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Abstract—Today mobile users such as drivers are invited by
content providers (e.g., Tripadvisor) to sample fresh information
of diverse paths to control the age of information (AoI). However,
selfish drivers prefer to travel through the shortest path instead
of the others with extra costs in time and gas. To motivate drivers
to route and sample diverse paths, this paper is the first to
propose online pricing for a provider to economically reward
drivers for diverse routing and control the actual AoI dynamics
over time and spatial path domains. This online pricing
optimization problem should be solved without knowing drivers’
costs and even arrivals, and is intractable due to the curse of
dimensionality in both time and space. If there is only one non-
shortest path, we leverage the Markov decision process (MDP)
techniques to analyze the problem. Accordingly, we design a
linear-time algorithm for returning optimal online pricing, where
a higher pricing reward is needed for a larger AoI. If there are a
number of non-shortest paths, we prove that pricing one path at
a time is optimal, yet it is not optimal to choose the path with the
largest current AoI. Then we propose a new backward-clustered
computation method and develop an approximation algorithm to
alternate different paths to price over time. Perhaps surprisingly,
our analysis of approximation ratio suggests that our algorithm’s
performance approaches closer to optimum given more paths.

Index Terms—Age of information, approximation error, online
multi-path pricing, polynomial-time algorithms.

I. INTRODUCTION

TODAY content providers (e.g., Tripadvisor, Yelp and

Google Maps) prefer not to deploy expensive dedicated

sensor networks to cover the whole city or nation. Instead,

they invite mobile users such as drivers to sample fresh infor-

mation on diverse paths especially those infrequently visited

in the past [1]. The sampled live information on the way

include air quality data, shopping promotion and location, and

traffic condition [1], [2], [3]. However, selfish drivers are not

willing to travel through non-shortest paths to sample fresh

information if there are no rewards to offset their extra costs

in time and gas [4]. It is shown in [5] that the network perfor-

mance degrades significantly due to drivers’ selfish routing

behaviors. To leverage the power of the mobile crowd, it is

critical for providers to properly offer monetary rewards to

drivers to change their myopic routing decisions for sampling

fresh information along diverse paths. Such incentive mecha-

nisms should be designed in an online version to adapt to the

actual variations of information freshness over paths and time.

Recent crowdsourcing works study optimal sensing policies

by recruiting mobile vehicles to sense data (e.g., [6], [7], [8],

[9]). For example, [6] takes advantage of the mobility of

vehicles to provide location-based services in large scale

areas. [7] defined spatial and temporal coverage as two metrics

for crowdsourcing quality to design greedy and genetic

approximation algorithm. [8] incentivizes a crow of vehicle

drivers to sense and sample the desired target regions in one-

shot. [9] allows allocated vehicles to follow their origin and

destination routes while maximize the overall sensing benefit.

However, all of these studies overlook the freshness of sam-

pled data.

To model the information freshness, [10] proposes the con-

cept of age-of-information (AoI) before a new information

update is received. Following this, both time-average and

peak AoI are developed to measure the average and maximum

ages in the time domain, respectively [11], [12]. Numerous

works have been analyzing AoI statistics and designing sched-

uling policies to minimize these two performance metrics [13],

[14], [15], [16]. For example, by formulating the AoI state

updating as a Markov decision process (MDP), [13] develops

approximation algorithms to schedule information packets

from multi-sources to end-users for minimizing the average

AoI. [14] proposes online scheduling policies to minimize the

AoI under different metrics in multi-flow, multi-server sys-

tems. [15] compares several scheduling policies to find that

transmitting the packet with the largest current AoI is opti-

mal. [17] studies link scheduling to optimize of min-max peak

AoI in wireless networks. However, these works only consider

the passive packet arrival process for transmission protocols

design, and overlook the opportunity to design the sampling

process.

To actively sample fresh data, several works study the path

planning problem in UAV-assited IoT to minimize AoI [18],

[19], [20]. [18] formulates an MDP to capture the dynamics of

UAV locations and applies reinforcement learning to solve the

problem. [19] jointly considers energy consumption and AoI

evolution to study the data acquisition problem. However,

these works only consider the fully controlled UAV to route

but overlook vehicle users’ selfish behaviors to disobey. As

today many mobile users are invited to sample information, it
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is important to leverage human-involved sampling or crowd-

soucing to control AoI for content providers.

Only a few mobile crowdsourcing works have taken the

economics effect of AoI into consideration for information

update or reward maximization. [21] considers sampling costs

for users to decide when to self-update local data, without con-

sidering any incentive design from the content providers. [22]

studies how an information customer requests and pays for the

fresh information to be updated by the source. [23] studies a

two-stage game model for a fresh data market to maximize a

platform’s profit, where the platform provides data with differ-

ent AoI to dynamically arriving users. [24] jointly designs

optimal upload strategy and incentivizes users to offload data

in order to control the AoI. However, these works do not study

how to motivate the power of the crowd for sampling fresh

data to control AoI. The most related work to this paper

is [25], which proposes an offline algorithm to provide sam-

pling rewards to mobile users for controlling expected AoI.

Yet this work cannot adapt to unexpected AoI change for

dynamic incentive design, and it only looks at a single path

instead of a road network for information sampling.

To our best knowledge, this paper is the first work to study

how a content provider designs its optimal pricing to reward

drivers online for diverse routing and fresh information sam-

pling. To best adapt to the actual variations of AoI over paths

and time, we formulate our online optimization problem as a

stochastic dynamic program. However, we need to overcome

the following technical challenges.

� Incomplete information about drivers’ cost and arrival

pattern: To control the actual AoI evolution in real

time, our incentive pricing as compensation should be

designed according to drivers’ actual arrivals and extra

travel costs on non-shortest paths. Yet in practice, such

information are private to drivers and unavailable for

the content provider when deciding the online pricing.

This makes it infeasible to apply online control methods

such as Hamilton-Jacobi-Bellman equations and neural

networks approximation here [26], [27].

� Curse of dimensionality in both time and spatial path

domains: The optimal online pricing should be time-

and path-dependent, making the number of system

states exponentially increase with the time horizon T
and path number N in backward induction [28], [29].

Some recent work finds special feature of system states

(e.g., periodicity) to simplify the backward/forward

induction yet cannot apply to our AoI problem (e.g.,

[30], [31]).

The existing AoI works design offline scheduling policies

for multi-channel network by dynamic programming (e.g.,

[25], [32]). There are some recent work on online scheduling,

yet they assume the system space to be countable and linearly

increasing with number of channels and time (e.g., [14], [15],

[33]). MDP techniques are widely used to model the dynamic

pricing problem (e.g., [34], [35], [36]). [34] discretizes the

state space into the set of finite intervals to greatly reduce its

size, which is not applicable in our multi-path problem with

possibly unbounded AoI. [35] proposes to aggregate similar

states to reduce the computational times, but it cannot provide

any rigorous performance analysis such as proving approxi-

mation error in the worst case. [36] applies heuristic methods

to solve the MDP under completed cost information, which

did not analyze the error bound or prove structural properties.

Their algorithm design and performance analysis cannot apply

to our online pricing problem to sample fresh information in a

large-scale road network over time.

Our paper aims to overcome the above technical challenges

for online pricing design, and our key novelty and main contri-

butions in this paper are summarized as follows.

� Novel online pricing to sample fresh information over

time and space: To motivate the power of the mobile

crowd, this paper is the first to propose online pricing

incentive for a content provider to economically reward

drivers to sample fresh information through diverse

routing. We optimize pricing reward on human-

involved sampling to affect the actual AoI dynamics

over time and spatial paths, without knowing drivers’

hidden extra travel costs and even arrivals.

� Linear complexity algorithm to solve online pricing for

one non-shortest path: To minimize the state space of

the our formulated MDP problem, we exploit the

dynamics of AoI feature to jointly apply a fixed look-up

table to greatly simplify the backward induction pro-

cess. Then we design a linear-time algorithm for return-

ing optimal online pricing. We prove structural

properties of our unique pricing solution, and show that

a higher pricing reward is needed for a larger AoI. We

also show that our algorithm is applicable to infinite

time horizon.

� Approximation algorithm to solve online pricing for

multiple non-shortest paths: We propose a new back-

ward-clustered computation method to overcome the

curse of dimensionality in the path number. We first

prove that it is optimal to only price one path at a time,

while it is not optimal to myopically choose the path

with the largest current AoI. Based on the backward-

clustered method, we develop a new approximation

algorithm to alternate different paths to price over time.

This algorithm has only polynomial-time complexity,

and its complexity does not depend on the number of

paths. Perhaps surprisingly, our analysis of approxima-

tion ratio suggests that this algorithm’s performance

approaches closer to the optimum if more paths are

involved to sample.

The rest of the paper is organized as follows. In Section II,

we overview the system model to sample fresh information

and introduce the problem formulation for online pricing. In

Sections III and IV, we prove structural properties of our

unique pricing solution, and then propose a linear-time algo-

rithm to return optimal online pricing if there is only one non-

shortest path. In Section V, we develop a new approximation

algorithm to alternate different paths to price over time if there

are a number of non-shortest paths, which has only polyno-

mial-time complexity and does not depend on the path num-

ber. Finally, we conclude this paper in Section VI.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

As illustrated in Fig. 1, a random flow of drivers sequen-

tially arrive at the gateway X in the discrete time horizon of in

total T rounds. At any time slot t ¼ 0; . . . ; T , a driver (if any)
needs to make routing decision from X to destination Y. Here,

the road network includes the shortest path with normalized

zero travel cost and another distant path with extra travel delay

D in the upper part of Fig. 1. For ease of exposition, we first

focus on this case with only one non-shortest path, and then

extend our analysis and pricing design to an arbitrary number

of non-shortest paths later in Section V.

Selfish drivers hesitate to choose the non-shortest upper

path to incur extra travel cost in time and gas, resulting in

under-sampling of this path (e.g., to collect air quality data,

shopping promotion and location, or traffic condition [1], [2],

[3]). There are always enough drivers to cover the shortest

path and we do not need to consider the AoI there. Our prob-

lem is how to motivate the randomly arriving drivers to sam-

ple the non-shortest path to control AoI there. At each time t,
the content provider observes the actual AoI AðtÞ of the non-
shortest path (see Fig. 1), and compensates an arrived driver at

the gateway with pricing reward pt to possibly change his

routing to the upper path to return the sampled information of

the whole path at time tþD.

At each time slot t, the content provider can predict the

ongoing AoI evolution till tþD, and its pricing decision

needs to be adaptive to foreseeable AoI evolution in set

Aðt; tþDÞ ¼ fAðtÞjt � t � tþDg:

We can thus rewrite price pt at time t as ptðAðt; tþDÞÞ or

simply ptðAðtþDÞÞ. Note that the content provider will not

decide any price after time T �D, as a driver can no longer

return the sampled information timely before the end time T .
Next we first introduce the driver’s model and then present

the online pricing problem formulation.

A. Driver’s Arrival and Cost Model for Sampling

Following the traffic control literature (e.g., [4], [37]), we

model drivers’ random arrivals at the gateway X over time as

a Markov chain. As shown in Fig. 2, if a driver arrives at the

beginning of time slot t, we denote it as sðtÞ ¼ 1, and other-

wise sðtÞ ¼ 0. Each time slot’s duration is set small enough

such that there is at most one arrival at a time, and we practi-

cally model the correlation between arrivals across neighbor-

ing time slots. That is, if sðtÞ ¼ 1,

sðtþ 1Þ ¼ 1; with probability 1� b;

0; with probability b:

�

Similarly, if sðtÞ ¼ 0, we update sðtþ 1Þ by replacing the

two probabilities 1� b and b above by a and 1� a. At the

beginning of time slot t, the content provider only knows past

arrival information sðt� 1Þ in Fig. 2, and expects arrival prob-
ability during time slot t by using the Markov chain, i.e.,

E sðtÞjsðt� 1Þ½ � ¼ sðt� 1Þð1� bÞ þ 1� sðt� 1Þð Þa: (1)

Besides the random arrival process, we consider the chal-

lenging incomplete information scenario that the content pro-

vider does not know each driver’s actual cost when deciding

pricing ptðAðtþDÞÞ before observing sðtÞ. A driver has extra

cost to travel on the non-shortest path with delay D, and dif-

ferent drivers have different cost sensitivities. Let x 2 ½0; 1� be
the normalized cost sensitivity of a driver, then we model its

cost as cost ¼ xD, which is proportional to the delay with

individual cost sensitivity x. Thus, a driver with greater x is

more cost sensitive and less likely to accept the price offer to

change route. Yet, the provider only knows that x in a normal-

ized range [0,1] randomly follows cumulative distribution

function (CDF) F ð�Þ, which can be obtained by fitting differ-

ent historical data’s frequencies into a histogram and convert-

ing it to CDF as [38]. The maximum travel cost is thus D and

the content provider will not decide any pricing reward pt
beyondD to over-pay any driver, and we expect

0 � pt AðtþDÞð Þ � D:

Fig. 1. System model of pricing-driven sampling, where a random flow of drivers sequentially arrive at the gateway X and make routing decisions from X to
destination Y. The road network includes the shortest path with normalized zero travel cost and another distant upper path with extra travel delayD.

Fig. 2. Information observation and decision process by the online provider.
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The cost sensitivity distribution in certain applications is

considered to be truncated normal or logistic random distribu-

tion [38], [39], which are used for our simulations later. In this

paper, we assume that the i.i.d. random distributions F ð�Þ of
drivers’ cost sensitivities satisfies the following assumption,

which is the regular value distribution widely assumed in the

mechanism design literature [40].

Assumption 1: Assume that the following function

HðxÞ :¼ xþ F ðxÞ
F 0ðxÞ (2)

increases monotonically in x 2 ½0; 1�, where F ðxÞ and F 0ðxÞ
are the CDF and PDF of a driver’s random cost sensitivity.

According to [40], the second term
F ðxÞ
F 0ðxÞ of (2) is the com-

plementary hazard rate and the monotonicity of HðxÞ tells the
Myerson’s regularity. Assumption 1 is not strong and it is sat-

isfied by multiple common distributions such as uniform,

exponential and logistic distributions. Later in Section III we

will relax Assumption 1 and extend our analysis and results to

some other distributions (e.g., truncated normal distribution)

in Corollary 1.

B. Online Pricing Problem Formulation

Upon arrival at time t with sðtÞ ¼ 1, a driver observes the

current pricing reward ptðAðtþDÞÞ. He decides to accept

this offer or not, by checking if his utility

Ut AðtþDÞð Þ ¼ pt AðtþDÞð Þ � xD (3)

of travelling on the non-shortest path is positive or not. If

sðtÞ ¼ 1 and UtðptðAðtþDÞÞÞ � 0 at time t, the driver

accepts the offer at the gateway X, and updates the whole

path’s information after travel delay D, helping reduce the

AoI AðtþDÞ of this path to D, as shown in the right part of

Fig. 1. Otherwise, the next foreseen AoI AðtþDþ 1Þ at time

tþDþ 1 increases from AðtþDÞ by one slot to AðtþDÞ þ
1. Thus, the dynamics of the actual AoI is given as

AðtþDþ 1Þ ¼
D; if Ut AðtþDÞð Þ � 0

and sðtÞ ¼ 1;

AðtþDÞ þ 1; otherwise,

8><
>:

(4)

where UtðAðtþDÞÞ is defined in (3), and the pricing reward

is accepted in the former case with probability

QðtÞ ¼ E½sðtÞjsðt� 1Þ�F ptðAðtþDÞÞ
D

� �
(5)

with E½sðtÞjsðt� 1Þ� in (1) from the content provider’s point

of view. The expectation of the final payment to the possibly

arrived driver at time t is thus QðtÞptðAðtþDÞÞ, and the

online pricing ptðAðtþDÞÞ needs to well balance the next

AoI evolution in (4) and the expected payment.

Finally, we are ready to formulate the provider’s online

pricing problem in Fig. 2 by the Markov decision process

(MDP) techniques with four components [28], [41] to best

adapt to the actual AoI evolution AðtþDÞ and past arrival

observation sðt� 1Þ under the memoryless property.

� States: We define the state of the MDP in slot t by the

tuple St ¼ ðAðtþDÞ; sðt� 1ÞÞ. Note that sð�1Þ ¼ 0
at initial time slot t ¼ 0.

� Actions: The action of the MDP in slot t is the price

ptðAðtþDÞÞ 2 ½0; D�. Note that the continuous action

space size is infinite.

� Transition probabilities: According to the conditional

arrival probability in (1) and AoI dynamics in (4), there

can be three possible states at the next time slot tþ 1.
The path will be sampled by an arrival driver with prob-

ability QðtÞ in (5). If there is no arrival at time t, the
state Stþ1 at tþ 1 will be ðAðtþDÞ þ 1; 0Þ with prob-

ability

Q0ðtÞ ¼ 1�E½sðtÞjsðt� 1Þ�: (6)

If there is an arrival at time t but the driver does not

accept the price, the state Stþ1 at tþ 1 will be ðAðtþ
DÞ þ 1; 1Þ instead with probability

Q1ðtÞ ¼ E½sðtÞjsðt� 1Þ�
�
1� F

ptðAðtþDÞÞ
D

� ��
:

(7)

In summary, we can obtain the following state transi-

tions of Stþ1:

�Stþ1 ¼ ðD; 1Þ; with probability QðtÞ in ð5Þ;
S0
tþ1 ¼ ðAðtþDÞ þ 1; 0Þ; with probability Q0ðtÞ in ð6Þ;

S1
tþ1 ¼ ðAðtþDÞ þ 1; 1Þ; with probability Q1ðtÞ in ð7Þ;

8><
>:

(8)

which correspond to the three outcomes: arrival to

sample, no current arrival, and arrival to not sample.

� Cost: Let V ðSt; ptðAðtþDÞÞÞ be the immediate cost of

the MDP if action ptðAðtþDÞÞ is taken in slot t under
state St, which is defined as the summation of the actual

AoI and expected economic payment:

V St; ptðAðtþDÞÞð Þ ¼ AðtþDÞ þQðtÞptðAðtþDÞÞ: (9)

Considering the discount factor r 2 ð0; 1Þ under discrete
time horizon, the objective of the MDP is to find the opti-
mal pricing function ptðAðtþDÞÞ at current time slot t
that minimizes the long-term total r-discounted cost:

C�
t Stð Þ ¼ min

ptðAðtþDÞÞ2½0;D�

XT
t¼t

rt�tV St; pt AðtþDÞð Þð Þ;

s:t: ð1Þ; ð3Þ; ð4Þ and ð9Þ; (10)

which is a non-convex problem due to the non-convex AoI

dynamics constraint. The current price ptðAðtþDÞÞ to

announce affects the dynamics of AoI since tþ 1. Note that

the current pricing decision can only affect the AoI after a

time delay D, thus like ptðAðtþDÞÞ we also use the foreseen
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AoI AðtþDÞ in the cost objective function C�
t ðStÞ in (10)

above.

C. Characterization of Dynamic Program

For any time t ¼ f0; . . . ; T �Dg in the finite time horizon,

problem (10) can be written as [28]:

C�
t Stð Þ ¼ min

ptðAðtþDÞÞ
V St; pt AðtþDÞð Þð Þ þ rEStþ1

C�
tþ1 Stþ1ð Þ� �

;

(11)

where the cost-to-go is

EStþ1
C�

tþ1 Stþ1ð Þ� � ¼ X1
j¼0

QjðtÞC�
tþ1 Sj

tþ1

� �
þQðtÞC�

tþ1
�Stþ1

	 


according to the transition probabilities (8).

The optimal pricing satisfies the first-order necessary condi-

tion of (11) with respect to ptðAðtþDÞÞ, i.e.,

p�t ðAðtþDÞÞ
D

þ
F

p�t ðAðtþDÞÞ
D

� �
F 0 p�t ðAðtþDÞÞ

D

� �� r

D
DC�

tþ1 ¼ 0; (12)

where

DC�
tþ1 ¼ C�

tþ1 S1
tþ1

	 
� C�
tþ1

�Stþ1

	 

: (13)

To solve (12), we need the inputs of C�
tþ1ðS1

tþ1Þ and

C�
tþ1ð�Stþ1Þ. For each long-term cost function since time t, it

takes Oðlog 2ðD" ÞÞ complexity to obtain its pricing solution to

(12) using binary search with error " [42].
Lacking the information about drivers’ hidden sampling

costs and even arrivals, the transition probabilities are related

with the pricing p�t ðAðtþDÞÞ in (11). Therefore, it is in-

feasible to apply online control methods such as Hamilton-

Jacobi-Bellman equations and neural networks approximation

here [26], [27], [43].

As it is too late to price after t ¼ T �D for returning timely

information before end-time T , we obtain from (11) that

C�
T�D ST�Dð Þ ¼ AðT Þ: (14)

Based on the state transitions in (8) and equation (14), we find

that the state space increases polynomially with time horizon

T in (11) for the single-path pricing problem. Thus, one can

use backward induction to solve the problem (11) in polyno-

mial time [28], [30], which may be not small for a large T .
Thus, we will further exploit the unique AoI feature and pro-

pose Algorithms 1 and 2 to reduce to linear complexity later

in Section IV. On the other hand, we will show later in

Section V that the state space increases exponentially in T and

path number N , which forbids to apply traditional MDP

methods [44].

Before that, we first prove key structural properties of the

optimal (long-term) cost functions in (11) and optimal online

pricing in next section. For ease of reading, we summarize all

the key notations in Table I.

III. PROVED STRUCTURAL PROPERTIES OF OPTIMAL

ONLINE PRICING

Since the price ptðAðtþDÞÞ is located in a compact

interval ½0; D�, there always exists optimal pricing solu-

tions to the problem (11). However, since drivers’ informa-

tion about costs and random arrivals are incomplete, the

monotonicity of cost function with respect to AðtþDÞ
and the uniqueness of optimal pricing solution to (12) can-

not be guaranteed [45] and [28]. In this section, at any

time t, we first examine the monotonic relationship of cost

function and optimal pricing with respect to the foreseen

AoI AðtþDÞ. Then we prove the uniqueness of optimal

online solution to problem (11).

By observing (12), we find the optimal pricing solution

p�t ðAðtþDÞÞ is determined by the the cost functions

C�
tþ1ðS1

tþ1Þ without information update, C�
tþ1ð�Stþ1Þ with

update, and the CDF F ð�Þ. To examine the optimal pricing’s

relationship with AðtþDÞ, we first need to examine the rela-

tionship between cost function C�
t ðStÞ in (11) and foreseen AoI

AðtþDÞ [28].
Proposition 1: The optimal cost function C�

t ðStÞ in (11) at

any time t 2 f0; 1; . . . ; T �Dg increases monotonically with

the foreseen AoI AðtþDÞ.

Algorithm 1: The computation of look-up table C�ð�SÞ by

backward induction.

1: Store C�
T�DðD; 1Þ ¼ D in C�ð�SÞtable;

2: for i ¼ 1 to i ¼ T �D do

3: Compute C�
T�DðDþ i; 1Þ and C�

T�DðDþ i; 0Þ according to

(14);

4: forj ¼ 1 to i do
5: Obtain C�

T�D�jþ1ðD; 1Þ from C�ð�SÞ table;
6: Compute p�T�D�jðDþ i� jÞ according to (12) using binary

search with error ";
7: Compute C�

T�D�jðDþ i� j; 1Þ and C�
T�D�jðDþ i� j; 0Þ

according to (11) from last decision slot;

8: end for

9: Store C�
T�D�iðD; 1Þ in C�ð�SÞ table;

10: end for

11: return C�ð�SÞ table

Algorithm 2: The linear-time computation of online optimal

pricing p�t ðAðtþDÞÞ to (11) at any time t 2 f0; . . . ; T �Dg.
1: Input: C�ð�SÞ table, binary search error ";
2: Observe AðtÞ and predict foreseen AoI AðtþDÞ;
3: Compute C�

T�DðS0
T�DÞ and C�

T�DðS1
T�DÞ according to (14);

4: for1 � i � T �D� t� 1 do
5: Obtain C�

T�D�ið�ST�D�iÞ from C�ð�SÞ table;
6: Compute C�

T�D�iðS0
T�D�iÞ; C�

T�D�iðS1
T�D�iÞ according to (11)

from last decision slot T �D� iþ 1;
7: Compute p�T�D�1�iðAðtþDÞ þ T �D� 1� iÞ according to

(12) using binary search with error ";
8: end for

9: return p�t ðAðtþDÞÞ for current time t
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Proof: Suppose that there are two states Sa
t and Sb

t with

their actual AoI satisfying AaðtþDÞ > AbðtþDÞ at any

time slot t 2 f0; . . . ; T �Dg. In the following, we apply both

mathematical induction and backward induction to prove

C�
t Sa

t

	 

> C�

t Sb
t

	 

; (15)

which tells the monotonicity of the optimal cost function.

We first prove the base case at the last time slot t ¼ T �D.

According to (14), the two cost functions satisfy

C�
T�D Sa

T�D

	 
 ¼ AaðT Þ > AbðT Þ ¼ C�
T�D Sb

T�D

	 

;

which holds for (15).

Next, we assume the induction hypothesis that C�
t0þ1ðSa

t0þ1Þ
> C�

t0þ1ðSb
t0þ1Þ is true for a particular time slot t0 þ 1. It fol-

lows to show that C�
t0
ðSa

t0
Þ > C�

t0
ðSb

t0
Þ also holds. Denote by

p�t0ðAaðt0 þDÞÞ and p�t0ðAbðt0 þDÞÞ the optimal pricing to

Aaðt0 þDÞ and Abðt0 þDÞ, respectively. Consider another

non-optimal pricing to Abðt0 þDÞ:

p̂t0ðAbðt0 þDÞÞ ¼ p�t0ðAaðt0 þDÞÞ; (16)

whose corresponding non-optimal cost function must satisfy

Ĉt0ðSb
t0
Þ � C�

t0
ðSb

t0
Þ. Then we can derive the induction step:

C�
t0

Sa
t0

� �
� C�

t0
Sb
t0

� �
� C�

t0
Sa
t0

� �
� Ĉt0 Sb

t0

� �
¼ AaðtþDÞ �AbðtþDÞ
þ rESa

t0þ1
C�

t0þ1ðSa
t0þ1Þ

h i
� rESb

t0þ1
C�

t0þ1ðSb
t0þ1Þ

h i
;

which is larger than 0 due to the fact that AaðtþDÞ >
AbðtþDÞ, C�

t0þ1ðSa
t0þ1Þ � C�

t0þ1ðSb
t0þ1Þ and (16).

As we have proven that both the base case and the induction

step are true, (15) holds for each t 2 f0; . . . ; T �Dg by math-

ematical induction. This further tells the monotonicity of the

optimal cost function C�
t ðStÞ in (11). &

Intuitively, a larger foreseen AoI AðtþDÞ leads to larger

long-term cost. Based on the monitonicity of the long-term

cost function in Proposition 1, next we are ready to prove the

uniqueness of optimal online pricing solution to problem (11)

at any time t.
Proposition 2: Under Assumption 1, the optimal online

pricing solution p�t ðAðtþDÞÞ to problem (11) exists and is

unique at any time t 2 f0; . . . ; T �Dg.
The proof of Proposition 2 is given in our technical

report [46]. We can generalize our Proposition 2 to fit some

other distributions such as truncated normal distribution.

Corollary 1: If there exists a cutoff point xth 2 ½0; 1Þ, such
that HðxÞ < 0 for x 2 ½0; xth� and HðxÞ increases with x 2
½xth; 1�, which holds for truncated normal distribution, then

the optimal pricing solution to problem (11) exists and is

unique.

Based on Propositions 1, 2 and the expression (12), we can

also derive the monotonicity of optimal online pricing

p�t ðAðtþDÞÞ with respect to AðtþDÞ [28].
Corollary 2: The unique optimal online pricing p�t ðAðtþ

DÞÞ at any time t 2 f0; . . . ; T �Dg increases monotonically

with the foreseen AoI AðtþDÞ.
Corollary 2 tells that as the foreseen AoI is large to domi-

nate in the long-term cost objective (11), we should set a high

price to immediately motivate drivers to sample and control

the AoI evolution.

IV. LINEAR-TIME ALGORITHM FOR OPTIMAL ONLINE PRICING

Recall that backward induction can be used to solve prob-

lem (11) in polynomial time. In this section, we exploit the

dynamic feature of AoI to jointly use a fixed look-up table and

backward induction to further reduce the increasing number of

cost functions in the time domain. Furthermore, we show our

designed algorithm is also applicable to infinite time horizon.

According to (12), at any time t we first need to compute

long-term cost functions C�
tþ1ðS1

tþ1Þ and C�
tþ1ð�Stþ1Þ before

solving optimal pricing p�t ðAðtþDÞÞ. To obtain C�
tþ1ðS1

tþ1Þ
for example, as discussed at the end of Section II, we further

need to apply iteration computation to derive another three

cost functions C�
tþ2ðS0

tþ2Þ, C�
tþ2ðS1

tþ2Þ and C�
tþ2ð�Stþ2Þ at time

tþ 2. After careful examination of this branching network,

we find out that a large number of cost functions repeatedly

appear due to the linearly increasing feature of AoI over

time. Take the transition of ðAðtþDÞ; 0Þ at time t ¼ 0 with

TABLE I
KEY NOTATIONS USED IN THE PAPER
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T �D ¼ 2 as an illustrative example, which implies three

decision slots t ¼ 0; 1; 2. Fig. 3(a) shows the polynomial

increase of state space for iterative computation from t ¼ 0 to

t ¼ 2. At time t ¼ 1, ðAðtþDÞ þ 1; 0Þ with no driver arrival

during last time slot t ¼ 0 (i.e., sð0Þ ¼ 0) and ðAðtþDÞ þ
1; 1Þ with last arrival have the same branches to ðAðtþDÞ þ
2; 0Þ; ðAðtþDÞ þ 2; 1Þ and ðD; 1Þ at t ¼ 2. As there are actu-
ally 5 states at time t ¼ 2, we can apply backward induction

as [44] and [30] to derive the optimal online pricing at current

time t in polynomial time.

Moreover, as inspired by [47] and [48], we want to further

simplify the state space by applying the look-up table

approach. As shown in Fig. 3(a), we find the state �St ¼
ðD; 1Þ appears at each time slot t 2 f0; . . . ; T �Dg as it is

possible to find the driver arrival to sample and update infor-

mation at any time. Since the inputs D and 1 of these func-

tions are constant, we do not need to wait till our observation

of such constants to decide the pricing online. Instead, we

propose to compute any C�
t ð�StÞ before t ¼ 0 and store them

in a fixed look-up table C�ð�SÞ for any online use later. Then

we no longer need to expand the state space from �St ¼
ðD; 1Þ at any time t. As illustrated in Fig. 3(b), by jointly

applying the look-up table, we end up with only three cost

functions to compute online at both t ¼ 1 and t ¼ 2. Thus,
we successfully reduce the number of cost functions to

compute online from quadratic term ðT �DÞ2 to linear item

3ðT �DÞ at each time t.
Thanks to the look-up table approach that successfully

reduces the polynomially increasing number of cost func-

tions to linear number, we are ready to propose Algorithm

1 to compute the look-up table C�ð�SÞ and Algorithm 2 to

optimally solve problem (11) for online pricing at any

time t ¼ f0; . . . ; T �Dg.
In Algorithm 1, we apply backward induction to calculate

cost functions C�
t ðD; 1Þ from t ¼ T �D to t ¼ 0:

� In step 1, we first obtain the value of C�
T�DðD; 1Þ in

time slot T �D according to (14).

� From step 2 to 10, we use the loop to calculate C�
t ðD; 1Þ

backward from time slot t ¼ T �D� 1 to t ¼ 0, and
store each value in the C�ð�SÞ table in step 9.

� From step 4 to 8, to calculate each C�
T�D�iðD; 1Þ in the

i-th loop, we calculate all the possible long-term cost

functions backward from time slot t ¼ T �D to t ¼
T �D� iþ 1, according to Fig. 3(a).

Note that here we use the state tuple ðD; 1Þ in C�
t ð�Þ to dis-

tinguish from the state space �St elsewhere. After returning
the fixed look-up table C�ð�SÞ, we are ready to apply it to
solve p�ðAðtþDÞÞ in Algorithm 2:

� In step 3, we first obtain the known value of C�
T�D

ðS0
T�DÞ and C�

T�DðS1
T�DÞ in time slot T �D according

to (14), where S0
T�D and S1

T�D are ðAðDÞ þ T �D; 0Þ
and ðAðDÞ þ T �D; 1Þ, respectively.

� From step 4 to 8, we calculate all the possible long-term

cost functions and the corresponding optimal price

backward from time slot T �D� t� 1 to tþ 1.
� We finally obtain the optimal price p�t ðAðtþDÞÞ dur-

ing the last loop i ¼ T �D� t� 1.
As the pricing action space ½0; D� is continuous, we equally
discretize it into ðD" þ 1Þ many points with " as the gap.
Here " can also be viewed as the error of binary search to
find the optimal online pricing p�t according to (12).
Based on the above analysis, we propose the following the-

orem and further analyze the complexity of Algorithm 2.

Theorem 1: Algorithm 2 returns the optimal online pricing

p�t ðAðtþDÞÞ with the linear complexity OððT �DÞlog 2ðD" ÞÞ
at any time t ¼ f0; . . .; T �Dg, where " is the binary search

error in step 7 of Algorithm 2.

The proof of Theorem 1 is given in our technical report [46].

Note that storing any other cost functions into a look-up table

cannot help to reduce the complexity anymore, because the

initial AoI at time t ¼ 0 is unknown and can be unbounded.

Fig. 3. An illustrative example of T �D ¼ 2 for the look-up table approach
to reduce state space. (a)Original state transitions from t ¼ 0 to t ¼ 2
(b)Look-up table to further simplify the state space above.

Fig. 4. The evolution of actual AoI AðtÞ and online optimal price p�t ðAðtþ
DÞÞ returned by Algorithm 2 from t ¼ 0 to 30. Here we set Að0Þ ¼ 4;
T ¼ 30; D ¼ 5; r ¼ 0:85, probabilities a ¼ 0:8; b ¼ 0:6 for the Markov chain
in Fig. 2, and each driver’s cost CDF F ðxÞ satisfies a truncated normal distri-
bution with mean 0.6 and variance 0.7. (a)Evolution of actual AoI under the
optimal online pricing p�t ðAðtþDÞÞ; t 2 f0; . . . ; T ¼ 30g (b)Online optimal
pricing policy returned by Algorithm 2.
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Thus, the linear time complexity of Algorithm 2 is the mini-

mum and cannot be further improved [28], [29].

In the following experiment, we create a typical instance to

run the online optimal pricing p�t ðAðtþDÞÞ returned by Algo-
rithm 2 and corresponding AoI AðtÞ, 8t 2 f0; . . . ; T ¼ 30g in

Fig. 4. Here we set the travel delay D ¼ 5 for the non-shortest

path in Fig. 1 with initial AoI Að0Þ ¼ 4, and the cost distribu-

tion of each driver to follow truncated normal distribution

with mean 0.6 and variance 0.7. Fig. 4 shows that the online

pricing to announce follows a delayed pattern of the actual

AoI observation over time. This is consistent with the monoto-

nicity of the pricing with respect to delayed AoI by D in Cor-

ollary 2. We also notice the online pricing converges to zero

since t ¼ T �D, as any outdated update after T cannot help.

Remark 1: Actually, we can revise our algorithm to fit the

infinite time horizon T ! 1, by replacing the T time window

by a future finite Tth window in Algorithm 1 and 2 for efficient

computation (with constant complexity) at any time t. We can

first prove that the optimal cost functions are bounded under

T ! 1, and then prove that the performance error of this

approximation algorithm (revised from Algorithm 2) exponen-

tially reduces to zero as Tth increases.

V. GENERALIZATION OF ONLINE PRICING TO MULTI-PATH

SAMPLING SCENARIO

For ease of exposition, we only consider to sample one non-

shortest path in Fig. 1 and propose a linear algorithm to solve

the problem. In this section, we generalize to sample an arbi-

trary number N of different non-shortest paths and introduce

the generalized system model first. Different from the single-

path problem, the state space here increases exponentially

with time horizon T and path number N . To overcome the

curse of dimensionality in the spatial path domain (i.e., the

path number), we first prove that it is optimal to only price

one path at a time, which is not necessarily the path with the

largest current AoI. We then propose a new backward-clus-

tered computation method across paths and design an approxi-

mation algorithm of polynomial complexity to alternate

different paths to price over time.

A. Model Extension to Sample Multiple Diverse Paths

Upon arrival at the gateway X by following the Markov

chain, a driver now faces an arbitrary number N of non-short-

est paths from X to destination point Y for routing. We con-

sider diverse paths such that each path i 2 f1; . . . ; Ng has a

unique travel delayDi and a driver with personalized cost sen-

sitivity x 	 F ð�Þ incurs
cost ¼ xDi

to travel on this path to sample fresh information there. We

aim to design online pricing to all the paths to help sample

fresh information globally to control the maximum AoI. We

summarize the actual AoI evolutions in all the N paths in set

AðtÞ ¼ AiðtþDiÞji 2 f1; . . .; Ngf g (17)

to tell the maximum foreseen AoI from time t, depending on

which path ît�1 was sent by the last driver (if any) at time t�
1 to sample. We next see how does AðtÞ update for all the

paths.

At the beginning of time t 2 f0; . . . ; Tg, the provider

decides online pricing set

P AðtÞð Þ ¼ pi;t AðtÞð Þ 2 ½0; Di�ji 2 f1; 2; . . .; Ng� �
(18)

based on the foreseen AoI set AðtÞ. Given the online prices to

different paths, a driver with cost sensitivity x (if arrives at

time t) finds path i appealing as long as the price there can jus-
tify his travel cost, i.e., his utility of travelling path i

Ui;tðAðtÞÞ ¼ pi;t AðtÞð Þ � xDi (19)

is no less than 0, which depends on the pricing set PðAðtÞÞ
and the driver’s private travel cost sensitivity x. If he finds

multiple paths appealing, he will optimally accept the path ît
with maximum net payoff, i.e.,

ît ¼
argmaxi2f1;...;NgUi;tðAðtÞÞ; if maxiUi;tðAðtÞÞ � 0;

0; otherwise:

�
(20)

If there is no driver arrival at time t or this driver does not con-
sider to sample any of the N non-shortest paths, we set ît ¼ 0.
Based on (20), we update all the paths’ next foreseen AoI as:

AiðtþDi þ 1Þ ¼ Di; if i ¼ ît;

AiðtþDiÞ þ 1; if i 6¼ ît::

(
(21)

Based on the above model extension, we are ready to apply

the MDP formulation as [28] and [41] again to formulate the

provider’s online pricing problem below.

� States: We define the state of the new MDP in slot t by
St ¼ ðAðtÞ; ît�1; sðt� 1ÞÞ. Similarly, sð�1Þ ¼ 0 and

î�1 ¼ 0 at time t ¼ 0.
� Actions: The action of the MDP in slot t is the price set

PðAðtÞÞ defined in (18).
� Transition probabilities: Compared to the state transi-

tions (8) in single-path, the state space of St now

increases exponentially with N , because every path has

probability to be sampled at each time slot. Denote the

probability that path i is accepted by an arrived driver

to sample (i.e., i ¼ î) by qiðtÞ. The state Stþ1 ¼
ðAðtþ 1Þ; ît; sðtÞÞ at time slot tþ 1 can change into

Sa
tþ1 ¼ ðAðtÞ þ 1; 0; 0Þ; with probability

QaðtÞ ¼ 1� E½sðtÞjsðt� 1Þ�;
Sb
tþ1 ¼ ðAðtÞ þ 1; 0; 1Þ; with probability QbðtÞ ¼

E½sðtÞjsðt� 1Þ� 1�PN
i¼1 qiðtÞ

� �
;

Si
tþ1 ¼ ðAðtþ 1Þ; i; 1Þ; with probability

QiðtÞ ¼ E½sðtÞjsðt� 1Þ�qiðtÞ;

8>>>>>>>>>><
>>>>>>>>>>:

(22)

where the dynamics of Aðtþ 1Þ is defined in (21).

There are totally N þ 2 outcomes: no current arrival,
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arrival to not sample, and arrival to sample path i 2
f1; . . . ; Ng.

� Cost: Let V ðSt;PðAðtÞÞÞ be the immediate cost of the

MDP if action PðAðtÞÞ is taken in slot t under state St,

which concerns about the maximum foreseen AoI

among all the paths as [15] and [17]:

V St;P AðtÞð Þð Þ ¼ max
i

AiðtþDiÞf g þ
XN
i¼1

QiðtÞpi;tðAðtÞÞ:

(23)

Thus, we extent problem (10) by considering multiple

paths: at the beginning of time slot t,

C�
t Stð Þ ¼ min

P AðtÞð Þ

XT
t¼t

rt�tV St;P AðtÞð Þð Þ;

s:t: ð1Þ; ð17Þ � ð21Þ and ð23Þ:
(24)

Similar to (11), (24) can be rewritten as

C�
t Stð Þ ¼ min

PðAðtÞÞ
V St;P AðtÞð Þð Þ þ rEStþ1

C�
tþ1 Stþ1ð Þ� �

;

(25)

where the cost-to-go is

EStþ1
C�

tþ1 Stþ1ð Þ� � ¼ QaðtÞC�
tþ1 Sa

tþ1

	 
þQbðtÞC�
tþ1 Sb

tþ1

	 

þ
XN
i¼1

QiðtÞC�
tþ1 Si

tþ1

	 


according to transition probabilities (22). Note that drivers’

random choice model in qiðtÞ among N paths incurs totally

ðN þ 2ÞT�maxifDig cost functions to iteratively (25) much

more difficult than (11).

Existing works (e.g., [14], [15], [33]) also formulate

dynamic program to design optimal scheduling policies for

multi-channel network to minimize peak or average weighted

AoI. However, the system space of actions only linearly

increases in the path number N and time horizon T . However,
in our problem (25), the system space increases exponentially.

In the following, we first reduce multi-path pricing to single-

path at a time and then propose our backward-clustered com-

putation to design low-complexity algorithm.

B. Reducing Multi-Path Pricing to Single-Path At a Time

Note that Propositions 1 and 2 can be extended for this

multi-path model and ensure existence and uniqueness of the

online pricing solution to problem (25). Here we need to over-

come the curse of dimensionality in both the path number N
and time horizon T . In this subsection, we prove that we can

reduce the N spatial searching dimensions greatly by reducing

multi-path pricing to single-path pricing at each time t.
Proposition 3: To solve problem (25), it is optimal to only

price path î�t out of N paths at each time t, where

î�t ¼ arg max
i2f1;...;Ng

fAiðtþDiÞg: (26)

The proof of Proposition 3 is given in our technical

report [46]. Proposition 3 shows that it is optimal to only price

a single path at a time. Intuitively, if positive prices are given

to more than one path, the driver will still choose only one to

sample. Then the provider need to give higher price for the tar-

get path given the competitive prices from others, which

incurs unnecessary cost.

Further, Proposition 3 tells that we should target at the path

with the maximum foreseen AoI maxifAiðtþDiÞg instead of
largest current AoI maxifAiðtÞg. This result is different

from [14] and [15], because the current pricing decision in our

problem can only help reduce the AoI after a path-dependent

time delay.

Thanks to Proposition 3, we only need to design the positive

price pî�t ;t
ðAðtÞÞ for the target path î�t in (26) instead of

PðAðtÞÞ at each time t. Then the cost function in (23) is sim-

plified to:

V St; pî�t ;t
AðtÞð Þ

� �
¼ Aî�t

ðtþDît
Þ þQî�t

ðtÞpî�t ;t AðtÞð Þ: (27)

Accordingly, (25) can also be simplified as

C�
t Stð Þ ¼ min

p
î�
t
;t
ðAðtÞÞ

V St; pî�t ;t
AðtÞð Þ

� �
þ rEStþ1

C�
tþ1 Stþ1ð Þ� �

;

(28)

where the cost-to-go is

EStþ1
C�

tþ1 Stþ1ð Þ� � ¼ QaðtÞC�
tþ1 Sa

tþ1

	 
þQbðtÞC�
tþ1 Sb

tþ1

	 

þQî�t

ðtÞC�
tþ1 S

î�t
tþ1

� �
(29)

by letting qiðtÞ ¼ 0 for all i 2 f0; . . . ; Ng and i 6¼ î�t in (22).

Though the total number of cost functions has been greatly

reduced from ðN þ 2ÞT�maxifDig to 3T�maxifDig in problem

(28), it is still difficult to solve, and the direct application of

backward induction approach in Section IV cannot help. Here

we follow a random pattern to alternate and traverse the target

path (ît) to price over time, and we still need to adapt pricing

online to a huge AoI evolution set AðtÞ with an exponentially

increasing state space in T .

C. Backward-Clustered Computation for Low-Complexity

Approximation Algorithm

In this subsection, we propose a new innovative simplification

approach called backward-clustered computation method to

solve problem (28). Different from the repeated long-term cost

functions under the same sampled paths we analyzed in Fig. 3

(a), the huge number of cost functions across paths are non-

repeated themselves. To reduce the exponentially increasing

state space, at current time t, we cluster those states with the

same number of future sampled paths from time t to be one

approximated state. By applying this approximation for clus-

tered functions, we no longer count and compute all the long-

term cost functions, and we do not need to consider î�t any more.

More specifically, at current time t, we propose to use

Að0ÞðtÞ and C
ð0Þ
t ðAð0ÞðtÞ; sðt� 1ÞÞ to approximate foreseen

522 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on March 19,2023 at 12:00:15 UTC from IEEE Xplore.  Restrictions apply. 



AoI evolution set AðtÞ and its cost function C�
t ðStÞ in (28),

respectively, where the superscript 0 means the number of the

sampled paths from time t is still 0 at time t. Note that the ini-
tial approximated AoI set Að0ÞðtÞ equals AðtÞ. Then the three

possible states at time tþ 1 in (22) can be approximated to

ðAð0Þðtþ 1Þ; 0Þ; ðAð0Þðtþ 1Þ; 1Þ and ðAð1Þðtþ 1Þ; 1Þ, respec-
tively. Here only Að1Þðtþ 1Þ with superscript 1 tells that one

path is sampled from time t to tþ 1. Take the clustered

approximation of C�
t ðStÞ in (28) with three decision slots

(t ¼ 0; 1; 2 under T �maxifDig ¼ 2) as an illustrative exam-

ple, and Fig. 5 shows the approximated branching network

from t ¼ 0 to 2 as explained below.
� At t ¼ 2, there are only 3 approximate AoI sets (i.e.,

Að0Þðtþ 2Þ;Að1Þðtþ 2Þ and Að2Þðtþ 2Þ) in Fig. 5,

because there are at most two paths being sampled since

t ¼ 0, and we only have 5 approximated states instead

of 3T�D ¼ 9.
� At t ¼ 1, our two approximated states with superscript

0 (i.e., ðAð0Þð1Þ; 1Þ with last arrival and ðAð0Þð1Þ; 0Þ
without last arrival) have the same branching structure

to ðAð0Þð2Þ; 1Þ, ðAð0Þð2Þ; 0Þ and ðAð1Þð2Þ; 1Þ at t ¼ 2.
Thus, it suffices to cluster ðAð0Þð1Þ; 1Þ and ðAð0Þð1Þ; 0Þ
by only expanding one of them to t ¼ 2 in Fig. 5.

Note that the original states Sb
tþ1 and S

î�t
tþ1 in (29) cannot

branch to the same state at time tþ 2, because the path î�t is

sampled during different time slots, i.e., t ¼ 0 and t ¼ 1,
respectively. In our approximation of backward-clustered

computation, the actual AoI of a sampled path is mildly

enlarged to the approximated AoI. Yet this error is always

bounded by the elapsed time since current time t and will not

take effect until this path is priced to sampled again. By clus-

tering the approximated cost functions with the same number

of sampled paths from time t to the whole branching network,

we successfully reduce the number of long-term cost functions

to compute from 3T�maxifDig to around ðT �maxifDigÞ2,
which can be solved using backward induction.

Regarding the pricing solution, similar to (12), the approxi-

mation online pricing p
î
ð0Þ
t ;t

ðAð0ÞðtÞÞ here satisfies the first-

order condition of (28), yet the cost functions are replaced by

their approximation and î
ð0Þ
t ¼ maxifAð0Þ

i ðtþDiÞg. Now we

present Algorithm 3 to efficiently return the approximation

online pricing to (28). We apply our backward-clustered com-

putation to calculate approximation cost functions from t ¼
T �maxiDi to t ¼ 0:

� From step 3 to step 12, we backward compute all

the possible long-term cost functions from time slot

T �maxDi to tþ 1, and finally apply binary search to

derive p
î
ð0Þ
t ;t

ðAð0ÞðtÞÞ in step 13.
� At each future time slot tþ k, we first calculate the

approximated foreseen AoI set AðjÞðtþ kÞ for all j 2
f0; . . . ; kg. At j ¼ 0, all the paths are not sampled, such

that Að0Þðtþ kÞ is initialized at step 4. Then we choose

to update the AoI of path î
ðjÞ
tþk to increase j to jþ 1 at

j-th loop in step 9.
� In steps 7 and 8, we compute the corresponding approx-

imation price and cost functions of each AoI set

AðjÞðtþ kÞ.
Note that in step 9, we update the AoI of path îjtþk toDî

j
tþk

þ
k�j
2 because this j-th updated path can be sampled at any
time from tþ j to tþ k, such that we take the average of all
the possible AoI based on our linear model in (23).

As a counter-part of (28), we denote ĈtðAðtÞ; sðt� 1ÞÞ as
the approximated cost function under our approximation pric-

ing, and we next prove that it has bounded performance gap to

the optimum in the following theorem.

Theorem 2: At any time t, our approximation Algorithm 3

takes only polynomial time complexity OððT �maxifDigÞ2
log 2ðmaxifDig

" ÞÞ to return the approximation online pricing

p
î
ð0Þ
t ;t

ðAð0ÞðtÞÞ, and the complexity does not depend on the path

number N . As compared to the cost optimal objective

C�
t ðAðtÞÞ; sðt� 1ÞÞ in (28), Algorithm 3’s cost objective

ĈtðAðtÞÞ; sðt� 1ÞÞ achieves the following approximation error

in the worst case:



Ĉt AðtÞÞ; sðt� 1Þð Þ � C�
t AðtÞÞ; sðt� 1Þð Þ



<
rgðNÞþ1 � rT�maxifDig�tþ1

ð1� rÞ2 ;
(30)

and this error increases with T but decreases withN .

Fig. 5. An illustrative example of approximated backward-clustered process
with three decision slots (t ¼ 0; 1; 2 under T �maxifDig ¼ 2) in the multi-
path scenario.

Algorithm 3: Polynomial-time backward-clustered computa-

tion of approximation online pricing to (28).

1: Observe current AoI and predict maximum foreseen AoI set

Að0ÞðtÞ;
2: Initialize î

ð0Þ
t ¼ argmaxifAð0Þ

i ðtþDiÞg and k ¼ T �maxi
fDig � t;

3: while k � 1 do
4: Initialize A

ð0Þ
i ðtþDi þ kÞ ¼ A

ð0Þ
i ðtþDiÞ þ k for all i 2

f1; . . . ; Ng;
5: for 0 � j � k do

6: Obtain î
ðjÞ
tþk ¼ argmaxifAðjÞ

i ðtþDi þ kÞg;
7: Compute p

î
ðjÞ
tþk

;tþk
ðAðjÞðtþ kÞÞ using binary search with

error ";
8: Compute C

ðjÞ
tþkðAðjÞðtþ kÞ; 1Þ and C

ðjÞ
tþkðAðjÞðtþ kÞ; 0Þ

according to (28) from last decision slot;

9: Update A
ðjþ1Þ
î
ðjÞ
tþk

ðtþD
î
ðjÞ
tþk

þ kÞ ¼ D
î
ðjÞ
tþk

þ k�j
2 ;

10: end for

11: k ¼ k� 1
12: end while

13: Apply binary search of p
î
ð0Þ
t ;t

ðAð0ÞðtÞÞ with error ";
14: return p

î
ð0Þ
t

;t
ðAð0ÞðtÞÞ for current time t
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The proof of Theorem 2 is given in [46]. The error bound

(30) is derived based on gðNÞ, which is an increasing function

of N to return the updating time cycle to sample path î�t again.
The complexity of our Algorithm 3 does not depend on path

number N and can thus fit large-scale road networks. Actu-

ally, the approximation error on the right hand side of (30) is

small most of the time. Perhaps surprisingly, it decreases with

a larger path number N . This is because individual paths

become similar to each other in a larger path choice pool, and

our backward-clustered computation in Algorithm 3 only

counts the number of sampled paths (without checking which

paths) for approximating cost functions.

We create a typical instance but with N ¼ 3 paths in Fig. 6

to run the online approximation pricing p
î
ð0Þ
t ;t

ðAð0ÞðtÞÞ and

corresponding foreseen AoI set AðtÞ, 8t 2 f0; . . . ; T ¼ 25g
returned by Algorithm 3. Here we set the travel delay set

D ¼ f2; 3; 5g for the three paths, whose initial AoI Að0Þ ¼
f2; 4; 3g, and the cost distributions of each driver to follow a

truncated normal distribution with mean 0.6 and variance 0.7.

Fig. 6(a) shows the evolution of the foreseen AoI of all the

three paths, and the maximum AoI among all the paths are

well controlled thanks to our online pricing solution in Fig. 6

(b). We can also see that the platform will select the path with

the maximum AoI to price, which is consistent with Proposi-

tion 3. In this case, the online pricing follows a Di-delayed

pattern of the actual AoI over time.

Finally, unlike (30)’s error for the worst-case, we run simu-

lations to examine Algorithm 3’s actual performance loss as

compared to the optimum, versus time horizon T and path

number N in Fig. 7. Here we generally consider initial t ¼ 0’s
online decision making, then the cost objective Ĉ0ðAð0ÞÞ; 0Þ
uses the approximation pricing returned by Algorithm 3.

While the optimal cost function C�
0ðAð0ÞÞ; 0Þ in (28) uses the

optimal pricing returned by traditional iterative computation

methods, whose complexity is high and only allows us to keep

T � 12 for simulation. In Fig. 7 with almost the same Fig. 7

(a) and Fig. 7(b), we find that effect of F ðxÞ to the perfor-

mance error is limited, which shows our scalable Algorithm

3’s robustness to different cost distributions. The performance

error is mild from the optimum under our algorithm. This

result is also consistent with Theorem 2 to show the approxi-

mation error increase in time horizon T and decrease in path

number N .

VI. CONCLUSION

In this paper, we have proposed online pricing for a content

provider to economically reward drivers for diverse routing

and control the actual AoI dynamics over time and spatial

path domains. This online pricing optimization problem

should be solved without knowing drivers’ costs and even

arrivals, and is intractable due to the curse of dimensionality

in both time and space. If there is only one non-shortest path,

we leverage the Markov decision process (MDP) techniques

to analyze the problem. Accordingly, we design a linear-time

algorithm for returning optimal online pricing, where a higher

pricing reward is needed for a larger AoI. We also show that

our algorithm is applicable to infinite time horizon. If there

Fig. 6. The evolution of foreseen AoI set AðtÞ and online approximation
price p

î
ð0Þ
t ;t

ðAð0ÞðtÞÞ returned by Algorithm 3 from t ¼ 0 to 25. Here we set
Að0Þ ¼ f2; 4; 3g; D ¼ f2; 3; 5g with N ¼ 3, T ¼ 30; r ¼ 0:85, probabilities
a ¼ 0:8;b ¼ 0:6 for the Markov chain in Fig. 2, and the cost CDF F ðxÞ satis-
fies a truncated normal distribution with mean 0.6 and variance 0.7. (a)Evolu-
tion of foreseen AoI in all the three paths under the approximation online
pricing p

î
ð0Þ
t

;t
ðAð0ÞðtÞÞ; t 2 f0; . . . ; T �maxiDi ¼ 25g (b)Online approxima-

tion pricing policy returned by Algorithm 3.

Fig. 7. The actual performance loss of our Algorithm 3 versus path number
N and time horizon T under truncated normal and truncated logistic dis-
tributions. Here we vary the path numbers N ¼ 3; 7 and 15, time horizon
T ¼ f6; . . . ; 12g, and consider the time t ¼ 0’s online decision making
and set maximum travel delay among all paths as maxifDig ¼ 5. (a) Actual
performance error of truncated normal distribution with mean 0.6 and variance
0.7 (b)Actual performance error of truncated logistic distribution with location
parameter 0.6 and scale 1.
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are a number of non-shortest paths, we prove that pricing one

path at a time is optimal, yet it is not optimal to choose the

path with the largest current AoI. Then we propose a new

backward-clustered computation method and develop an

approximation algorithm to alternate different paths to price

over time. This algorithm has only polynomial-time complex-

ity, and its complexity does not depend on the number of

paths. Perhaps surprisingly, our analysis of approximation

ratio suggests that our algorithm’s performance approaches

closer to optimum if more paths are involved to sample.

We can consider some possible future works directions to

extend this work. Recall that this paper focuses on the min-

max foreseen AoI optimization in problem (25) if there are a

number of non-shortest paths. We can extend to study the

min-sum AoI optimization problem to minimize the total AoI

across all the paths. Our backward-clustered computation

method should still work and we should still choose to pricing

one path at a time. Yet we may not choose the path with the

largest foreseen AoI in Proposition 3. Moreover, we can also

extend our analysis to deal with the random travel delay

instead of deterministic delay in each path, where we need to

further take expectation in the online optimization. The evalu-

ation about the performance of our algorithms with real data is

another point in our next step.
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