262 This leads to a final update direction d_k that depends only on these two gradients, which can be
 263 computed in parallel:

$$264 \quad d_k = \frac{g_k^+ + g_k^-}{2} + \frac{\lambda}{2\rho} (g_k^+ - g_k^-) \\ 265 \quad = \frac{\rho + \lambda}{2\rho} g_k^+ + \frac{\rho - \lambda}{2\rho} g_k^- . \quad (9)$$

$$266$$

$$267$$

$$268$$

269 To prepare for the subsequent inner-loop step $k + 1$ without additional cost, we anticipate the next
 270 perturbation vector v_{k+1} by using a moving average of the previously computed normalized gradi-

270 ents, a strategy inspired by recent work on efficient SAM variants (Wang et al., 2024),
 271

$$272 \quad v_{k+1} = \beta_k v_k + \frac{(1 - \beta_k)}{2} \left(\frac{g_k^+}{\|g_k^+\|} + \frac{g_k^-}{\|g_k^-\|} \right). \quad (10)$$

$$273$$

274 The fast weights are then updated us-
 275 ing this direction, $w_{t,k+1} = w_{t,k} -$
 276 $\eta_{t,k} d_k$. After K inner-loop steps, the
 277 slow weights are updated in the direction
 278 of the final fast weights, consistent with
 279 the Lookahead framework. The complete
 280 procedure, which synthesizes these com-
 281 ponents, is detailed in Algorithm 1. In ad-
 282 dition, we design a process toy example
 283 of the algorithm in Figure 2.

284 The divergent outcomes of applying
 285 Lookahead to FR and SAM highlight a
 286 key mechanic. The FR update, $d_k =$

$$287 (1 - \frac{\lambda}{\rho})g_k + \frac{\lambda}{\rho}g_k^+$$
, retains the base

$$288 g_k$$
 as a stable anchor when $\lambda \neq$

$$289 \rho$$
, which allows Lookahead to effectively

$$290$$
 smooth the update trajectory. In the spe-

$$291$$
 cific case of SAM where $\lambda = \rho$ or $d_k =$

$$292 (1 - \frac{\lambda}{\rho})g_k^+ + \frac{\lambda}{\rho}g_k^+ = g_k^+$$
 ($k \geq 1$) in FMLR,

$$293$$
 this anchor vanishes, leaving the update

$$294$$
 to depend solely on the noisy perturbed

$$295$$
 gradient g_k^+ . Without this stabilizing ref-

$$296$$
 erence, Lookahead fails to improve per-

$$297$$
 formance. Our CR, by contrast, provides

$$298$$
 a robust, symmetric foundation that con-

$$299$$
 sistently synergizes with the Lookahead

$$300$$
 framework.

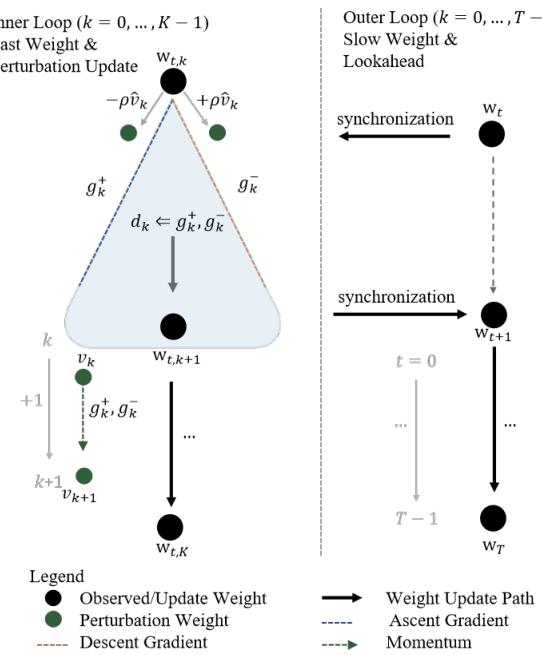
301 This effectively collapses the method into the standard Momentum Lookahead-SAM (ML-SAM),
 302 where the regularizing influence of the base gradient is lost in subsequent inner-loop steps. Our CR
 303 approach, by contrast, maintains its two-term structure due to the symmetric nature of its probes,
 304 ensuring the regularization is applied consistently. This synergy makes the lookahead framework an
 305 ideal counterpart to our central-difference strategy.

306 4 CONVERGENCE ANALYSIS

307 In this section, we present the convergence analysis and variance spectral analysis conclusions of
 308 CMLR, and place the complete convergence analysis and variance analysis of the basic version al-
 309 gorithms (LR, CLR) in Appendix B and Appendix C. Specifically, we analyze variance reduction in
 310 the noisy quadratic model. To demonstrate the stabilizing effect of the Lookahead mechanism, we
 311 adopt the regularized objective $\mathcal{L}(w) + \frac{\lambda}{2} \|\nabla \mathcal{L}(w)\|^2$ a standard and analytically tractable formula-
 312 tion that simplifies the mathematics by using the squared gradient norm while preserving the core
 313 optimization goal (Barrett & Dherin, 2021; Smith et al., 2021; Karakida et al., 2023).

314 4.1 CONVERGENCE FOR GENERAL NON-CONVEX OBJECTIVES

315 To unify the dual-timescale loops into a single time frame, we employ a two-time-scale analy-
 316 sis (Borkar, 1997; Nedic & Ozdaglar, 2009; Wang et al., 2020). This results in a version of the for-
 317 mal algorithm that differs only slightly in its presentation. Specifically, to unify the inner and outer
 318 loops, the slow-weight update is synchronized with the final fast-weight update of the inner loop.
 319 This change, driven by the need to synchronize the inner and outer loop weights, leads to an ap-
 320 parent one-step reduction in the inner loop, but it does not substantially affect the final weight update.
 321 To facilitate understanding, we provide a simplified version of the pseudocode in Algorithm 2 (Ap-
 322 pendix A). Finally, to formalize the synchronization scheme for the inner- and outer-loop weights,
 323 we re-index the iterates as follows: $y_s = w_{t,k}$ represents the inner-loop “fast” weights with a single
 324 global step counter $s = tK + k$, and $w_s = y_{\lfloor s/K \rfloor K}$ are the outer-loop “slow” weights. Here, $\lfloor \cdot \rfloor$
 325 denotes the floor function, which rounds its argument down to the nearest integer. The “middle”



326 Figure 2: Toy example analysis of CMLR

weights are defined as $\hat{y}_s = \alpha y_s + (1 - \alpha)w_s$ which performs the update $\hat{y}_{s+1} = \hat{y}_s - \alpha\eta_s d(y_s, \xi_s)$. Our analysis views CLR as a stochastic gradient method on an implicit, non-smooth objective function: $F(w) = \mathcal{L}(w) + \lambda\|\nabla\mathcal{L}(w)\|$.

We make the following standard assumptions for our analysis. We first provide a brief analysis of the basic version (CLR), and then present the convergence analysis of the CMLR algorithm with momentum mechanism with its full proof detailed in Appendix B and C.

Theorem 4.1 (Convergence of CMLR for Non-Convex Objectives). *Under the same conditions in Theorem B.6, the iterative sequence generated by CMLR satisfies:*

$$\liminf_{s \rightarrow \infty} \mathbb{E}[\|\nabla F(\hat{y}_s)\|^2] = \mathcal{O}(\lambda). \quad (11)$$

It is worth noting that the momentum strategy does not fundamentally alter the convergence guarantee under gradient regularization, which remains of the order $\mathcal{O}(\lambda)$. Instead, its primary impact lies in refining the higher-order constant terms. For instance, two similar conclusions suggest that momentum strategies are more likely to provide more accurate approximations for these high-order constants, which are related to λ, ρ, L_1 and L_2 . This is exemplified by the replacement of C_1 with \tilde{C}_1 in our analysis in Appendix C.

4.2 NOISY QUADRATIC ANALYSIS WITH GRADIENT REGULARIZATION

To understand the convergence properties of our proposed method, we extend the noisy quadratic analysis framework from Schaul et al. (2013); Wu et al. (2018); Zhang et al. (2019). We analyze the standard noisy quadratic model, $\hat{\mathcal{L}}(x) = \frac{1}{2}(x - c)^\top H(x - c)$, with $c \sim \mathcal{N}(x^*, \Sigma)$, where $H, \Sigma \in \mathbb{R}^{d \times d}$ are assumed to be diagonal and $x, c \in \mathbb{R}^d, x^* = 0$.

Here, we obtained the variance reduction conclusion of CMLR using spectral analysis, which is detailed in Appendix C. The v_{LR} mentioned in the theorem comes from a simple extension of a previous work, as shown in Appendix B.

Theorem 4.2 (Variance Reduction with CMLR). *Fix an eigenpair (q, μ) of H , with scalar projections $x_{t,k} = q^\top w_{t,k}$, $c_{t,k} = q^\top c$, and $\hat{v}_{k,q} = q^\top \hat{v}_k$. Let $a \triangleq 1 - \eta\mu$, define $A_{\text{eff}} \triangleq (1 - \alpha) + \alpha a^K, B_{\text{eff}} \triangleq \alpha\eta\mu$. Under Assumption B.2, Assumption B.4, $\|\nabla\mathcal{L}\| \geq g_{\min}$ and condition in Lemma E.1, the steady-state variance of CMLR satisfies*

$$v_{\text{CMLR}} \leq v_{\text{LR}}(1 + \sqrt{\tau})^2 + \mathcal{O}\left(\frac{\rho^4\|H\|^4 + M}{g_{\min}^4}\right) \quad (12)$$

where

$$v_{\text{LR}} = \frac{\alpha^2(\eta\mu)^2\sigma^2 \frac{1 - a^{2K}}{1 - a^2}}{1 - A_{\text{eff}}^2}, \quad \tau = 2d \frac{\lambda^2(1 - \beta)}{g_{\min}^2(1 + \beta)}, \quad (13)$$

Compared with the initial gradient-regularization estimator, the Lookahead step in LR already acts as a variance-reduction mechanism, so v_{LR} is smaller than the variance of the initial gradient-regularization scheme. In Theorem 4.2, the additional factor $(1 + \sqrt{\tau})^2$ in the bound for v_{CMLR} arises from the momentum prediction strategy and corresponds to only a controllable $\mathcal{O}(\lambda)$ variance inflation, since $(1 + \sqrt{\tau})^2 = 1 + \mathcal{O}(\lambda)$. Combining these observations, by choosing λ sufficiently small, the steady-state variance of CMLR in our bound can be made smaller than that of the initial gradient-regularization estimator. It should be noted that, while Lookahead itself contributes to variance reduction through averaging, the variance reduction effect emphasized in our analysis is mainly attributed to the central-difference gradient regularization, rather than the Lookahead gradient regularization alone.

5 EXPERIMENTS

To demonstrate the broad applicability of CMLR, we evaluate SGD, AdamW, SAM, CR-SAM (Wu et al., 2024), Lookbehind-SAM (Mordido et al., 2024), GSAM (Wang et al., 2024), FMLR and CMLR on the CIFAR-10 and CIFAR-100 datasets using the following models which include widely-used CNNs such as ResNet-18 (He et al., 2016), VGG-16 (Simonyan & Zisserman, 2014), WideResNet-28-10 (Zagoruyko & Komodakis, 2016), and PyramidNet-110 (Han et al., 2017), as well as popular Vision Transformers (ViT-T1 and ViT-S) (Dosovitskiy et al., 2020). To verify the efficiency of the algorithm, provide analysis results and time comparisons for the same number of

378
379
380
381 Table 1: Performance comparison of CMLR against baseline optimizers in CNN models (Test Ac-
382 curacy %).
383
384
385
386
387
388
389

Optimizer	CIFAR-10 (Test Accuracy %)			
	ResNet-18	WRN-28-10	VGG-16-BN	PyramidNet-110
SGD	96.13 \pm 0.11	97.03 \pm 0.16	95.42 \pm 0.17	96.92 \pm 0.28
SAM	96.59 \pm 0.12	97.51 \pm 0.16	95.75 \pm 0.13	97.59 \pm 0.29
CR-SAM	96.79 \pm 0.14	97.71 \pm 0.12	95.95 \pm 0.16	97.79 \pm 0.21
Lookbehind-SAM	97.09 \pm 0.13	98.01 \pm 0.11	96.25 \pm 0.15	98.09 \pm 0.22
GSAM	97.34 \pm 0.12	98.26 \pm 0.13	96.51 \pm 0.14	98.35 \pm 0.23
FMLR	97.29 \pm 0.11	98.21 \pm 0.12	96.46 \pm 0.15	98.37 \pm 0.19
CMLR (Ours)	97.84\pm0.11	98.63\pm0.13	97.12\pm0.18	98.91\pm0.11

Optimizer	CIFAR-100 (Test Accuracy %)			
	ResNet-18	WRN-28-10	VGG-16-BN	PyramidNet-110
SGD	78.34 \pm 0.21	82.07 \pm 0.17	75.13 \pm 0.23	83.55 \pm 0.24
SAM	80.24 \pm 0.19	83.55 \pm 0.14	76.52 \pm 0.12	84.76 \pm 0.13
CR-SAM	80.42 \pm 0.18	83.70 \pm 0.13	76.72 \pm 0.14	84.99 \pm 0.14
Lookbehind-SAM	80.74 \pm 0.17	84.03 \pm 0.12	77.02 \pm 0.13	85.28 \pm 0.15
GSAM	80.86 \pm 0.16	84.35 \pm 0.13	77.33 \pm 0.15	85.56 \pm 0.13
FMLR	80.90 \pm 0.18	84.23 \pm 0.12	77.16 \pm 0.15	85.44 \pm 0.14
CMLR (Ours)	81.64\pm0.14	84.84\pm0.11	77.65\pm0.13	86.07\pm0.12

400
401 backpropagation iterations. To further validate the robustness and scalability of our method, we
402 also extended our experiments to the Tiny-ImageNet (Le & Yang, 2015) datasets—where Tiny-
403 ImageNet provides a 200-class, 64 \times 64 downscaled subset of ImageNet for efficient benchmarking.
404 Additionally, we evaluated algorithms on eight NLP tasks from the GLUE benchmark (Wang et al.,
405 2018): CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, and RTE, using a standard Transformer-
406 based architecture (DistilBERT). Finally, we conducted ablation studies to analyze the algorithm’s
407 sensitivity to key hyperparameters, including regularization strength, the momentum accumulation
408 Lookahead strategy, and the step size of the slow weights. A detailed report of these studies is
409 provided in Appendix F.

410
411

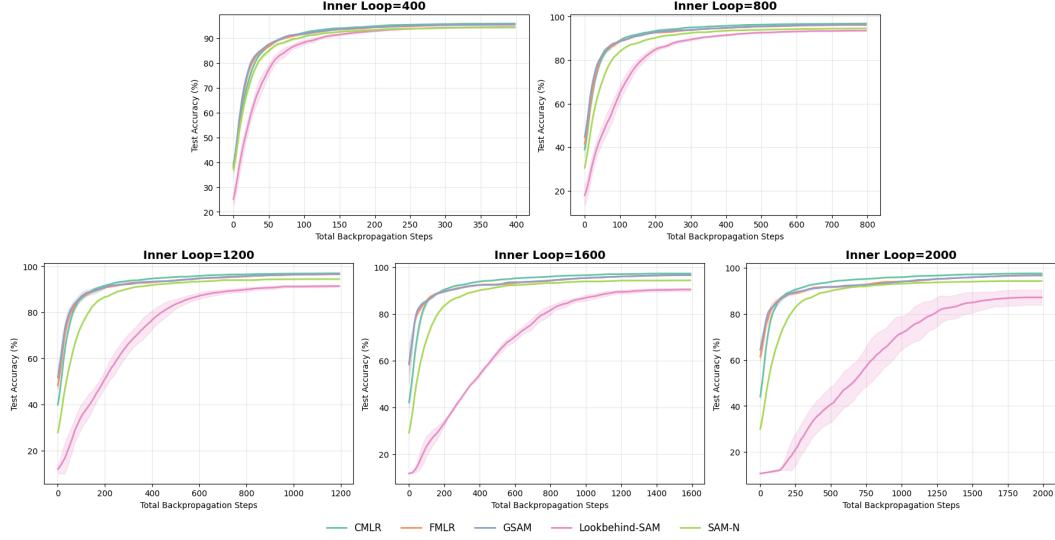
5.1 CONVOLUTIONAL NEURAL NETWORK

412 For data augmentation, we first pad each training image by four pixels, take a random 32 \times 32 crop,
413 and apply a random horizontal flip. We then apply Cutout, masking a random 16 \times 16 region of the
414 image with zeros following DeVries & Taylor (2017).

415 Our experimental setup is configured as follows. First, under the standard setting for SAM and
416 FR (Foret et al., 2020; Zhao et al., 2022; Li & Giannakis, 2023), we establish optimal general hyper-
417 parameters, including the initial learning rate 0.05, weight decay 0.001, and perturbation magnitude
418 ($\rho \in \{0.01, 0.05, 0.1\}$). The learning rate is updated following a cosine annealing schedule. Second,
419 for the forward-difference gradient regularization optimizer, we adopt a grid search to determine the
420 optimal value. For our proposed central-difference gradient regularization optimizer (CMLR), we
421 configure the hyperparameters as follows: We hypothesize that this annealing strategy decreases
422 variance in the later stages of training, thereby enhancing generalization. The hyperparameter α is
423 selected from [0.7, 1.0] and λ is selected from [0.05, 0.15]. β_k is smoothly annealed from 0.9 up
424 to 0.99 over the course of training. For the integrated Lookahead mechanism, we provide the best
425 results: K=10 for GSAM, FMLR and CMLR and K=5 for Lookbehind-SAM, and more detailed
426 experimental results (K=2,5,10) are attached in the appendix. These relatively large values of K are
427 intentionally chosen to study whether Lookahead-style multi-step schemes can continue to improve
428 generalization as K increases, rather than to minimize wall-clock cost; a complementary compari-
429 son under matched gradient-evaluation budgets (equal compute) is reported later in our experiments.
430 With the exception of the PyramidNet-110 model, which was trained for 300 epochs with a batch
431 size of 256, all other models were trained for 200 epochs with a batch size of 128. The results are
432 summarized in Table 1.

433 To validate our momentum lookahead strategy, we first conduct a fair comparison in terms of com-
434 putational cost among several multi-step algorithms, namely Lookbehind-SAM, GSAM, FMLR and

432 CMLR. We evaluate the accuracy trends of different algorithms after an equal number of backpropagation steps. Specifically, we plot the performance on ResNet-34/CIFAR-10 at 400, 800, 1200, 1600, and 2000 backpropagations. During the training middle process, it can be seen from Figure 3 that our proposed CMLR is almost always optimal and consistently achieves superior accuracy for the same computational budget. To further demonstrate this, we provide additional results on the ResNet-50/CIFAR-100 dataset in the appendix, which exhibit a similar trend (see Figure 7).
 433
 434
 435
 436
 437



456 Figure 3: Test accuracy versus backpropagation steps on ResNet-34/CIFAR-10. We compare five
 457 algorithms under an equal number of backpropagation steps (400, 800, 1200, 1600, 2000) to provide
 458 a fair measure of computational cost.
 459
 460

5.2 VISION TRANSFORMERS

461 We evaluated ViT-Tiny, ViT-Small, and ViT-Base models on both CIFAR-10 and CIFAR-100, with
 462 all results averaged over three independent runs to ensure reproducibility. To align with the optimal
 463 results reported in contemporary works (Dosovitskiy et al., 2020; Zhao et al., 2024; Yun, 2025),
 464 models were trained from scratch for 300 epochs using the AdamW optimizer ($\beta_1 = 0.9, \beta_2 =$
 465 0.999) and a cosine annealing scheduler with an initial learning rate of 1e-3. Additionally, We
 466 applied a weight decay of 0.03 and standard data augmentations (4-pixel padding, random crop-
 467 ping, and horizontal flipping). Finally, to align with prior experiments, the hyperparameters for our
 468 method, CMLR, were selected from the following sets $K = 10, \alpha \in [0.7, 1.0], \rho \in \{0.05, 0.1\}, \lambda \in$
 469 $[0.05, 0.15]$ to demonstrate its cross-architecture robustness. The result can be seen in Table 2.
 470
 471

5.3 TRANSFORMER ENCODER-BASED ARCHITECTURE

472 We evaluate all algorithms on eight natural language understanding tasks from the GLUE bench-
 473 mark (Wang et al., 2018), using a standard Transformer-based architecture (DistilBERT). These
 474 tasks cover a broad range of linguistic phenomena, including sentiment classification (SST-2), lin-
 475 guistic acceptability (CoLA), paraphrase detection (MRPC, QQP), semantic similarity (STS-B), and
 476 natural language inference (MNLI, QNLI, RTE). Following GLUE protocol, we report task-specific
 477 metrics: Matthews correlation for CoLA, F1 score for MRPC and QQP, Pearson correlation for STS-
 478 B, and accuracy for the remaining tasks. Finally, we report an aggregate GLUE score computed as
 479 the unweighted average over seven tasks, excluding STS-B.
 480

481 We fine-tune each model using the AdamW optimizer with weight decay fixed at 0.01. For
 482 GSAM, Lookbehind-SAM, FMLR, and CMLR, we set the lookahead step: $K = 2$. Hyper-
 483 parameters are selected from the following ranges: $\rho \in \{0.001, 0.005, 0.01, 0.05, 0.1\}, \lambda \in$
 484 $\{0.001, 0.005, 0.01, 0.05, 0.1\}$. For all methods, we use the same training setup, except for learning
 485 rate, batch size, and number of epochs, which are tuned per task and detailed in Appendix F.

486 All experiments initialize the model from the publicly available pre-trained DistilBERT-base-
 487 uncased checkpoint, with a standard classification head or a regression output layer (for STS-B).
 488 Comprehensive results for all eight tasks are summarized in Table 3.
 489

486
487 Table 2: Performance comparison of CMLR against baseline optimizers in ViT models (Test Accuracy %).
488

Optimizer	CIFAR-10 (Test Accuracy %)		
	ViT-Tiny	ViT-Small	ViT-Base
AdamW	85.17±0.15	85.93±0.12	85.64±0.16
SAM	85.86±0.08	86.79±0.09	86.82±0.10
CR-SAM	86.08±0.09	86.96±0.11	87.00±0.12
Lookbehind-SAM	86.36±0.08	87.26±0.08	87.32±0.09
GSAM	86.69±0.17	87.48±0.08	87.58±0.09
FMLR	86.54±0.17	87.42±0.09	87.47±0.11
CMLR	86.95±0.07	87.81±0.09	88.30±0.08

Optimizer	CIFAR-100 (Test Accuracy %)		
	ViT-Tiny	ViT-Small	ViT-Base
AdamW	58.87±0.23	61.39±0.21	61.75±0.28
SAM	60.16±0.16	62.15±0.15	62.29±0.20
CR-SAM	60.20±0.17	62.35±0.14	62.46±0.21
Lookbehind-SAM	60.57±0.16	62.63±0.13	62.78±0.19
GSAM	60.89±0.14	62.91±0.12	63.07±0.18
FMLR	60.81±0.25	62.84±0.12	62.91±0.18
CMLR	61.21±0.14	63.42±0.12	63.46±0.17

501
502 Table 3: Performance on GLUE tasks using DistilBERT. Best results per row are bolded. Metrics:
503 MCC for CoLA, F1 for MRPC and QQP, Pearson for STS-B, Accuracy for others.
504

Task	AdamW	SAM	CRSAM	GSAM	LookbehindSAM	FMLR	CMLR
CoLA	56.69	57.69	58.29	59.03	58.79	58.97	59.19
SST-2	91.28	92.08	92.78	93.53	93.38	93.48	93.58
MRPC	89.15	89.85	90.45	91.19	90.95	91.13	91.35
STS-B	86.99	88.19	88.89	89.63	89.39	89.57	89.69
QQP	86.85	87.85	88.45	89.19	88.95	89.13	89.35
MNLI	82.17	83.17	83.87	84.62	84.47	84.57	84.67
QNLI	88.87	90.17	90.77	91.51	91.27	91.45	91.67
RTE	61.73	63.23	63.93	64.68	64.53	64.63	64.73
Avg (GLUE)	79.53	80.58	81.22	81.96	81.77	81.91	82.08

523
524

6 CONCLUSION

525 This paper presented a principled solution to the instability paradox in multi-step sharpness-
526 aware training, identifying perturbation gradient instability as the primary bottleneck and proposing
527 CMLR, an alternative built on a more robust foundation that replaces unstable approximations with
528 a more accurate central-difference scheme, embedded within an efficient, momentum Lookahead
529 framework; extensive empirical results validate this design, showing CMLR produces more stable
530 optimization trajectories and consistently outperforms existing gradient regularization methods on
531 benchmarks, while comprehensive convergence and variance reduction analyses further underscore
532 its theoretical rigor, with ablation studies confirming the critical roles of each component in achieving
533 superior performance across diverse architectures including CNNs, Vision Transformers and
534 Transformer encoder-based architecture.

535
536
537
538
539

540 REFERENCES
541

542 Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
543 mization. In *International conference on machine learning*, pp. 639–668. PMLR, 2022.

544 David G.T. Barrett and Benoit Dherin. Implicit Gradient Regularization. In *International Conference
545 on Learning Representations (ICLR)*, 2021.

546 Peter L Bartlett, Philip M Long, and Olivier Bousquet. The dynamics of sharpness-aware minimiza-
547 tion: Bouncing across ravines and drifting towards wide minima. *Journal of Machine Learning
548 Research*, 24(316):1–36, 2023.

549 Marlon Becker, Frederick Altrock, and Benjamin Risse. Momentum-sam: Sharpness aware mini-
550 mization without computational overhead. *arXiv preprint arXiv:2401.12033*, 2024.

551 Vivek S Borkar. Stochastic approximation with two time scales. *Systems & Control Letters*, 29(5):
552 291–294, 1997.

553 Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
554 without pre-training or strong data augmentations. *arXiv preprint arXiv:2106.01548*, 2021.

555 Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
556 with cutout. *arXiv preprint arXiv:1708.04552*, 2017.

557 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
558 for deep nets. In *International Conference on Machine Learning*, pp. 1019–1028. PMLR, 2017.

559 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
560 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
561 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
562 arXiv:2010.11929*, 2020.

563 Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
564 Vincent YF Tan. Efficient sharpness-aware minimization for improved training of neural net-
565 works. *arXiv preprint arXiv:2110.03141*, 2021.

566 Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
567 for free. *Advances in Neural Information Processing Systems*, 35:23439–23451, 2022.

568 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
569 tion for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.

570 Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In *Proceedings
571 of the IEEE conference on computer vision and pattern recognition*, pp. 5927–5935, 2017.

572 Mohamed Hassan, Aleksandar Vakanski, Boyu Zhang, and Min Xian. Gcsam: Gradient centralized
573 sharpness aware minimization. *arXiv preprint arXiv:2501.11584*, 2025.

574 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
575 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
576 770–778, 2016.

577 Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. *Neural computation*, 9(1):1–42, 1997.

578 Stanislaw Jastrzebski, Devansh Arpit, Oliver Astrand, Giancarlo B Kerg, Huan Wang, Caiming
579 Xiong, Richard Socher, Kyunghyun Cho, and Krzysztof J Geras. Catastrophic fisher explosion:
580 Early phase fisher matrix impacts generalization. In *International Conference on Machine Learn-
581 ing*, pp. 4772–4784. PMLR, 2021.

582 Weisen Jiang, Hansi Yang, Yu Zhang, and James Kwok. An adaptive policy to employ sharpness-
583 aware minimization. *arXiv preprint arXiv:2304.14647*, 2023.

584 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
585 generalization measures and where to find them. *arXiv preprint arXiv:1912.02178*, 2019.

594 Ryo Karakida, Tomoumi Takase, Tomohiro Hayase, and Kazuki Osawa. Understanding gradient
 595 regularization in deep learning: Efficient finite-difference computation and implicit bias. In *Inter-
 596 national Conference on Machine Learning*, pp. 15809–15827. PMLR, 2023.

597 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
 598 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *arXiv
 599 preprint arXiv:1609.04836*, 2016.

600 Hoki Kim, Jinseong Park, Yujin Choi, and Jaewook Lee. Stability analysis of sharpness-aware
 601 minimization, 2023a. URL <https://arxiv.org/abs/2301.06308>.

602 Hoki Kim, Jinseong Park, Yujin Choi, Woojin Lee, and Jaewook Lee. Exploring the effect of multi-
 603 step ascent in sharpness-aware minimization. *arXiv preprint arXiv:2302.10181*, 2023b.

604 Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL <https://api.semanticscholar.org/CorpusID:16664790>.

605 Bingcong Li and Georgios Giannakis. Enhancing sharpness-aware optimization through variance
 606 suppression. *Advances in Neural Information Processing Systems*, 36:70861–70879, 2023.

607 Bingcong Li and Georgios Giannakis. Enhancing sharpness-aware optimization through variance
 608 suppression. *Advances in Neural Information Processing Systems*, 36, 2024.

609 Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
 610 sharpness-aware minimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 611 and Pattern Recognition*, pp. 12360–12370, 2022a.

612 Yong Liu, Siqi Mai, Minhao Cheng, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Random
 613 sharpness-aware minimization. *Advances in neural information processing systems*, 35:24543–
 614 24556, 2022b.

615 Philip M Long and Peter L Bartlett. Sharpness-aware minimization and the edge of stability. *Journal
 616 of Machine Learning Research*, 25(179):1–20, 2024.

617 Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
 618 sharpness-aware minimization stronger: A sparsified perturbation approach. *Advances in Neural
 619 Information Processing Systems*, 35:30950–30962, 2022.

620 Gonçalo Mordido, Pranshu Malviya, Aristide Baratin, and Sarath Chandar. Lookbehind-SAM: k
 621 steps back, 1 step forward. In *Forty-first International Conference on Machine Learning*, 2024.
 622 URL <https://openreview.net/forum?id=vCN51wcWWE>.

623 Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
 624 tion. *IEEE Transactions on automatic control*, 54(1):48–61, 2009.

625 Patrik Reizinger and Ferenc Huszár. Samba: Regularized autoencoders perform sharpness-aware
 626 minimization. In *Fifth Symposium on Advances in Approximate Bayesian Inference*, 2023.

627 Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In *International confer-
 628 ence on machine learning*, pp. 343–351. PMLR, 2013.

629 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 630 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

631 Samuel L. Smith, Benoit Dherin, David G. T. Barrett, and Soham De. On the Origin of Implicit
 632 Regularization in Stochastic Gradient Descent. In *International Conference on Learning Repre-
 633 sentations (ICLR)*, 2021.

634 Yan Sun, Li Shen, Shixiang Chen, Liang Ding, and Dacheng Tao. Dynamic regularized sharpness
 635 aware minimization in federated learning: Approaching global consistency and smooth landscape.
 636 In *International Conference on Machine Learning*, pp. 32991–33013. PMLR, 2023.

637 Chengli Tan, Jiangshe Zhang, Junmin Liu, and Yihong Gong. Sharpness-aware lookahead for accel-
 638 erating convergence and improving generalization. *IEEE Transactions on Pattern Analysis and
 639 Machine Intelligence*, 2024a.

648 Chengli Tan, Jiangshe Zhang, Junmin Liu, Yicheng Wang, and Yunda Hao. Stabilizing sharpness-
 649 aware minimization through a simple renormalization strategy, 2024b. URL <https://arxiv.org/abs/2401.07250>.

650

651 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
 652 A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
 653 Grzegorz Chrupała, and Afra Alishahi (eds.), *Proceedings of the 2018 EMNLP Workshop Black-*
 654 *boxNLP: Analyzing and Interpreting Neural Networks for NLP*, pp. 353–355, Brussels, Belgium,
 655 November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
 656 <https://aclanthology.org/W18-5446/>.

657

658 Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Lookahead converges to station-
 659 ary points of smooth non-convex functions. In *ICASSP 2020-2020 IEEE International Conference*
 660 *on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 8604–8608. IEEE, 2020.

661 Yili Wang, Kaixiong Zhou, Ninghao Liu, Ying Wang, and Xin Wang. Efficient sharpness-aware
 662 minimization for molecular graph transformer models. In *The Twelfth International Confer-
 663 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Od39h4XQ3Y>.

664

665 Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-aware minimization minimizes sharp-
 666 ness? In *The Eleventh International Conference on Learning Representations*, 2023.

667

668 Tao Wu, Tie Luo, and Donald C Wunsch II. Cr-sam: Curvature regularized sharpness-aware min-
 669 imization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38(6), pp.
 670 6144–6152, 2024.

671

672 Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
 673 stochastic meta-optimization. *arXiv preprint arXiv:1803.02021*, 2018.

674

675 Runsheng Yu, Youzhi Zhang, and James Kwok. Improving sharpness-aware minimization by looka-
 676 head. In *Forty-first International Conference on Machine Learning*, 2024.

677

678 Juyoung Yun. Sharpness-aware minimization with z-score gradient filtering for neural net-
 679 works. *ArXiv*, abs/2505.02369, 2025. URL <https://api.semanticscholar.org/CorpusID:278327066>.

680

681 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint
 arXiv:1605.07146*, 2016.

682

683 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 684 deep learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–
 685 115, 2021.

686

687 Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
 688 forward, 1 step back. *Advances in neural information processing systems*, 32, 2019.

689

690 Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving gen-
 691 eralization in deep learning. In *International conference on machine learning*, pp. 26982–26992.
 692 PMLR, 2022.

693

694 Yang Zhao, Hao Zhang, and Xiuyuan Hu. When will gradient regularization be harmful? In Ruslan
 695 Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
 696 Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*,
 697 volume 235 of *Proceedings of Machine Learning Research*, pp. 61144–61158. PMLR, 21–27 Jul
 698 2024.

699

700

701

702 **A ALGORITHM**

703 **Algorithm 2** CMLR (simplified version for convergence analysis)

704 **Require:** Same inputs as Algorithm 1.

705 1: **for** $t = 0, 1, \dots, T - 1$ **do**

706 2: Follow Algorithm 1 until the $(K - 2)$ -th inner step.

707 3: Compute d_{K-1} as in line 12 of Algorithm 1.

708 4: Synchronize fast and slow weights with Lookahead:

709
$$w_{t+1}, w_{t,K} \leftarrow w_t + \alpha(\mathcal{A}(w_{t,K-1}, \eta_{t,K-1}, d_{K-1}) - w_t).$$

710 5: **end for**

711 6: **return** w_T .

712 **Ensure:** CMLR trained model.

713 **B DETAILED CONVERGENCE ANALYSIS FOR CLR**

714 **B.1 NECESSARY ASSUMPTIONS**

715 **Assumption B.1** (L-Smoothness of the Gradient). *The loss function, $\mathcal{L}(w)$, is L_1 -smooth. And this condition is equivalent to its Hessian matrix having a bounded norm, i.e., $\|\nabla^2 \mathcal{L}(w)\| \leq L_1$.*

716
$$\|\nabla \mathcal{L}(w_1) - \nabla \mathcal{L}(w_2)\| \leq L_1 \|w_1 - w_2\| \quad (14)$$

717 **Assumption B.2** (Gradient Oracle Properties). *The stochastic gradient $g(w; \xi)$ is an unbiased estimator of the true gradient and has its variance bounded by σ^2 .*

718
$$\mathbb{E}_\xi[g(w; \xi)] = \nabla \mathcal{L}(w), \quad \mathbb{E}_\xi[\|g(w; \xi) - \nabla \mathcal{L}(w)\|^2] \leq \sigma^2 \quad (15)$$

719 **Assumption B.3** (Lipschitz Continuous Hessian). *The Hessian $\nabla^2 \mathcal{L}(w)$ is L_2 -Lipschitz continuous.*

720
$$\|\nabla^2 \mathcal{L}(w_1) - \nabla^2 \mathcal{L}(w_2)\| \leq L_2 \|w_1 - w_2\| \quad (16)$$

721 **Assumption B.4** (Bounded Fourth Moment). *The stochastic gradient has a bounded fourth moment. $\exists M > 0$ such that*

722
$$\mathbb{E}\|g(w; \xi) - \nabla \mathcal{L}(w)\|^4 \leq M \quad (17)$$

723 **B.2 PROOF OF RELAXED DESCENT LEMMA**

724 **Lemma B.5** (Relaxed Descent Lemma). *Under Assumptions 1 and 3, the sequence of iterates $\{\hat{y}_s\}$ generated by the GLEAP algorithm satisfies the following inequality:*

725
$$F(\hat{y}_{s+1}) \leq F(\hat{y}_s) - \alpha \eta_s \langle \nabla F(\hat{y}_s), d(\hat{y}_s; \xi_s) \rangle + \frac{L_1 \alpha^2 \eta_s^2}{2} \|d(\hat{y}_s; \xi_s)\|^2 + 2\lambda L_1 \alpha \eta_s \|d(\hat{y}_s; \xi_s)\| \quad (18)$$

726 *Proof.* The proof starts from the fundamental theorem of calculus applied to F :

727
$$\begin{aligned} F(y) - F(x) &= \int_0^1 \langle \nabla F(x + t(y - x)), y - x \rangle dt \\ &= \langle \nabla F(x), y - x \rangle + \int_0^1 \langle \nabla F(x + t(y - x)) - \nabla F(x), y - x \rangle dt \end{aligned} \quad (19)$$

728 We bound the integrand using the Cauchy-Schwarz inequality and the relaxed smoothness property:

729
$$\begin{aligned} \langle \nabla F(x + t(y - x)) - \nabla F(x), y - x \rangle &\leq \|\nabla F(x + t(y - x)) - \nabla F(x)\| \cdot \|y - x\| \\ &\leq \|\nabla \mathcal{L}(x + t(y - x)) - \nabla \mathcal{L}(x)\| \cdot \|y - x\| \\ &\quad + \lambda(\|\nabla \mathcal{L}(x + t(y - x))\| + \lambda \|\nabla \mathcal{L}(x)\|) \cdot \|y - x\| \\ &\leq L_1 t \|y - x\|^2 + 2\lambda L_1 \|y - x\| \end{aligned} \quad (20)$$

730 Substituting this back into the integral:

731
$$\begin{aligned} F(y) - F(x) &\leq \langle \nabla F(x), y - x \rangle + \int_0^1 (L_1 t \|y - x\|^2 + 2\lambda L_1 \|y - x\|) dt \\ &= \langle \nabla F(x), y - x \rangle + \frac{L_1}{2} \|y - x\|^2 + 2\lambda L_1 \|y - x\| \end{aligned} \quad (21)$$

756 Now, we let $x = \hat{y}_s$ and $y = \hat{y}_{s+1}$. The update step is $\hat{y}_{s+1} - \hat{y}_s = -\alpha\eta_s d(y_s; \xi_s)$:
757

$$\begin{aligned} 758 \quad F(\hat{y}_{s+1}) &\leq F(\hat{y}_s) + \langle \nabla F(\hat{y}_s), -\alpha\eta_s d(y_s; \xi_s) \rangle + \frac{L_1}{2} \|\alpha\eta_s d(y_s; \xi_s)\|^2 + 2\lambda L_1 \|\alpha\eta_s d(y_s; \xi_s)\| \\ 759 \quad &= F(\hat{y}_s) - \alpha\eta_s \langle \nabla F(\hat{y}_s), d(y_s; \xi_s) \rangle + \frac{L_1\alpha^2\eta_s^2}{2} \|d(y_s; \xi_s)\|^2 + 2\lambda L_1 \alpha\eta_s \|d(y_s; \xi_s)\| \end{aligned} \quad (22)$$

760 This completes the proof of the lemma. \square
761

762 B.3 PROOF OF MAIN CONVERGENCE THEOREM

763 **Theorem B.6** (Convergence of CLR for Non-Convex Objectives). *Under Assumptions B.1-B.3, if
764 the learning rate η_s is sufficiently small and satisfies $\sum_{s=0}^{\infty} \eta_s = \infty$ and $\sum_{s=0}^{\infty} \eta_s^p < \infty$ for $p \geq 2$,
765 the iterates sequence generated by CLR satisfy:*

$$\liminf_{s \rightarrow \infty} \mathbb{E}[\|\nabla F(\hat{y}_s)\|^2] = \mathcal{O}(\lambda). \quad (23)$$

766 *Proof.* The proof begins by taking the total expectation of Equation 18. We must bound the expectation of the three terms on the right-hand side.
767

768 First, we bound the inner product term: Let $B(y_s) = \mathbb{E}[d(y_s, \xi_s)] - \nabla F(y_s)$.
769

$$\mathbb{E}[\langle \nabla F(\hat{y}_s), d(y_s; \xi_s) \rangle] = \mathbb{E}[\langle \nabla F(\hat{y}_s), \nabla F(y_s) \rangle] + \mathbb{E}[\langle \nabla F(\hat{y}_s), B(y_s) \rangle] \quad (24)$$

770 The first term of RHS:
771

$$\begin{aligned} 772 \quad \mathbb{E}[\langle \nabla F(\hat{y}_s), \nabla F(y_s) \rangle] &= \frac{1}{2} \mathbb{E}[\|\nabla F(\hat{y}_s)\|^2] + \frac{1}{2} \mathbb{E}[\|\nabla F(y_s)\|^2] - \frac{1}{2} \mathbb{E}[\|\nabla F(\hat{y}_s) - \nabla F(y_s)\|^2] \\ 773 \quad &\geq \frac{1}{2} \mathbb{E}[\|\nabla F(\hat{y}_s)\|^2] + \frac{1}{2} \mathbb{E}[\|\nabla F(y_s)\|^2] - L_1^2 \mathbb{E}[\|\hat{y}_s - y_s\|^2] - 2\lambda L_1 \end{aligned} \quad (25)$$

774 where
775

$$\begin{aligned} 776 \quad \mathbb{E}[\|\nabla F(\hat{y}_s) - \nabla F(y_s)\|^2] &\leq 2\mathbb{E}[\|\nabla L(\hat{y}_s) - \nabla L(y_s)\|^2] + 2\lambda(\mathbb{E}[\|\nabla^2 L(\hat{y}_s) \frac{\nabla L(\hat{y}_s)}{\|\nabla L(\hat{y}_s)\| + \varepsilon}\|^2] \\ 777 \quad &\quad + \mathbb{E}[\|\nabla^2 L(y_s) \frac{\nabla L(y_s)}{\|\nabla L(y_s)\| + \varepsilon}\|^2]) \\ 778 \quad &= 2L_1^2 \mathbb{E}[\|\hat{y}_s - y_s\|^2] + 4\lambda L_1. \end{aligned} \quad (26)$$

779 The second term of RHS:
780

$$\begin{aligned} 781 \quad \mathbb{E}[\langle \nabla F(\hat{y}_s), B(y_s) \rangle] &\geq -\mathbb{E}[\|\nabla F(\hat{y}_s)\| \|B(y_s)\|] \\ 782 \quad &\geq -\frac{\varepsilon_1}{2} \mathbb{E}[\|\nabla F(\hat{y}_s)\|^2] - \frac{1}{2\varepsilon_1} \mathbb{E}[\|B(y_s)\|^2] \end{aligned} \quad (27)$$

783 where
784

$$\begin{aligned} 785 \quad \mathbb{E}[\|B(y_s)\|] &= \lambda \mathbb{E}[\|\frac{1}{2\rho}(\nabla L(y_s + \rho \frac{\nabla L(y_s; \xi_s)}{\|\nabla L(y_s; \xi_s)\| + \varepsilon}) - \nabla L(y_s - \rho \frac{\nabla L(y_s; \xi_s)}{\|\nabla L(y_s; \xi_s)\| + \varepsilon})) - \nabla^2 L(y_s) \frac{\nabla L(y_s)}{\|\nabla L(y_s)\| + \varepsilon}\|] \\ 786 \quad &\leq \lambda \mathbb{E}[\|\frac{1}{2\rho}(\nabla L(y_s + \rho \frac{\nabla L(y_s; \xi_s)}{\|\nabla L(y_s; \xi_s)\| + \varepsilon}) - \nabla L(y_s - \rho \frac{\nabla L(y_s; \xi_s)}{\|\nabla L(y_s; \xi_s)\| + \varepsilon})) - \nabla^2 L(y_s; \xi_s) \frac{\nabla L(y_s; \xi_s)}{\|\nabla L(y_s; \xi_s)\| + \varepsilon}\|] \\ 787 \quad &\quad + \lambda \mathbb{E}[\|\nabla^2 L(y_s; \xi_s) \frac{\nabla L(y_s; \xi_s)}{\|\nabla L(y_s; \xi_s)\| + \varepsilon} - \nabla^2 L(y_s) \frac{\nabla L(y_s)}{\|\nabla L(y_s)\| + \varepsilon}\|] \\ 788 \quad &\leq \lambda \frac{L_2\rho^2}{6} + 2\lambda L_1 \end{aligned} \quad (28)$$

789 Thus, we have:
790

$$\begin{aligned} 791 \quad \mathbb{E}[\langle \nabla F(\hat{y}_s), d(y_s; \xi_s) \rangle] &\geq \frac{1}{2}(1 - \varepsilon_1) \mathbb{E}[\|\nabla F(\hat{y}_s)\|^2] + \frac{1}{2} \mathbb{E}[\|\nabla F(y_s)\|^2] \\ 792 \quad &\quad - L_1^2(1 - \alpha)^2 \mathbb{E}[\|y_s - y_{\lfloor s/K \rfloor K}\|^2] - C_1. \end{aligned} \quad (29)$$

810 where $C_1 = \frac{\lambda^2 L_2^2 \rho^4}{18\varepsilon_1} + \frac{2\lambda^2 L_1^2}{\varepsilon_1} + 2\lambda L_1$.
 811

812 Second, the squared norm of the update direction is bounded:

$$813 \mathbb{E}[\|d(y_s; \xi_s)\|^2] = \mathbb{E} [\text{Var}_{\xi_s}(d(y_s; \xi_s)) + \|\mathbb{E}_{\xi_s}[d(y_s; \xi_s)]\|^2] \quad (30)$$

814 To bound the variance, let $\delta_s = g(y_s; \xi_s) - \nabla \mathcal{L}(y_s)$.

$$\begin{aligned} 815 \mathbb{E} [\text{Var}_{\xi_s}(d(y_s; \xi_s))] &= \mathbb{E} \left[\mathbb{E}_{\xi_s} \left[\left\| \delta_s + \frac{\lambda}{2\rho} (\delta_s^+ - \delta_s^-) \right\|^2 \right] \right] \\ 816 &\leq \mathbb{E} \left[\mathbb{E}_{\xi_s} \left[2\|\delta_s\|^2 + 2 \left\| \frac{\lambda}{2\rho} (\delta_s^+ - \delta_s^-) \right\|^2 \right] \right] \\ 817 &\leq \mathbb{E} \left[\mathbb{E}_{\xi_s} \left[2\|\delta_s\|^2 + \frac{\lambda^2}{\rho^2} (\|\delta_s^+\|^2 + \|\delta_s^-\|^2) \right] \right] \\ 818 &\leq \mathbb{E} \left[2\sigma^2 + \frac{\lambda^2}{\rho^2} (\sigma^2 + \sigma^2) \right] = 2\sigma^2 \left(1 + \frac{\lambda^2}{\rho^2} \right) \end{aligned} \quad (31)$$

819 Thus, we have

$$\begin{aligned} 820 \mathbb{E}[\|d(y_s; \xi_s)\|^2] &\leq 2\sigma^2 \left(1 + \frac{\lambda^2}{\rho^2} \right) + \mathbb{E} [2\|\nabla F(y_s)\|^2 + 2\|B(y_s)\|^2] \\ 821 &= 2\mathbb{E} [\|\nabla F(y_s)\|^2] + C_2 \end{aligned} \quad (32)$$

822 where $C_2 = 2\sigma^2 \left(1 + \frac{\lambda^2}{\rho^2} \right) + 2\lambda^2 \left(\frac{L_2 \rho^2}{6} + 2L_1 \right)^2$.

823 Third, we handle the linear norm term using Jensen's inequality and AM-GM:

$$\begin{aligned} 824 \mathbb{E}[\|d(y_s; \xi_s)\|] &\leq \sqrt{\mathbb{E}[\|d(y_s; \xi_s)\|^2]} \\ 825 &\leq \sqrt{C_2 + 2\mathbb{E}[\|\nabla F(y_s)\|^2]} \\ 826 &\leq \frac{\varepsilon_2}{2} + \frac{C_2 + 2\mathbb{E}[\|\nabla F(y_s)\|^2]}{2\varepsilon_2} \end{aligned} \quad (33)$$

827 Substituting these bounds back into the expectation of Equation 18 and summing over one outer
 828 loop ($k = 0, \dots, K-1$) with a fixed learning rate η_{tK} , we get the main recurrence relation:

$$\begin{aligned} 829 \mathbb{E}[F(\hat{y}_{(t+1)K})] - \mathbb{E}[F(\hat{y}_{tK})] &\leq -\frac{\alpha\eta_{tK}}{2} (1 - \varepsilon_1) \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla F(\hat{y}_{tK+k})\|^2] \\ 830 &\quad - \left(\frac{\alpha\eta_{tK}}{2} - L_1\alpha^2\eta_{tK}^2 - \frac{2\lambda L_1\alpha\eta_{tK}}{\varepsilon_2} \right) \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla F(y_{tK+k})\|^2] \\ 831 &\quad + L_1^2(1 - \alpha)^2\alpha\eta_{tK} \sum_{k=0}^{K-1} \mathbb{E}[\|y_{tK+k} - y_{tK}\|^2] + C_3K \end{aligned} \quad (34)$$

832 where C_3 collects constant error terms. The third term of RHS in Equation 34:

$$\begin{aligned} 833 \mathbb{E} \left[\|y_{tK+k} - y_{tK}\|^2 \right] &= \mathbb{E} \left[\left\| \sum_{j=0}^{k-1} (-\eta_{tK} d_{tK+j}) \right\|^2 \right] \\ 834 &\leq \eta_{tK}^2 \mathbb{E} \left[k \sum_{j=0}^{k-1} \|d_{tK+j}\|^2 \right] \\ 835 &\leq \eta_{tK}^2 k \sum_{j=0}^{k-1} (C_2 + 2\mathbb{E} [\|\nabla F(y_{tK+j})\|^2]) \\ 836 &= k^2 \eta_{tK}^2 C_2 + 2k\eta_{tK}^2 \sum_{j=0}^{k-1} \mathbb{E} [\|\nabla F(y_{tK+j})\|^2] \end{aligned} \quad (35)$$

864 Summing over k :

$$\begin{aligned}
 866 \quad & \sum_{k=0}^{K-1} \mathbb{E} [\|y_{tK+k} - y_{tK}\|^2] \leq C_2 \eta_{tK}^2 \sum_{k=0}^{K-1} k^2 + 2\eta_{tK}^2 \sum_{k=1}^{K-1} k \left(\sum_{j=0}^{K-1} \mathbb{E} [\|\nabla F(y_{tK+j})\|^2] \right) \\
 867 \quad & = \underbrace{C_2 \frac{(K-1)K(2K-1)}{6} \eta_{tK}^2}_{C_4} + \underbrace{K(K-1) \eta_{tK}^2}_{C_5} \sum_{j=0}^{K-1} \mathbb{E} [\|\nabla F(y_{tK+j})\|^2] \\
 868 \quad & = C_4 \eta_{tK}^2 + C_5 \eta_{tK}^2 \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla F(y_{tK+k})\|^2]
 \end{aligned} \tag{36}$$

876 Next, we bound the second term of RHS in Equation 34:

$$\begin{aligned}
 877 \quad & \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla F(y_{tK+k})\|^2] \leq \sum_{k=0}^{K-1} 2\mathbb{E} [\|\nabla F(\hat{y}_{tK+k})\|^2] + 2\mathbb{E} [\|\nabla F(y_{tK+k}) - \nabla F(\hat{y}_{tK+k})\|^2] \\
 878 \quad & \leq \sum_{k=0}^{K-1} 2\mathbb{E} [\|\nabla F(\hat{y}_{tK+k})\|^2] + 4L_1^2 \mathbb{E} [\|y_{tK+k} - \hat{y}_{tK+k}\|^2] + 8\lambda^2 L_1^2 \\
 879 \quad & = 2 \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla F(\hat{y}_{tK+k})\|^2] + 4L_1^2(1-\alpha)^2 \sum_{k=0}^{K-1} \mathbb{E} [\|y_{tK+k} - y_{tK}\|^2] + 8K\lambda^2 L_1^2
 \end{aligned} \tag{37}$$

887 By substituting into equation Equation 36, we can obtain:

$$\begin{aligned}
 888 \quad & \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla F(y_{tK+k})\|^2] \leq 2 \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla F(\hat{y}_{tK+k})\|^2] + 8K\lambda^2 L_1^2 \\
 889 \quad & \quad + 4L_1^2(1-\alpha)^2 \left(C_4 \eta_{tK}^2 + C_5 \eta_{tK}^2 \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla F(y_{tK+k})\|^2] \right)
 \end{aligned} \tag{38}$$

$$\begin{aligned}
 890 \quad & \implies \left(1 - 4L_1^2(1-\alpha)^2 C_5 \eta_{tK}^2 \right) \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla F(y_{tK+k})\|^2] \leq 2 \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla F(\hat{y}_{tK+k})\|^2] \\
 891 \quad & \quad + 4L_1^2(1-\alpha)^2 C_4 \eta_{tK}^2 + 8K\lambda^2 L_1^2
 \end{aligned} \tag{39}$$

$$\begin{aligned}
 892 \quad & \implies \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla F(y_{tK+k})\|^2] \leq C_6 \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla F(\hat{y}_{tK+k})\|^2] + C_7.
 \end{aligned} \tag{40}$$

904 where C_6, C_7 are constants for a sufficiently small η_{tK} .

905 Substituting these bounds back into the main recurrence Equation 34 allows us to eliminate all
906 dependencies on the fast weights y_{tK+k} . After collecting terms, we arrive at the simplified one-step
907 recurrence for the interpolated weights \hat{y} :

$$\mathbb{E}[F(\hat{y}_{(t+1)K})] - \mathbb{E}[F(\hat{y}_{tK})] \leq -C_8 \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla F(\hat{y}_{tK+k})\|^2] + C_9 \tag{41}$$

911 where

$$C_8 = \frac{\alpha\eta}{2} (1 - \varepsilon_1) + C_6 \left(\frac{\alpha\eta}{2} - L_1\alpha^2\eta^2 - \frac{2\lambda L_1\alpha\eta}{\varepsilon_2} - L_1^2(1-\alpha)^2\alpha C_5\eta^3 \right) \tag{42}$$

915 is a positive coefficient, and

$$C_9 = C_3 K + L_1^2(1-\alpha)^2\alpha C_4\eta^3 - C_7 \left(\frac{\alpha\eta}{2} - L_1\alpha^2\eta^2 - \frac{2\lambda L_1\alpha\eta}{\varepsilon_2} - L_1^2(1-\alpha)^2\alpha C_5\eta^3 \right) \tag{43}$$

918 is a term collecting various constants and error terms.
919 To analyze the long-term behavior, we sum the inequality from $t = 0$ to $T - 1$:

$$\begin{aligned} 921 \quad & C_8 \sum_{l=0}^{\tau-1} \mathbb{E}[\|\nabla F(\hat{y}_{t+\tau+l})\|^2] \leq \mathbb{E}[F(\hat{y}_{t\tau})] - \mathbb{E}[F(\hat{y}_{(t+1)\tau})] + C_9 \\ 922 \quad & \implies \sum_{t=0}^{T-1} C_8 \sum_{l=0}^{\tau-1} \mathbb{E}[\|\nabla F(\hat{y}_{t\tau+l})\|^2] \leq \sum_{t=0}^{T-1} (\mathbb{E}[F(\hat{y}_{t\tau})] - \mathbb{E}[F(\hat{y}_{(t+1)\tau})]) + \sum_{t=0}^{T-1} C_9 \quad (44) \\ 923 \end{aligned}$$

927 The first term on the right-hand side is a telescoping series, bounded by $\mathbb{E}[F(\hat{y}_0)] - F_{\inf}$. The sum
928 of C_9 contains terms proportional to various powers of the learning rate and λ .

$$\begin{aligned} 929 \quad & \sum_{s=0}^{TK-1} O(\eta_s) \mathbb{E}[\|\nabla F(\hat{y}_s)\|^2] \leq F(\hat{y}_0) - F_{\inf} + O(\lambda) \sum_{s=0}^{TK-1} \eta_s + O(1) \sum_{s=0}^{TK-1} (\eta_s^2 + \dots + \eta_s^5) \quad (45) \\ 930 \end{aligned}$$

933 Dividing by $\sum_{s=0}^{TK-1} \eta_s$ and taking the limit $T \rightarrow \infty$, we leverage the learning rate conditions:
934 $\sum \eta_s = \infty$ and $\sum \eta_s^p < \infty$ for $p \geq 2$. Under these conditions, the terms $(F(\hat{y}_0) - F_{\inf}) / \sum \eta_s$
935 and $(\sum \eta_s^2) / \sum \eta_s$ both converge to zero. The dominant non-vanishing term on the right-hand side
936 is therefore proportional to λ . This leads to the conclusion:

$$\liminf_{T \rightarrow \infty} \frac{\sum_{s=0}^{TK-1} \eta_s \mathbb{E}[\|\nabla F(\hat{y}_s)\|^2]}{\sum_{s=0}^{TK-1} \eta_s} \leq \mathcal{O}(\lambda) \quad (46)$$

940 This result confirms that CLR converges to a neighborhood of a stationary point of the regularized
941 objective $F(w)$, with the size of this neighborhood governed by λ . \square

942 C DETAILED CONVERGENCE ANALYSIS FOR CMLR

944 For the sake of convenience, we provide some new variable definitions and supplementary explanations
945 before describing the theorem. In the gradient normalization step of the algorithm implementation,
946 in order to avoid the denominator being 0, we add a small perturbation $S_\varepsilon(z) \triangleq \frac{z}{\|z\| + \varepsilon}$
947 to replace $\frac{z}{\|z\|}$ in practical implementation. Moreover, we give other definitions following: $\hat{v}_k =$
948

$$949 \quad S_\varepsilon(v_k), u_k = S_\varepsilon(\nabla \mathcal{L}(y_k)), \tilde{g}_k \triangleq \frac{1}{2} \left(\frac{g_k^+}{\|g_k^+\| + \varepsilon} + \frac{g_k^-}{\|g_k^-\| + \varepsilon} \right)$$

950 **Theorem 4.1** (Convergence of CMLR for Non-Convex Objectives). *Under the same conditions in*
951 *Theorem B.6, the iterative sequence generated by CMLR satisfies:*

$$952 \quad \liminf_{s \rightarrow \infty} \mathbb{E}[\|\nabla F(\hat{y}_s)\|^2] = \mathcal{O}(\lambda). \quad (11)$$

954 *Proof.* Re estimate of $B(y_s)$ in Equation 28.

$$\begin{aligned} 956 \quad & B(y_s) = \lambda \left(\mathbb{E} \left[\frac{\nabla \mathcal{L}(y_s + \rho \hat{v}_s) - \nabla \mathcal{L}(y_s - \rho \hat{v}_s)}{2\rho} \right] - \nabla^2 \mathcal{L}(y_s) S_\varepsilon(\nabla \mathcal{L}(y_s)) \right) \\ 957 \quad & = \lambda \left(\mathbb{E} \left[\frac{\nabla \mathcal{L}(y_s + \rho \hat{v}_s) - \nabla \mathcal{L}(y_s - \rho \hat{v}_s)}{2\rho} \right] - \nabla^2 \mathcal{L}(y_s) \hat{v}_s \right. \\ 958 \quad & \quad \left. + \lambda (\nabla^2 \mathcal{L}(y_s) \hat{v}_s - \nabla^2 \mathcal{L}(y_s) \hat{S}_\varepsilon(\nabla \mathcal{L}(y_s))) \right) \\ 959 \quad & = \lambda (T_1 + T_2) \quad (47) \\ 960 \end{aligned}$$

964 Bound for T_1 . By the third-order Taylor expansion (or Hessian-Lipschitz control) the central-
965 difference truncation is bounded pointwise by
966

$$967 \quad \left\| \frac{\nabla \mathcal{L}(y_s + \rho \hat{v}_s) - \nabla \mathcal{L}(y_s - \rho \hat{v}_s)}{2\rho} - \nabla^2 \mathcal{L}(y_s) \hat{v}_s \right\| \leq \frac{L_2 \rho^2}{6}$$

969 for any unit vector v . Taking expectation yields
970

$$971 \quad \|T_1\| \leq \frac{L_2 \rho^2}{6}. \quad (48)$$

972 Bound for T_2 . We first consider that S_ε is $\max\{1, 1/\varepsilon\}$ -Lipschitz.
 973

$$974 \quad S_\varepsilon(x) - S_\varepsilon(y) = \int_0^1 DS_\varepsilon(y + t(x - y))(x - y) dt,$$

975 so that
 976

$$977 \quad \|S_\varepsilon(x) - S_\varepsilon(y)\| \leq \sup_{z \in \mathbb{R}^d} \|DS_\varepsilon(z)\| \|x - y\|.$$

978 A direct calculation gives
 979

$$980 \quad DS_\varepsilon(z) = \frac{1}{\|z\| + \varepsilon} I - \frac{zz^\top}{(\|z\| + \varepsilon)\|z\|},$$

981 hence
 982

$$983 \quad \|DS_\varepsilon(z)\| \leq \frac{1 + \|z\|}{\|z\| + \varepsilon}.$$

984 Taking the supremum over $\|z\| \geq 0$ yields
 985

$$986 \quad \|S_\varepsilon(x) - S_\varepsilon(y)\| \leq \max \left\{ 1, \frac{1}{\varepsilon} \right\} \|x - y\| = L_f \|x - y\|.$$

987 where $L_f \triangleq \max\{1, \frac{1}{\varepsilon}\}$. Applying this with $x = \hat{v}_s$ and $y = \nabla \mathcal{L}(y_s)$ and taking expectation yields
 988

$$989 \quad \|\mathbb{E}[\hat{v}_s] - S_\varepsilon(\nabla \mathcal{L}(y_s))\| \leq \mathbb{E}\|\hat{v}_s - S_\varepsilon(\nabla \mathcal{L}(y_s))\| \leq L_f(\varepsilon) \mathbb{E}\|e_s\|. \quad (49)$$

990 where $e_s \triangleq \hat{v}_s - u_s$. Then we have:
 991

$$992 \quad \|T_2\| \leq L_1 L_f(\varepsilon) \mathbb{E}\|e_s\|, \quad (50)$$

993 Considering $v_{s+1} = \beta_s \hat{v}_s + (1 - \beta_s) \tilde{g}_s$, we have:
 994

$$995 \quad e_{s+1} = S_\varepsilon(\beta_s \hat{v}_s + (1 - \beta_s) \tilde{g}_s) - u_{s+1} \\ 996 \quad = \left(S_\varepsilon(\beta_s \hat{v}_s + (1 - \beta_s) \tilde{g}_s) - S_\varepsilon(b_s) \right) + \left(S_\varepsilon(b_s) - u_{s+1} \right), \quad (51)$$

1001 where $b_s \triangleq \beta_s u_s + (1 - \beta_s) \bar{u}_s$ and $\bar{u}_s \triangleq \mathbb{E}[\tilde{g}_s]$. Using the Lipschitz property of S_ε ,
 1002

$$1003 \quad \mathbb{E}\|S_\varepsilon(\beta_s \hat{v}_s + (1 - \beta_s) \tilde{g}_s) - S_\varepsilon(b_s)\| \\ 1004 \quad \leq L_f \left(\beta_s \mathbb{E}\|e_s\| + (1 - \beta_s) \mathbb{E}\|\tilde{g}_s - \bar{u}_s\| \right), \\ 1005 \quad \leq L_f(\beta_s \mathbb{E}\|e_s\| + (1 - \beta_s) \sqrt{\mathbb{E}\|\tilde{g}_s - \mathbb{E}[\tilde{g}_s]\|^2}) \\ 1006 \quad \leq L_f(\beta_s \mathbb{E}\|e_s\| + (1 - \beta_s) \sqrt{\frac{1}{2} \mathbb{E}\|S_\varepsilon(g_s^+) - S_\varepsilon(\nabla \mathcal{L}(y_s))\|^2 + \frac{1}{2} \mathbb{E}\|S_\varepsilon(g_s^-) - S_\varepsilon(\nabla \mathcal{L}(y_s))\|^2}) \\ 1007 \quad \leq L_f(\beta_s \mathbb{E}\|e_s\| + (1 - \beta_s) \sqrt{L_f^2 \mathbb{E}\|g_s^\pm - \nabla \mathcal{L}(y_s)\|^2}) \\ 1008 \quad \leq L_f(\beta_s \mathbb{E}\|e_s\| + (1 - \beta_s) L_f \frac{\sigma}{\sqrt{b}}) \quad (52)$$

$$1009 \quad \mathbb{E}\|S_\varepsilon(b_s) - u_{s+1}\| \leq L_f(\beta_s \|u_s - \nabla \mathcal{L}(y_{s+1})\| + (1 - \beta_s) \|\bar{u}_s - \nabla \mathcal{L}(y_{s+1})\|) \\ 1010 \quad \leq L_f \beta_s (\|u_s - \nabla \mathcal{L}(y_s)\| + \|\nabla \mathcal{L}(y_s) - \nabla \mathcal{L}(y_{s+1})\|) + L_f(1 - \beta_s) (\|\bar{u}_s - u_s\| + \|u_s - \nabla \mathcal{L}(y_{s+1})\|) \\ 1011 \quad \leq L_f \beta_s \left(\frac{\varepsilon}{\|\nabla \mathcal{L}(y_s)\| + \varepsilon} \|\nabla \mathcal{L}(y_s)\| + L_1 \eta \|d_s\| \right) + L_f(1 - \beta_s) (L_f \frac{\sigma}{\sqrt{b}} + \|u_s - \nabla \mathcal{L}(y_{s+1})\|) \\ 1012 \quad \leq L_f \beta_s (\varepsilon + L_1 \eta \|d_s\|) + L_f(1 - \beta_s) (L_f \frac{\sigma}{\sqrt{b}} + \varepsilon + L_1 \eta \|d_s\|) \\ 1013 \quad \leq L_f (\varepsilon + L_1 \eta \mathbb{E}\|d_s\| + (1 - \beta_s) L_f \frac{\sigma}{\sqrt{b}}). \quad (53)$$

1024 Combining the two bounds yields the recursion
 1025

$$1026 \quad \mathbb{E}\|e_{s+1}\| \leq L_f \beta_s \mathbb{E}\|e_s\| + L_f \varepsilon + L_f L_1 \eta \mathbb{E}\|d_s\| + 2L_f^2 (1 - \beta_s) \frac{\sigma}{\sqrt{b}}. \quad (54)$$

$$\begin{aligned}
1026 \\
1027 \\
1028 \quad \mathbb{E}\|e_s\| &\leq L_f^K \beta_{K-1}^K \mathbb{E}\|e_0\| + \frac{1 - L_f^K \beta_{K-1}^K}{1 - L_f \beta_{K-1}} (L_f \varepsilon + L_f L_1 \eta \mathbb{E}\|d_s\| + 2L_f^2 (1 - \beta_0) \frac{\sigma}{\sqrt{b}}) \\
1029 \\
1030 \quad &\leq \frac{1 - L_f^K \beta_{K-1}^K}{1 - L_f \beta_{K-1}} L_f L_1 \eta \mathbb{E}\|d_s\| + \frac{1 - L_f^K \beta_{K-1}^K}{1 - L_f \beta_{K-1}} (L_f \varepsilon + 2L_f^2 (1 - \beta_0) \frac{\sigma}{\sqrt{b}}) \quad (55) \\
1031 \\
1032 \\
1033 \quad \mathbb{E}\|B(y_s)\| &\leq \lambda L_1 L_f \frac{1 - L_f^K \beta_{K-1}^K}{1 - L_f \beta_{K-1}} L_f L_1 \eta \mathbb{E}\|d_s\| + \lambda \frac{L_2 \rho^2}{6} \\
1034 \\
1035 \quad &+ \lambda L_1 L_f \frac{1 - L_f^K \beta_{K-1}^K}{1 - L_f \beta_{K-1}} (L_f \varepsilon + 2L_f^2 (1 - \beta_0) \frac{\sigma}{\sqrt{b}}) \\
1036 \\
1037 \quad &= C_{10} \mathbb{E}\|d_s\| + C_{11} \quad (56) \\
1038 \\
1039 \\
1040 \quad \mathbb{E}\|B(y_s)\|^2 &= \|\mathbb{E}B\|^2 + \|B - \mathbb{E}B\|^2 \\
1041 \\
1042 \quad &\leq (2C_{10}^2 \mathbb{E}\|d_s\|^2 + 2C_{11}^2) + 2\lambda^2 (\mathbb{E}\|\nabla^2(y_s)(\hat{v}_s - \mathbb{E}\hat{v}_s)\|^2 + \mathbb{E}\|T_1\|^2) \\
1043 \\
1044 \quad &\leq 2C_{10}^2 \mathbb{E}\|d_s\|^2 + 2C_{11}^2 + 2\lambda^2 L_1^2 \mathbb{E}\|\hat{v}_s - \mathbb{E}\hat{v}_s\|^2 + \frac{\lambda^2 L_2^2 \rho^4}{18} \quad (57) \\
1045 \\
1046 \quad \mathbb{E}\|v_s - \mathbb{E}v_s\|^2 &= \mathbb{E}[\text{Var}(v_{s+1} | \mathcal{F}_s)] + \text{Var}(\mathbb{E}[v_{s+1} | \mathcal{F}_s]) \quad (58) \\
1047 \quad \text{First term:} \\
1048 \quad \mathbb{E}[\text{Var}(v_{s+1} | \mathcal{F}_s)] &= \mathbb{E}[\text{Var}(\beta_s \hat{v}_s + (1 - \beta_s) \tilde{g}_s | \mathcal{F}_s)] \\
1049 \\
1050 \quad &= (1 - \beta_s)^2 \mathbb{E}[\text{Var}(\tilde{g}_s | \mathcal{F}_s)] \\
1051 \\
1052 \quad &\leq (1 - \beta_s)^2 \frac{L_f^2 \sigma^2}{2b} \quad (59) \\
1053 \\
1054 \quad \text{Second term:} \\
1055 \quad \text{Var}(\mathbb{E}[v_{s+1} | \mathcal{F}_s]) &= \text{Var}(\beta_s \hat{v}_s + (1 - \beta_s) \mathbb{E}[\tilde{g}_s | \mathcal{F}_s]) \\
1056 \\
1057 \quad &= \beta_s^2 \text{Var}(\hat{v}_s) \\
1058 \\
1059 \quad &= \beta_s^2 \mathbb{E}\|\hat{v}_s - \mathbb{E}\hat{v}_s\|^2 \\
1060 \\
1061 \quad &\leq \beta_s^2 L_f^2 \mathbb{E}\|v_s - \mathbb{E}v_s\|^2 \quad (61) \\
1062 \quad \text{Combining the two terms, let } V_s \triangleq \mathbb{E}\|v_s - \mathbb{E}v_s\|^2. \\
1063 \quad V_{s+1} &\leq \beta_s^2 L_f^2 V_s + (1 - \beta_s)^2 \frac{L_f^2 \sigma^2}{2b} \quad (62) \\
1064 \\
1065 \quad V_s &\leq \frac{(1 - \beta_0)^2 L_f^2 \sigma^2 (1 - \beta_{K-1}^{2K} L_f^{2K})}{2b(1 - \beta_{K-1}^2 L_f^2)} \quad (63) \\
1066 \\
1067 \\
1068 \quad \mathbb{E}\|B(y_s)\|^2 &\leq 2C_{10}^2 \mathbb{E}\|d_s\|^2 + C_{12} \quad (64) \\
1069 \\
1070 \quad \text{where } C_{12} = 2C_{11}^2 + \lambda^2 L_1^2 (1 - \beta_0)^2 L_f^2 \sigma^2 (1 - \beta_{K-1}^{2K} L_f^{2K}) / b(1 - \beta_{K-1}^2 L_f^2) + \frac{\lambda^2 L_2^2 \rho^4}{18} \quad \text{Similar to the} \\
1071 \quad \text{derivation of Theorem B.6, we can obtain the following recursive equation similar to Equation 34:} \\
1072 \\
1073 \quad \mathbb{E}[F(\hat{y}_{(t+1)K})] - \mathbb{E}[F(\hat{y}_{tK})] &\leq -\frac{\alpha \eta_{tK}}{2} (1 - \varepsilon_1) \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla F(\hat{y}_{tK+k})\|^2] \\
1074 \\
1075 \quad &- \left(\frac{\alpha \eta_{tK}}{2} - L_1 \alpha^2 \eta_{tK}^2 - \frac{2\lambda L_1 \alpha \eta_{tK}}{\varepsilon_2} - \frac{C_{10}^2 \alpha \eta_s}{\varepsilon_1} \right) \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla F(y_{tK+k})\|^2] \quad (65) \\
1076 \\
1077 \\
1078 \quad &+ L_1^2 (1 - \alpha)^2 \alpha \eta_{tK} \sum_{k=0}^{K-1} \mathbb{E}[\|y_{tK+k} - y_{tK}\|^2] + \tilde{C}_3 K \\
1079
\end{aligned}$$

1080 where $\tilde{C}_3 = \alpha\eta_{tK}\tilde{C}_1 + \frac{C_{10}^2}{\varepsilon_1}\alpha\eta_{tK}\tilde{C}_2 + 2\lambda L_1\alpha\eta_{tK}(\frac{\varepsilon_2}{2} + \frac{2}{\varepsilon_2})$, $\tilde{C}_2 = C_2$, $\tilde{C}_1 = 2\lambda L_1 + \frac{C_{12}}{2\varepsilon_1}$. Then
 1081 we have:
 1082

$$1083 \mathbb{E}[F(\hat{y}_{(t+1)K})] - \mathbb{E}[F(\hat{y}_{tK})] \leq -\tilde{C}_8 \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla F(\hat{y}_{tK+k})\|^2] + \tilde{C}_9 \quad (66)$$

1085 where
 1086

$$1088 \tilde{C}_8 = \frac{\alpha\eta_{tK}}{2}(1 - \varepsilon_1) + \left(\frac{\alpha\eta_{tK}}{2} - L_1\alpha^2\eta_{tK}^2 - \frac{2\lambda L_1\alpha\eta_{tK}}{\varepsilon_2} - \frac{C_{10}^2\alpha\eta_{tK}}{\varepsilon_1}\right)\tilde{C}_6 - \tilde{C}_5\eta_{tK}^2\tilde{C}_6, \quad (67)$$

$$1091 \tilde{C}_9 = \frac{\alpha\eta_{tK}}{2}(1 - \varepsilon_1) - \left(\frac{\alpha\eta_{tK}}{2} - L_1\alpha^2\eta_{tK}^2 - \frac{2\lambda L_1\alpha\eta_{tK}}{\varepsilon_2} - \frac{C_{10}^2\alpha\eta_{tK}}{\varepsilon_1}\right)\tilde{C}_7 \\ 1092 + L_1^2(1 - \alpha)^2\alpha\eta_{tK}\tilde{C}_5\eta_{tK}^2\tilde{C}_7 + L_1^2(1 - \alpha)^2\alpha\eta_{tK} + \tilde{C}_4\eta_{tK}^2 + \tilde{C}_3K. \quad (68)$$

1093 and $\tilde{C}_4 = C_4$, $\tilde{C}_5 = C_5$, $\tilde{C}_6 = C_6$, $\tilde{C}_7 = C_7$. Similar to the derivation of Equation 45, we can obtain
 1094 a rough upper bound conclusion that is approximately consistent with Equation 46. \square
 1095

1098 D DETAILED DERIVATION OF NOISY QUADRATIC ANALYSIS FOR LR

1100 Our key insight is that this regularized objective is mathematically equivalent to a standard quadratic
 1101 model but governed by an regularized Hessian, $H' = H + \lambda H^2$, where λ represents the regular-
 1102 ization strength. This allows us to directly apply the variance analysis tools for stochastic gradient
 1103 descent (SGD) and Lookahead. Following the analysis framework, the asymptotic variance of the
 1104 inner optimizer (GR-SGD) converges to a fixed point, which we denote as V_R^* .

1105 **Theorem D.1** (Variance Reduction with LR). *When applying the Lookahead optimizer to the*
 1106 *gradient-regularized noisy quadratic model, the asymptotic variance of the slow weights, V_{LR}^* , con-
 1107 verges to the following fixed point:*

$$1108 V_R^* = \mathcal{A}_2^{-1}\eta^2(H')^2\Sigma^2 \quad (69)$$

$$1110 V_{LR}^* = \frac{\alpha^2\mathcal{A}_{2k}}{\alpha^2\mathcal{A}_{2k} + 2\alpha(1 - \alpha)\mathcal{A}_k}V_R^* \quad (70)$$

1111 where \mathcal{A}_k are defined as:

$$1113 \mathcal{A}_k = (I - (I - \eta H')^k) \quad (71)$$

1114 Here, $H' = H + \lambda H^2$ is the regularized Hessian, η is the inner learning rate, α is the slow weights
 1115 step size, and k is the number of inner loop steps.

1116 *Proof.* We first introduce a gradient regularization term to this objective, creating a new objective
 1117 $\hat{L}_R(x)$:

$$1119 \hat{L}_R(x) = \hat{L}(x) + \frac{1}{2}\lambda\|\nabla\hat{L}(x)\|^2 \quad (72)$$

1120 The gradient of the original loss is $\nabla\hat{L}(x) = H(x - c)$. Substituting this into the equation and
 1121 assuming H is symmetric ($H^\top = H$), we get:
 1122

$$1124 \hat{L}_R(x) = \frac{1}{2}(x - c)^\top H(x - c) + \frac{1}{2}\lambda(x - c)^\top H^2(x - c) \\ 1125 = \frac{1}{2}(x - c)^\top (H + \lambda H^2)(x - c) \quad (73)$$

1126 This shows that our regularized objective is equivalent to a standard noisy quadratic model with an
 1127 regularized Hessian, defined as $H' = H + \lambda H^2$.

1128 And then, to simplify the derivation, let us first define the intermediate term \mathcal{A}_k as:

$$1131 \mathcal{A}_k = I - (I - \gamma H')^k \quad (74)$$

1132 The variance dynamics for the inner optimizer (R-SGD) are given by Wu et al. (2018):
 1133

$$1133 V[x^{(t+1)}] = (I - \gamma H')^2 V[x^{(t)}] + \gamma^2(H')^2\Sigma \quad (75)$$

1134 To find the asymptotic variance fixed point, V_R^* , we set $V[x^{(t+1)}] = V[x^{(t)}] = V_R^*$:
 1135

$$V_R^* = (I - \gamma H')^2 V_R^* + \gamma^2 (H')^2 \Sigma \quad (76)$$

$$(I - (I - \gamma H')^2) V_R^* = \gamma^2 (H')^2 \Sigma \quad (77)$$

1138 Recognizing that the term on the left, $I - (I - \gamma H')^2$, is exactly \mathcal{A}_2 from our definition in Equation 74:
 1139

$$\mathcal{A}_2 V_R^* = \gamma^2 (H')^2 \Sigma \quad (78)$$

$$V_R^* = \mathcal{A}_2^{-1} \gamma^2 (H')^2 \Sigma \quad (79)$$

1141 The dynamics for the Lookahead slow weights ϕ_t are given by Zhang et al. (2019):
 1142

$$V[\phi_{t+1}] = [I - \alpha \mathcal{A}_k]^2 V[\phi_t] + \alpha^2 \left(\sum_{i=0}^{k-1} (I - \gamma H')^{2i} \right) \gamma^2 (H')^2 \Sigma \quad (80)$$

1143 Note that we have rewritten the first term using \mathcal{A}_k : $(1-\alpha)I + \alpha(I-\gamma H')^k = (1-\alpha)I + \alpha(I-\mathcal{A}_k) = I - \alpha \mathcal{A}_k$.
 1144

1145 To solve for the fixed point V_{LR}^* , we set $V[\phi_{t+1}] = V[\phi_t] = V_{LR}^*$:
 1146

$$V_{LR}^* = \frac{\alpha^2 \left(\sum_{i=0}^{k-1} (I - \gamma H')^{2i} \right) \gamma^2 (H')^2 \Sigma}{I - [I - \alpha \mathcal{A}_k]^2} \quad (81)$$

1147 Using the geometric series identity, the summation can be expressed with our notation:
 1148

$$\sum_{i=0}^{k-1} ((I - \gamma H')^2)^i = \frac{I - (I - \gamma H')^{2k}}{I - (I - \gamma H')^2} = \mathcal{A}_{2k} \mathcal{A}_2^{-1} \quad (82)$$

1149 Substituting this and the expression for V_{GR}^* back into the equation:
 1150

$$\begin{aligned} V_{LR}^* &= \frac{\alpha^2 \mathcal{A}_{2k} \mathcal{A}_2^{-1} (\gamma^2 (H')^2 \Sigma)}{I - [I - \alpha \mathcal{A}_k]^2} \\ &= \frac{\alpha^2 \mathcal{A}_{2k}}{I - (I^2 - 2\alpha \mathcal{A}_k + \alpha^2 \mathcal{A}_k^2)} \cdot (\mathcal{A}_2^{-1} \gamma^2 (H')^2 \Sigma) \\ &= \frac{\alpha^2 \mathcal{A}_{2k}}{2\alpha \mathcal{A}_k - \alpha^2 \mathcal{A}_k^2} \cdot V_{GR}^* \end{aligned} \quad (83)$$

1151 The denominator can be factored as $2\alpha \mathcal{A}_k - \alpha^2 \mathcal{A}_k^2 = \alpha \mathcal{A}_k (2I - \alpha \mathcal{A}_k)$. To match the desired final
 1152 form, we return to the denominator manipulation from the original paper, but expressed with \mathcal{A}_k :
 1153

$$\begin{aligned} I - [(1 - \alpha)I + \alpha(I - \gamma H')^k]^2 \\ = \alpha^2 (I - (I - \gamma H')^{2k}) + 2\alpha(1 - \alpha) (I - (I - \gamma H')^k) \\ = \alpha^2 \mathcal{A}_{2k} + 2\alpha(1 - \alpha) \mathcal{A}_k \end{aligned} \quad (84)$$

1154 This gives the final, simplified expression as specified:
 1155

$$V_{LR}^* = \frac{\alpha^2 \mathcal{A}_{2k}}{\alpha^2 \mathcal{A}_{2k} + 2\alpha(1 - \alpha) \mathcal{A}_k} V_R^* \quad (85)$$

1156 This completes the proof. □
 1157

1158 The ratio is a multiplicative factor that is strictly less than 1 for any $\alpha \in (0, 1)$ and $k \geq 1$. This
 1159 rigorously demonstrates that our method reduces the asymptotic variance compared to the inner
 1160 GR-SGD optimizer alone, which contributes to the improved stability and convergence we observe
 1161 in practice. The analysis of LR variance reduction followed the classical noise-propagation frame-
 1162 work as in prior works. In contrast, our CMLR analysis adopts a spectral decomposition approach:
 1163 we expand dynamics along each eigen-direction of H , thereby isolating both the data-induced vari-
 1164 ance and the additional contribution from momentum accumulation. Here, we provide the spectral
 1165 analysis theorem for CMLR variance reduction.
 1166

1188 E DETAILED DERIVATION OF NOISY QUADRATIC ANALYSIS FOR CMLR
1189

1190 we first define $n(z) \triangleq \frac{z}{\|z\|}$, $s \triangleq \rho H \hat{v}$, then we obtain $H(w - c) \rightarrow u$, $H(w - c) + \rho H \hat{v} \rightarrow g^+$ and
1191 $H(w - c) - \rho H \hat{v} \rightarrow g^-$.

1192 **Lemma E.1** (Second-Order Remainder Bound). *Let $u \neq 0$. If $\|s\| \leq \frac{1}{2}\|u\|$, then there exists a
1193 remainder term R such that*

$$1194 \frac{g^+}{\|g^+\|} + \frac{g^-}{\|g^-\|} = 2 \frac{u}{\|u\|} + R, \quad (86)$$

1195 with the strict norm bound

$$1196 \|R\| = O(\rho^2) \quad (87)$$

1197 *Proof.* We first use a second-order Taylor expansion for the normalized map $n(x)$ at the point u :

$$1201 n(u \pm s) = n(u) + Dn_u(\pm s) + \frac{1}{2} D^2 n_{u+\theta \pm(\pm s)}(\pm s, \pm s),$$

1202 for some $\theta \in (0, 1)$, where $Dn_u(h) = \frac{1}{\|u\|}(I - n(u)n(u)^\top)h$. The first-order terms cancel out
1203 exactly: $Dn_u(s) + Dn_u(-s) = 0$.

1204 The remainder term R is therefore composed of the second-order terms:

$$1205 R = \frac{1}{2} (D^2 n_{u+\theta+s}(s, s) + D^2 n_{u-\theta-s}(-s, -s)).$$

1206 For any $z \neq 0$, the second Fréchet derivative has the general upper bound given by:

$$\begin{aligned} 1207 \|D^2 n_u(h, k)\| &\leq \left\| \frac{u^\top k}{\|u\|^3} (I - nn^\top)h \right\| + \left\| \frac{1}{\|u\|} Dn_u(k) n^\top h \right\| + \left\| \frac{1}{\|u\|} n(Dn_u(k))^\top h \right\| \\ 1208 &\leq \frac{\|u^\top k\|}{\|u\|^3} \|I - nn^\top\|_{\text{op}} \|h\| + \frac{1}{\|u\|} \|Dn_u(k)\| \|n^\top h\| + \frac{1}{\|u\|} \|n\| \|(Dn_u(k))^\top h\| \\ 1209 &\leq \frac{\|u\| \|k\|}{\|u\|^3} (1) \|h\| + \frac{1}{\|u\|} \left(\frac{\|k\|}{\|u\|} \right) (\|n\| \|h\|) + \frac{1}{\|u\|} (1) (\|Dn_u(k)\| \|h\|) \\ 1210 &\leq \frac{1}{\|u\|^2} \|k\| \|h\| + \frac{1}{\|u\|^2} \|k\| \|h\| + \frac{1}{\|u\|^2} \|k\| \|h\| \\ 1211 &= \frac{3}{\|u\|^2} \|h\| \|k\|. \end{aligned}$$

1212 where the operator $I - n(u)n(u)^\top$ is a projection onto the orthogonal complement of $n(u)$, so its
1213 operator norm is equal to its largest eigenvalue, which implies $\|I - nn^\top\|_{\text{op}} = 1$. We also use
1214 $\|n(u)\| = 1$ and the bound $\|Dn_u(k)\| \leq \frac{1}{\|u\|} \|k\|$. Given the assumption $\|s\| \leq \frac{1}{2}\|u\|$, we have that:
1215 $\|u \pm \theta \pm s\| \geq \|u\| - \|s\| \geq \frac{1}{2}\|u\|$. This allows us to bound each component of the remainder:

$$\begin{aligned} 1216 \frac{1}{2} \|D^2 n_{u+\theta+s}(s, s)\| &\leq \frac{1}{2} \|D^2 n_{u+\theta+s}\|_{\text{op}} \|s\|^2 \\ 1217 &\leq \frac{1}{2} \cdot \frac{3}{\|u + \theta + s\|^2} \|s\|^2 \\ 1218 &\leq \frac{1}{2} \cdot \frac{3}{(\frac{1}{2}\|u\|)^2} \|s\|^2 = 6 \frac{\|s\|^2}{\|u\|^2}. \end{aligned}$$

1219 Summing the bounds for the two terms via the triangle inequality yields the final result:

$$1220 \|R\| \leq 12 \frac{\|s\|^2}{\|u\|^2}.$$

1221 Therefore, substituting $s = \rho H \hat{v}$ and $\|\hat{v}\| = 1$, we obtain

$$1222 \left\| \frac{g^+}{\|g^+\|} + \frac{g^-}{\|g^-\|} - 2 \frac{H(w - c)}{\|H(w - c)\|} \right\| \leq 12 \frac{\rho^2 \|H\|^2}{\|H(w - c)\|^2}.$$

1223 In other words, as long as $\|H(w - c)\|$ is bounded from below, this difference is $O(\rho^2)$. □

Now, we consider true gradient: $g_r^\pm = u + s + \xi_r^\pm$, where ξ_r^\pm satisfies Assumption B.2.

Theorem 4.2 (Variance Reduction with CMLR). *Fix an eigenpair (q, μ) of H , with scalar projections $x_{t,k} = q^\top w_{t,k}$, $c_{t,k} = q^\top c$, and $\hat{v}_{k,q} = q^\top \hat{v}_k$. Let $a \triangleq 1 - \eta\mu$, define $A_{\text{eff}} \triangleq (1 - \alpha) + \alpha a^K$, $B_{\text{eff}} \triangleq \alpha\eta\mu$. Under Assumption B.2, Assumption B.4, $\|\nabla \mathcal{L}\| \geq g_{\min}$ and condition in Lemma E.1, the steady-state variance of CMLR satisfies*

$$v_{\text{CMLR}} \leq v_{\text{LR}}(1 + \sqrt{\tau})^2 + \mathcal{O}\left(\frac{\rho^4 \|H\|^4 + M}{g_{\min}^4}\right) \quad (12)$$

where

$$v_{\text{LR}} = \frac{\alpha^2(\eta\mu)^2\sigma^2 \frac{1 - a^{2K}}{1 - a^2}}{1 - A_{\text{eff}}^2}, \quad \tau = 2d \frac{\lambda^2(1 - \beta)}{g_{\min}^2(1 + \beta)}, \quad (13)$$

Proof. We present a concise derivation starting from the algorithmic updates (quadratic loss). For the quadratic model one has the exact identity (no approximation)

$$g_k^\pm = H(w_{t,k} - c) \pm \rho H \hat{v}_k, \quad (88)$$

and therefore (using the coefficients $\frac{\rho+\lambda}{2\rho}, \frac{\rho-\lambda}{2\rho}$ from the algorithm)

$$d_k = \frac{\rho + \lambda}{2\rho} g_k^+ + \frac{\rho - \lambda}{2\rho} g_k^- = H(w_{t,k} - c) + \lambda H \hat{v}_k. \quad (89)$$

Projecting onto the eigenvector q (write μ for the eigenvalue) yields the scalar exact update for the inner step:

$$x_{t,k+1} = (1 - \eta\mu) x_{t,k} + \eta\mu c_{t,k} - \eta\lambda\mu \hat{v}_{k,q}. \quad (90)$$

Thus the inner-step perturbation (momentum accumulation error) is exactly

$$\varepsilon_{t,k} \triangleq -\eta\lambda\mu \hat{v}_{k,q}. \quad (91)$$

Unrolling the inner loop (as in the standard linear system expansion) gives the closed form for the k -step output $y_k \triangleq x_{t,k}$:

$$y_k = a^k x_t + \eta\mu \sum_{r=0}^{k-1} a^{k-1-r} c_{t,r} + \sum_{r=0}^{k-1} a^{k-1-r} \varepsilon_{t,r}, \quad (92)$$

with $a \triangleq 1 - \eta\mu$. The outer Lookahead update is $x_{t+1} = (1 - \alpha)x_t + \alpha y_k$. Group the data-noise part

$$S \triangleq B_{\text{eff}} \sum_{r=0}^{k-1} a^{k-1-r} c_{t,r}, \quad (93)$$

and the momentum accumulation part

$$E_t \triangleq \alpha \sum_{r=0}^{k-1} a^{k-1-r} \varepsilon_{t,r} = -\alpha\eta\lambda\mu \sum_{r=0}^{k-1} a^{k-1-r} \hat{v}_{r,q}. \quad (94)$$

The variance recursion for the linear iteration yields, at stationarity,

$$v_{\text{CMLR}} = \frac{\text{Var}(S) + \text{Var}(E) + 2 \text{Cov}(S, E)}{1 - A_{\text{eff}}^2}. \quad (95)$$

Identify $\text{Var}(S)$ to obtain $v_{\text{LR}} = \text{Var}(S)/(1 - A_{\text{eff}}^2)$, which proves the decomposition $v_{\text{CMLR}} = v_{\text{LR}} + \Delta$ with Δ as stated.

1296 It remains to bound $\text{Var}(E)$ and $\text{Cov}(S, E)$. By linearity and independence assumptions on the
 1297 sampled $c_{t,r}$ (standard in this noise-model analysis),
 1298

$$\begin{aligned} \text{Var}(E) &= \alpha^2 \eta^2 \lambda^2 \mu^2 \text{Var} \left(\sum_{r=0}^{k-1} a^{k-1-r} \hat{v}_{r,q} \right) \\ &\leq \alpha^2 \eta^2 \lambda^2 \mu^2 \frac{1 - a^{2k}}{1 - a^2} \sup_r \text{Var}(\hat{v}_{r,q}). \end{aligned} \quad (96)$$

1305 Then we bound $\text{Var}(\hat{v}_{r,q})$:

$$n(u + s_r + \xi_r^+) = n(u) + Dn_u(s_r + \xi_r^+) + \frac{1}{2} D^2 n_{u+\theta_r^+(s_r + \xi_r^+)}(s_r + \xi_r^+, s_r + \xi_r^+) \quad (97)$$

$$n(u - s_r + \xi_r^-) = n(u) + Dn_u(-s_r + \xi_r^-) + \frac{1}{2} D^2 n_{u+\theta_r^-(s_r + \xi_r^-)}(-s_r + \xi_r^-, -s_r + \xi_r^-) \quad (98)$$

$$\begin{aligned} n(g_r^+) + n(g_r^-) &= 2n(u) + Dn_u(\xi_r^+ + \xi_r^-) + \underbrace{\frac{1}{2} D^2 n_{u+\theta_r^+(s_r + \xi_r^+)}(s_r + \xi_r^+, s_r + \xi_r^+)}_{R_r^{(1)}} \\ &\quad + \underbrace{\frac{1}{2} D^2 n_{u+\theta_r^-(s_r + \xi_r^-)}(-s_r + \xi_r^-, -s_r + \xi_r^-)}_{R_r^{(2)}} \end{aligned} \quad (99)$$

1320 where (By Lemma E.1)

$$\begin{aligned} \|R_r^{(1)}\| &\leq \frac{1}{2} \cdot \frac{3}{\|u + \theta_r^+(s_r + \xi_r^+)\|^2} \|s_r + \xi_r^+\|^2 \\ &\leq \frac{3}{2(\|u\|/2)^2} \|s_r + \xi_r^+\|^2 = 6 \frac{\|s_r + \xi_r^+\|^2}{\|u\|^2} \end{aligned} \quad (100)$$

$$\|R_r^{(2)}\| \leq 6 \frac{\|-s_r + \xi_r^-\|^2}{\|u\|^2} \quad (101)$$

$$\begin{aligned} \|R_r^{(1)}\| + \|R_r^{(2)}\| &\leq 6 \frac{2\|s_r\|^2 + 2\|\xi_r^+\|^2 + 2\|s_r\|^2 + 2\|\xi_r^-\|^2}{\|u\|^2} \\ &= \frac{24\|s_r\|^2 + 12(\|\xi_r^+\|^2 + \|\xi_r^-\|^2)}{\|u\|^2} \end{aligned} \quad (102)$$

1334 By substituting into the momentum recursive equation, we obtain:

$$\begin{aligned} v_{r+1} &= \beta v_r + (1 - \beta)n(u) + \frac{1 - \beta}{2} Dn_u(\xi_r^+ + \xi_r^-) + \frac{1 - \beta}{2} (R_r^{(1)} + R_r^{(2)}) \\ &= \beta v_r + (1 - \beta)n(u) + \eta_r + y_{r+1} \end{aligned} \quad (103)$$

1341 with $\eta_r \triangleq \frac{1 - \beta}{2} Dn_u(\xi_r^+ + \xi_r^-)$, $\rho_r \triangleq \frac{1 - \beta}{2} (R_r^{(1)} + R_r^{(2)})$. Thus we have:

$$y_{r+1} = \beta y_r + \eta_r + \rho_r. \quad (104)$$

1345 By $\text{Var}(y_{r+1,q}) = \beta^2 \text{Var}(y_{r,q}) + \text{Var}(\eta_q + \rho_q) + 2\beta \text{Cov}(y_q, \eta_q + \rho_q)$ and $2\beta |\text{Cov}| \leq 1346 2\beta \sqrt{\text{Var}(y) \text{Var}(\eta + \rho)}$, we obtain:

$$\text{Var}(y_q) \leq \frac{\text{Var}(\eta_q) + \sup_r \text{Var}(\rho_{r,q}) + 2 \sup_r \sqrt{\text{Var}(\eta_q) \text{Var}(\rho_{r,q})}}{1 - \beta^2} \quad (105)$$

1350 The first term of RHS in Equation 105:
1351

$$\begin{aligned}
1352 \text{Var}(\eta_q) &= \mathbb{E}[(q^\top \eta_r)^2] \leq \mathbb{E}[\|\eta_r\|^2] = \left(\frac{1-\beta}{2}\right)^2 \mathbb{E}[\|Dn_u(\xi_r^+ + \xi_r^-)\|^2] \\
1353 &\leq \left(\frac{1-\beta}{2}\right)^2 \|Dn_u\|_{\text{op}}^2 \cdot \mathbb{E}[\|\xi_r^+ + \xi_r^-\|^2] \\
1354 &\leq \left(\frac{1-\beta}{2}\right)^2 \cdot \frac{1}{\|u\|^2} \cdot 4\sigma^2 = (1-\beta)^2 \frac{\sigma^2}{\|u\|^2}
\end{aligned} \tag{106}$$

1355 and the second term of RHS in Equation 105:
1356

$$\begin{aligned}
1357 \mathbb{E}\|\rho_r\|^2 &\leq \left(\frac{1-\beta}{2}\right)^2 \cdot \frac{2(24^2\|s_r\|^4) + 2(12^2\mathbb{E}(\|\xi_r^+\|^2 + \|\xi_r^-\|^2)^2)}{\|u\|^4} \\
1358 &\leq 288(1-\beta)^2 \frac{\|s_r\|^4}{\|u\|^4} + 72(1-\beta)^2 \frac{\mathbb{E}(\|\xi_r^+\|^2 + \|\xi_r^-\|^2)^2}{\|u\|^4} \\
1359 &\leq 288(1-\beta)^2 \frac{\|s_r\|^4 + M}{\|u\|^4} \\
1360 &= C_\rho \frac{\|s_r\|^4 + M}{\|u\|^4}
\end{aligned} \tag{107}$$

1361 where $C_\rho \triangleq 288(1-\beta)^2$. By Assumption B.4, we obtain
1362

$$\sup_r \text{Var}(\rho_{r,q}) \leq C_\rho \left(\frac{\|s_r\|^4 + M}{\|u\|^4} \right) \tag{108}$$

$$\text{Var}(y_q) \leq \frac{1-\beta}{1+\beta} \cdot \frac{\sigma^2}{\|u\|^2} + \frac{C_\rho}{1-\beta^2} \frac{\|s_r\|^4 + M}{\|u\|^4} + \frac{2\sqrt{C_\rho}}{1-\beta^2} \frac{\sigma}{\|u\|} \sqrt{\frac{\|s_r\|^4 + M}{\|u\|^4}} \tag{109}$$

1363 Then we consider connecting $\hat{v}_{r,q}$ and y_q :
1364

$$\hat{v}_{r,q} - q^\top n(u) = ((I - nn^\top)q)^\top y_r + r_{r,q}^{(2)}, \tag{110}$$

$$\begin{aligned}
1365 \text{Var}(\hat{v}_{r,q}) &\leq 2 \text{Var}(((I - nn^\top)q)^\top y_r) + 2 \text{Var}(r_{r,q}^{(2)}) \\
1366 &\leq 2 \| (I - nn^\top)q \|^2 \|\text{Cov}(y_r)\|_{\text{op}} + 2 \text{Var}(r_{r,q}^{(2)}) \\
1367 &\leq 2 \|\text{Cov}(y_r)\|_{\text{op}} + 2 \text{Var}(r_{r,q}^{(2)}).
\end{aligned} \tag{111}$$

1368 where
1369

$$\begin{aligned}
1370 \|\text{Cov}(y_r)\|_{\text{op}} &\leq \text{trace}(\text{Cov}(y_r)) = \sum_{i=1}^d \text{Var}(y_{r,i}) \\
1371 &\leq d \cdot \sup_i \text{Var}(y_{r,i}) \\
1372 &\leq d \cdot \text{Var}(y_q).
\end{aligned} \tag{112}$$

1373 Considering $\text{Var}(r_{r,q}^{(2)}) \leq \sup_r \text{Var}(\rho_{r,q})$, we have
1374

$$\text{Var}(\hat{v}_{r,q}) \leq 2d \cdot \text{Var}(y_q) + 2C_\rho \frac{\|s_r\|^4 + M}{\|u\|^4} \tag{113}$$

1375 Considering $\|u\| \geq g_{\min} > 0$, $\|s_r\| \leq \rho\|H\|$, Let $\tau \triangleq \frac{\text{Var}(E)}{\text{Var}(S)}$, we have
1376

$$v_{\text{CMLR}} \leq v_{\text{LR}}(1 + \sqrt{\tau})^2 + \mathcal{O}\left(\frac{\rho^4\|H\|^4 + M}{g_{\min}^4}\right) \tag{114}$$

1377 where $\tau = 2d \frac{\lambda^2(1-\beta)}{g_{\min}^2(1+\beta)}$.
1378 \square

1404
1405 Table 4: Performance comparison of CMLR against multi-step optimizers (k=2,5,10) in CNN mod-
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
2222210
2222211
2222212
2222213
2222214
2222215
2222216
2222217
2222218
2222219
2222220
2222221
2222222
2222223
2222224
2222225
2222226
2222227
2222228
2222229
22222210
22222211
22222212
22222213
22222214
22222215
22222216
22222217
22222218
22222219
22222220
22222221
22222222
22222223
22222224
22222225
22222226
22222227
22222228
22222229
222222210
222222211
222222212
222222213
222222214
222222215
222222216
222222217
222222218
222222219
222222220
222222221
222222222
222222223
222222224
222222225
222222226
222222227
222222228
222222229
2222222210
2222222211
2222222212
2222222213
2222222214
2222222215
2222222216
2222222217
2222222218
2222222219
2222222220
2222222221
2222222222
2222222223
2222222224
2222222225
2222222226
2222222227
2222222228
2222222229
22222222210
22222222211
22222222212
22222222213
22222222214
22222222215
22222222216
22222222217
22222222218
22222222219
22222222220
22222222221
22222222222
22222222223
22222222224
22222222225
22222222226
22222222227
22222222228
22222222229
222222222210
222222222211
222222222212
222222222213
222222222214
222222222215
222222222216
222222222217
222222222218
222222222219
222222222220
222222222221
222222222222
222222222223
222222222224
222222222225
222222222226
222222222227
222222222228
222222222229
2222222222210
2222222222211
2222222222212
2222222222213
2222222222214
2222222222215
2222222222216
2222222222217
2222222222218
2222222222219
2222222222220
2222222222221
2222222222222
2222222222223
2222222222224
2222222222225
2222222222226
2222222222227
2222222222228
2222222222229
22222222222210
22222222222211
22222222222212
22222222222213
22222222222214
22222222222215
22222222222216
22222222222217
22222222222218
22222222222219
22222222222220
22222222222221
22222222222222
22222222222223
22222222222224
22222222222225
22222222222226
22222222222227
22222222222228
22222222222229
222222222222210
222222222222211
222222222222212
222222222222213
222222222222214
222222222222215
222222222222216
222222222222217
222222222222218
222222222222219
222222222222220
222222222222221
222222222222222
222222222222223
222222222222224
222222222222225
222222222222226
222222222222227
222222222222228
222222222222229
2222222222222210
2222222222222211
2222222222222212
2222222222222213
2222222222222214
2222222222222215
2222222222222216
2222222222222217
2222222222222218
2222222222222219
2222222222222220
2222222222222221
2222222222222222
2222222222222223
2222222222222224
2222222222222225
2222222222222226
2222222222222227
2222222222222228
2222222222222229
22222222222222210
22222222222222211
22222222222222212
22222222222222213
22222222222222214
22222222222222215
22222222222222216
22222222222222217
22222222222222218
22222222222222219
22222222222222220
22222222222222221
22222222222222222
22222222222222223
22222222222222224
22222222222222225
22222222222222226
22222222222222227
22222222222222228
22222222222222229
222222222222222210
222222222222222211
222222222222222212
222222222222222213
222222222222222214
222222222222222215
222222222222222216
222222222222222217
222222222222222218
222222222222222219
222222222222222220
222222222222222221
222222222222222222
222222222222222223
222222222222222224
222222222222222225
222222222222222226
222222222222222227
222222222222222228
222222222222222229
2222222222222222210
2222222222222222211
2222222222222222212
2222222222222222213
2222222222222222214
2222222222222222215
2222222222222222216
2222222222222222217
2222222222222222218
2222222222222222219
2222222222222222220
2222222222222222221
2222222222222222222
2222222222222222223
2222222222222222224
2222222222222222225
2222222222222222226
2222222222222222227
2222222222222222228
2222222222222222229
22222222222222222210
22222222222222222211
22222222222222222212
22222222222222222213
22222222222222222214
22222222222222222215
22222222222222222216
22222222222222222217
22222222222222222218
22222222222222222219
22222222222222222220
22222222222222222221
22222222222222222222
22222222222222222223
22222222222222222224
22222222222222222225
22222222222222222226
22222222222222222227
22222222222222222228
22222222222222222229
222222222222222222210
222222222222222222211
222222222222222222212
222222222222222222213
222222222222222222214
222222222222222222215
222222222222222222216
222222222222222222217
222222222222222222218
222222222222222222219
222222222222222222220
222222222222222222221
222222222222222222222
222222222222222222223
222222222222222222224
222222222222222222225
222222222222222222226
222222222222222222227
222222222222222222228
222222222222222222229
2222222222222222222210
2222222222222222222211
2222222222222222222212
2222222222222222222213
2222222222222222222214
2222222222222222222215
2222222222222222222216
2222222222222222222217
2222222222222222222218
2222222222222222222219
2222222222222222222220
2222222222222222222221
2222222222222222222222
2222222222222222222223
2222222222222222222224
2222222222222222222225
2222222222222222222226
2222222222222222222227
2222222222222222222228
2222222222222222222229
22222222222222222222210
22222222222222222222211
22222222222222222222212
22222222222222222222213
22222222222222222222214
22222222222222222222215
22222222222222222222216
22222222222222222222217
22222222222222222222218
22222222222222222222219
22222222222222222222220
22222222222222222222221
22222222222222222222222
22222222222222222222223
22222222222222222222224
22222222222222222222225
22222222222222222222226
22222222222222222222227
22222222222222222222228
22222222222222222222229
222222222222222222222210
222222222222222222222211
222222222222222222222212
222222222222222222222213
222222222222222222222214
222222222222222222222215
222222222222222222222216
222222222222222222222217
222222222222222222222218
22222222222222222222221

1458
1459
1460 Table 6: Per-task hyperparameter configurations for DistilBERT fine-tuning.
1461
1462
1463
1464
1465
1466
1467
1468

Task	Batch Size	LR	Epochs	Other Params
CoLA	32	2e-5	10	
SST-2	32	2e-5	3	
MRPC	16	2e-5	5	$\rho \in \{0.001, 0.005, 0.01, 0.05, 0.1\}$
STS-B	16	2e-5	5	$\lambda \in \{0.001, 0.005, 0.01, 0.05, 0.1\}$
QQP	32	2e-5	3	$wd = 0.01$
MNLI	32	2e-5	3	$K=2$
QNLI	32	2e-5	3	
RTE	16	1e-5	10	

1469
1470

G ABLATION STUDY

14711472

G.1 REGULARIZATION STRENGTH

1473 We analyze the sensitivity of CMLR to the regularization strength hyperparameter λ . A grid search
1474 was performed over λ in the range $[0.05, 0.15]$ with a 0.01 step size on both CIFAR-10 and CIFAR-
1475 100 datasets.1476 Figure 4 plots the final test accuracy as a function of λ . The results show that performance is strong
1477 and stable across this range on both datasets, with optimal accuracy consistently achieved when λ
1478 is approximately 0.1. This indicates that a moderate regularization strength is most effective. We
1479 therefore select $\lambda = 0.1$ as the default value for all main experiments.1480

G.2 INTERPOLATION COEFFICIENT

14811482 A key component of our CMLR algorithm is the momentum accumulation strategy used to effi-
1483 ciently determine the perturbation vector for the next inner-loop step, v_{k+1} . This strategy calculates
1484 a weighted average of the normalized "forward" gradient (from the ascent step, g_k^+) and "backward"
1485 gradient (from the descent step, g_k^-). To achieve this, we modify our base momentum accumulation
1486 formula from Equation 10 by introducing an interpolation coefficient γ_{interp} :

1487
$$\beta_k v_k + (1 - \beta_k) \left(\gamma_{interp} \frac{g_k^+}{\|g_k^+\|} + (1 - \gamma_{interp}) \frac{g_k^-}{\|g_k^-\|} \right) \quad (115)$$

1488

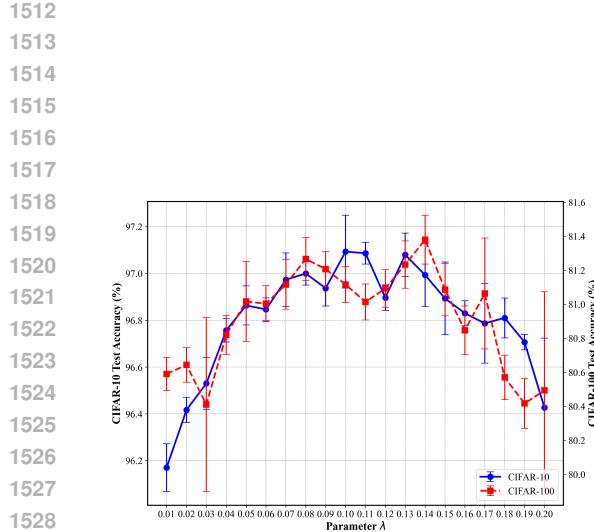
1489 Here, γ_{interp} balances the influence of the two directions: a value of 1.0 relies entirely on the
1490 ascent gradient, while 0.0 relies solely on the descent gradient. We conducted an ablation study to
1491 investigate the impact of this coefficient by training a ResNet-18 model on CIFAR-10 while varying
1492 γ_{interp} from 0.0 to 1.0. As shown in Figure 5, we found that model performance was strong across
1493 a range of values, with optimal test accuracy achieved when γ_{interp} was approximately 0.1 or 0.8.
1494 This indicates that while a blend of both directions is effective, a slight bias towards either the ascent
1495 or descent gradient can be beneficial for guiding the subsequent perturbation.1496

G.3 SLOW WEIGHTS STEP SIZE

14971498 We analyze the impact of the slow weights step size α , which controls the outer-loop Lookahead
1499 update. We tested α values from 0.7 to 1.0 with a 0.05 interval on CIFAR-10 and CIFAR-100, using
1500 a ResNet-18 model with $K = 10$. Each setting was averaged over five runs.1501 The error bar plot in Figure 6 shows the final test accuracy as a function of α . The results indicate that
1502 performance is strong and stable when α is in the $[0.85, 1.0]$ range, with the optimal test accuracy
1503 achieved at approximately $\alpha = 0.9$. Based on this finding, we use $\alpha = 0.9$ in our main experiments.1504

G.4 EFFICIENCY GAINS

15051506 In addition to this primary analysis, we provide a direct measurement of the efficiency gains. We
1507 compare CMLR against CLR, a variant that computes all three gradients per inner-loop step without
1508 momentum. The results, shown in Table 7, confirm that CMLR increases throughput by approxi-
1509 mately 45% while matching the final test accuracy of the naive CLR with a negligible difference.1510
1511



1530
1531
1532
1533

Figure 4: The impact of the hyperparameter λ on final test accuracy. The experiment was conducted on ResNet-18 with the CIFAR-10/100 datasets.

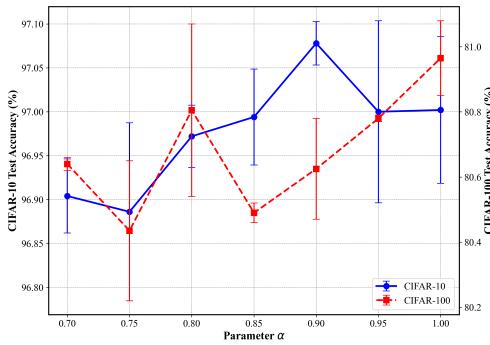


Figure 6: The impact of the hyperparameter α on final test accuracy conducted on ResNet-18 with the CIFAR-10 and CIFAR-100 datasets.

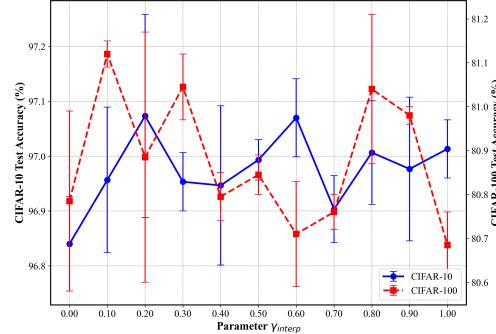


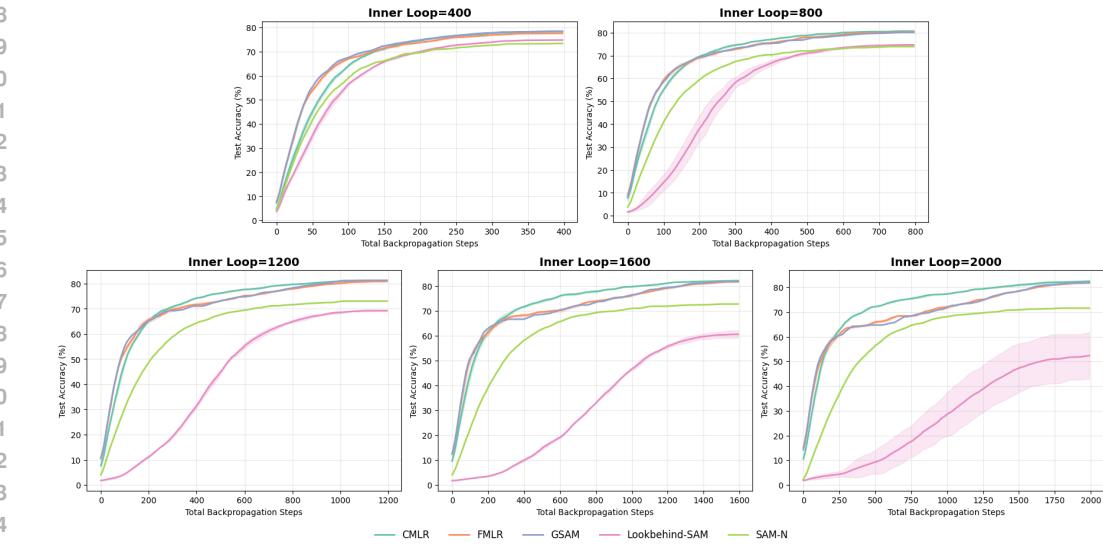
Figure 5: The impact of the hyperparameter γ_{interp} on final test accuracy conducted on ResNet-18 with the CIFAR-10 and CIFAR-100 datasets.

Table 7: Performance and relative training time on CIFAR-10/100.

Method	CIFAR-10		CIFAR-100	
	Acc. (%)	Rel. Train Time	Acc. (%)	Rel. Train Time
CLR	97.17	1.47	81.15	1.43
CMLR	97.10	1.00	81.05	1.00

1566
 1567 Table 8: Wall-clock breakdown per parameter update in ResNet34 model, CiFar10 dataset. Multi-
 1568 step methods are shown with sub-rows for different $K \in \{2, 5, 10\}$. “Forward/Backward” counts the
 1569 number of total gradient evaluations; each requires one forward and one backward pass. “Parallel”
 1570 indicates whether gradient evaluations can be done in parallel (e.g., for central difference).

Optimizer	Setting(K)	Forward/Backward	Peak memory	GPU time	Parallel
Vanilla (SGD/AdamW)	—	1	1.00 \times	1.00 \times	\times
SAM (two-pass)	1	2	1.28 \times	2.18 \times	\times
FR (GR view of SAM)	1	2	1.25 \times	2.26 \times	\times
CR (GR view of SAM)	1	2	1.25 \times	2.14 \times	✓
CR-SAM (Curvature Regularized)	1	3	1.08 \times	2.00 \times	✓
	2	4	1.06 \times	3.03 \times	\times
Lookbehind-SAM (multi-step)	5	10	1.06 \times	6.19 \times	\times
	10	20	1.06 \times	11.48 \times	\times
	2	4	1.03 \times	3.07 \times	\times
GSAM (multi-step)	5	10	1.03 \times	6.25 \times	\times
	10	20	1.03 \times	11.39 \times	\times
	2	4	1.25 \times	3.56 \times	\times
FMLR (FR-based Lookahead)	5	10	1.25 \times	7.48 \times	\times
	10	20	1.25 \times	14.07 \times	\times
	2	5	1.25 \times	3.42 \times	✓
CMLR (CR-based Lookahead)	5	11	1.25 \times	7.19 \times	✓
	10	21	1.25 \times	13.50 \times	✓



1606
 1607 Figure 7: Test accuracy versus backpropagation steps on ResNet-50/CIFAR-100. The comparison
 1608 involves five algorithms under the same backpropagation budgets (400, 800, 1200, 1600, 2000),
 1609 illustrating their performance trends.

DISCLOSURE OF LLM USAGE

1610
 1611 We used a large language model (DouBao) solely for minor language polishing. All technical con-
 1612 tent, methodology, experiments, and analyses were developed entirely by the authors.