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Abstract1

In this paper, we present TopoFormer, a powerful architecture for predicting2

links between communication nodes in mobile networks. The goal is to imi-3

tate, in real time, the results of a costly combinatorial algorithm that generates4

topologies for networks with directional antennas. These antennas offer excellent5

performance but require complex, interdependent steering decisions in real time.6

Our Transformer-based architecture is enhanced with efficient components that7

add useful inductive biases, making it suitable for environments where scaling8

is limited. A key contribution is the introduction of directional density encod-9

ings, which help the attention mechanism better separate nodes in dense clusters.10

Equipped with our modules, a single Transformer block of dimension 12 achieves11

over 95 % accuracy, reducing the gap to optimality by half compared to a plain12

1-block Transformer while requiring only 12 % more computation. Using two13

blocks, the model comes close to perfect accuracy.14

1 Introduction15

1.1 Link Topology Generation for Mobile Ad Hoc Networks16

We address the generation of link topologies in wireless mobile networks using directional antennas.17

We tackle real-time link topology generation in MANETs with directional antennas, selecting links18

that form a bipartite backbone for antenna steering under sectorization, range, and interference19

constraints. The bipartiteness corresponds to the need to allocate emission and reception slots20

to each node, alternately. Fig. 1 illustrates our problem. While protocols like OLSR [1] and21

AODV [2] adapt well with omnidirectional antennas, they incur high interference; directional links22

boost throughput [3] but require complex, interdependent decisions. Existing approaches, UAV23

placement, topology control, adaptive beam/power tuning [4, 5, 6, 7, 8], or greedy link selection [9],24

are often sub-optimal or mobility-dependent. Combinatorial optimization produces quality static25

solutions [10, 11], but is too slow for mobility; instead, we learn to replicate these patterns from26

feasible topologies for fast and robust generation.27

The challenge is exacerbated by the limited computational resources of mobile nodes, which must28

also perform signal decoding, neighbor position prediction, and topology updates. Thus, the topology29

predictor must be efficient to preserve resources for other network tasks. Our approach is to replace a30

computationally expensive algorithm with an efficient neural network, capable of producing similar31

outputs in real time. While prior works on neural networks for wireless systems mainly address32

routing and performance prediction [12, 13, 14], we focus on efficient link topology generation.33

Applying autoregressive [15, 16] methods, GANs [17, 18], or VAEs [19, 20] to node-conditioned34

topology generation problem is not trivial [21], mostly because of the node-conditioning constraint.35

Diffusion-based approaches [22, 21] are more effective, but they demand substantial computation36

power. We rather follow a one-step supervised learning setting and enhance a Transformer, well-suited37

to point clouds [23, 24]—with a set of computationally efficient modules that provide useful structural38

inductive biases, partially avoiding the need to widen layers, which would increase computation39
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quadratically. Embedded architectures, notably small planes or UAVs, which generally do not allow40

for massive parallel computation, could typically benefit from such modules.41

Figure 1: Given a set of aerial nodes, a neural network is used to generate a link topology. We then
assign the nodes a binary emission-reception scheduling.

1.2 Message Passing and Its Expressivity42

In graph learning, rich node representations can be built via message passing [25, 26, 27], graph43

convolutions [19, 28, 29], or attention [30, 31, 32]. When edges are missing or must be predicted,44

GNNs require heuristic edges to enable message passing, such as the latent-space k-NN used in [33].45

However, this scheme is equivalent to local-masked attention with a fixed query vector, limiting its46

ability to capture long-range dependencies and non-local patterns, an essential capability for edge47

prediction [23, 24].48

While GNNs suffer from oversmoothing due to the message-passing bottleneck [34], attention-based49

models face similar issues [35]: as layers accumulate, node representations become indistinguishable.50

This is critical in small architectures with few, thin layers. Handcrafted node features can help51

but are often unsuitable here as they typically rely on predefined edges. Laplacian positional52

encodings [36] require a predefined edge set, Graphormer [23] encodes hop-based distances, and53

Graph-BERT [24] orders features by shortest-path hops. Without edges, such encodings degrade54

to simple Euclidean distances, scalar proximity measures that many models already recover. We55

address this by introducing Directional Density Encodings (DDE): a node’s DDE quantifies the56

density of neighbors along each axis of its local reference frame. In 2D, this yields a four-dimensional57

geometric signature capturing direction-weighted density, providing a strong relative positional cue58

even in edge-free settings and improving multiple link prediction.59

Furthermore, we incorporate cross-attentive modulation (CAM) tokens [21] to assist the message60

passing mechanism in adapting its behavior to the node layout, while also enabling a form of global61

control.62

These additional modules and features allow TopoFormer to hold particularly well-suited inductive63

biases for the prediction of full link topologies for any node layout.64

1.3 Towards more Expressive Link-Set Prediction65

Pairwise link prediction generally assumes that link candidates’ embeddings can be aligned pairwise.66

In [37], link prediction is formulated as a graph algorithm problem: deciding the existence of an edge67

is associated with evaluating a function over node pairs, which a message-passing mechanism can be68

trained to approximate.69

Although expressive and capable of good generalization, this paradigm assumes that a single decoding70

function, generally an inner product, can capture the many different relationships that underlie the71

existence of a link, which we assume could be improved using a mechanism that can model the72

different relations that can qualify a pair of nodes to form a link. The feature aggregator must then73

learn to precisely align nodes pairwise in the latent space to predict links, while having to capture74

complex patterns and global properties to ensure that these predicted links are correct. In the context75

of mobile networks, the heterogeneous nature of the topologies combined with the need for small and76

shallow neural architectures tend to challenge the capabilities of the feature aggregator.77
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As a simple way to enhance the capabilities of the prediction layer, we equip TopoFormer with a78

multichannel factorization method that can be interpreted as a flexible generalization of RESCAL79

[38] or TuckER [39] for one-dimensional link prediction. In our case, static relation-specific matrices80

are replaced by learned parameters that perform factorization over an arbitrary number of dimensions.81

It allows us to enhance the expressivity of the prediction layer while computationally scaling linearly82

with the number of channels.83

2 Problem Description84

Our work is motivated by a network topology problem that consists in finding an optimal set of links85

given a set of nodes described by their positions. It corresponds to a typical combinatorial problem86

that optimizes the link topology of a wireless network with directional antennas. The topologies87

feature a small (<32) number of nodes.88

We consider graphs with n ∈ [16, 32] nodes V , where each node v ∈ V is specified by 2D coordinates89

xv ∈ R2. Given these inputs, the model outputs an adjacency matrix E ∈ {0, 1}n×n encoding the90

predicted links (with Eij = 1 iff a link from i to j is present).91

Valid topologies are defined by several constraints and properties:92

• Each node may have at most four links.93

• There are strict link sectorization constraints regarding the placement of antennas.94

• Interference between links must be minimized, which implies avoiding acute angles between95

emitting nodes and their unintended receiving neighbor nodes.96

• The link topology must be connected.97

The problem cannot be trivially linearized and exhaustive methods are too heavy to be carried out in98

any reasonable amount of time, even to create a dataset. We therefore rely on a heuristic algorithm99

(Alg. 1) that follows:100

Algorithm 1 Greedy Topology Generation

Require: V , d(·, ·) the distance function, antenna sets {Ai}, sector map {Qi} (e.g. NE/NW/SE/SW),
threshold τ , parity s : V →{0, 1,⊥}, throughput model T (·) (simplified in App. 6.1)

Ensure: G = (V, E), updated parity s
1: E ← ∅
2: P ← {{i, j} ⊆ V | (si ̸= sj) ∨ (si = ⊥ ∨ sj = ⊥)}
3: order P by ascending d(i, j)
4: while (V, E) not connected and P ̸= ∅ do
5: take shortest pair {i, j} from P
6: if si, sj ̸= ⊥ and si = sj then continue
7: if si, sj ̸= ⊥ and si ̸= sj then ▷ direction fixed: TX s=0→ RX s=1
8: (a⋆, b⋆, t⋆)← arg maxa∈Ai, b∈Aj

t(i→j, a, b |E)
9: else ▷ at least one s = ⊥

10: (a⋆, b⋆, t→)← arg maxa,b t(i→j, a, b |E)
11: (ã⋆, b̃⋆, t←)← arg maxa,b t(j→i, a, b |E)
12: if t→ ≥ t← then
13: fix si←0 (if ⊥), sj←1 (if ⊥); t⋆ ← t→

14: else
15: fix sj←0 (if ⊥), si←1 (if ⊥); (a⋆, b⋆)← (ã⋆, b̃⋆); t⋆ ← t←

16: sector constraint: let qi(a⋆) ∈ Qi, qj(b⋆) ∈ Qj ; require degqi
(i) ≤ 0 and degqj

(j) ≤ 0
17: if t⋆ ≥ τ and sector constraint holds then
18: E ← E ∪ {(i, j)} ▷ activate with (a⋆, b⋆) and fixed direction
19: lock sectors: increment degqi

(i), degqj
(j)

20: return (V, E, s)

The nodes follow realistic trajectories representative of small fleets of manned aircraft. The generation101

algorithm evaluates throughput and interference with a high-fidelity simulation of signal propagation102

and antenna characteristics; a simplified formulation is given in Appendix 6.1.103
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Figure 2: The architecture of TopoFormer.

The topologies obtained achieve about 95 % of the throughput obtained using an exact and exhaustive104

algorithm (too slow even for data generation), they allow for a 1.7 times higher theoretical throughput105

than if using a standard omnidirectional protocol topology for a 16-node-network, and a 3.7 factor106

of improvement for a 32-node-network. The algorithm is at least O(m2) complex even without107

considering implicit parity checks, m being the number of edges. It is not suitable for real-time use,108

but can be used to generate a dataset. Indeed, while its execution time is approximately one second109

for 16-node-instances on a modern CPU, it may increase when the initial iterations fail to naturally110

converge to viable solutions and explodes when dealing with more than 30 nodes. Imitating such111

graphs with a neural network demands both global control capabilities in order to provide plausible112

large-scale connectivity patterns and the ability to model the different kinds of relationship between113

nodes that can lead to the presence of a link. Accurately reproducing the patterns and construction114

rules of such dataset graphs would enable finding high-performance complex topologies in real time.115

3 Our Architecture116

In this section, we detail the neural architecture that we adopt in order to imitate the results of our117

costly algorithm.118

3.1 Overview of Our Architecture119

Inspired by the effectiveness of attention-based models to deal with point clouds [23, 24], we adopt120

the Transformer [30] as the backbone of our architecture. We implement it with no sequence-based121

encodings [30], in order to keep permutation invariance, nor spectral [36] positional encoding, since122

the edges are the object we seek to predict. Given the limited width of the layers in TopoFormer, a123

trade-off arises between using a small number of attention heads or assigning a low dimensionality124

to each head. We opt for a larger number of lightweight (1- or 2-dimensional) attention heads. Our125

empirical results presented in Table 3 justify this choice.126

The nodes are enriched with directional density encodings, which we detail in Sec. 3.2. The model is127

equipped with multichannel prediction layers, as introduced in Sec. 3.3.128

To enhance its adaptability to heterogeneous topologies, we augment it with CAM tokens [21], which129

have been designed to facilitate the generation of valid network topologies with respect to the global130

layout of the nodes. They provide dynamic modulation of the backbone model’s behavior based131

on the overall node layout, captured through cross-attention. They allow the model to efficiently132

adapt its behavior to the heterogeneous nature of network topologies. Such tokens are inspired by133

global tokens such as CLS [40] tokens or registers [41], while their modulation process consists in the134

conditioning of a FiLM [42] layer. Such tokens allow us to capture global patterns without directly135

increasing the dimension of the attention mechanism, with a linear complexity scaling with respect to136

the number of nodes.137

We choose to condition the modulation solely on the CAM token representation, as this proved138

to be more effective in our experiments under a low-parameter regime. This contrasts with the139
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v
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Figure 3: Illustration of the computation of DDEs for a node v.

original formulation, which applies modulation through an elementwise product between each node140

embedding and the CAM token value.141

Let H ∈ RN×d denote the node embeddings at layer ℓ, and Hℓ
CAM ∈ R1×d the corresponding CAM142

token representation. The modulation is computed as follows:143

Hℓ
CAM ← CrossAttn

(
Hℓ−1

CAM, H, H
)
, γℓ, βℓ ← FFN

(
Hℓ

CAM
)
,

144

Hupdated = γℓ ⊙H + βℓ.

Here, ⊙ denotes the Hadamard product. The feed-forward network (FFN) is implemented as a simple145

sequence of linear layers with ReLU activations. This formulation allows the CAM token to globally146

summarize the graph state and to generate adaptive modulation parameters (γℓ, βℓ) applied uniformly147

across all node embeddings.148

Fig. 2 shows the architecture of our framework.149

3.2 Directional Density Encoding150

We equip TopoFormer with directional density encodings in order for the nodes to be easily distin-151

guishable by attention mechanism, especially when they are located within dense clusters. Fig. 3152

shows an illustration of the computation of DDEs for an arbitrary node.153

Let v have position xv = (xv, yv) ∈ R2 and define ∆uv = xu − xv, ruv = ∥∆uv∥,154

∆̂uv = ∆uv/ max(ruv, ε) with ε > 0, and K(r) = exp(−r2/(2σ2)).155

156

Using [z]+ = max(0, z), set157

Dright(v) =
∑
u̸=v

K(ruv) [ ∆̂uv,x ]+, Dleft(v) =
∑
u ̸=v

K(ruv) [−∆̂uv,x]+,

Dup(v) =
∑
u̸=v

K(ruv) [ ∆̂uv,y ]+, Ddown(v) =
∑
u ̸=v

K(ruv) [−∆̂uv,y]+.

One can also derive a learnable and continuous generalization of DDEs to an arbitrary number of158

dimensions by introducing H learnable directional vectors, {qh}H
h=1 ⊂ Rd, which act as heads159

similar to attention, without a softmax. For a given node v with position xv ∈ Rd, the h-th directional160

density component is computed as:161

Dh(v) =
∑
u∈V
u̸=v

ϕ (∥xu − xv∥) · q⊤h (xu − xv) (1)

where:162
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• qh ∈ Rd is a learnable direction vector (the h-th head),163

• xv , xu are the latent positions of nodes v and u respectively,164

• ϕ : R+ → R+ is a distance-based weighting function, such as ϕ(r) = exp(−r2/2σ2).165

The resulting vector d(v) = [D1(v), . . . , DH(v)] ∈ RH encodes the anisotropic density of neigh-166

boring nodes around v along each learned direction. Unlike standard attention mechanisms, this167

formulation does not use a softmax normalization, allowing each head to accumulate density informa-168

tion instead of normalizing it, thereby preserving both directionality and local concentration, allowing169

them to “count” easily.170

Throughout this paper, we prefer the non-learnable version of DDEs, as it is much more computation-171

ally efficient.172

In practice, because the Gaussian weight ϕ(r) = exp
(
−r2/2σ2)

decays rapidly, only nodes lying173

within a fixed radius r≈3σ contribute non-negligibly to the directional density encoding (DDE). To174

avoid inspecting all∼N2 pairs, we first insert the N node positions into a kd-tree [43], a binary space-175

partitioning structure that recursively splits the point set along coordinate axes, yielding a balanced176

search tree of depth O(log N). A radius query on this tree visits only the buckets intersecting the177

hypersphere of radius r around a query node and therefore returns, on average, a constant number k178

of nearby neighbours, independent of N for bounded density. With k treated as a small constant, the179

overall complexity is O(N log N), and the aggregation of the four DDE components adds only an180

O(Nk) linear pass over the reported neighbours. Hence the truncated scheme retains nearly all the181

relevant mass while reducing the theoretical cost from quadratic to near-linear.182

3.3 Multichannel scoring mechanisms.183

To model the diversity of structural factors that can lead to link formation, ranging from local motifs184

to more global topological cues, we explore two bilinear scoring strategies inspired by relational185

representation learning. Fig. 4 illustrates the principle of such multichannel prediction layers.186

First, we introduce a diagonal bilinear formulation using learnable channels {ci}C
i=1 ⊂ Rd that187

interact with the pair embedding p ∈ Rd via element-wise (Hadamard) multiplication. Each pair p is188

obtained using the pairwise concatenation of the nodes. Each channel produces a score through a189

shared projection, the score of an edge prediction ê corresponding to the node pair p is hence given190

by:191

ê =
C∑

i=1
w⊤ LN(ci ⊙ p),

where w is a common weight vector and LN denotes a LayerNorm applied prior to aggregation. This192

mechanism corresponds to a multichannel, low-rank-factorization-like of a diagonal bilinear form:193

ê =
C∑

i=1

d∑
k=1

wkci,kpk.

While this Hadamard-channels formulation is not strictly more expressive than the neurons of a194

simple linear layer, it offers several practical advantages. In particular, it enforces a channel-wise195

separation of parameters that improves optimization, keeps channel–pair Hadamard products in196

structured form longer before summation, which stabilizes training and preserves richer interactions.197

Following the same general idea, we also implement a dense bilinear variant faithful to a RESCAL198

[38] formulation, where K relation-specific matrices R(k) ∈ Rd×d interact with the pair embedding199

following the equation:200

ê =
K∑

k=1
p⊤R(k)p.

This dense formulation enables the model to capture complex cross-dimensional interactions and201

more nuanced structural dependencies. However, throughout the paper, we adopt the diagonal202

multichannel formulation as our default, since it offers nearly equivalent performance while being203

significantly more efficient and stable to train. These learned channels could also be parametrized by204

a feature aggregator to dynamically adapt to different or more complex network settings.205
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Figure 4: Learnable channel values are multiplied with the node-pair embeddings. The result is
summed over the channels and scaled before being passed to a sigmoid. " · " denotes either a
Hadamard product or a matrix multiplication, depending on the model version, between each channel
with each node pair.

4 Results206

We conduct our experiments with an Intel Xeon(R) E5-2650v3 @ 2.30 GHz CPU and a Tesla T4207

GPU. Using only CPU, TopoFormer runs in less than 100 milliseconds. The models are trained using208

standard binary cross-entropy and are equipped with one Transformer block unless stated otherwise.209

The prediction layer consists in the concatenation of node pairs fed into a small MLP. In addition210

to attention-based baselines, we benchmark a graph neural network in which virtual edges connect211

each node to the neighbors in its communication range. The convolutional variant can also be seen212

as a 1-layer DCGNN [33]. The model described as TopoFormer is a Transformer equipped with213

CAM tokens, DDEs and a multichannel prediction layer. The uncertainty is computed as the standard214

deviation over bootstrapped measurements. The 2-block TopoFormer also follows a second disjoint215

CAM block iteration, in addition to the supplementary Transformer block. The embedding size is216

d = 12, which corresponds to the smallest dimension yielding satisfactory accuracy. CAM-enhanced217

ablations use a single CAM token.218

Training uses the AdamW optimizer [44]. The learning rate linearly decays from 10−3 to 10−6219

throughout training, while the weight decay is set to 10−3 and disabled during the final 20 epochs.220

Models are trained using batch size 64 for at most 4700 epochs with random seed 123 for repro-221

ducibility. Early stopping based on validation loss is applied when convergence is reached, and the222

model achieving the highest validation accuracy is reported in bold.223

4.1 Accuracy224

Table 1: Accuracy of different ablations and models on our test set. The FLOPs column indicates the
relative percentage of computational cost compared to that of the standard 1-block Transformer.

Method Accuracy (%) FLOPs
Graph Convolutional Network [45] 87.4±.4 -14%
Graph Attention Network [31] 88.1±.4 -8%
Graph Transformer [32] 89.9±.3 +8%
Transformer 90.9±.2 Reference
Transformer w/ CAM 92.9±.2 +7%
Transformer w/ DDE 93.7±.2 +3%
TopoFormer w/ Multichannel Hadamard 95.1±.2 +12%
TopoFormer w/ Multichannel Factorization 95.2±.2 +14%

2-block Transformer 99.0±.1 +89%
TopoFormer w/ 2 blocks 99.9±.1 +100%

Table 1 shows that TopoFormer outperforms the baseline Transformer, and significantly outclasses a225

range of GNN models. The results underline that DDEs have a high impact, and that the rest of the226

architecture enhancements also bring about an improvement for a low computational overhead. The227

bilinear multichannel prediction offers the best accuracy but seems less computation-efficient than the228
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Table 2: Comparison of the results of our Hadamard multichannel prediction layer with the pairwise
linear prediction, both without any backbone network. Variance is used as a proxy for the ability to
clearly separate 0s and 1s.

Prediction Layer Accuracy (%) Variance
Pairwise Linear Layer 79.42±.5 0.038
Large Pairwise Linear Layer 82.89 ±.5 0.057
Multichannel Hadamard 86.91±.5 0.086

Table 3: Exploration of the head number/head size trade-off for our model.

Ablation Accuracy (%)
One 12D head 94.07±.3
Two 6D heads 94.46±.3
Three 4D heads 94.81±.3
Six 2D heads 95.16±.2

Hadamard-based version. Attention-based models perform better than locality-based graph models.229

Learnable DDEs were less computationally efficient than their handcrafted counterpart, their results230

are not showcased for clarity. Please note that, in a Transformer model, increasing the embedding231

dimension from 12 to 14, the next non-prime number (required for multi-head attention), would raise232

the number of FLOPs required by roughly 27%.233

Figure 5: Example of a neural-network-generated 16-node topology.

Fig. 5 shows an example of a generated topology using our architecture.234

In Table 2, we isolate the effect of the prediction layers by measuring the accuracy on our prediction235

task without using any complex backbone network, with the nodes simply being fed to a small236

node-wise MLP. The Large Pairwise Linear Layer is made k times larger than the Pairwise Linear237

Layer, k being the number of channels in the Multichannel Hadamard in order to verify that the238

sheer number of parameters is not enough to explain the performance increase. The Hadamard-based239

multichannel layer appears to possess some intrinsic expressivity that allows it to discriminate links240

better than simple linear pairwise matching. Table 3 shows that equipping the backbone Transformer241

with numerous but small attention heads yields better accuracy than fewer but larger attention heads.242

4.2 Throughput and Application243

In order to be operational, the generated topologies should be post-processed following Alg.2, which244

is on average is O(m log m) and runs in less than 300 milliseconds.245

In Table 4, we report theoretical throughputs as upper bounds on the simultaneous information246

exchange in the network. Topologies are obtained through the post-processing algorithm 2, which247

derives a parity-based communication scheme, throughput is computed following the computations248

simplified in App. 6.1, mainly reflecting link density and interference. The omnidirectional base-249

line uses OLSR-like topologies with a communication range of about one quarter of the network250
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Algorithm 2 Post-Processing and Parity Assignment

Require: Gpred = (V, Epred), parity s : V →{TX, RX, UNCOLORED}, sectors {Qi}, model
T (·)

Ensure: G = (V, E) bipartite (TX→RX), sector-feasible, connected
1: E ← Epred

▷ (A) Sector pruning: at most one edge per sector and node, preserve connectivity
2: for all v ∈ V do
3: for all q ∈ Qv do
4: while |{(v, u) ∈ E : u ∈ q}| > 1 do
5: pick edge (v, u) with lowest per-link score t(v, u |E)
6: if (V, E \ {(v, u)}) remains connected then
7: E ← E \ {(v, u)}
8: elsebreak

▷ (B) Bipartite projection via 2-coloring (TX/RX) and removal of monochromatic edges
9: initialize s(v)← UNCOLORED if undefined

10: for all each connected component of (V, E) do
11: pick root r, set s(r)← TX, push r on stack S
12: while S ̸= ∅ do
13: u← POP(S)
14: for all (u, v) ∈ E do
15: if s(v) = UNCOLORED then
16: s(v)← opposite(s(u)), push v

17: bad ← {(u, v) ∈ E : s(u) = s(v)} ▷ monochromatic
18: sort bad by ascending t(u, v |E)
19: for all e ∈ bad (in order) do
20: if (V, E \ {e}) remains connected then
21: E ← E \ {e}
22: return (V, E)

Table 4: Avg instantaneous throughput upper bound (Mbps)

OLSR-like Omni. Huang et al. MST+greedy Transformer TopoFormer Target

Throughput ↑ 47.24 52.89 63.46 69.36 74.77 79.33

diameter. Our approach halves the gap between Transformer and target throughput, and significantly251

outperforms the omnidirectional case by leveraging directional antennas. Since the target algorithm252

achieves 95 % of optimal throughput, TopoFormer reaches ∼90 % with one block (and nearly yields253

the same throughput as the target’s with two blocks). We observed that approximately 80 % of the254

throughput improvement over the standard Transformer can be attributed to reduced interference.255

Topologies produced by the method of Huang et al. [7], with parity scheduling assigned ex post,256

reach about one-third lower throughput than the target, primarily due to residual interference and257

limited antenna coordination. The MST+greedy baseline, which extends a minimum spanning tree258

with additional links under antenna constraints, achieves about 19% lower throughput. Their average259

execution times are approximately 700 ms and 1 s on CPU, respectively. The geometric interference260

management in our topologies enables high network capacity, whereas omnidirectional topologies261

are limited by local congestion, resulting in a striking difference in throughput.262

5 Conclusion263

We presented TopoFormer, a Transformer-based architecture to infer link sets from node sets, mim-264

icking a complex network algorithm for steering directional antennas in mobile ad hoc networks.265

Efficient modules enhance expressivity without enlarging the model, which only requires minimal266

post-processing allowing for a fast scheduling enabling high network capacity.267
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6 Appendix377

6.1 Sum-Rate Throughput and Interference378

Parity constraint. Nodes are partitioned into V0 and V1 via parities s : V →{0, 1}. We only allow379

links across the partition: if (i, j) ∈ E then si ̸= sj . Directions follow parity (TX: s=0 to RX: s=1).380

Sum-rate objective. The per-graph throughput is:381

T =
∑

(i,j)∈E
si=0, sj=1

eij log2

1 +
R(i,j)
d(i,j)2

noise +
∑

(k,l)∈E
k ̸=i, sk=0, sl=1

ekl interference
(
(i, j), (k, l)

)


+
∑

(i,j)∈E
si=0, sj=1

eij log2

1 +
R(j,i)
d(i,j)2

noise +
∑

(k,l)∈E
k ̸=j, sk=1, sl=0

ekl interference
(
(j, i), (k, l)

)
 .

(2)

For every possible link eij ∈ E, define:382

• d(i, j): Euclidean distance between nodes i and j,383

• R(i, j): transmission power, adapted to the distance between i and j (provided by an external384

power-control algorithm),385

• interference((i, j), (k, l)):386

interference((i, j), (k, l)) = R(k, l)
d(k, j)2 + ϵ

1(∠((k, l), (k, j)) ≤ θmax) , (3)

where 1(·) equals 1 if the angular separation is ≤ θmax and 0 otherwise; ϵ > 0 prevents division387

by zero and bounds near-field gains,388

• δ(i, a): the set of links that must use node i’s antenna sector a if selected (this set can change389

with positions/orientations).390

Exact simulation parameters remain outside the scope of this work, as they involve the physical391

modeling of particular, possibly proprietary antenna patterns and behaviors, as well as precise392

propagation environment modeling.393

6.2 General Directional Density Encoding (2D/3D)394

For v with position xv ∈ Rd (d ∈ {2, 3}), let ∆uv = xu − xv, ruv = ∥∆uv∥, and ∆̂uv =395

∆uv/ max(ruv, ε) (unit direction; ε > 0). Let the set of axis directions be396

S2 = {+ex,−ex, +ey,−ey} (2D), S3 = S2 ∪ {+ez,−ez} (3D).

With a radial kernel K(r) = exp
(
− r2/(2σ2)

)
, the directional density vector is397

d(v) =
∑

u∈V \{v}

K(ruv)
[

[⟨∆̂uv, s⟩]+
]

s∈Sd
, where [z]+ = max(0, z).
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In 2D this yields the (right, left, up, down) components; in 3D it extends to (±x,±y,±z).398

We can then compute the DDEs for a 3D point cloud:399

Let v have position xv = (xv, yv, zv) ∈ R3 and define ∆uv = xu − xv, ruv = ∥∆uv∥, ∆̂uv =400

∆uv/ max(ruv, ε) with ε > 0, and K(r) = exp
(
− r2/(2σ2)

)
. Using [z]+ = max(0, z):401

Vector form (6 directions):402

d(3D)(v) =
∑
u ̸=v

K(ruv)
(

[∆̂uv,x]+, [−∆̂uv,x]+, [∆̂uv,y]+, [−∆̂uv,y]+, [∆̂uv,z]+, [−∆̂uv,z]+
)

.

Expanded components:403

D+x(v) =
∑
u̸=v

K(ruv) [∆̂uv,x]+, D−x(v) =
∑
u̸=v

K(ruv) [−∆̂uv,x]+,

D+y(v) =
∑
u̸=v

K(ruv) [∆̂uv,y]+, D−y(v) =
∑
u̸=v

K(ruv) [−∆̂uv,y]+,

D+z(v) =
∑
u̸=v

K(ruv) [∆̂uv,z]+, D−z(v) =
∑
u̸=v

K(ruv) [−∆̂uv,z]+.
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