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Abstract

In this paper, we present TopoFormer, a powerful architecture for predicting
links between communication nodes in mobile networks. The goal is to imi-
tate, in real time, the results of a costly combinatorial algorithm that generates
topologies for networks with directional antennas. These antennas offer excellent
performance but require complex, interdependent steering decisions in real time.
Our Transformer-based architecture is enhanced with efficient components that
add useful inductive biases, making it suitable for environments where scaling
is limited. A key contribution is the introduction of directional density encod-
ings, which help the attention mechanism better separate nodes in dense clusters.
Equipped with our modules, a single Transformer block of dimension 12 achieves
over 95 % accuracy, reducing the gap to optimality by half compared to a plain
1-block Transformer while requiring only 12 % more computation. Using two
blocks, the model comes close to perfect accuracy.

1 Introduction
1.1 Link Topology Generation for Mobile Ad Hoc Networks

We address the generation of link topologies in wireless mobile networks using directional antennas.
We tackle real-time link topology generation in MANETS with directional antennas, selecting links
that form a bipartite backbone for antenna steering under sectorization, range, and interference
constraints. The bipartiteness corresponds to the need to allocate emission and reception slots to
each node, alternately. Fig. 1 illustrates our problem. While protocols like OLSR [1] and AODV [2]
adapt well with omnidirectional antennas, they incur high interference; directional links boost
throughput [3] but require complex, interdependent decisions. Existing approaches, UAV placement,
topology control, adaptive beam/power tuning [4—8], or greedy link selection [9], are often sub-
optimal or mobility-dependent. Combinatorial optimization produces quality static solutions [10, 11],
but is too slow for mobility; instead, we learn to replicate these patterns from feasible topologies for
fast and robust generation.

The challenge is exacerbated by the limited computational resources of mobile nodes, which must
also perform signal decoding, neighbor position prediction, and topology updates. Thus, the topology
predictor must be efficient to preserve resources for other network tasks. Our approach is to replace a
computationally expensive algorithm with an efficient neural network, capable of producing similar
outputs in real time. While prior works on neural networks for wireless systems mainly address
routing and performance prediction [12—-14], we focus on efficient link topology generation.
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Applying autoregressive [15, 16] methods, GANs [17, 18], or VAEs [19, 20] to node-conditioned
topology generation problem is not trivial [21], mostly because of the node-conditioning constraint.
Diffusion-based approaches [21, 22] are more effective, but they demand substantial computation
power. We rather follow a one-step supervised learning setting and enhance a Transformer, well-suited
to point clouds [23, 24]—with a set of computationally efficient modules that provide useful structural
inductive biases, partially avoiding the need to widen layers, which would increase computation
quadratically. Embedded architectures, notably small planes or UAVs, which generally do not allow
for massive parallel computation, could typically benefit from such modules.

Figure 1: Given a set of aerial nodes, a neural network is used to generate a link topology. We then
assign the nodes a binary emission-reception scheduling.

1.2 Message Passing and Its Expressivity

In graph learning, rich node representations can be built via message passing [25-27], graph convolu-
tions [19, 28, 29], or attention [30-32]. When edges are missing or must be predicted, GNNs require
heuristic edges to enable message passing, such as the latent-space k£-NN used in [33]. However, this
scheme is equivalent to local-masked attention with a fixed query vector, limiting its ability to capture
long-range dependencies and non-local patterns, an essential capability for edge prediction [23, 24].
While GNNss suffer from oversmoothing due to the message-passing bottleneck [34], attention-based
models face similar issues [35]: as layers accumulate, node representations become indistinguishable.
This is critical in small architectures with few, thin layers.

Handcrafted node features can help but are often unsuitable here as they typically rely on predefined
edges. Laplacian positional encodings [36] require a predefined edge set, Graphormer [23] encodes
hop-based distances, and Graph-BERT [24] orders features by shortest-path hops. Without edges,
such encodings degrade to simple Euclidean distances, scalar proximity measures that many models
already recover. We address this by introducing Directional Density Encodings (DDE): a node’s
DDE quantifies the density of neighbors along each axis of its local reference frame. In 2D, this
yields a four-dimensional geometric signature capturing direction-weighted density, providing a
strong relative positional cue even in edge-free settings and improving multiple link prediction.

Furthermore, we incorporate cross-attentive modulation (CAM) tokens [21] to assist the message
passing mechanism in adapting its behavior to the node layout, while also enabling a form of global
control. These additional modules and features allow TopoFormer to hold particularly well-suited
inductive biases for the prediction of full link topologies for any node layout.

1.3 Towards more Expressive Link-Set Prediction

Pairwise link prediction generally assumes that link candidates’ embeddings can be aligned pairwise.
In [37], link prediction is formulated as a graph algorithm problem: deciding the existence of an edge
is associated with evaluating a function over node pairs, which a message-passing mechanism can be
trained to approximate.

Although expressive and capable of good generalization, this paradigm assumes that a single decoding
function, generally an inner product, can capture the many different relationships that underlie the
existence of a link, which we assume could be improved using a mechanism that can model the
different relations that can qualify a pair of nodes to form a link. The feature aggregator must then
learn to precisely align nodes pairwise in the latent space to predict links, while having to capture
complex patterns and global properties to ensure that these predicted links are correct. In the context
of mobile networks, the heterogeneous nature of the topologies combined with the need for small and
shallow neural architectures tend to challenge the capabilities of the feature aggregator.



TopoFormer: An Efficient Link-Set Prediction Architecture for Ad Hoc Network Topology Generation

As a simple way to enhance the capabilities of the prediction layer, we equip TopoFormer with a
multichannel factorization method that can be interpreted as a flexible generalization of RESCAL
[38] or TuckER [39] for one-dimensional link prediction. In our case, static relation-specific matrices
are replaced by learned parameters that perform factorization over an arbitrary number of dimensions.
It allows us to enhance the expressivity of the prediction layer while computationally scaling linearly
with the number of channels.

2 Problem Description

Our work is motivated by a network topology problem that consists in finding an optimal set of links
given a set of nodes described by their positions. It corresponds to a typical combinatorial problem
that optimizes the link topology of a wireless network with directional antennas. The topologies
feature a small (<32) number of nodes.

We consider graphs with n € [16, 32] nodes V, where each node v € V is specified by 2D coordinates
x, € R?. Given these inputs, the model outputs an adjacency matrix £ € {0, 1}"*" encoding the
predicted links (with E;; = 1 iff a link from i to j is present).

Valid topologies are defined by several constraints and properties:

» Each node may have at most four links.

* There are strict link sectorization constraints regarding the placement of antennas.

* Interference between links must be minimized, which implies avoiding acute angles between
emitting nodes and their unintended receiving neighbor nodes.

* The link topology must be connected.

The problem cannot be trivially linearized and exhaustive methods are too heavy to be carried out in
any reasonable amount of time, even to create a dataset. We therefore rely on a heuristic algorithm
(Alg. 1) that follows:

Algorithm 1 Greedy Topology Generation

Require: V, d(-, -) the distance function, antenna sets {.4; }, sector map {Q; } (e.g. NE/NW/SE/SW),
threshold 7, parity s : V — {0, 1, L}, throughput model T'(-) (simplified in App. 6.1)
Ensure: G = (V, E), updated parity s
1: E« 0

3: order P by ascending d(%, j)

4: while (V, E) not connected and P # ) do

5: take shortest pair {7, j} from P

6: if 5;,5; # 1 and s; = s; then continue

7: if s;,5; # L and s; # s; then > direction fixed: TX s=0 — RX s=1
8: (a*vb*at*) S argmaXge A;, be A, t(l_>.77a7b| E)

9: else > at least one s = L
10: (a*,b*,t7) < argmax, t(i—j,a,b| E)

11: (@*,b*,t) < argmax, t(j—4,a,b| FE)

12: if t— > ¢ then

13: fix s; 0 (if 1), s;4 1 (Gf L); ¢« t~

14: else _

15: fix s; -0 Gf L), s; <1 Gf L); (a*,b%) < (a*,b%); t* t—

16: sector constraint: let ¢;(a*) € Q;, ¢;(b*) € Q;; require deg,, (i) < 0 and deg, (j) <0
17: if t* > 7 and sector constraint holds then

18: E+— EU{(i,j5)} > activate with (a*, b*) and fixed direction
19: lock sectors: increment deg,, (i), deg, (j)

20: return (V, E, s)

The nodes follow realistic trajectories representative of small fleets of manned aircraft. The generation
algorithm evaluates throughput and interference with a high-fidelity simulation of signal propagation
and antenna characteristics; a simplified formulation is given in Appendix 6.1.
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Figure 2: The architecture of TopoFormer.

The topologies obtained achieve about 95 % of the throughput obtained using an exact and exhaustive
algorithm (too slow even for data generation), they allow for a 1.7 times higher theoretical throughput
than if using a standard omnidirectional protocol topology for a 16-node-network, and a 3.7 factor
of improvement for a 32-node-network. The algorithm is at least O(m?) complex even without
considering implicit parity checks, m being the number of edges. It is not suitable for real-time use,
but can be used to generate a dataset. Indeed, while its execution time is approximately one second
for 16-node-instances on a modern CPU, it may increase when the initial iterations fail to naturally
converge to viable solutions and explodes when dealing with more than 30 nodes. Imitating such
graphs with a neural network demands both global control capabilities in order to provide plausible
large-scale connectivity patterns and the ability to model the different kinds of relationship between
nodes that can lead to the presence of a link. Accurately reproducing the patterns and construction
rules of such dataset graphs would enable finding high-performance complex topologies in real time.

3 Our Architecture

In this section, we detail the neural architecture that we adopt in order to imitate the results of our
costly algorithm.

3.1 Overview of Our Architecture

Inspired by the effectiveness of attention-based models to deal with point clouds [23, 24], we adopt
the Transformer [30] as the backbone of our architecture. We implement it with no sequence-based
encodings [30], in order to keep permutation invariance, nor spectral [36] positional encoding, since
the edges are the object we seek to predict. Given the limited width of the layers in TopoFormer, a
trade-off arises between using a small number of attention heads or assigning a low dimensionality
to each head. We opt for a larger number of lightweight (1- or 2-dimensional) attention heads. Our
empirical results presented in Table 3 justify this choice.

The nodes are enriched with directional density encodings, which we detail in Sec. 3.2. The model is
equipped with multichannel prediction layers, as introduced in Sec. 3.3.

To enhance its adaptability to heterogeneous topologies, we augment it with CAM tokens [21], which
have been designed to facilitate the generation of valid network topologies with respect to the global
layout of the nodes. They provide dynamic modulation of the backbone model’s behavior based
on the overall node layout, captured through cross-attention, without overloading or biasing the
self-attention block. They allow the model to efficiently adapt its behavior to the heterogeneous
nature of network topologies. Such tokens are inspired by global tokens such as CLS [40] tokens or
registers [41], while their modulation process consists in the conditioning of a FiLM [42] layer. Such
tokens allow us to capture global patterns without directly increasing the dimension of the attention
mechanism, with a linear complexity scaling with respect to the number of nodes.
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Figure 3: Illustration of the computation of DDEs for a node v.

We choose to condition the modulation solely on the CAM token representation, as this proved
to be more effective in our experiments under a low-parameter regime. This contrasts with the
original formulation, which applies modulation through an elementwise product between each node
embedding and the CAM token value.

Let H € RV*4 denote the node embeddings at layer ¢, and H¢ 5, € RT*? the corresponding CAM
token representation. The modulation is computed as follows:

H < CrossAttn(HE N, H, H), ~*, 8" < FEN(H{ay),
Hupdated _ ,YZ oOH+ ﬂf.

Here, ® denotes the Hadamard product. The feed-forward network (FFN) is implemented as a simple
sequence of linear layers with ReLU activations. This formulation allows the CAM token to globally
summarize the graph state and to generate adaptive modulation parameters (7*, 3*) applied uniformly
across all node embeddings.

Fig. 2 shows the architecture of our framework.

3.2 Directional Density Encoding

We equip TopoFormer with directional density encodings in order for the nodes to be easily distin-
guishable by the attention mechanism, especially when they are located within dense clusters. Fig. 3
shows an illustration of the computation of DDEs for an arbitrary node.

Let v have position x, = (,,%,) € R? and define Ay, = Xy — Xu, Tuww = ||Auslls
Ay = Ayy/ max(ry,, €) with e > 0, and K (r) = exp(—r2/(20?)).

Using [z]4+ = max(0, z), set

Dright(v) = Z K(ruv) [Au'u,x ]+7 Dlefl(v) = Z K(ruv) [_Auv,r]+7

uFv UFv
. X (H
Dup(v) = Z K(Tuv) [Auv,y ]+7 Ddown(v) = Z K(ruv) [*Auv,y]-&--
uFv uFv

One can also derive a learnable and continuous generalization of DDEs to an arbitrary number of
dimensions by introducing H learnable directional vectors, {qh}{j{:1 C R%, which act as heads
similar to attention, without a softmax. For a given node v with position x,, € R4, the h-th directional
density component is computed as:

Dy(v) = Zﬁﬁ(qu_Xv”)'q;(Xu_Xv) 2
u€eV
uFv



TopoFormer: An Efficient Link-Set Prediction Architecture for Ad Hoc Network Topology Generation

where:

o g5, € R% s a learnable direction vector (the h-th head),
* X,, X, are the latent positions of nodes v and u respectively,
* ¢ : RT — RT is a distance-based weighting function, such as ¢(r) = exp(—r?/20?).

The resulting vector d(v) = [D1(v),..., D (v)] € R¥ encodes the anisotropic density of neigh-
boring nodes around v along each learned direction. Unlike standard attention mechanisms, this
formulation does not use a softmax normalization, allowing each head to accumulate density informa-
tion instead of normalizing it, thereby preserving both directionality and local concentration, allowing
them to “count” easily.

Throughout this paper, we prefer the non-learnable version of DDE:s, as it is much more computation-
ally efficient.

In practice, because the Gaussian weight ¢(r) = exp(—r?/20?) decays rapidly, only nodes lying
within a fixed radius r ~ 30 contribute non-negligibly to the directional density encoding (DDE). To
avoid inspecting all ~N? pairs, we first insert the N node positions into a kd-tree [43], a binary space-
partitioning structure that recursively splits the point set along coordinate axes, yielding a balanced
search tree of depth O(log N). A radius query on this tree visits only the buckets intersecting the
hypersphere of radius r around a query node and therefore returns, on average, a constant number k
of nearby neighbours, independent of NV for bounded density. With k treated as a small constant, the
overall complexity is O(N log N), and the aggregation of the four DDE components adds only an
O(Nk) linear pass over the reported neighbours. Hence the truncated scheme retains nearly all the
relevant mass while reducing the theoretical cost from quadratic to near-linear.

3.3 Multichannel scoring mechanisms.

To model the diversity of structural factors that can lead to link formation, ranging from local motifs
to more global topological cues, we explore two bilinear scoring strategies inspired by relational
representation learning. Fig. 4 illustrates the principle of such multichannel prediction layers.

First, we introduce a diagonal bilinear formulation using learnable channels {c;}, C R? that
interact with the pair embedding p € R? via element-wise (Hadamard) multiplication. Each pair p is
obtained using the pairwise concatenation of the nodes. Each channel produces a score through a
shared projection, the score of an edge prediction é corresponding to the node pair p is hence given
by:
c
é=>Y w'LN(¢; ©p), 3)
i=1
where w is a common weight vector and LN denotes a LayerNorm applied prior to aggregation. This
mechanism corresponds to a multichannel, low-rank-factorization-like of a diagonal bilinear form:

c d
é = ZZwk LN(Ciykpk). (4)
i=1 k=1
While this Hadamard-channels formulation is not strictly more expressive than the neurons of a
simple linear layer, it offers several practical advantages. In particular, it enforces a channel-wise
separation of parameters that improves optimization, keeps channel—pair Hadamard products in
structured form longer before summation, which stabilizes training and preserves richer interactions.

Following the same general idea, we also implement a dense bilinear variant faithful to a RESCAL
[38] formulation, where K relation-specific matrices R(*) € R%*¢ interact with the pair embedding
following the equation:

K
é=>p' R™p, p=LN(p), )
k=1

This dense formulation enables the model to capture complex cross-dimensional interactions and
more nuanced structural dependencies. However, throughout the paper, we adopt the diagonal
multichannel formulation as our default, since it offers nearly equivalent performance while being
significantly more efficient and stable to train. These learned channels could also be parametrized by
a feature aggregator to dynamically adapt to different or more complex network settings.
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Figure 4: Learnable channel values are multiplied with the node-pair embeddings. The result is
summed over the channels and scaled before being passed to a sigmoid. " - " denotes either a
Hadamard product or a matrix multiplication, depending on the model version, between each channel
with each node pair.

4 Results

We conduct our experiments with an Intel Xeon(R) E5-2650v3 @ 2.30 GHz CPU and a Tesla T4
GPU. Using only CPU, TopoFormer runs in less than 100 milliseconds. The models are trained using
standard binary cross-entropy and are equipped with one Transformer block unless stated otherwise.
The prediction layer consists in the concatenation of node pairs fed into a small MLP. In addition
to attention-based baselines, we benchmark a graph neural network in which virtual edges connect
each node to the neighbors in its communication range. The convolutional variant can also be seen
as a 1-layer DCGNN [33]. The model described as TopoFormer is a Transformer equipped with
CAM tokens, DDEs and a multichannel prediction layer. The uncertainty is computed as the standard
deviation over bootstrapped measurements. The 2-block TopoFormer also follows a second disjoint
CAM block iteration, in addition to the supplementary Transformer block. The embedding size is
d = 12, which corresponds to the smallest dimension yielding satisfactory accuracy. CAM-enhanced
ablations use a single CAM token.

Training uses the AdamW optimizer [44]. The learning rate linearly decays from 10~3 to 10=6
throughout training, while the weight decay is set to 10~ and disabled during the final 20 epochs.
Models are trained using batch size 64 for at most 4700 epochs with random seed 123 for repro-
ducibility. Early stopping based on validation loss is applied when convergence is reached, and the
model achieving the highest validation accuracy is reported in bold.

4.1 Accuracy

Table 1: Accuracy of different ablations and models on our test set. The FLOPs column indicates the
relative percentage of computational cost compared to that of the standard 1-block Transformer.

Method Accuracy (%) FLOPs
Graph Convolutional Network [45] 87.4+4 -14%
Graph Attention Network [31] 88.1+.4 -8%
Graph Transformer [32] 89.9+.3 +8%
Transformer 90.9+.2 Reference
Transformer w/ CAM 92.9+.2 +7%
Transformer w/ DDE 93.7+£.2 +3%
TopoFormer w/ Multichannel Hadamard 95.1+£2 +12%
TopoFormer w/ Multichannel Factorization 95.2+.2 +14%
2-block Transformer 99.0+.1 +89%
TopoFormer w/ 2 blocks 99.9+.1 +100%

Table 1 shows that TopoFormer outperforms the baseline Transformer, and significantly outclasses a
range of GNN models. The results underline that DDEs have a high impact, and that the rest of the
architecture enhancements also bring about an improvement for a low computational overhead. The
bilinear multichannel prediction offers the best accuracy but seems less computation-efficient than the
Hadamard-based version. Attention-based models perform better than locality-based graph models.
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Table 2: Comparison of the results of our Hadamard multichannel prediction layer with the pairwise
linear prediction, both without any backbone network. Variance is used as a proxy for the ability to
clearly separate Os and 1s.

Prediction Layer Accuracy (%) Variance
Pairwise Linear Layer 79.42+5 0.038
Large Pairwise Linear Layer 82.89 5 0.057
Multichannel Hadamard 86.91+5 0.086

Table 3: Exploration of the head number/head size trade-off for our model.

Ablation Accuracy (%)
One 12D head 94.07+.3
Two 6D heads 94.46+.3
Three 4D heads 94.81+.3
Six 2D heads 95.16x.2

Learnable DDEs were less computationally efficient than their handcrafted counterpart, their results
are not showcased for clarity. Please note that, in a Transformer model, increasing the embedding
dimension from 12 to 14, the next non-prime number (required for multi-head attention), would raise
the number of FLOPs required by roughly 27%.

Figure 5: Example of a neural-network-generated 16-node topology.

Fig. 5 shows an example of a generated topology using our architecture.

In Table 2, we isolate the effect of the prediction layers by measuring the accuracy on our prediction
task without using any complex backbone network, with the nodes simply being fed to a small
node-wise MLP. The Large Pairwise Linear Layer is made k times larger than the Pairwise Linear
Layer, k being the number of channels in the Multichannel Hadamard in order to verify that the
sheer number of parameters is not enough to explain the performance increase. The Hadamard-based
multichannel layer appears to possess some intrinsic expressivity that allows it to discriminate links
better than simple linear pairwise matching. Table 3 shows that equipping the backbone Transformer
with numerous but small attention heads yields better accuracy than fewer but larger attention heads.

4.2 Throughput and Application

In order to be operational, the generated topologies should be post-processed following Alg.2, which
is on average is O(mlogm) and runs in less than 300 milliseconds, which yields a significant
speed-up as compared to the original greedy algorithm.

In Table 4, we report theoretical throughputs as upper bounds on the simultaneous information
exchange in the network. Topologies are obtained through the post-processing algorithm 2, which
derives a parity-based communication scheme, throughput is computed following the computations
simplified in App. 6.1, mainly reflecting link density and interference. The omnidirectional base-
line uses OLSR-like topologies with a communication range of about one quarter of the network



TopoFormer: An Efficient Link-Set Prediction Architecture for Ad Hoc Network Topology Generation

Algorithm 2 Post-Processing and Parity Assignment
Require: Gpreq = (V, Eprea), parity s : V — {TX,RX, UNCOLORED}, sectors {Q;}, model
T(-

Ensure: G = (V, E) bipartite (TX—RX), sector-feasible, connected
I: F < Epred
> (A) Sector pruning: at most one edge per sector and node, preserve connectivity
: forallv € V do
forallg € Q, do
while |{(v,u) € E: u € q}| > 1do
pick edge (v, ) with lowest per-link score t(v,u | F)
if (V, E\ {(v,u)}) remains connected then
E— E\{(v,u)}
elsebreak
> (B) Bipartite projection via 2-coloring (TX/RX) and removal of monochromatic edges
9: initialize s(v) + UNCOLORED if undefined
10: for all each connected component of (V, E') do

e A A ol

11: pick root r, set s(r) +— TX, push r on stack S

12: while S # () do

13: u < POP(S)

14: for all (u,v) € E do

15: if s(v) = UNCOLORED then

16: s(v) « opposite(s(u)), push v

17: bad + {(u,v) € E: s(u) = s(v)} > monochromatic

18: sort bad by ascending t(u,v | E)

19: for all e € bad (in order) do

20: if (V, E'\ {e}) remains connected then
21: E <+ E\{e}

22: return (V, E)

Table 4: Avg instantaneous throughput upper bound (Mbps)

OLSR-like Omni. Huangetal. MST+greedy Transformer TopoFormer \ Target
Throughput 1 47.24 52.89 63.46 69.36 74.77 | 79.33

diameter. Our approach halves the gap between Transformer and target throughput, and significantly
outperforms the omnidirectional case by leveraging directional antennas. Since the target algorithm
achieves 95 % of optimal throughput, TopoFormer reaches ~90 % with one block (and nearly yields
the same throughput as the target’s with two blocks). We observed that approximately 80 % of the
throughput improvement over the standard Transformer can be attributed to reduced interference.
Topologies produced by the method of Huang et al. [7], with parity scheduling assigned ex post,
reach about one-third lower throughput than the target, primarily due to residual interference and
limited antenna coordination. The MST+greedy baseline, which extends a minimum spanning tree
with additional links under antenna constraints, achieves about 19% lower throughput. Their average
execution times are approximately 700 ms and 1 s on CPU, respectively. The geometric interference
management in our topologies enables high network capacity, whereas omnidirectional topologies
are limited by local congestion, resulting in a striking difference in throughput.

5 Conclusion

We presented TopoFormer, a Transformer-based architecture to infer link sets from node sets, mim-
icking a complex network algorithm for steering directional antennas in mobile ad hoc networks.
Efficient modules enhance expressivity without enlarging the model, which only requires minimal
post-processing allowing for a fast scheduling enabling high network capacity.
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6 Appendix
6.1 Sum-Rate Throughput and Interference

Parity constraint. Nodes are partitioned into V; and V; via parities s : V — {0, 1}. We only allow
links across the partition: if (¢, j) € E then s; # s;. Directions follow parity (TX: s=0 to RX: s=1).

Sum-rate objective. The per-graph throughput is:

e
T = eij logy | 1+ 2]
(i;E ! 2 noise + Z ekl interference((i,j), (k, l))
5:=0, s,=1 (k,))EE
k;ﬁi,skzo,slzl
(6)
F(i(jvé)
d(i,5)2
+ e;; logy | 1+
(”z)éE ! noise + Z ey interference((j, 1), (k,1))
5;=0,5;=1 (k:,l)EE

k#3,sk=1,5,=0
For every possible link e;; € E, define:

* d(i,7): Euclidean distance between nodes 7 and j,

* R(i,j): transmission power, adapted to the distance between 7 and j (provided by an external
power-control algorithm),

* interference((4, j), (k,1)):

R(k,1)
d(k,j)* + €
where 1(-) equals 1 if the angular separation is < 6y,,x and 0 otherwise; € > 0 prevents division
by zero and bounds near-field gains,

interference((4, j), (k,1)) = 1(Z((k, 1), (k, 7)) < Omax) @)

* J(i,a): the set of links that must use node 4’s antenna sector « if selected (this set can change
with positions/orientations).

Exact simulation parameters remain outside the scope of this work, as they involve the physical
modeling of particular, possibly proprietary antenna patterns and behaviors, as well as precise
propagation environment modeling.

6.2 General Directional Density Encoding (2D/3D)
, and Am, =

For v with position x, € R? (d € {2,3}), let Ay = Xy — Xp» Tuw = || Duo
A/ max(ryy, €) (unit direction; e > 0). Let the set of axis directions be

Sy ={+e;,—e;,+ey,—e,} (2D), Sz =S U{+e.,—e.} (3D).
With a radial kernel K (r) = exp( — r2/(20?)), the directional density vector is

d('U) = Z K(Tuv) [ [<Auv> S>]+ ]SESd’ where [Z]-F = max(O, Z)
ueVA\{v}
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In 2D this yields the (right, left, up, down) components; in 3D it extends to (+z, £y, +z).
We can then compute the DDEs for a 3D point cloud:

Let v have position x, = (T, v, 2,) € R3 and define Ay, = Xy — Xy, Tup = || Ao, Ay =
Ayy/ max(ry,,e) withe > 0, and K (r) = exp( — r?/(20?)). Using [z]4 = max(0, 2):

Vector form (6 directions):

d(sD) ZK Tuv ( Auv,m]«b [_Aumw]er [Auv,y]+, [_Auv7y]+a [Auv,z]+a [_Auvﬁz]+)~
uFv

Expanded components:

D+T Z K Tm) [Auv r] +5 D_m(’l)) = Z K(’I"m)) [7Au1),m]+7
uFv uFv

D+y Z K ruv A uv y] D_y(U) = Z K(’I‘uv) [_Auv,y]-H
uFv uFv

Die(0) =Y K(rw)[Auw:le,  Doo(v) =) K(ruw) A
uFv uFv
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