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Abstract

This paper presents a novel Dialectal Sound001
and Vowelization Recovery framework, de-002
signed to recognize borrowed and dialec-003
tal sounds within phonologically diverse and004
dialect-rich languages, that extends beyond its005
standard orthographic sound sets. The pro-006
posed framework utilized quantized sequence007
of input with(out) continuous pretrained self-008
supervised representation. We show the effi-009
cacy of the pipeline using limited data for Ara-010
bic, a dialect-rich language containing more011
than 22 major dialects. Phonetically correct012
transcribed speech resources for dialectal Ara-013
bic is scare. Therefore, we introduce Arab-014
Voice15, a first of its kind, curated test set015
featuring 5 hours of dialectal speech across016
15 Arab countries, with phonetically accurate017
transcriptions, including borrowed and dialect-018
specific sounds. We described in detail the019
annotation guideline along with the analysis020
of the dialectal confusion pairs. Our extensive021
evaluation includes both subjective – human022
perception tests and objective measures. Our023
empirical results, reported with three test sets,024
show that with only one and half hours of train-025
ing data, our model improve character error026
rate by ≈ 7% in ArabVoice15 compared to the027
baseline.028

1 Introduction029

Self-supervised learning (SSL) paradigm has trans-030

formed speech research and technology, achiev-031

ing remarkable performance (Baevski et al., 2020;032

Chen et al., 2022) while reducing the dependency033

on extensively annotated datasets (Radford et al.,034

2023). The SSL models excel at discerning the un-035

derlying acoustic properties in both frames and ut-036

terance level (Pasad et al., 2021, 2023; Chowdhury037

et al., 2023) irrespective of language. Phonetic038

information is sailent and preserved even when039

these continuous representations are mapped to040

a finite set of codes via vector quantization (Hsu041

et al., 2021a; Sicherman and Adi, 2023; Wells et al.,042

2022; Kheir et al., 2024). This allows the learning 043

paradigm to leverage unlabeled data to discover 044

units that capture meaningful phonetic contrasts. 045

Leveraging insights from acoustic unit discov- 046

ery (Park and Glass, 2008; Versteegh et al., 2015; 047

Dunbar et al., 2017; Eloff et al., 2019; Van Niek- 048

erk et al., 2020), unsupervised speech recognition 049

(Baevski et al., 2021a; Da-Rong Liu and shan Lee, 050

2018; Chen et al., 2019; Da-rong Liu and yi Lee, 051

2022; Baevski et al., 2021b), and phoneme seg- 052

mentation (Kreuk et al., 2020; Bhati et al., 2022; 053

Dunbar et al., 2017; Versteegh et al., 2015) have 054

utilized quantized discrete units for various pur- 055

poses. These include (i) pretraining the SSL model 056

(Baevski et al., 2020; Hsu et al., 2021a), (ii) em- 057

ploying acoustic unit discovery as a training objec- 058

tive (van Niekerk et al., 2020), and (iii) utilizing 059

discrete labels for training phoneme recognition 060

and automatic speech recognition (Chang et al., 061

2023; Da-rong Liu and yi Lee, 2022; Da-Rong Liu 062

and shan Lee, 2018). 063

Inspired by previous research, we employ SSL 064

representations and vector quantization to recog- 065

nize acoustic units in phonologically diverse spo- 066

ken dialects, extending beyond their standard or- 067

thographic sound sets. We introduce a simple yet 068

potent network leveraging SSL and a discrete code- 069

book to recognize these non-orthographic dialectal 070

and borrowed sounds with minimal labeled data. 071

Arabic is an appropriate language choice for the 072

task. The language has a rich tapestry of dialects, 073

each with its unique characteristics in phonology, 074

morphology, syntax, and lexicon (Ali et al., 2021). 075

These dialects1 differ not only among themselves 076

but also when compared to Modern Standard Ara- 077

bic (MSA). While MSA prevails in official and 078

educational domains, Dialectal Arabic (DA) serves 079

as the means for daily communication. The diver- 080

1There are 22 Arab countries, and typically, there is more
than one dialect spoken in each Arab country (ex: rural versus
urban areas)
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sity in pronunciation and phoneme sets for DA goes081

beyond standardized MSA sound sets. Moreover,082

to add to the challenges, DA follows no standard or-083

thography. Therefore, despite the abundance of DA084

speech data in online platforms, accurately (phonet-085

ically correct) transcribed resources are scarce, cat-086

egorizing DA among the low-resource languages.087

To bridge this gap, we introduce the Arabic “Di-088

alectal Sound and Vowelization Recovery” (DSVR)089

framework. The proposed framework exploits the090

frame-level SSL embeddings and quantizes them091

to create a handful of discrete labels using k-means092

model. These discrete labels are then fed (can be093

in combination with SSL embeddings) as input to094

a transformer-based dialectal unit and vowel recog-095

nition (DVR) model.096

We show its efficacy for (a) dialectal and bor-097

rowed sound recovery; and (b) vowelization restora-098

tion capabilities with only 1 hour 30 minutes of099

training data. We introduced Arabic dialectal test100

set – “ArabVoice15”, a collection of 5 hours of101

dialectal speech and verbatim transcription with102

recovered dialectal and borrowed sounds from 15103

Arab countries. For vowelization restoration, we104

tested on 1 hour of speech data, sampled from105

CommonVoice-Ar (Ardila et al., 2019), transcribed106

by restoring short vowels. Our paper describes the107

phonetic rules adopted, special sounds considered108

along with detailed annotation guidelines for de-109

signing these test sets. Furthermore, we evaluate110

the quality of the intermediate discrete labels using111

human perceptual evaluation, in addition to other112

purity and clustering-based measures.113

We observed that these discrete labels can cap-114

ture speaker-invariant, distinct acoustic, and lin-115

guistic information while preserving the temporal116

information. Consequently, encapsulating the dis-117

criminate acoustic unit properties, which can be118

used to recover dialectal missing sounds. Our em-119

pirical results suggest that DSVR can exploit unla-120

beled data to design the codebook and then with a121

small amount of annotated data, a unit recognizer122

can be trained.123

Our contribution involves: (i) Proposed Ara-124

bic Dialectal Sound and Vowelization Recovery125

(DSVR) framework to recognize dialectal units126

and restore short vowels; (ii) Developed anno-127

tation guidelines for the verbatim dialectal tran-128

scription; (iii) Introduced and benchmark Arab-129

Voice152 test set – a collection of dialectal speech130

2Will be made publicly available upon acceptance.

and phonetically correct verbatim transcription of 131

5 hours of data. (iv) Released a small subset of 132

CommomVoice - Arabic (Ardila et al., 2019) data 133

with restored short vowels, dialectal and borrowed 134

sounds. 135

This study addresses the crucial challenge of identi- 136

fying and understanding these phonetic intricacies, 137

acknowledging their essential role in improving 138

the performance of speech processing applications 139

like dialectal Text-to-Speech (TTS) and Computer- 140

Assisted Pronunciation Training applications. To 141

the best of our knowledge, this study is the first 142

to attempt to automatically restore vowels, bor- 143

rowed and dialectal sounds for rich spoken dialec- 144

tal Arabic language with very limited amount of 145

data. Moreover, the study also introduce the very 146

first dialectal testset with phonetically correct tran- 147

scription representation. 148

2 Arabic Sounds 149

The exploration of phonotactic variations across 150

Arabic dialects, including MSA and other regional 151

dialects offers a rich field of study within the do- 152

main of Arabic linguistics. These variations are 153

not merely lexical, but phonetic and in many cases 154

deeply embedded in the phonological rules that dic- 155

tate the permissible combinations and sequences of 156

sounds within each dialect (Biadsy et al., 2009). 157

2.1 Related Studies 158

Limited research investigated dialectal sounds in 159

Arabic transcribed speech. (Vergyri and Kirchhoff, 160

2004) deployed an EM algorithm to automatically 161

optimize the optimal diacritic using acoustic and 162

morphological information combination. (Al Hanai 163

and Glass, 2014) employed automated text-based 164

diacritic restoration models to add diacritics to 165

speech transcriptions and to train speech recog- 166

nition systems with diacritics. However, the effec- 167

tiveness of text-based diacritic restoration models 168

for speech applications is questionable for several 169

reasons, as demonstrated in (Aldarmaki and Ghan- 170

nam, 2023), they often fail to accurately capture the 171

diacritics uttered by speakers due to the nature of 172

speech; hesitation, unconventional grammar, and 173

dialectal variations. This leads to a deviation from 174

rule-based diacritics. Recently, (Shatnawi et al., 175

2023) developed a joint text-speech model to incor- 176

porate the corresponding speech signal into the text 177

based diacritization model. 178

Grapheme to Phoneme (G2P) has been stud- 179
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ied thoroughly by many researchers across mul-180

tiple languages. Recent approaches in G2P in-181

clude data-driven and multilingual (Yu et al., 2020;182

Garg et al., 2024) mapping from grapheme se-183

quence to phoneme sequence. However, previous184

work in Arabic G2P is comprised of two steps:185

(i) Grapheme to vowelized-grapheme (G2V) to re-186

store the missing short vowels and (ii) Vowelized-187

grapheme to phoneme sequence (V2P). The first188

step is often statistical and deploys techniques189

like sequence-to-sequence; (Abdelali et al., 2016;190

Obeid et al., 2020) are used widely for restoring191

the missing vowels in Arabic. The second step is192

relatively one-to-one and can be potentially hand-193

crafted rules for MSA as well as various dialects, re-194

fer to (Biadsy et al., 2009; Ali et al., 2014) for more195

details. MSA Arabic speech recognition phoneme196

lexicon can be found here3197

The distinction between MSA and regional di-198

alects is nuanced; viewing them as separate is over-199

simplified. Arabs perceive them as interconnected,200

leading to diglossia, where MSA is for formal con-201

texts and dialects for informal ones, yet with sig-202

nificant overlap and blending (Ali et al., 2016b).203

(Chowdhury et al., 2020) studied dialectal code-204

switching in the Egyptian corpus in the Arabic Di-205

alect Idenitifcation (ADI) Challenge in the MGB-3206

challenge (Ali et al., 2017), which has been man-207

ually labeled per utterance. In this study, the re-208

searchers annotated the corpus per token, consider-209

ing both the linguistic and the acoustic cues. They210

showed that what has been labeled as Egyptian sen-211

tences, when studied per tokens; the corpus showed212

roughly 2.6K Egyptian words verus 9.3K MSA.213

Here is a brief overview of Arabic phonology and214

its dialectal sounds.215

2.2 MSA and Dialectal Phonlological216

Variations217

Arabic dialects exhibit phonological differences218

when compared to MSA, these differences might219

be noted across various aspects of pronunciation220

and phonology, such as consonants, vowels, and221

diphthongs. It’s suggested that Arabic generally en-222

compasses around 28 consonants, alongside three223

short vowels, three long vowels, though these num-224

bers could vary slightly depending on the dialect in225

question. The consonant pronunciation of �
H [θ], 	

X226

[D], 	
  [DQ], h. [dý], 	

� [dQ], and
�
� [q] cover most227

of the variations across Arabic dialects. Here are228

3https://catalog.ldc.upenn.edu/LDC2017L01

some examples of phones that vary between MSA 229

and various Arabic dialects. 230

• Interdental Consonants: In particular �
H [θ]/, 231

	
X [D] found in MSA are pronounced differ- 232

ently. For example, in Egyptian Arabic, they 233

are often pronounced as � [s]. 234

• The voiceless stop constant �
� [q] is a good 235

example across Arabic dialects, In many cases, 236

it will be pronounced as glottal stop Z [P] in 237

Egyptian dialect and voiced velar h. [dý] in 238

Gulf and Yemeni dialects. 239

• Long and short vowels might exhibit a reduc- 240

tion in duration or even drop in duration in 241

various dialects. In some dialects, the differ- 242

ence between long and short vowels may be 243

subtle to notice. 244

• The difference in stress between Arabic di- 245

alects can lead to different meanings. 246

The phonological differences and examples men- 247

tioned above do not cover all variations but high- 248

light several distinctions between Arabic dialects 249

and MSA. A depiction of certain MSA sound vari- 250

ations is presented in Appendix A.1. 251

3 Methodology 252

Figure 1 gives an overview of our proposed Dialec- 253

tal Sounds and Vowelization Restoration Frame- 254

work. The goal of the pipeline is to recover (ver- 255

batim) dialectal sound and short vowel units, us- 256

ing frame-level representation. Given an input 257

speech signal X = [x1, x2, · · · , xT ] of T frames, 258

the frame-level representation (Z) is first extracted 259

from a multilingual SSL pretrained model. 260

We subsampled frame-level vectors (Z̃ ⊂ Z) 261

to train a simple Vector Quantization (VQ) model 262

using k-means for getting a Codebook Ck, with k 263

categorical variables. Each cluster, in the codebook, 264

is then associated with a code Qk
i and a centroid 265

vector Gk
i . Using the Ck codebook, we infer the 266

discrete sequences codes Ẑ corresponding to the 267

input Z. Ẑ is the input of our Dialectal Units and 268

Vowel Recognition (DVR) module. 269

3.1 Pretrained Speech Encoder 270

The XLS-R4 model is a multilingual pre-trained 271

SSL model following the same architecture as 272

wav2vec2.0 (Baevski et al., 2020). It includes a 273

CNN-based encoder network to encode the raw 274

4https://huggingface.co/facebook/wav2vec2-large-xlsr-
53
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audio sample and a transformer-based context net-275

work to build context representations over the en-276

tire latent speech representation. The encoder net-277

work consists of 7 blocks of temporal convolution278

layers with 512 channels, and the convolutions in279

each block have strides and kernel sizes that com-280

press about 25ms of 16kHz audio every 20ms. The281

context network consists of 24 blocks with model282

dimension 1024, inner dimension 4096, and 16 at-283

tention heads.284

The XLS-R model has been pre-trained on285

around 436, 000 hours of speech across 128 lan-286

guages. This diverse dataset includes parlia-287

mentary speech (372, 000 hours in 23 European288

languages), read speech from Multilingual Lib-289

rispeech (44, 000 hours in 8 European languages),290

Common Voice (7, 000 hours in 60 languages),291

YouTube speech from the VoxLingua107 corpus292

(6, 600 hours in 107 languages), and conversational293

telephone speech from the BABEL corpus (≈294

1, 000 hours in 17 African and Asian languages).295

We opt for the smallest XLR-S (317M parame-296

ters) to minimize computational requirement. Our297

preliminary analysis revealed limitation in the298

XLR-S in differentiating between acoustic sounds,299

such as X [d]/ 	
� [dQ] and �

H [t]/   [tQ] present in300

MSA and DA. Consequently, we primed the model301

towards Arabic sounds by finetuning with 13 hours302

clean avaliable MSA data (Ardila et al., 2019) for303

ASR task. We restricted the training to 5 epoch304

to prevent the risk of catastrophic forgetting of the305

pretrained representation (Goodfellow et al., 2013).306

3.2 Vector Quantization307

Vector Quantization (Makhoul et al., 1985; Baevski308

et al., 2020) is a widely used technique for approxi-309

mating vectors or frame-level embeddings through310

a fixed codebook size. In our Vector Quantiza-311

tion (VQ) modules (see Figure 1), we pass for-312

ward a sequence of continuous feature vectors313

Z = {z1, z2, . . . , zT } and then assign each zt314

to its nearest neighbor in the trained codebook,315

Ck. In other words, each zt is replaced with the316

code Qk
i ∈ Ck assigned to the centroid Gk

i . The317

resultant discrete labels are quantized sequence318

Ẑ = {ẑ1, ẑ2, . . . , ẑT }. These labels are expected319

to facilitate better proninciation learning and in-320

corporate distinctive phonetic information in the321

subsequent layers.322

Training the Codebook For quantization, we uti-323

lized the k-means clustering model. We selected324

a random subset of frame-level representation for 325

training the cluster model. Moreover, to select 326

wide varieties of sound unit, we forced-aligned 327

the available/automatic transcription of the datasets 328

(see Section 5.1) with a GMM-HMM based ASR 329

models. Using the timestamps, we then select SSL 330

frame representations that aligned with wide vari- 331

eties of sound labels.5 We trained the codebook for 332

different k = {128, 256, 512} 333

3.3 Dialectal Units and Vowel Recognition 334

(DVR) Model 335

We explored two variants of DVR – discrete and 336

joint Model (as seen in Figure 2). The discrete 337

DVR takes only the discrete Ẑ labels from the VQ 338

as input, where as the joint module concatenate 339

both the Ẑ and Z inside the subsequent layer. The 340

resultant embeddings (for both model) are then 341

passed to the transformer layers and the head feed- 342

forward layer. The DVR model is optimized with 343

character recognition objective to identify arabic 344

units. 345

3.4 Baselines 346

As baselines, we initially opt for two architecture. 347

For the first, we have extracted the frozen frame- 348

level representation from the XLS-R model and 349

then passed it to a output head. The second, we 350

used the frozen frame-level representation to pass 351

to the feedforward layer followed by the transform- 352

ers and output head. The second architecture use 353

similar encoder as the DVR model (see Figure 2 354

Baseline). For brevity, we reported with the results 355

of the second architecture (SSL frame-level repre- 356

sentation with transformer-based encoder) as the 357

baseline of the paper. 358

4 ArabVoice15 Dataset 359

Spoken DA remains a low-resource language pri- 360

marily due to the scarcity of transcription that can 361

faithfully capture the diverse regional and borrowed 362

sounds in the standard written format. Such lack 363

of data posses significant challenge for speech and 364

linguistic research and evaluation. In this study, we 365

address this challenge by designing and developing 366

ArabVoice15 test set. Furthermore, we have also 367

enhanced a subset of the existing Arabic Common- 368

voice (Ardila et al., 2019), Ar:CVR dataset with 369

restored vowels, borrowed and dialectal sounds. In 370

the following sections, we will discuss the datasets, 371

510k sample frames for each sound label.
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Figure 1: Proposed Arabic Dialectal Sound and Vowelization Recovery (DSVR) Framework

Figure 2: Baseline and DVR – Discrete and Joint Model

preprocessing steps along with in detail annotation372

guidelines.373

ArabVoice15 is a collection of 5 hours of speech374

utterances randomly selected from testset of ADI17375

(Ali et al., 2019) dataset, widely used for dialect376

identification task. For the ArabVoice15, we se-377

lected a total of 2500 utterance, ≈ 146(±3.6) ut-378

terance from each of the 15 Arab countries includ-379

ing: Algeria (ALG), Egypt (EGY), Iraq (IRA), Jor-380

dan (JOR), Saudi Arabia (KSA), Kuwait (KUW),381

Lebanon (LEB), Libya (LIB), Morocco (MOR),382

Palestine (PAL), Qatar (QAT), Sudan (SUD), Syria383

(SYR), United Arab Emirates (UAE), and Yemen384

(YEM). The average utterance duration: 7-8 sec-385

onds. As for Ar : CV R, we randomly extracted386

21.38 hours from the Ar:CV trainset, which we387

then mannually annotated at both verbatim and388

vowelized level (test ≈ 1hr).389

Data Verbatim Pre-Processing We present a set390

of rules employed for data normalization, aiming391

to reduce annotators’ tasks through a rule-based392

phonemic letter-to-sound approach in Arabic, as393

detailed in (Al-Ghamdi et al., 2004). For vow- 394

elization, we initially applied diacritization (aka 395

vowelization or vowel restoration) module present 396

in the Farasa tool (Abdelali et al., 2016). We then 397

applied the following rule-based phonemic letter- 398

to-sound function to our dataset. This step also 399

removed any Arabic letters that are not tradition- 400

ally pronounced in spoken conversation. 401

• For @ [a:] : (i) If it appears within a word (not 402

at the beginning) and is followed by two conso- 403

nants, we delete it. For example, H. A
�
JºË@ I.

�
J» 404

[ktb a:lktb] becomes H. A
�
JºË I.

�
J» [ktb lktb]. (ii) 405

If it occurs at the beginning in the form of the def- 406

inite article È@, we replace it with [Pa]. For exam- 407

ple, ÕÎªÖÏ @ [a:lmQlm/] becomes ÕÎªÖÏ
�
Z [PalmQlm]. 408

• For È [l] : We removed the Shamsi (Sun) [l], that 409

refers to [l] in È@ followed by a Sun consonant 410

( �
I

�
KX

	
Y

	
�P 	Qå���¢¢ºÊ

	
K). For example: 	

àAÔgQË@ 411

[a:lrèman] becomes 	
àAÔgP@ [a:rèman] 412

• For
�
@, we replaced it wherever it occurred in the 413

text with @ Z [Pa:]. 414

• For Hamza shapes ( 
ø @




ð



@ Z), we normalized 415

them to Z [P]. 416

• For ø @, we normalized them to @ [a:/]. 417

• For Tanwin diacritics (
�
@ @
�

�
@ [/un/, /in/, /an/]) at 418

the end of a phrase, we replaced it with a short 419

vowel, and elsewhere, we turned it into 	
à
�
@, 	
à
�
@, 	
à@� 420

[/un/, /in/, /an/] to match the typical verbatim 421

sounds. 422

Annotation Guideline We gave extensive train- 423

ing to an expert transcriber, a native speaker from 424
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Dataset Source of Data Train (#hrs) Test (#hrs) Annotated with

Ar:CVR
+ Subset from Arabic Common Voice

(Ardila et al., 2019) Train split
1 hr (∗total 19 hrs) 1 hr

Restored short vowels, dialectal
and borrowed sounds

AR:TTS-data

Subset collected from available
test-to-speech speech corpus (2 speakers, one

from Egypt and Levantine region)
(Abdelali et al., 2022, 2024; Dalvi et al., 2024)

30 mins – –

EgyAlj
in-house, source Aljazeera Arabic channel,

containing MSA and Egy content
– 1.8 hrs

Semi-supervised transcription,
manually restored short vowels,
dialectal and borrowed sounds.

ArabVoice15+ A small subset for ADI17 (Ali et al., 2019) test set – 5 hrs
Transcribed with dialectal and

borrowed sound in consideration

Table 1: Train and Test dataset used for Dialectal Units and Vowel Recognition (DVR) model. ∗ present total hours of data
available and used to show the effect of training data size. + test data will be made available to the public.

Egypt, to provide the written form for each word425

and its verbatim transcription. For example, if the426

word is Õ
�
Î

��
¯ [qalam] (pen), and the speaker said Õ

�
Î

�
¿427

[kalam], then the transcriber writes [qalam/kalam].428

This is the summary of the annotation guidelines:429

• For sounds that are not in MSA and have been430

borrowed from foreign languages, the following431

special letters6 are used:432

– h� [g] as in the word Ég. ñk. “google” which is433

written as Ég. ñk. [ju:jl] / Ég� ñk� [gu:gl].434

– �
¬ [v] as in the word ñK
YJ


�
¯ “video” which is435

written as ñK
YJ

	
¯ [fi:dyu:] / ñK
YJ


�
¯ [vi:dyu:].436

– H� [p] as in the word ø


@Q�.�@


“spray” which is437

written as ø


@Q�.� [sbra:y] / ø



@Q��� [spra:y].438

• For dialectal sounds that are missed in MSA, the439

following special letters are used:440

– À (Gulf /Qaf/) as in the word ÈAÆ« which is441

written as ÈA
�
®« / ÈAÆ«.442

– The Egyptian/Syrian/Lebanese �
� [q] is pro-443

nounced mostly as Z [P] as in ÈA
�
¯ [qa:l] / È@Z444

[Pa:l].445

– �
  (Egyptian/Lebanese /Z/) as in the wordQê �¢J
K.446

is written as Qê
	
¢J
K. / Qê �¢J
K. .447

There are few words with special spellings that448

do not precisely reflect their pronunciation. In these449

cases, the transcriber writes both, as in the word450

@
	
Yë [hadha] / @ 	XAë (/ha:dha/). Numbers and some451

special symbols (ex: the percentage sign %) are452

written in letters and are being judged according to453

speakers’ pronunciation.454

6The special letters used in the annotation process do not
belong to the Arabic alphabet; instead, we borrowed them
from Farsi sharing similar Arabic shapes, these letters were
employed to represent distinct dialectal sounds.

Quality Control: Detection of possible annotation 455

errors was done automatically and doubtful cases 456

were returned to the transcriber for review. In ad- 457

dition, a manual inspection of random sentences 458

(10%) from each file was performed. Any file be- 459

low 90% accuracy was returned for full correction. 460

5 Experimental Design 461

5.1 Training Datasets and Resources 462

Datasets: Unspervised Codebook Generation 463

To train the codebook, we randomly selected ut- 464

terances from publicly available resources. For 465

Arabic sounds, we opt for utterances from official 466

CommonVoice train set along with Arabic TTS 467

data. Moreover, to add borrowed/special sounds 468

missing in MSA phonetic set (e.g., /g, v, p/), we 469

included publicly available English datasets like 470

LibriSpeech (Panayotov et al., 2015), and TIMIT 471

(Garofolo et al., 1993). For the subsampling pro- 472

cess, we opt for hybrid ASR systems7 for Arabic 473

and Montreal Forced-Aligner8 for the English. 474

Datasets: Spervised DVR Model To train the 475

DVR model, we opt for a small training dataset to 476

showcase our the efficacy of our proposed frame- 477

work in low-resource setting. The details of dataset 478

used for DVR is presented in Table 1. For the train- 479

ing, we utilize dataset transcribed with restored 480

vowels, borrowed and dialectal sounds. We used 1 481

hour 30 minutes of training data in this study. 482

5.2 Model Training 483

The Models, presented in Figure 2, are optimized 484

using Adam optimizer for 50 epochs with an early 485

stopping criterion. The initial learning rate is 486

7Trained on Arabic CommonVoice
8https://github.com/MontrealCorpusTools/

Montreal-Forced-Aligner.git
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1× 10−4, and a batch size of 16 is employed. The487

loss criterion is CTC loss, utilized for predicting488

verbatim sequences. The input dimension for the489

SSL frame-level representation is d = 1024, the490

dimension of the discrete labels d = k. For all the491

architectures in Figure 2, the dimension of feedfor-492

ward (FF) layer is d = 512. For the DVR joint, the493

output from the FFs (d̂, e) are concatenated to form494

[d̂, e] of dimension d = 1024. These outputs are495

then passed to 2 transformer encoders each with 8496

attention heads. Following, the encoded informa-497

tion is then projected to output head of dimension498

V = 39 equivalent to the characters supported by499

the models. The total number of trainable parame-500

ters are Baseline:7.634M; DVR discrete:7.110M;501

and joint: 33.346M.502

5.3 Evaluation Measures503

We used Davis-Bouldin index (DBindex) to se-504

lect the k value for our codebook. The DBindex is505

widely used in clustering performance evaluation506

(Davies and Bouldin, 1979), and is characterized by507

the ratio of within-cluster scatter to between-cluster508

separation. A lower DBindex value is better, signi-509

fying compact clustering. Following, we adapted510

the approach of (Hsu et al., 2021b) to evaluate the511

codebook quality using Phone Purity, Cluster Pu-512

rity, and Phone-Normalized Mutual Information513

(PNMI). These measures use frame-level alignment514

of characters with discrete codes assigned to each515

frame. Phone purity measures the average frame-516

level phone accuracy, when we mapped the codes517

to its most likely phone (character) label. Clus-518

ter purity, indicates the conditional probability of519

a discrete code given the character label. PNMI520

measures the percentage of uncertainty about a521

character label eliminated after observing the code522

assigned. A higher PNMI indicates better quality523

of the codebook. Moreover, we assessed the code-524

book quality by human perception tests as men-525

tioned in the following section. As for evaluating526

the dialectal sounds and short vowel recognition527

model, we reported Character Error Rate (CER)528

with and without restoring short vowels.529

Human Perception Test Setup We performed530

cluster quality analysis for k = {128, 256, 512}531

following the steps of (Mao et al., 2018; Li et al.,532

2018). For our study, we defined each clusters (de-533

moted by a code) as either Clean or Mix. Clusters534

are considered as Clean when 80% of its instances535

are matched to one particular character, where as536

for Mix clusters, the instances are mapped to dif- 537

ferent characters.9 We hypothesise that the Mix 538

clusters represent examples which can resembles 539

closely to either two of canonical sound unit /l1/ 540

and /l2/, or a mix of both /l1_l2/. We randomly 541

selected 52 examples from each perceived Mix 542

Clusters. We asked the four annotators (2 native 543

and 2 non-native Arabic speakers) to categorize it 544

into these four classes: more similar to /l1/, more 545

similar to /l2/, a mix of both, or neither. 546

6 Results and Discussion 547

Number of discrete codes in Codebook We re- 548

ported the DBindex for the codebook sizes k = 549

{128, 256, 512} in Table 2. We observed lower 550

DBindex with k = 256 indicating better codebook 551

quality. We further evaluated the codebook quality 552

and reported purity measures with the Ar:CVR test- 553

set only for brevity and CER with all the testsets. 554

Our CER results shows the efficacy of the selected 555

k = 256 for most of the test sets. We observed that 556

increasing codebook size improves the purity and 557

the PNMI. We noticed, the gain in cluster stability 558

between k = 256 vs k = 516 is not very large with 559

respect to the performance and computational cost. 560

Hence we selected the codebook C of size k = 256 561

for all the experiments. 562

k 128 256 512

C size k selection criterion
DBindex (↓) 2.59 2.57 2.7

Purity Measures: Ar:CVR testset
Phone Purity (↑) 0.600 0.641 0.672
Discrete Code Purity (↓) 0.436 0.289 0.236
PNMI (↑) 0.343 0.418 0.495
CER (↓): Borrowed and Dialectal Unit Recognition
Ar:CVR 0.149 0.108 0.107
EgyAlj 0.246 0.206 0.218
ArabVoice15 0.465 0.447 0.462
Average 0.287 0.254 0.262

Table 2: Quality evaluation of discrete codes based on
DBindex, purity measures and CER for 3 test sets.

Perceptual test of Codebook We averaged anno- 563

tator judgments across four categories for all Mix 564

clusters, revealing no clear majority and highlight- 565

ing the listeners’ difficulty in categorically labeling 566

audio within these clusters. In aligned with Mao 567

et al. (2018); Li et al. (2018), we also conclude that 568

these mixed labels genuinely exist and cannot be 569

9Only characters above 20% frequency are considered.
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Figure 3: The statistical results of perceptual tests of different sounds using cluster with k = 256

CER Z DD DJ Z DD DJ

Training: 1hr 30min 5hr 30min
Ar:CVR 0.113 0.108 0.094 0.095 0.110 0.099
EgyAlj 0.252 0.206 0.231 0.257 0.245 0.248
AraVoice15 0.536 0.447 0.464 0.485 0.477 0.491
Training: 3hrs 30min ∼20 hrs
Ar:CVR 0.103 0.108 0.096 0.099 0.108 0.101
EgyAlj 0.270 0.241 0.253 0.264 0.244 0.227
AraVoice15 0.497 0.470 0.483 0.492 0.478 0.457

Table 3: Reported CER performance for borrowed and di-
alectal unit recognition task with Baseline (Z), DVR Discrete
(DD) and DVR Joint (DJ ) models, for all three test sets and
different training data sizes.

CER Farasa Z DD DJ

Ar:CVR 0.279 0.123 0.278 0.118
EgyAlj 0.250 0.279 0.395 0.274

Table 4: Reported CER for Farasa, Baseline (Z), DVR Dis-
crete (DD) and DVR Joint (DJ ) models for two test sets.
Training set of 1 hour 30 minutes.

precisely characterized by any conventional given570

label. We present some of our findings of the per-571

ceptual test in Figure 3 for 5 different Mix clusters572

with average judgment per category.573

Dialectal Unit Recognition Performance We574

reported the performance of the proposed DVR575

discrete and joint model in Table 3 for borrowed576

and dialectal unit recognition task. Our results577

shows the efficacy of the DVR models over the578

baseline specially for dialectal test sets (ArabVoice579

and EgyAlj). We observed for borrowed and di-580

alectal unit recognition, the discrete model outper-581

forms the joint model significantly. Breakdown of582

the performance for 15 countries are presented in583

Appendix A.2.584

Impact of Training Data size Table 3 also585

shows the impact of the training data size.586

We observed for dialectal unit recognition, our587

DVR discrete model outperforms the other two588

models significantly with limited data sets of 589

{1hr30min, 3hr30min, 5hr30min}. We see an 590

improvement in performance from 1hr30min to 591

3hr30min settings. However, beyond a certain data 592

threshold, the improvements plateaued. 593

Performance for short vowel restoration For 594

short vowel restoration (in Table 4), we observed 595

that the added frame-level embeddings (in DVR 596

joint) improve the recognition performance. We 597

also observed that the baseline model performs 598

comparably with DVR joint. This indicates that the 599

restoration of short vowels benefits from high di- 600

mensional fine-grained information compare to us- 601

ing few discrete codes. We also compared the CER 602

with Farasa – state-of-the-art text-based dicretiza- 603

tion tool (Abdelali et al., 2016). We observed the 604

acoustic models outperform Farasa by a large mar- 605

gin, especially for common voice subset. However, 606

Farasa excelled in formal content – news content 607

presented in EgyAlj testset. 608

7 Conclusion 609

In this study, we propose a novel dialectal sound 610

and short vowel recovery framework that utilizes a 611

handful of discrete codes to represent the variability 612

in dialectal Arabic. We also observed with only 256 613

discrete labels, the borrowed and dialectal sound 614

recognition model outperforms both baseline and 615

joint (discrete code with frame-level SSL represen- 616

tation) models by ≈ 7% CER improvement. For 617

restoring vowels, we noticed SSL embeddings play 618

a bigger role. Our findings indicate the efficacy of 619

the discrete model with small training datasets. To 620

foster further research in dialectal Arabic, we intro- 621

duced, benchmarked, and released ArabVoice15 – a 622

dialectal verbatim transcription dataset containing 623

utterances from 15 Arab countries. In the future, 624

we will apply the framework to more dialects and 625

other dialectal languages. 626
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Limitations627

The diversity of representation and the size of Arab-628

Voice15 could limit the conclusion to generalize629

in all Arabic dialects due to variability in dialec-630

tal sounds. Although the annotator was an expert631

transcriber and received extensive training, their632

dialect may have led to some bias in judgment.633

Ethics Statement634

For the research work presented in this paper on635

the Dialectal Sound and Vowelization Recovery636

(DSVR) framework, we have adhered to the high-637

est ethical standards. All the speech/audio data638

used in this study were already publicly available.639

The human perception tests for our evaluation pro-640

cess were designed with a commitment to fairness,641

inclusivity, and transparency. The participants were642

selected keeping in mind balancing gender and na-643

tivity. Listeners were fully briefed on the nature644

of the research and their rights as participants, in-645

cluding the right to withdraw at any time without646

consequence. However as we mentioned in the647

limitation section, we cannot guarantee any human648

bias toward any dialectal sound or preference.649
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A Appendix 912

A.1 Sound Analysis 913

In Figure 5, we have depicted potential confusion 914

between specific sounds in MSA and Arabic di- 915

alects. Utilizing a Hidden Markov Model-Time 916

Delay Neural Network (HMM-TDNN) model10, 917

trained with MGB-2 (Ali et al., 2016a) for Ara- 918

bic, we aligned randomly selected samples from 919

the original datasets of CommonVoice Arabic and 920

EgyAlj. For the English dataset TIMIT, we used 921

the provided ground truth alignment. 922

After aligning speech signals with their origi- 923

nal unvowelized character-based transcriptions, we 924

matched frame-level features extracted from XLS- 925

R (see Section 3.1) with their corresponding char- 926

acters. In Figure 5.A, we randomly selected 1000 927

samples associated with 	P [z] and 1000 samples 928

associated with 	
X [D] from CommonVoice Arabic. 929

Despite CommonVoice Arabic being considered as 930

clean MSA speech data with good pronunciation, 931

we observed that some samples of 	
X [D] were clus- 932

tered with 	P [z], primarily explained by the speakers 933

getting influenced by their dialectal variations, as 934

discussed in Section 2. 935

Figure 5.B displays the selection of three charac- 936

ters: �
H [t], �è [t/h], è [h]. Notably, �è is at times pro- 937

nounced as [t] and at other times as [h]. Although 938

rule-based methods (Halabi and Wald, 2016) can 939

predict when it will correspond to which sound, 940

applying these rules in everyday spoken language, 941

10https://kaldi-asr.org/models/m13
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Figure 4: Reported CER for test utterances from 15 Arab countries for three models Baseline (Z), DVR discrete
(k:256) and DVR joint (Z+k:256)

Figure 5: 2D t-SNE Projection of Frame-Level Presentations Extracted Randomly from Finetuned Arabic XLS-R.
A. Pairs ( 	X 	P) [ð z]. B. Sounds ( è �

è
�
H) [h t]. C. Pairs (h. [dý], zh [ý], g ).

where people don’t follow rule based pronuncia-942

tion, proves challenging. The figure reveals two943

main clusters for [t] and [h], with vectors associated944

with �
è scattered between these clusters, highlight-945

ing the aforementioned point.946

Figure 5.C illustrates the selection of four labels:947

Arabic h. [ [dý], and English phonemes (zh, g, jh)948

[ý, g, dý]. We selected 1000 Arabic samples of949

h. from CommonVoice Arabic and EgyAlj, along950

with 500 samples for each of the English phonemes.951

It became apparent that the Arabic sound h. is dis-952

tributed across different English pronunciations (zh,953

g, and jh), indicating dialectal variations in the pro-954

nunciation of h. .955

A.2 Country-wise DVR performance 956

In this section, we present the aforementioned re- 957

sults discussed in Section 6. Figure 4 displays 958

CER results for the Baseline (Z), SVR Discrete 959

(k:256), and DVR joint (Z+k:256) models trained 960

on 1H30min of data, tested on AraVoice15. We an- 961

alyze the CER results for each dialect individually. 962

Our observations reveal that SVR Discrete (k:256) 963

and DVR joint (Z+k:256) consistently outperform 964

the Baseline (Z) across all dialects, exhibiting a sub- 965

stantial performance gap in MOR, YEM, PAL, and 966

IRA dialects. Moreover, SVR Discrete (k:256) and 967

DVR joint (Z+k:256) exhibit similar performance 968

across the majority of the 15 dialects (10/15), with 969

notable disparities observed in JOR, SUD, SYR, 970
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where a discernible performance gap is evident.971
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