
Under review as submission to TMLR

What is the Relationship between Tensor Factorizations
and Circuits (and How Can We Exploit it)?

Anonymous authors
Paper under double-blind review

Abstract

This paper establishes a rigorous connection between circuit representations and tensor fac-1

torizations, two seemingly distinct yet fundamentally related areas. By connecting these2

fields, we highlight a series of opportunities that can benefit both communities. Our work3

generalizes popular tensor factorizations within the circuit language, and unifies various4

circuit learning algorithms under a single, generalized hierarchical factorization framework.5

Specifically, we introduce a modular “Lego block” approach to build tensorized circuit archi-6

tectures. This, in turn, allows us to systematically construct and explore various circuit and7

tensor factorization models while maintaining tractability. This connection not only clarifies8

similarities and differences in existing models, but also enables the development of a compre-9

hensive pipeline for building and optimizing new circuit/tensor factorization architectures.10

We show the effectiveness of our framework through extensive empirical evaluations, and11

highlight new research opportunities for tensor factorizations in probabilistic modeling.12

1 Introduction13

This paper aims at bridging two apparently distant, but in fact intimately related fields: circuit representa-14

tions (Darwiche & Marquis, 2002; Choi et al., 2020; Vergari et al., 2021) and tensor factorizations (Kolda,15

2006; Sidiropoulos et al., 2017). Specifically, we establish a formal connection between the two representa-16

tions and show how the latter can bring a unified perspective on the many learning algorithms devised to17

learn the former, as well as create research opportunities for both communities.18

Tensors are multidimensional generalizations of matrices that are extensively used to represent high-19

dimensional data (Kroonenberg, 2007). Tensor factorizations are well-understood mathematical objects to20

compactly represent tensors in terms of simple operations acting on lower-dimensional tensors (Kolda, 2006).21

They have been extensively applied in ML and AI, e.g., in computer vision (Vasilescu & Terzopoulos, 2002;22

Savas & Eldén, 2007; Panagakis et al., 2021), graph analysis (Kolda et al., 2005), computational neuroscience23

(Vos et al., 2007; Tresp et al., 2021), neuro-symbolic AI (Nickel et al., 2015; Balazevic et al., 2019; Gema24

et al., 2023; Loconte et al., 2023), language modeling (Ma et al., 2019; Hu et al., 2022; Xu et al., 2023), and25

as ways to encode probability distributions (Jaini et al., 2018b; Novikov et al., 2021; Amiridi et al., 2022;26

Hood & Schein, 2024). While usually defined in terms of shallow factorizations, tensor factorizations can27

be also expressed as a hierarchy of factorizations (Grasedyck, 2010), sometimes represented in the graphical28

formalism of tensor networks (Orús, 2013; Glasser et al., 2019).29

Circuit representations (Darwiche & Marquis, 2002; Choi et al., 2020; Vergari et al., 2021), on the other30

hand, are structured computational graphs introduced in the context of logical reasoning and probabilistic31

modeling (Darwiche, 2003; Poon & Domingos, 2011; Kisa et al., 2014). Probabilistic circuits (PCs) (Vergari32

et al., 2019b; Choi et al., 2020), in particular, are circuits that encode tractable probability distributions.33

They support a number of applications requiring exact and efficient inference routines, e.g., lossless com-34

pression (Liu et al., 2022), biomedical generative modeling (Dang et al., 2022b), reliable neuro-symbolic35

AI (Ahmed et al., 2022; Loconte et al., 2023) and constrained text generation (Zhang et al., 2023). Many36

algorithms to learn PCs from data have been proposed in the past (see e.g., Sidheekh & Natarajan (2024) for37

a review), with one paradigm emerging: building overparameterized circuits, comprising millions or even bil-38

1

Under review as submission to TMLR

lions of parameters (Liu et al., 2023a; Gala et al., 2024a), and training these parameters by gradient-ascent,39

expectation-maximization (Peharz et al., 2016; 2020c), or regularized variants (Dang et al., 2022a).40

Both hierarchical tensor factorizations and PCs have been introduced as alternative representations of proba-41

bilistic graphical models (Song et al., 2013; Robeva & Seigal, 2017; Glasser et al., 2020; Bonnevie & Schmidt,42

2021), and the connection between certain circuits and factorizations has been hinted in some works (Jaini43

et al., 2018b; Glasser et al., 2019). However, they mainly differ in how they are applied: tensor factorizations44

are usually used in tasks where a ground-truth tensor to approximate is available or a dimensionality reduc-45

tion problem can be formulated (aka tensor sketch), whereas PCs are usually learned from data in the same46

spirit generative models are trained. Similar to tensor factorizations, however, modern PC representations47

are overparameterized and usually encoded as a collection of tensors as to leverage parallelism and modern48

deep learning frameworks (Vergari et al., 2019a; Peharz et al., 2020c; Mari et al., 2023). This begs the ques-49

tion: Is there any formal and systematic connection between circuits and tensor factorizations? Our answer50

is affirmative as we show that a circuit can be cast as a generalized sparse hierarchical tensor factorization,51

where its parameters encode the lower-dimensional tensors of the factorization itself. Or alternatively, a52

hierarchical tensor factorization is a special case of a deep circuit with a particular tensorized architecture.53

When it comes to PCs, this implies decomposing probability distributions represented as non-negative ten-54

sors (Cichocki & Phan, 2009). At the same time, classical tensor factorizations can be exactly encoded as55

(shallow) circuits. By affirming the duality of tensor factorizations and circuits, we systematize previous56

results in the literature, open up new perspectives in representing and learning circuits, and suggest possible57

ways to construct new and extend existing (probabilistic) factorizations.58

Specifically, in this paper we will first derive a compact way to denote several tensorized circuit architectures,59

and represent them as computational graphs using a “Lego blocks” approach that stacks (locally) dense tensor60

factorizations while preserving the structural properties of circuits required for tractability. This enables61

us to use novel “blocks” in a plug-and-play manner. Then, we unify the many different algorithms for62

learning PCs that have been proposed in the literature so far (Peharz et al., 2020c;a; Liu & Van den Broeck,63

2021b), which come from different perspectives and yield circuits that are considered as different models.64

In particular, we show that their differences reduce to factorizations and syntactic transformations of their65

tensor parameters, since they can be understood under the same generalized (hierarchical) factorization based66

on the Tucker tensor factorization (Tucker, 1966) and its specializations (Kolda & Bader, 2009). Therefore,67

we argue the different performances that are often reported in the literature are actually the result of different68

hyperparameters and learning methods more than different inductive biases (Liu et al., 2023b).69

Furthermore, after making this connection, we exploit tensor factorizations to further compress the param-70

eters of modern PC architectures already represented in tensor format. By doing so, we introduce PCs71

that are more parameter-efficient than previous ones, and we show that finding the best circuit architecture72

for a certain setting is far from solved. Lastly, we highlight how this connection with circuits can spawn73

interesting research opportunities for the tensor factorization community (highlighted as boxes throughout74

the paper): ranging from learning to decompose tensors from data, to interpreting tensor factorizations as75

latent-variable probabilistic models, to inducing sparsity via the specification of background knowledge.76

Contributions. i) We generalize popular tensor factorization methods and their hierarchical formulation77

into the language of circuits (Section 2). ii) We connect PCs to non-negative tensor factorizations and78

highlight how the latter can be interpreted as latent variable models, and as such they can be used as79

generative models and for neuro-symbolic AI (Section 3). iii) Within our framework, we abstract away80

the many options used to build and learn modern overparameterized architectures to arrive at a general81

algorithmic pipeline (Section 4) to represent and learn hierarchical tensor factorizations as tensorized circuits.82

iv) This allows us to analyze how existing, different parameterizations of circuits are related to each other83

by leveraging tensor factorizations, while proposing more parameter-efficient modeling choices that retain84

some of the expressiveness (Section 5). v) We evaluate several algorithmic choices in our framework on a85

wide range of distribution estimation tasks, highlighting the major trade-offs in terms of time and space86

complexity, and resulting performance (Section 6).87

2

Under review as submission to TMLR

2 From Tensor Factorizations to Circuits88

Symbols notation. We will adapt most of the notation and nomenclature from Kolda & Bader (2009). We89

denote sets of random variables with X, Y and Z, and we use rns to express the set t1, 2, . . . , nu with n ą 0.90

The domain of a variable X is denoted as dompXq, and we denoted as dompXq “ dompX1q ˆ ¨ ¨ ¨ ˆ dompXnq91

the joint domain of variables X “ tXiun
i“1. We denote scalars with lower-case letters (e.g., a P R), vectors92

with boldface lower-case letters (e.g., a P RN), matrices with boldface upper-case letters (excluding those93

used for variables, e.g., A P RMˆN), and tensors with boldface calligraphic letters (e.g., A P RI1ˆI2ˆI3).94

Moreover, we use subscripts to denote entries of tensors (e.g., aijk is the pi, j, kq-th entry in A), and make95

use of “:” to denote tensor slicing (e.g., A:j: P RI1ˆI3 is obtained by selecting the j-th matrix slice of A96

along the second dimension).97

Matrix and tensor operations notation. Furthermore, we denote with d the Hadamard (or element-98

wise product) of tensors having the same dimensions, and we denote with ˝ the outer products of vectors,99

i.e., given u P RM , v P RN we have that their outer product A “ u ˝ v P RMˆN is defined such that100

aij “ uivj for all pi, jq P rM s ˆ rN s. We denote with || the concatenation operator over vectors, i.e.,101

u || v “ ru1, . . . , uM , v1, . . . , vN sJ P RM`N . We use b to express the Kronecker product between vectors,102

i.e., u b v P RMN is the row-wise flattening of u ˝ v into an MN -dimensional vector. Finally, we use ˆn103

to denote the tensor-matrix dot product along the n-th dimension, i.e., given a tensor T P RI1ˆ¨¨¨ˆId and a104

matrix A P RJˆIn , n P rds, then we have that T ˆn A P RI1ˆ¨¨¨ˆIn´1ˆJˆIn`1¨¨¨ˆId is defined in element-wise105

notation as pT ˆn Aqi1¨¨¨ in´1 j in`1¨¨¨ id
“ řIn

in“1 ti1¨¨¨id
ajin

, with j P rJs.106

2.1 Shallow Tensor Factorizations are Shallow Circuits107

Tucker factorization. Tensor factorizations approximate high-dimensional tensors by a collection of lower-108

dimensional ones. Formally, given a tensor T P RI1ˆ¨¨¨ˆId , whose size grows exponentially with respect to the109

dimensions d, we seek a low-rank factorization for it (Kroonenberg, 2007). Many popular tensor factorization110

methods, such as the canonical polyadic decomposition (CP) (Carroll & Chang, 1970), RESCAL (Nickel111

et al., 2011), and the higher-order singular value decomposition (HOSVD) (De Lathauwer et al., 2000) are112

all particular cases of the Tucker factorization (Tucker, 1964; 1966). For this reason, our treatment of tensor113

factorizations will focus on Tucker first, and its hierarchical formulation (Grasedyck, 2010) later. Our results114

will generalize to special cases such as CP, RESCAL and HOSVD.115

Definition 1 (Tucker factorization (Tucker, 1964)). Let T P RI1ˆ¨¨¨ˆId be a d-dimensional tensor. The116

multilinear rank-pR1, . . . , Rdq Tucker factorization of T factorizes it as a core tensor multiplied by a matrix117

along each dimension, i.e.,118

T « W ˆ1 Vp1q ˆ2 Vp2q . . . ˆd Vpdq (1)

where W P RR1ˆ¨¨¨ˆRd is the core tensor, Vpjq P RIj ˆRj with j P rds are the factor matrices, and « denotes119

the approximation of the tensor on the left-hand side given by the right-hand side factorization. The above120

equation can be rewritten in element-wise notation as121

ti1¨¨¨id
«

R1ÿ

r1“1
¨ ¨ ¨

Rdÿ

rd“1
wr1¨¨¨rd

v
p1q
i1r1

¨ ¨ ¨ v
pdq
idrd

. (2)

Focusing on the element-wise notation, we can view the factorization of T as a function c over d discrete122

variables X “ tXjud
j“1, each having domain dompXjq “ rIjs, such that tx « cpxq for any assignment123

x “ xi1, . . . , idy to variables X. In other words, each assignment to X is mapped to one scalar tensor entry,124

whose value is computed by c. Eq. (2) highlights that such a tensor factorization encodes a polynomial125

defined over the factor matrix values associated to assignments to variables X (Kolda, 2006). Therefore, we126

can represent the factorization encoded in c as a circuit, i.e., a computational graph consisting of sums and127

products as atomic operators, formally defined next.128

3

Under review as submission to TMLR

fX3

fX2
fX2

fX2

fX1

fX2

×

×

×

×

0.6

0.4

0.3

0.7

fX1

fX3

×

×
0.5

0.5

1.23.4

0.800.22.050.2

0.570.2

1.39−1.1

1.90.2

2.46

0.96

0.79

2.64

1.56

1.34

0.4

0.6

0.7

0.3

0.59

0.673.4

−1.1

0.92

0.90 0.91 0.91

0.5

0.5

Figure 1: Example of a circuit (left) and its evaluation (right) for a circuit encoding the joint density
over three continuous random variables X1, X2, X3. We denote input units with as they are univariate
Gaussian distributions and label them with their scopes (left) while later on we will draw generic input
units with an empty circle. To compute the joint density for ppX1 “ ´1.1, X2 “ 0.2, X3 “ 3.4q, one has
to first evaluate the Gaussian densities at the inputs (blue) and propagate the computed values. These
densities are then multiplied across product units

Â
and then passed through sums

À
(both in orange),

whose parameters are here explicitly drawn in boxes. We will omit drawing the sum units weights in other
pictures to avoid clutter. The value of ppX1 “ ´1.1, X2 “ 0.2, X3 “ 3.4q “ 0.91 is obtained by collecting
the output of the last unit (in purple). See Section 3 for more circuits encoding distributions.

Definition 2 (Circuit (Choi et al., 2020; Vergari et al., 2021)). A circuit c is a parameterized directed129

acyclic computational graph1 over variables X encoding a function cpXq, and comprising three kinds of130

computational units: input, product, and sum units. Each product or sum unit n receives the outputs131

of other units as inputs, denoted with the set inpnq. Each unit n encodes a function cn defined as: (i)132

fnpscpnqq if n is an input unit, where fn is a function over variables scpnq Ď X, called its scope, (ii)133 ś
jPinpnq cjpscpjqq if n is a product unit, and (iii)

ř
jPinpnq wjcjpscpjqq if n is a sum unit, with wj P R denoting134

the weighted sum parameters. The scope of a product or sum unit n is the union of the scopes of its135

inputs, i.e., scpnq “ Ť
jPinpnq scpjq. The size of a circuit c, denoted as |c|, is the number of edges between the136

computational units.137

Circuits can be understood as multilinear polynomials with exponentially many terms, but compactly en-138

coded in a deep computational graph of polynomial size (Darwiche, 2003; Zhao et al., 2016; Choi et al.,139

2020). From this perspective, it is possible to intuit how they are related to, but also different from, tensor140

factorizations. In fact, while also the latter encode compact multilinear operators (Eq. (2)), the indetermi-141

nates of the circuit polynomials can be more than just entries of matrices as per Def. 2, e.g., potentially142

non-linear input functions. For example, a circuit can encode the joint density over a collection of continuous143

random variables, and input functions fn could encode Gaussian densities (Fig. 1). See also Opportunity 4144

for a discussion on the many ways to encode input units in circuits.145

Evaluating the function c encoded in a circuit is done by traversing its computational graph in the usual146

feedforward way – inputs before outputs, see Fig. 1. Furthermore, the circuit definition we provided can be147

more general than tensor factorizations as it can represent sparse computational graphs, i.e., where units148

are irregularly connected. As we will argue later, this does not need to be the case. Circuits can be, in fact,149

designed to be locally-dense as it is common in many modern implementations (Section 4). Locally-dense150

architectures are also how tensor factorizations will look like, when turned into circuits, as we demonstrate151

in the following proposition for a general Tucker factorization (Def. 1).152

Proposition 1 (Tucker as a circuit). Let T P RI1ˆ¨¨¨ˆId be a tensor being decomposed via a multilinear rank-153

pR1, . . . , Rdq Tucker factorization, as in Eq. (1). Then, there exists a circuit c over variables X “ tXjud
j“1154

with dompXjq “ rIjs, j P rds computing the same factorization. Moreover, we have that |c| P Opśd
j“1 Rjq.155

Appendix A.1 details our proof construction and Fig. 2 illustrates it for the Tucker factorization of a three156

dimensional tensor. In a nutshell, we build a shallow circuit c over the same variables that, when evaluated,157

1In our figures, the direction of the circuit edges is always assumed to be from input to output units, but it is not graphically
showed to avoid clutter.

4

Under review as submission to TMLR

W

Vp1q

Vp2q

Vp3q

x1

x2

x3

T

x2

x3 x1

«

(a)

cpx1, x2, x3q
wijk

v
p1q
x11

v
p1q
x12

v
p2q
x21

v
p2q
x22

v
p3q
x31

v
p3q
x32

(b)

Figure 2: Tucker tensor factorizations are circuits. Given a tensor T P RI1ˆI2ˆI3 and its multilinear
rank-p2, 2, 2q Tucker factorization T « W ˆ1 Vp1q ˆ2 Vp2q ˆ3 Vp3q (a), we can encode it as a circuit c whose
evaluation corresponds to computing an entry of the decomposed tensor, i.e., tx1x2x3 « cpx1, x2, x3q for any
entry index px1, x2, x3q (b). The directionality of the circuit connections goes from input units to output
units, but it is not showed to avoid clutter. The sum unit is parameterized by the entries wijk of the core
tensor W , while the input units are parameterized by the factor matrices Vp1q, Vp2q, Vp3q. For instance,
evaluating the two input units depending on the index x1 (b, in red) translates to indexing the x1-th row of
Vp1q, i.e., vx1: “ rvp1q

x11 v
p1q
x12sJ (a, in red).

outputs the reconstructed tensor entry for a set of coordinates, i.e., it encodes Eq. (2). Its input functions158

fn, in fact, map variable states to embeddings, i.e., the real values contained in the matrices obtained from159

the Tucker factorization, see Fig. 1. Note that one can easily particularize our construction to obtain circuits160

corresponding to other factorizations such as CP, RECAL and HOSVD.161

As a concrete example of our construction, consider the following. Let T P R3ˆ3ˆ3 be a three-dimensional162

tensor defined as163

T “
¨
˝

¨
˝

´1.68 4.02 ´1.84
0.63 -1.50 0.68
0.25 ´0.59 0.27

˛
‚,

¨
˝

16.83 ´40.24 18.36
´6.27 14.99 ´6.84
´2.48 5.918 ´2.7

˛
‚,

¨
˝

21.88 ´52.31 23.87
´8.15 19.49 ´8.89
´3.22 7.69, ´3.51

˛
‚

˛
‚ (3)

and whose multilinear rank-p2, 2, 2q Tucker decomposition is given by a tensor W P R2ˆ2ˆ2 whose entries164

are all 0.5 and by matrices165

Vp1q “
¨
˝

0.1 0.2
´2.0 ´1.0

1.5 ´5.4

˛
‚, Vp2q “

¨
˝

1.1 9.1
-3.3 -0.5

0.7 ´2.2

˛
‚, Vp3q “

¨
˝

´2 0.9
0.23 2.4
´1.4 0.2

˛
‚. (4)

Then, we can build a circuit c with the same structure as the one in Fig. 2, equipping its input units with166

embeddings taken from Vp1q, Vp2q or Vp3q, depending on their scope, and by setting the sum unit parameters167

to be the vector w P R8 obtained by vectorizing the tensor W and therefore having values “ p0.5, . . . , 0.5q.168

Now, to compute the approximate value of the t1,2,2 entry in T , we can just evaluate the circuit c in a169

feedforward way—evaluating inputs before outputs—to compute cp1, 2, 2q. This would yield the following170

computation:171

wJ
´`

0.1 0.2
˘J b `

-3.3 -0.5
˘J b `

0.23 2.4
˘J¯

« -1.4991. (5)

Note how the color-coded blocks inside the brackets correspond to the outputs of the input functions in172

the circuits (Fig. 2), and how the vector outer products (b) realize the product units in c while the dot173

product with w is encoded in the final sum unit. We invite the reader to play with this example and try to174

recover other entries in the tensor, until they are comfortable with the translation of a tensor factorization175

into our circuit format. Furthermore, since circuits can represent factorizations, they inherit the same non-176

uniqueness issue commonly arising in many tensor factorization methods (e.g., Tucker). That is, the tensor177

factorization encoded by a circuit is not unique: one can change the circuit parameters while still encoding178

the same function. Finally, we remark that the multilinear-rank of the factorization now translates into the179

5

Under review as submission to TMLR

number of the input units in the circuit representation. Later, for hierarchical factorizations turned into180

deep circuits (Section 2.2) ranks will turn into the number of units located at different depths as well.181

Representing tensor factorizations as computational graphs of this kind will offer a number of opportunities182

for extending the former model class, in which case we will highlight them in boxes throughout the paper. At183

the same time, we can better understand why these factorizations already support the tractable computation184

of certain quantities of interest, e.g., the computation of integrals, information theoretic measures or maxi-185

mization (Vergari et al., 2021). This can be done in a systematic way in the framework of circuits, that maps186

these computations to the presence of certain structural properties of the computational graph, precisely187

defining sufficient (and sometimes necessary) conditions for tractability. We start by defining smoothness188

and decomposability, two structural properties of circuits that allow to tractably compute summations over189

exponentially many variable assignments, which are often intractable to compute for other models.190

Definition 3 (Unit-wise smoothness and decomposability (Darwiche & Marquis, 2002)). A circuit is smooth191

if for every sum unit n, its input units depend all on the same variables, i.e., @i, j P inpnq : scpiq “ scpjq.192

A circuit is decomposable if for every product unit n, its input units depend on mutually disjoint sets of193

variables, i.e., @i, j i ‰ j : scpiq X scpjq “ ∅.194

For a smooth and decomposable circuit one can exactly compute summations of the form
ř

zPdompZq cpy, zq,195

where Z Ď X, Y “ XzZ, called marginals, in a single feedforward pass of its computational graphs (Choi196

et al., 2020). See also our discussion in Section 3 for more use cases of smoothness and decomposability.197

It is easy to verify that a Tucker tensor factorization represented as a circuit (e.g., Fig. 2) is both smooth198

and decomposable, and hence inherits tractable marginalization. In addition, under this light, one can199

understand the expressiveness of these factorizations, for multilinear polynomials expressiveness is usually200

characterized in terms of circuits with these structural properties (Shpilka & Yehudayoff, 2010; Martens &201

Medabalimi, 2014; de Colnet & Mengel, 2021).202

Where do circuits and tensor factorizations come from? Now that we have established a first203

link between tensor factorizations and circuits, as the former can be rewritten as computational graphs204

with structural properties in the language of the latter, we also point out a first difference in how the two205

communities obtain and approach these objects. Tensor factorizations arise from the need of compressing206

a given high-dimensional tensor, which is usually explicitly represented (if not on memory, on disk). A207

factorization is then retrieved as the output of an optimization problem, e.g., find the factors that minimize208

a certain reconstruction loss (Sidiropoulos et al., 2017; Cichocki et al., 2007). In contrast, modern circuits209

are learned from data. While this can be done both in a supervised and unsupervised way, the latter is more210

common as circuits are learned to encode a probability distribution. Such a distribution can be thought as211

an implicit tensor that is never observed, but from which we sampled data points. Section 3 formalizes this212

and the circuit learning problem. Even if reconstructing tensors is generally done differently than learning213

circuit from data, once a factorization is given, by looking at it as a circuit, we can open up new opportunities214

to use it and exploit it. We highlight them as boxes in the following sections. Next, we discuss how the215

framework of circuits also generalizes hierarchical (or deeper) tensor factorizations, which will also provide216

the entry point of our pipeline for learning both circuits and tensor factorizations (Section 4).217

2.2 Hierarchical Tensor Factorizations are Deep Circuits218

Tensor factorizations can be stacked together to form a deep or hierarchical factorization that can be much219

more space-efficient (i.e., of much lower rank) than its shallow materialization. For instance, Grasedyck220

(2010) proposed hierarchical Tucker, which stacks many low-rank Tucker factorizations according to a fixed221

hierarchical partitioning of tensor dimensions. Cohen et al. (2015) showed that in most cases equivalent222

or even approximate shallow factorizations would instead require an exponential rank with respect to the223

number of dimensions. Similar theoretical results have been also shown for circuits, i.e., deep circuits can224

be exponentially smaller than shallow circuits, where the size of a circuit is the number of unit connections225

(Delalleau & Bengio, 2011; Martens & Medabalimi, 2014; Jaini et al., 2018b).226

In this section, we first introduce the hierarchical Tucker factorization, show that it is an instance of a deep227

circuit, and later use this connection to describe modern tensorized circuit representations (Section 4). To do228

6

Under review as submission to TMLR

w
p1q
1jk

w
p2q
ijk

v
p1q
x11

v
p1q
x12

v
p2q
x21

v
p2q
x22

v
p3q
x31

v
p3q
x32 cpx1, x2, x3q

(a)

hkkkkkkkkkikkkkkkkkkj

hkkkkkkkkkikkkkkkkkkj

Tucker layers

Wp2q

Wp1q

v
p1q
x1:

v
p2q
x2:

v
p3q
x3:

cpx1, x2, x3q

(b)

Figure 3: Hierarchical Tucker factorizations are deep (tensorized) circuits as shown here with
the circuit representation of the hierarchical Tucker factorization of a three dimensional tensor (a), which
is obtained by stacking two Tucker factorizations according to the RG in Fig. 4. Evaluating the circuit
from left to right for some entry px1, x2, x3q computes the corresponding tensor entry. In (b) we show the
equivalent tensorized architecture (Def. 7) obtained by grouping units into layers, according to the graphical
convention introduced in Def. 7. Input layers map indices into rows of factor matrices, while products layers
compute Kronecker products of their inputs, and sum units compute a matrix-vector product. The core
tensors Wp1q P R2ˆ2ˆ2, Wp2q P R1ˆ2ˆ2 that parameterize the sum units in (a) are reshaped into matrices
Wp1q P R2ˆ4, Wp2q P R1ˆ4 in (b). In Section 4 we will refer to the composition of Kronecker product and
sum layers simply as Tucker layer, as showed in (b).

so, we borrow a tool from the circuit literature: a hierarchical partitioning of the scope of a circuit (Vergari229

et al., 2021), aka region graph (RG) (Dennis & Ventura, 2012). A RG is a bipartite graph whose nodes are230

either sets of variables, i.e., the dimensions of the tensor to decompose, or indicate how to partition such sets.231

X1 X3

X1,X3 X2

X1,X2,X3

Figure 4: A tree RG.

232

Definition 4 (Region graph (Dennis & Ventura, 2012)). Given a set of variables X,233

a region graph R is a bipartite and rooted directed acyclic graph (DAG) whose nodes234

are either regions, denoting subsets of X, or partitions, specifying how a region is235

partitioned into other regions. The root is the region node X.236

Without loss of generality, we assume binary RGs, i.e., each region is partitioned into237

two others, as shown in Fig. 4.2 Next, we define the hierarchical variant of Tucker.238

Definition 5 (Hierarchical Tucker factorization). Let T P RI1ˆ¨¨¨ˆId be a d-239

dimensional tensor, and let X be the region root of a tree-shaped binary RG R whose240

leaves have exactly one variable, where dompXjq “ rIjs for all Xj P X. The hierarchi-241

cal Tucker factorization of T is given by recursively applying Tucker factorizations242

according to the partitioning of indices induced by R. There are three cases:243

• First, for every leaf region Z “ tXju in R, we define u
pZq
xjr to be an alias of the pxj , rq-th entry of the244

factor matrix Vpjq P RIj ˆRZ associated to Z.245

• Next, for every non-leaf region Y Ď X partitioned into pZ1, Z2q in R, i.e., Y “ Z1YZ2 with Y “ tYjul
j“1,246

Z1 “ tZ1,jum
j“1, Z2 “ tZ2,jun

j“1, we recursively define the Tucker factorization associated to Y as247

upYq
y1¨¨¨yls «

RZ1ÿ

r1“1

RZ2ÿ

r2“1
wpYq

s r1r2
upZ1q

z1,1¨¨¨z1,mr1
upZ2q

z2,1¨¨¨z2,nr2
with s P rRYs, (6)

where pRY, RZ1 , RZ2 q denotes the multilinear rank of the Tucker factorization. Moreover, WpYq P248

RRYˆRZ1 ˆRZ2 is the corresponding core tensor, and y “ xy1, . . . , yly, z1 “ xz1,1, . . . , z1,my, z2 “249

xz2,1, . . . , z2,my are assignments to variables Y, Z1, Z2, respectively.250

2Similarly to our graphical notation of circuits (Def. 2), we remove the directionality of node connections from the figures
and assume that edges are oriented from region nodes of more variables towards regions of fewer variables.

7

Under review as submission to TMLR

• Finally, in the case of the root region Y “ X in the recursive rule in Eq. (6), we define RY “ 1 and251

u
pYq
x1x2¨¨¨xd1 in Eq. (6) becomes an alias of the entry tx1x2¨¨¨xd

of T .252

We provide an example of a hierarchical Tucker factorization, as to show an application of the recursive
Tucker factorization shown in Eq. (6). Given T P RI1ˆI2ˆI3 a a three-dimensional tensor, we factorize it via
hierarchical Tucker according to the RG shown in Fig. 4. Since the RG in Fig. 4 has two partitionings, we
recursively perform two Tucker factorizations (as in Eq. (6)), and choose pRtX1,X2,X3u, RtX2u, RtX1,X3uq and
pRtX1,X3u, RtX1u, RtX3uq as the respective multilinear ranks, i.e., each entry of T is approximated as

ttX1,X2,X3u
x1x2x3

«
RtX2uÿ

r1“1

RtX1,X3uÿ

r2“1
w

tX1,X2,X3u
1r1r2

vtX2u
x2 r1

utX1,X3u
x1x3 r2

,

where W P R1ˆRtX2uˆRtX1,X3u is the core tensor of the first Tucker factorization, VtX2u P RI2ˆRtX2u is the
factor matrix associated to tX2u, and UtX1,X3u P RI1ˆI3ˆRtX1,X3u consists of RtX1,X3u matrices of shape
I1 ˆ I3 being factorized according to the second Tucker factorization,3 i.e.,

utX1,X3u
x1x3 r2

“
RtX1uÿ

r3“1

RtX3uÿ

r4“1
wtX1,X3u

r2r3r4
vtX1u

x1 r3
vtX3u

x3 r4
,

where WtX1,X3u P RRtX1,X3uˆRtX1uˆRtX3u , VtX1u P RI1ˆRtX1u , and VtX3u P RI3ˆRtX3u .253

Following this recursive definition of a hierarchical Tucker factorization, we now build an equivalent circuit254

c encoding the same factorization, i.e., tx « cpxq, by stacking weighted sum and product units together as255

to construct a deep circuit. In the following proposition we present this construction.256

Proposition 2 (Hierarchical Tucker as a deep circuit). Let T P RI1ˆ¨¨¨ˆId be a tensor being decomposed257

using hierarchical Tucker factorization according to a RG R. Then, there exists a circuit c over variables258

X “ tXjud
j“1 with dompXjq “ rIjs, computing the same factorization. Furthermore, given tYpiqum

i“1 Ă 2X
259

the set of all non-leaf region nodes Ypiq Ď X being factorized into pZpiq
1 , Zpiq

2 q in R, with corresponding260

Tucker factorization multilinear rank pRYpiq , RZpiq

1
, RZpiq

2
q, we have that |c| P O

´řm
i“1 RYpiqRZpiq

1
RZpiq

2

¯
.261

Appendix A.2 shows the construction, also illustrated in Fig. 3a for a hierarchical Tucker factorization262

based on the RG showed in Fig. 4. In the very same way one can extend any tensor factorization to be263

hierarchical, one can represent such a construction as a circuit. However, in the circuit literature we found264

many architectures that are not limited to RGs that are trees nor to those having univariate input regions.265

Opportunity 1. A wider choice of factorization structures

X1 X2 X3

X1,X2 X2,X3

X1,X2,X3

Figure 5: Region nodes
can be shared between par-
titionings in a DAG RG.

Def. 4 allows for arbitrary DAGs and arbitrarily scoped-regions, while
hierarchical tensor factorizations are usually presented in terms of RGs
with a tree structure having region leaves containing exactly one variable
(e.g., the RG in Fig. 4), which are sometimes called dimension trees or
mode cluster trees (Grasedyck, 2010) in the tensor factorization com-
munity, and often vtree in circuit literature (Pipatsrisawat & Darwiche,
2008; Kisa et al., 2014; Wedenig et al., 2024a). More intricate RG struc-
tures can increase the expressiveness as well as flexibility in building
deep circuits/hierarchical factorizations. Intuitively, we can share factor
matrices among multiple factorizations, and therefore reduce the num-
ber of model parameters, making a more space-efficient implementation
possible. See Peharz et al. (2020c;a) for more details. We provide an
example of such a RG in Fig. 10 and Fig. 5 here on the left.

266

3The Tucker factorization shown of a three-order tensor into only two factor matrices implicitly assumes the identity matrix
as third factor, and it is also called Tucker2 factorization (Tucker, 1966; Kolda & Bader, 2009).

8

Under review as submission to TMLR

The reader can check that this RG encodes the hierarchical scope partitioning of the decomposable
circuit in figure Fig. 1. Fig. 9 then illustrates a fragment of this RG and shows how tensor factor-
izations conforming to it can be constructed as circuits in Section 4. The circuit literature provides
several ways to build RGs that are suitable for certain data modalities (e.g., image, sequence, tabular
data), which can also be learned from data. Section 4.1 provides an overview of such techniques.

267

Imposing a particular factorization structure by means of a RG, and picking a particular parameterization268

for each region in it (as it will be discussed in Section 4), represents one way to encode novel hierarchical269

factorizations that do not correspond to existing ones. Fig. 6 shows some examples. There, we represent270

circuits in a layer-wise formalism as described later in Section 2.3.271

Note that instantiating tensor factorizations from RGs defined as above preserve decomposability, and that272

circuits built from RGs in the literature are typically also smooth (Def. 3). Hierarchical Tucker and its273

variants are also smooth and decomposable and therefore support the tractable computation of a number274

of (probabilistic) inference tasks (Section 3). These hierarchical factorizations (and the corresponding deep275

circuits) that follow a tree-shaped RG with univariate leaves satisfy an additional structural property, called276

structured-decomposability. Structured decomposability enables the tractable computation of harder opera-277

tions for which smoothness and decomposability are not enough. For instance, squaring particular tensor278

factorizations formalized in the graphical language of tensor networks, known as the Born rule in physics279

(Feynman, 1987; Glasser et al., 2019) (see also Section 2.4). We define structured decomposability below.280

Definition 6 (Structured decomposability (Pipatsrisawat & Darwiche, 2008)). A circuit is structured de-281

composable if (1) it is smooth and decomposable, and (2) any pair of product units n, m having the same282

scope decompose their scope at their input units in the same way.283

We can check that hierarchical Tucker yields a structured decomposable circuit easily, as it is obtained by284

stacking Tucker factorizations (which are computed by decomposable circuits) based on a tree RG, which285

in turn synchronizes all product units to decompose in the same way. We emphasize that eliciting the few286

structural properties that can explain the tractable computation of many different quantities of interest can287

help save effort aimed at (re)discovering and (re)engineering algorithms for specific hierarchical factorizations.288

W3

W1 W2

v
p1q
x1: v

p2q
x2:

v
p3q
x3: v

p4q
x3:

v
p5q
x2: v

p6q
x1:

W3

W1 W2

v
p1q
x1:

v
p3q
x3:

v
p2q
x2: v

p4q
x1:

Figure 6: Tensorized circuits can encode novel hierarchical multilinear factorizations by mixing
different structures and layers. Section 2.3 and Fig. 7 formalize and illustrate our tensorized circuit
formalism, respectively. The figure on the left shows a tensorized circuit over variables X “ tX1, X2, X3u
encoding an allowed multilinear factorization of a three-dimensional tensor (as it is smooth and decomposable,
see Def. 8). Note that each input layer has its own factor matrix Vpjq with j P r6s, and the architecture
consists of a mix of Hadamard, Kronecker and sum inner layers. Overall, this tensorized circuit do not map
to a known hierarchical factorization. The figure on the right shows a similar tensorized circuit, where
the factor matrices Vp2q and Vp3q are instead shared while still encoding an allowed multilinear factorization.

9

Under review as submission to TMLR

Opportunity 2. Efficient Compositional Operations over Factorizations

Given one or more tensor factorizations appearing as operands in a computation of interest, how can
we automatically devise a tractable algorithm for it without having to materialize the exponentially
large tensor operands? The circuit literature holds the answer and offers other structural properties
that can unlock the tractable computation of many complex inference scenarios, in a reusable fashion.
E.g., when two deep circuits conform to the same tree RG, they are said to be compatible (Vergari
et al., 2021). Given two hierarchical tensor factorizations p and q over X, if they are compatible one
can compute general expectations of the form

ÿ
x

ppxqqpxq (expectations)

in closed form in time Op|p||q|q, where |p| and |q| are the size of the corresponding circuits encoding
such factorizations. On the other hand, maximization problems as in maximum-a-posteriori inference

maxy ppy, E “ eq (MAP inference)

where e is the evidence assignment to variables E Ă X, and y is the assignment to the remaining
variables Y “ XzE for which we want to maximize p, can be solved exactly and efficiently if p is
a decomposable circuit that supports an additional property, determinism (Darwiche, 2009). In a
nutshell, sum units in a deterministic circuit receive inputs from functions with disjoint support (see
Choi et al. (2020) for details). While determinism is a consolidated property in the circuit literature,
it is off the radar for (hierarchical) tensor factorizations. Furthermore, the circuit literature provides
a systematic way to quickly devise the tractability conditions for a given mathematical expression
that involves sums, products, powers, exponentials and logarithms, and therefore automatically distill
corresponding tractable algorithms (Vergari et al., 2021). For example, if one wants to compute the
Rényi’s α-divergence between two factorizations p and q over variables X, for α P N, defined as

p1 ´ αq´1 log
ÿ

x
pαpxqq1´αpxq, (α-divergence)

then this can be done quickly if p and q can be represented as smooth, decomposable and compatible
circuits and q is also deterministic. Vergari et al. (2021) shows how to automatically distill the
tractable computation of more information-theoretic quantities.

289

2.3 Representing Circuits in a Tensorized Formalism290

Representing (hierarchical) tensor factorization as (deep) circuits highlights how circuit units can be naturally291

grouped together by type and scope into layers, as hinted already in Fig. 2. This perspective presents a new292

opportunity: defining and representing certain circuit structures as tensorized computational graphs. While293

circuits in the literature are defined in terms of scalar computational units, sum, product and inputs and294

single connections (Def. 2), many successful implementations of circuits nowadays already group units into295

tensors (Vergari et al., 2019a; Peharz et al., 2020c;a; Liu & Van den Broeck, 2021b; Loconte et al., 2024a)296

with the goal of speeding up computation by using the acceleration provided by GPUs. Following these ideas,297

we now provide a general tensorized circuit definition that offers a modular way to build overparameterized298

circuit architectures. This will allow us to design a single learning pipeline that subsumes many existing299

architectures (Section 4), and also suggest a way to create novel ones by mixing and reusing small “blocks”.300

Definition 7 (Tensorized circuit). A tensorized circuit c is a computational graph composed of three kinds301

of layers: input, product and sum. Each layer ℓ consists of computational units defined over the same scope302

scpℓq. Every non-input layer receives the output vectors of other layers as inputs, denoted with the set inpℓq.303

The three kinds of layers are defined as follows:304

• Each input layer ℓ has scope Y Ď X and computes a vector function f : dompYq Ñ RK .305

• Each product layer ℓ computes either an Hadamard product (
Ä

ℓj Pinpℓq ℓj) or Kronecker product306

(
Â

ℓj Pinpℓq ℓj) over the vectors it receives from its input layers ℓj .307

10

Under review as submission to TMLR

• A sum layer with S sum units computes the matrix-vector product Wp || ℓj Pinpℓq ℓjpscpℓjqq, where ||308

denotes vector concatenation and W P RSˆK , K ą 0 are the sum layer parameters.309

Note that if a sum layer ℓ receives only one input vector, i.e., |inpℓq| “ 1, then it simply computes Wℓ1pscpℓ1qq.310

Furthermore, we retrieve the previous scalar unit-wise definition by setting K, the size of each layer, to 1.311

The above four types of layers constitute the basic “Lego blocks” that we will later use to create more312

sophisticated layers (Section 4.3, Section 5) and reproduce all modern circuit architectures (Table 1).313

input layer Hadamard layer Kronecker layer

W

sum layer

Figure 7: Tensorized “Lego blocks”. In the rest of the figures we will abstract away from individual
connections between units (as we did so far, and as we do in the top row illustrations) and represent layers
as (colored) blocks (bottom row). Input layers are the only layers that do not have any other layer as
input, i.e., they take a variables assignment and output a vector computed by a function f . Hadamard
and Kronecker product layers receive inputs from at least two other layers (represented in gray), and
compute the Hadamard and Kronecker products of their inputs, respectively. A sum layer parameterized
by a weight matrix W concatenates its input layers into a single vector, and then multiplies it by W.

As a first example on how this definition can help to abstract away from details in circuit architectures,314

see Fig. 3. There, sum and Kronecker product layers are used to stack two Tucker tensor factorizations to315

represent a hierarchical one. We provide in Section 4 a systematic way to stack different layers and build a316

deep circuit in this way. We can now easily extend the unit-wise definition of structural properties in Def. 3317

to this layer-wise representation, by defining the scope of each layer.318

Definition 8 (Layer-wise smoothness and decomposability). A tensorized circuit over variables X is smooth319

if for every sum layer ℓ, its inputs depend all on the same variables, i.e., @ℓi, ℓj P inpℓq : scpℓiq “ scpℓjq, where320

scpℓq Ď X is the scope of layer ℓ, i.e., the scope of the units in ℓ. It is decomposable if for every product321

layer ℓ in it, its inputs depend on disjoint sets of variables, i.e., @ℓi, ℓj P inpℓq, i ‰ j : scpℓiq X scpℓjq “ ∅.322

Note that by assuming that every layer is composed by units sharing the same scope, and by using the323

three layers defined in Def. 7, we obtain tensorized circuits that are smooth and decomposable by design.324

Furthermore, if the RG of a deep circuit is a tree, then the tensorized circuit will be structured-decomposable325

(Def. 6) as well. It is possible to quickly read these properties out of the graphical representation of hier-326

archical Tucker as a tensorized circuit in Fig. 3b. Next, we use this layered abstraction to bridge to the327

popular tensor networks, and show how they can be naturally encoded as deep circuits.328

2.4 Tensor Networks as Deep Circuits329

Tensor networks (TNs) are often the preferred way to represent hierarchical tensor factorizations in fields330

such as physics and quantum computing (Markov & Shi, 2008; Schollwoeck, 2010). TNs come with a331

graphical language – Penrose notation – to encode tensor dot products in a compact graphical formalism332

(also called tensor contractions). See Orús (2013) for a review. Perhaps, the most popular TN factorization333

is the matrix-product state (MPS) (Pérez-García et al., 2007), also called tensor-train factorization (TT)334

(Oseledets, 2011; Glasser et al., 2019; Novikov et al., 2021). For instance, given a tensor T P RI1ˆ¨¨¨ˆId , its335

11

Under review as submission to TMLR

Ap1q Ap2q Ap3q

X1 X2 X3

Let ap2q
i2,r1,r2

“řN
j“1 v

p2q
i2,j

br1,j cr2,j

with Vp2q P RI2ˆN , B P RRˆN ,

C P RRˆN

Let Vp1q “ Ap1q P RI1ˆR,

Vp3q “ Ap3qC P RI3ˆN ,

W “ B P RRˆN

(a)
v

p1q
x1:

v
p2q
x2:

v
p3q
x3:

W

1

cpx1, x2, x3q
(b)

Figure 8: A MPS/TT represented as a deep tensorized circuit with Hadamard product layers (b).
To obtain the parameters of the circuit, the tensor Ap2q in the MPS/TT (a, showed in Penrose graphical
notation) is firstly factorized into matrices Vp2q, B, C through a CANDECOMP/PARAFAC decomposition
(Carroll & Chang, 1970). Then, Vp1q, Vp3q, W are obtained as in the figure (a). See Loconte et al. (2024a)
for the detailed circuit construction. In (b) we denote with 1 a row-matrix whose entries are all ones.

rank-R MPS/TT factorization is defined in element-wise notation as336

ti1¨¨¨id
«

Rÿ

r1“1

Rÿ

r2“1
¨ ¨ ¨

Rÿ

rd´1“1
a

p1q
i1,r1

a
p2q
i2,r1,r2

¨ ¨ ¨ a
pd´1q
id´1,rd´2,rd´1

a
pdq
id´1,rd´1

(7)

where Ap1q P RI1ˆR, Apdq P RIdˆR, and Apjq P RIj ˆRˆR with 1 ă j ă d. That is, an MPS factorization337

decomposes T into the complete contraction of a chain of smaller tensors Ap1q, Apdq, and tApjqud´1
j“2 . Fig. 8a338

shows an example of a MPS/TT represented in Penrose graphical notation, i.e., where nodes denote the339

tensors Ap1q, Ap2q, . . . , Apd´1q, Apdq, edges denote summations over shared indices, and X1, . . . , Xd denote340

the tensor indices whose assignment yield the corresponding tensor entry. Loconte et al. (2024a) showed341

how an MPS can be represented as deep tensorized circuits by encoding summations and products in Eq. (7)342

into sum and (Hadamard) product layers, respectively.343

Proposition 3 (MPS as deep tensorized circuits (Loconte et al., 2024a)). Let T P RI1ˆ¨¨¨ˆId be a tensor344

being decomposed via a rank R matrix-product state (MPS) factorization. Then, there exists a structured345

decomposable tensorized circuit c over variables X “ tXjud
j“1 with dompXjq “ rIjs, j P rds computing346

the same factorization, i.e., tx « cpxq for all entries x. In addition, we have that |c| P OpdN2q with347

N ď mintR2, R maxtI1, . . . , Iduu.348

In Fig. 8 we show a tensorized circuit representing a MPS/TT over variables X “ tX1, X2, X3u, and, as349

detailed in the proof of Proposition 3 in Loconte et al. (2024a), the parameters of its input and dense layers350

are obtained by decomposing the tensors tApjqud´1
j“2 of the MPS/TT. Similarly to the tensorized circuit rep-351

resentation of hierarchical Tucker (Proposition 2), Proposition 3 yields a tensorized circuit that is structured352

decomposable (Def. 6). Structured-decomposability is the crucial property in MPS/TTs that allows to per-353

form certain operations over them tractably, for instance squaring them as to recover a Born machine – a354

probabilistic model devised to simulate quantum many-body systems in physics (Orús, 2013; Glasser et al.,355

2019). Understanding this enables practitioners to design alternative Born machine architectures that are356

not limited to a sequence of tensor operations as encoded in a “linear” RG, without having to prove the357

tractability of the square operation over these architectures from scratch (Shi et al., 2005). This is one of the358

opportunities we highlighted for hierarchical tensor factorizations once represented as circuits (Opportunity 1359

and Opportunity 2). Further opportunities will be presented in the next section and directly translates to360

TNs as well as classical tensor factorizations.361

Next steps. Until now, we discussed the generic case of decomposing a real-valued tensor. On the other362

hand, tensor factorizations that are tailored for non-negative data (e.g. images), called non-negative tensor363

factorizations, factorize tensors into non-negative factors that can be interpreted much more easily (Cichocki364

& Phan, 2009). In Section 3, we connect non-negative tensor factorizations methods to the literature365

of circuits for probabilistic modeling, which allows us to interpret them as deep latent-variable models.366

12

Under review as submission to TMLR

In addition, by bridging non-negative tensor factorizations and their representation as (deep) circuits, we367

showcase a number of future research opportunities related to both parameterizing tensor factorizations and368

performing probabilistic inference with them.369

3 From Non-negative Factorizations to Circuits for Probabilistic modeling370

Much attention has been posed in machine learning on circuit representations for tractable probabilistic371

modeling, i.e., for modeling probability distributions that support tractable inference. Circuits built with372

such a purpose are usually called probabilistic circuits (PCs) (Vergari et al., 2019b; Choi et al., 2020). In this373

section, we connect non-negative tensor factorizations and PCs, showing a number of research opportunities374

for the tensor factorization community within the probabilistic machine learning panorama.375

First, we bridge non-negative (hierarchical) tensor factorizations with the discrete latent variable interpre-376

tation of (deep) PCs, showing examples of available algorithms for linear-time probabilistic inference that377

exploit this interpretation (not only marginals, as discussed in the previous section, but also sampling). Sec-378

ond, we show how the rich literature on PCs provides several compact parameterization techniques that can379

yield non-linear factorizations. At the same time, we leverage optimization tricks from the non-negative ten-380

sor literature to learn PCs. Finally, we connect with the literature of infinite-dimensional tensor factorizations381

showing their relationship with PCs encoding probability density functions, as well as with PCs equipped382

with infinite-dimensional sum units. We start by describing how to represent a probability distribution over383

finitely-discrete random variables as a tensor factorization.384

Let ppXq be a probability mass function (PMF) over finitely-discrete random variables X “ tXjud
j“1, where385

each Xj P X takes values in dompXjq “ rIjs. Then, the simplest representation of ppXq is that of a386

probability tensor T P RI1ˆ¨¨¨ˆId` such that every entry encodes the probability of a joint configuration of387

X, i.e., tx1¨¨¨xd
“ ppx1, . . . , xdq for any x “ xx1, . . . , xdy P dompXq. Clearly, this representation is inefficient,388

as it scales exponentially in space with respect to the number of variables d. A natural way to compactly389

model ppXq is via a non-negative tensor factorization, e.g., the non-negative version of Tucker (Kim & Choi,390

2007), where the factor matrices tVpjqud
j“1 and the core tensor W showed in Eq. (2) are restricted to have391

non-negative entries only. By trivially specializing Proposition 2, we can encode the non-negative hierarchical392

Tucker factorization (Vendrow et al., 2021) in a circuit c that outputs non-negative values, also called a PC.393

Definition 9 (Probabilistic circuit (Choi et al., 2020)). A probabilistic circuit (PC) over variables X is a394

circuit encoding a function cpXq that is non-negative for all assignments to X, i.e., @x P dompXq : cpxq ě 0.395

A sufficient condition to ensure a circuit is a PC is constraining both the parameters of sum units and396

the outputs of input units to be non-negative, resulting in a circuit that is called monotonic (Shpilka &397

Yehudayoff, 2010).4 For instance, the circuit encoding a non-negative hierarchical Tucker factorization that398

we mentioned above is a monotonic PC, as its sum unit weights (i.e., the entries of the core tensor W) and399

the outputs of its input units (i.e., the entries of the factor matrices tVpjqud
j“1) are restricted to be non-400

negative. Smoothness and decomposability in circuits allow for the tractable computation of summation and401

integrals (Section 2.1), which translates into exactly computing any marginal or conditional distribution for402

a PC with these structural properties (Vergari et al., 2019b). However, these PCs are not just probabilistic403

models that allow to tractably evaluate probabilistic queries over ppxq, they are also generative models from404

which it is possible to sample exactly.405

3.1 Non-negative tensor factorizations as generative models406

As non-negative factorizations—such as non-negative hierarchical Tucker—are smooth and (structured) de-407

composable PCs (Defs. 3 and 6), they inherit the ability of PCs to perform tractable inference and to generate408

new data points, i.e., certain configurations of the variables they are defined on. To the best of our knowl-409

edge, this treatment of tensor factorizations as generative models has gone unnoticed so far. We discuss it410

in the following, showing how one can devise (faster) sampling algorithms for these representations.411

4Non-monotonic PCs – circuits allowing for negative parameters but still guaranteeing non-negative outputs – are possible,
see e.g., Loconte et al. (2024a).

13

Under review as submission to TMLR

First, we review the simplest way to sample from a non-negative factorization. Consider a non-negative412

(hierarchical) Tucker factorization (Def. 5) encoding ppXq and modeled as tensorized monotonic PC c. We413

can sample a data point x “ xx1, . . . , xdy from ppXq by autoregressively sampling one variable at a time,414

conditioned to the previously sampled variable assignments. That is, we can first marginalize all variables415

except X1, and then sample from the distribution ppX1q, i.e., x1 „ ppX1q. This can be done in time Op|c|q,416

as c is both smooth and decomposable (Def. 3, Def. 8). Then, for all d ą 1, we condition w.r.t. to the417

assignments to variables tXiud´1
i“1 and sample Xd, i.e., xd „ ppXd | X1, . . . , Xd´1q. This “naive” sampling418

procedure requires worst-case time Opd|c|q, where |c| is the circuit size (see Def. 2). This can be inefficient in419

case of large d. However, for smooth and decomposable circuits, we can sample in Op|c|q only, by interpreting420

them as discrete latent variable models (Peharz et al., 2017; Vergari et al., 2018).421

Opportunity 3. Tensor factorizations as discrete latent variable models

Each sum unit n in a smooth PC can be thought as a mixture model computing:

cnpXq “
ÿK

i“1
wn,i cn,ipXq, where

ÿK

i“1
wn,i “ 1, wn,i ą 0, (8)

i.e., a convex combination of the its K inputs, each one representing a distribution. At the same time,
this can be interpreted as summing out a discrete latent variable Zn that has K different states,

pnpXq “
ÿK

i“1
ppZn “ iq pn,ipX | Zn “ iq

where the non-negative weights wn,i are the marginal probabilities of this latent variable. As such,
the whole circuit, and hence the corresponding non-negative tensor factorization, can be seen as a
hierarchical latent variable model (Peharz et al., 2016; Choi et al., 2011), with as many discrete latent
variables as the number of sum units. Therefore, as for any mixture model, to sample x we can first
sample the latent variables, and then sample the mixture components. In practice, this sampling
procedure can be done efficiently by performing a backward traversal of the circuit computational
graph (Vergari et al., 2019a; Dang et al., 2022a). We provide this algorithm for tensorized circuits
in Algorithm C.1, which sample a batch of N data points in parallel and discuss it in Appendix C.
Other efficient probabilistic inference tasks can be “imported” from the circuit literature for smooth
and decomposable PCs. See Vergari et al. (2021) for more details.

422

3.2 How to parameterize probability tensor factorizations?423

Circuits and tensor factorizations are the output of two different optimization problems that however share424

some common challenges. Understanding them can open new opportunities for both communities. In425

application scenarios of (non-negative) tensor factorizations, the main task is to compress or reconstruct a426

given tensor, which is generally explicitly represented in memory. Hence, the parameters of the factorization427

are optimized as to minimize a reconstruction loss (Cichocki et al., 2007). In contrast, modern PCs are428

learned from data. That is, one is given a dataset of N datapoints txpiquN
i“1 that are assumed to be drawn429

i.i.d. from and unknown distribution ppXq (Bishop & Nasrabadi, 2006). The probability tensor that encodes430

ppXq is therefore implicit and cannot be fully materialized, as the probability distribution is unknown, but431

also because of its possible exponential—or even infinite—size.432

As learning in PCs often reduces to an optimization problem, i.e., maximizing the data (log-)likelihood (Pe-433

harz et al., 2016), enforcing the non-negativity of the circuit needs to be done using one or more reparame-434

terizations, i.e., mapping real-valued parameters to the non-negative sum unit weights. This is necessary as435

the sum unit weights of a monotonic PC need to form a convex combination to yield a valid distribution (as436

shown in Eq. (8)). For instance, we can squash the K parameters θ P RK associated to a sum unit with K437

inputs through a softmax function438

w “ softmaxpθq, θ P RK . (9)
The usage of such reparameterization combined with input functions encoding probability distributions439

delivers a PC whose normalization constant is 1, as the probabilities of all variable assignments sum up to440

14

Under review as submission to TMLR

one, which is direct consequence of having the weights of each sum unit summing up to one. For a tensorized441

circuit, such reparameterization would act row-wise on the parameter matrix associated to every sum layer.442

Luckily, if the circuit is smooth and decomposable (Def. 3), we can still compute its normalization constant443

exactly and efficiently even if sum weights are not normalized (Peharz et al., 2015). This allows us to use444

alternative ways to reparameterize a monotonic PC c, even if its reparameterization delivers an unnormalized445

distribution, i.e., a distribution not integrating to 1. In fact, we can still recover a valid distribution ppXq446

efficiently via normalization, i.e., ppXq “ cpXq{Z with Z “ ř
xPdompXq cpxq being the normalization constant.447

For instance, we can enforce each single sum unit parameter θ to be non-negative via exponentiation448

w “ exppθq, θ P R. (10)

In this paper, we introduce a third way, a simpler implementation trick that we borrow from the literature449

on gradient-based optimization for non-negative tensor factorizations (Cichocki et al., 2007): projecting the450

parameters of all sum units in the positive orthant after every optimization step, i.e.,451

w “ maxpϵ, θq, θ P R, ϵ ą 0 (11)

where ϵ is a small threshold close to zero and max is applied element-wise. Each reparameterization can yield452

a different loss landscape and lead to different solution during optimization. In our experiments (Section 6),453

we found this third reparameterization to be the most effective to learn monotonic PCs.454

When it comes to input units in monotonic PCs, they need to model valid distributions. Common pa-455

rameterizations can include simple PMFs (or densities, see Section 3.4) such as Bernoulli or Categorical456

distributions, or even other probabilistic models as long as they can be tractably marginalized. This yields457

a set of possible parameterizations that go beyond the simple mappings from indices to matrix entries, as458

usually used in tensor factorizations (Proposition 1 and Fig. 2).459

Opportunity 4. A wide range of possible parameterizations

Estimating a PMF ppXq via a probabilistic model is another way to perform an implicit tensor com-
pression. If this model is a circuit, then this compression exactly maps to a non-negative hierarchical
tensor factorization but over a number of basis functions, which are the circuit input units. These
input units (thus also input layers in our tensorized formalism) can encode more memory efficient
and more expressive functions than indicator functions. For instance, one can use Binomial distribu-
tions instead of categoricals as to drastically reduce the number of parameters of the factorizations
(Peharz et al., 2020c). In the case of infinite-dimensional probability tensors (see Section 3.4 be-
low), discrete variables with infinite support can instead be modeled by using Poisson distributions
(Molina et al., 2017) or generative models as input layers, such as normalizing flows (Papamakarios
et al., 2021; Sidheekh et al., 2023), variational auto-encoders (Tan & Peharz, 2019), or also non-linear
functions that can be integrated efficiently, e.g., splines (Novikov et al., 2021; Loconte et al., 2024a).
Parameterizing input units in this way yields a tensor factorization that uses non-linearities. Along
this direction, in the circuit literature parameters of sum layers have been directly parameterized by
neural networks (Shao et al., 2020; 2022; Gala et al., 2024a). These non-linear cases have only been
explored very recently in the matrix and tensor factorization literature (Leplat et al., 2023; Awari
et al., 2024).

460

3.3 Reliable Neuro-symbolic integration461

A prominent use case for tractable inference with PCs is in safety-critical applications, when it is necessary to462

enforce hard constraints over the predictions of neural classifiers (Ahmed et al., 2022; van Krieken et al., 2024).463

These constraints can be expressed as logical formulas over symbols extracted by a perceptual component464

(the classifier). For example, the safety rule that a self-driving car has to stop in front of a pedestrian or a465

traffic light (Marconato et al., 2024b;a) can be written as a propositional logical formula ϕ : pP _ R ùñ Sq,466

where P, R and S are Boolean variables representing that a Pedestrian and a Red-light have been detected467

in the video stream of the car and the action to Stop has to be taken. Circuits are especially suitable for468

15

Under review as submission to TMLR

this neuro-symbolic integration scenario (De Raedt et al., 2019) because they can represent both probability469

distributions and logical formulas. These two representations can be used in a single classifier to guarantee470

that the predictions that will violate the given constraint will always have 0 probability. More formally, we471

can implement such a classifier, mapping inputs x to outputs y that have to satisfy a constraint ϕ, in this472

way (Ahmed et al., 2022):473

ppy | xq 9 qpy | xq1ty |ù ϕu (12)
where qpy | xq is a conditional distribution encoded in a circuit that can be parameterized by a neural474

network (see Opportunity 4) and 1ty |ù ϕu is an indicator function that is 1 when the predictions y satisfy475

(|ù) the constraint ϕ. For instance, y is a Boolean assignment to variables P, R, S in our self-driving car476

example, and 1ty |ù ϕu is 1 iff substituting y to variables in ϕ yields “true” (J). This indicator function can477

be compactly represented as a circuit made of sum and product units through a process called knowledge478

compilation (Darwiche & Marquis, 2002; Chavira & Darwiche, 2008; Choi et al., 2013).5 If both the proba-479

bility distribution q and the indicator function for the constraint ϕ are compatible circuits (Opportunity 2),480

one can efficiently multiply them and renormalize by computing the partition function (Vergari et al., 2021),481

which equals the probability that the hard constraint ϕ holds given x, i.e.,482

ÿ
y

qpy | xq1ty |ù ϕu “ Ey„qpy|xq r1ty |ù ϕus “ ppϕ “ J | xq (13)

also called the weighted model count (Chavira & Darwiche, 2008; van Krieken et al., 2024) which is the crucial483

quantity to compute when combining logical and probabilistic reasoning (Darwiche, 2009; Zeng et al., 2020).484

This possible integration, as far as we can tell, is off the radar of the tensor factorizations community.485

Opportunity 5. Structured sparsity via logical constraints

Circuits encoding logical formulas are generally very sparse, nonetheless, they still represent a (sparse)
factorization of a tensor, in this case a Boolean one. Analogously to the probability tensor described
at the beginning of Section 3, this Boolean tensor would encode the logical formula as an exponentially
large table of zeros and ones. Multiplying a probability tensor compactly encoded as circuit q as in
Eq. (12) with this compact representation of a Boolean tensor equals to a structured form of masking:
all the invalid (according to the logical constraint ϕ) entries in the probability tensor are forcefully set
to zero, thus making such entries not predictable. A possible opportunity is therefore to connect with
the vast literature of knowledge compilation (Darwiche & Marquis, 2002; Choi et al., 2013; Oztok &
Darwiche, 2017) to impose structured sparsity to tensor factorizations.
Possible applications include neuro-symbolic integration for graph data (Loconte et al., 2023) as
well as representing rankings and user preferences (Choi et al., 2015), scaling cryptographic attacks
(Wedenig et al., 2024b), enforcing constraints over the output of LLMs (Zhang et al., 2023) and
promoting their self-consistency (Calanzone et al., 2024).

486

3.4 Infinite-Dimensional Probability Tensors and Continuous Factorizations487

Until now, we discussed circuits representing a (hierarchical) factorization of a tensor having finite dimensions,488

i.e., where the number of entries in every dimension is finite. That is, these circuits are defined over a set of489

discrete variables, each having a finite number of states. In this section, we focus on factorizations of tensors490

that can have dimensions having an infinite (and possibly uncountable) number of entries or quasi-tensors491

(Townsend & Trefethen, 2015). Analogously to the symmetry between (hierarchical) tensor factorizations492

and circuits (Section 2) we show that quasi-tensors can be represented as circuits defined over at least one493

variable having infinite (and possibly uncountable) domain. Furthermore, by connecting with a very recent494

class of circuits equipped with integral units, we point out at opportunities regarding the parameterization495

of infinite-rank (hierarchical) tensor factorizations, i.e., factorizations whose rank is not necessarily finite.496

We ground these ideas to the problem of modeling a probability density function (PDF).497

5Note that arbitrary ANDs and ORs in a logical formula do not directly correspond to products and sums in our circuit
language. It is necessary to compile the formula in a new representation that contains ANDs over sub-formulas with disjoints
scopes – corresponding to decomposable products – and XORs – corresponding to deterministic sum units, and pushes negation
towards the input functions (Darwiche & Marquis, 2002).

16

Under review as submission to TMLR

Formally, let ppXq be a PDF over continuous variables X “ tXjud
j“1, where each Xj P X takes values498

in dompXjq “ R. Then, ppXq can be represented as an infinite-dimensional probability tensor T such499

that tpx1, . . . , xdq “ ppx1, . . . , xdq for any x P dompXq. Infinite-dimensional tensors such as ppXq can be500

decomposed into a finite number of sums and products of factor matrices that live in Hilbert spaces of501

generic functions. For instance, we can re-adapt the Tucker factorization showed in Def. 1 as a different502

factorization method where, instead of having factor matrices Vpjq P RIj ˆRj for all j, we encode a vector of503

Rj functions F pjq “ tf
pjq
rj : dompXjq Ñ RuRj

rj “1. That is, we factorize T as504

tpx1, . . . , xdq «
R1ÿ

r1“1
¨ ¨ ¨

Rdÿ

rd“1
wr1¨¨¨rd

f p1q
r1

px1q ¨ ¨ ¨ f pdq
rd

pxdq. (14)

Here, we have W P RR1ˆ¨¨¨ˆRd . Then, one can trivially modify Proposition 1 such that this Tucker factor-505

ization of ppXq can be represented as a PC of the same size where the input units over variable Xj now506

encode the functions in F pjq. Similarly, one can retrieve PCs encoding mixed probability distributions over507

discrete and continuous variables (Molina et al., 2018), thus encoding factorizations of a quasi-tensor. In the508

same way, one can easily re-adapt hierarchical Tucker to factorize ppXq, thus yielding an equivalent deeper509

circuits over continuous variables.510

Note that, while Eq. (14) is a factorization of an infinite-dimensional tensor, it is still a finite factorization.511

That is, the ranks R1, . . . , Rd are finite, and therefore the circuit representing the same factorization has512

a sum unit having R1 ¨ ¨ ¨ Rd inputs (see Fig. 2). Very recent works have proposed to augment the circuit513

definition (Def. 2) with integral units which, roughly speaking, encode a sum over an infinite and uncountable514

number of inputs (Gala et al., 2024a;b). We can consider such PCs as encoding continuous factorizations of a515

probability tensor, which can be though of as infinite-rank factorizations. For instance, consider the problem516

of factorizing a finite-dimensional tensor T P RI1ˆ¨¨¨ˆId . Instead of considering a finitely-dimensional core517

tensor W P RR1ˆ¨¨¨ˆRd in Tucker (Eq. (2)), we can use a function ω : dompZq Ñ R over continuous variables518

Z “ tZiud
i“1, where each Zi has domain dompZjq “ R. Similarly, we replace each factor matrix Vpjq P RIj ˆR

519

with a vector of Ij functions tf
pjq
ij

: dompZjq Ñ RuIj

ij “1, for all j. By doing so and since Z consists of520

continuous variables, we are in practice replacing the summations in Eq. (2) with a multivariate integral521

over Z. That is, we factorize T as522

tx1¨¨¨xd
«

ż

dompZq
ωpz1, . . . , zdq f p1q

x1
pz1q ¨ ¨ ¨ f pdq

xd
pzdq dz. (15)

Similarly, one can retrieve hierarchical versions of such continuous tensor factorizations, with applications523

for probabilistic modeling (Gala et al., 2024b). In the case of the integral in Eq. (15) being intractable to524

compute, quadrature rules can be applied as to approximate it. See Gala et al. (2024a) for the details.525

Opportunity 6. More factorizations of alternative representations of distributions

Instead of explicitly encoding ppXq by modeling its PMF or PDF one can instead encode its probability
generating function, characteristic function or its cumulative density function. Circuits have been used
to compactly represent these alternative representations of distributions. For instance, Yu et al. (2023)
proposed to build circuits that encode characteristic functions to represent and learn distribution
over mixed discrete and continuous data domains. These characteristic circuits have also found
application in causal probabilistic inference (Poonia et al., 2024). Similarly to the correspondence
between circuits and tensor factorizations shown in the previous sections, a characteristic circuit can
be seen as a hierarchical factorization of a tensor encoding a characteristic function, i.e., a factorization
of a tensor with complex entries that however still implicitly encodes a probability distribution.

526

In the next section, we present a generic pipeline that can be used to build both finite-dimensional and527

infinite-dimensional hierarchical probability tensor factorizations as deep tensorized PCs (Def. 7).528

17

Under review as submission to TMLR

Table 1: De-structuring circuit and tensor factorization architectures, and their implementa-
tions, into simpler design choices conforming to our pipeline: which region graphs (Section 4.1) and
sum-product layers to use (Section 4.3), and whether to apply folding (Section 4.4). New designs are possible
by mix & matching these existing base ingredients. Furthermore, we propose new region graphs that deliver
more efficient tensorized circuit: QG, QT-2 and QT-4. By leveraging tensor factorizations of the weights
of folded circuits, we propose two new sum-product layers: CP, CPS and CPXS. Check mark ✓ means that
even if the original implementation of HCLTs does not implement folding as we describe it here, they achieve
similar parallelism by custom CUDA kernels. In Appendix B we present a detailed discussion on the design
choices of our pipeline that are implicitly made in each PC architecture.

PC Architecture Region Graph Sum-Product Layer Fold

Poon&Domingos (Poon & Domingos, 2011) PD CPJ ✗

RAT-SPN (Peharz et al., 2020c) RND Tucker ✗

EiNet (Peharz et al., 2020a) t RND, PD u Tucker ✓

HCLT (Liu & Van den Broeck, 2021b) CL CPJ ✓
HMM{MPSRě0 (Glasser et al., 2019) LT CPJ ✗

BM (Han et al., 2018) LT CPJ ✗

TTDE (Novikov et al., 2021) LT CPJ ✗

NPC2 (Loconte et al., 2024a) t LT, RND u t CPJ, Tucker u ✓

TTN (Cheng et al., 2019) QT-2 Tucker ✗

Mix & Match (our pipeline)
"

RND, PD, LT,

CL, QG, QT-2, QT-4

*
ˆ t Tucker, CP, CPJ

u Y

t CPS, CPXS
| Fold ✓ u

ˆ t ✗, ✓ u

4 How to Build and Scale Circuits: A Tensorized Perspective529

We now have all the necessary background to start exploiting the connections between (hierarchical) tensor530

factorizations and (deep) circuits. In particular, in this section, we will show how we can understand531

and unify many—apparently different—ways to build circuits (and other factorizations) in a single pipeline532

leveraging tensor factorizations as modular abstractions. By doing so, we can “disentangle” what are the key533

ingredients to build and effectively learn overparameterized circuits, i.e., circuits with a very large number534

of parameters (Table 1).535

Fig. 9 summarizes our pipeline: i) first, one builds a RG structure to enforce the necessary structural536

properties (Section 4.1), then, ii) populates such a template by introducing units and grouping them into537

layers (Section 4.2), following the many possible tensor factorizations abstractions (Section 4.3), optionally,538

iii) these layers can be “folded”, i.e., stacked together to exploit GPU parallelism (Section 4.4). Finally, the539

circuit parameters can be optimized by gradient descent or expectation maximization (Peharz et al., 2016;540

Zhao et al., 2016).541

4.1 Building and Learning Region Graphs542

The first step of our pipeline is to construct a RG (Def. 4). It specifies a hierarchical partitioning of the543

input variables according to which we build deep circuit architectures. In particular, PCs that are built544

out of RGs satisfying crucial structural properties such as smoothness and decomposability by design (and545

structured-decomposability if the RG is a tree and has univariate leaves, see Section 2.2), which in turn546

guarantee tractable inference for many queries of interest (Section 2). RGs are explicitly used to build PCs547

in some papers (Peharz et al., 2020c;a), but as we show next, they can be implicitly found in many other548

PC and tensor factorization architectures. We also introduce a novel way to quickly build RGs for images549

that are dataset-agnostic but exploit of the structure of pixels.550

Linear tree RGs (LT). A simple way to instantiate a RG is by building partitionings that factorize one551

variable at a time. That is, given π a ordering over variables X, each i-th partition node factorizes its scope552

tXπp1q, . . . , Xπpiqu into regions tXπp1q, . . . , Xπpi´1qu and tXπpiqu. We call the resulting RG a linear tree (LT)553

18

Under review as submission to TMLR

RG, and show an example for it in case of three variables in Fig. 4. The ordering of the variables can be554

the lexicographical one or depending on additional information such as time when modeling sequence data.555

This sequential RG is the one adopted by chain-like tensor network factorizations, such as MPS, TTs or BMs556

(Pérez-García et al., 2007; Oseledets, 2011), as well as hidden Markov models (HMMs) when represented as557

PCs (Rabiner & Juang, 1986; Liu et al., 2023a).558

Randomized tree RGs (RND). A slightly more sophisticated way to build a RG is to construct a tree559

that is balanced. This can be done in a dataset-agnostic way by randomly partitioning variables recursively.560

That is, the root region X is recursively partitioned by randomly splitting variables in approximately even561

subsets, until no further partitionings are possible. This approach, which we label with RND, has been562

introduced to build randomized-and-tensorized sum-product networks (RAT-SPNs) (Peharz et al., 2020c). A563

similar approach has been described by Di Mauro et al. (2017; 2021), with the difference that some randomly-564

chosen subsets of the data are also taken into account when parameterizing the circuit, thus entangling the565

construction of the RG with the circuit parameterization.566

Poon-Domingos construction (PD). One can devise other RG algorithms that are tailored for specific567

data modalities, but that are still dataset-agnostic. In the case of images where variables are associated to568

pixel values, Poon & Domingos (2011) proposed to split them as to form a deep hierarchy of patches, by569

recursively performing horizontal and vertical cuts. However, the main drawback of this approach, labeled570

PD, is that it generally yields very deep circuit architectures that are hard to optimize (Section 6), as it571

considers all the possible ways to recursively split an image into patches whose number grows fast with respect572

to the image size. The PD RG has been extensively used in the circuit literature, e.g., for architectures like573

EiNets (Peharz et al., 2020a).574

Novel RGs for image data: quad graphs (QG) and trees (QT). We want to devise RGs that are575

dataset-agnostic but still aware of the pixel structure as PD, while at the same time not falling prey of the576

same optimization issues. Therefore, we propose a much simpler way to construct image-tailored RGs that577

delivers smaller circuits that can achieve better performances, even when compared to RGs learned from578

data (see Section 6). Algorithm D.1 in the Appendix details our construction. Similarly to PD, it builds a579

RG by recursively splitting image patches of approximately the same size, but differently from PD it only580

splits them into four parts (a one vertical and horizontal cut) sharing the newly created patches. We call581

such RG quad-graph (QG). Fig. 10 shows an example of a QG RG for a 3x3 image.582

X1 X2 X3

X1,X2 X2,X3

(i) Build a region graph.

w
p1q
ijk w

p2q
ijk Wp1q Wp2q

(ii) Overparameterize & tensorize.

W

(iii) Folding.

Figure 9: Our pipeline for building overparameterized circuits.
Given a (fragment of) region graph (i), we overparameterize it with sum,
product and input units. In this case, the connections between sum and
product units encode a Tucker factorization (e.g., as in Fig. 2). Then, we
tensorize it by grouping units into layers (ii). In the final folding step, we
can fuse together those layers that can be evaluated in parallel (iii). To
do so, we stack the parameter matrices Wp1q, Wp2q into a tensor W .

19

Under review as submission to TMLR

X11 X12 X21 X22

X11X12 X11X21 X21X22 X12X22 X31 X32 X13 X23

X11X12

X21X22

X31X32 X13X23 X33

X11X12X13

X21X22X23

X11X12

X21X22

X31X32

X31X32X33 X13X23X33

X11X12X13

X21X22X23

X31X32X33

Figure 10: The quad graph
(QG). We illustrate the quad
graph RG delivered by Algo-
rithm D.1 passing H “ 3, W “ 3
and isTree “ False as input argu-
ments. The region graph is un-
balanced as the image size (3ˆ3)
is not a power of 2. Differently
from our quad trees (QTs), QGs
have regions partitioned in more
than a single way (e.g., the root
region node), and regions can be
shared among partitions. For ex-
ample, in a QT, the top region
could only be partitioned in a
single way into two or four sub-
regions, respectively called QT-2
and QT-4 region graphs.

Alternatively, one can obtain a tree RG by splitting the patches both horizontally and vertically, but without583

sharing patches. We call such tree RG quad-tree (QT). Since regions of such RGs are associated to image584

patches, we can choose to partition them in different ways. In particular, we will denote with QT-2 a QT585

whose regions are partitioned in two parts (bottom and top parts of the patch), and with QT-4 a QT whose586

regions are partitioned into four parts (following a quadrant division partitioning). With QT-2 we retrieve587

tensor factorizations tailored for image-data used in prior work (Cheng et al., 2019).588

Learning RGs from data. The approaches discussed so far do not depend on the training data. To589

exploit the data in the construction of RGs, one can test the statistical independence of subset of features590

inside a region node Y Ď X. This is the approach used in the seminal LearnSPN algorithm (Gens &591

Domingos, 2013), later extended in many other works (Molina et al., 2018; Di Mauro et al., 2019). All592

these variants never mention a RG, but one is built implicitly by performing these statistical test and by593

introducing regions that are associated to a different “chunk” of data obtained by clustering (Vergari et al.,594

2015). Alternatively, one can split regions according to some heuristics over the data that result in region595

nodes being shared (Jaini et al., 2018a). The same idea is at the base of the Chow-Liu algorithm to learn596

the tree-shaped PGM that better approximates the data likelihood (Chow & Liu, 1968b). The Chow-Liu597

algorithm (CL) can be used to implicitly build a RG as well, as done in many structure learning variants598

(Vergari et al., 2015; Rahman et al., 2014; Choi et al., 2011). A more recent approach that leverages this599

idea and that generally yields state-of-the-art performance first learns the Chow-Liu tree, then treats it as600

a latent tree model (Choi et al., 2011) that is finally compiled into a PC (Liu & Van den Broeck, 2021b).601

The construction of this hidden Chow-Liu tree (HCLT) exactly follows the steps in our pipeline, once one602

disentangles the role of the RG from the rest.603

The construction of other PC and tensor factorization architectures mentioned so far (i.e., RAT-SPNs,604

EiNets, MPSs, BMs, etc) also follows the same pattern, and can be easily categorized in our pipeline605

(Table 1). They not only differ in terms of the RGs they are built from, but also on the kind of the chosen606

sum and product layers. In the next section, we provide a generic algorithm that builds a tensorized circuit607

architecture from a given RG, given a selection of sum and product layers encoding tensor factorizations.608

4.2 Overparameterize & Tensorize Circuits609

Given a RG, the simplest way to build a circuit is to associate a single input distribution unit per leaf610

region, a single sum per inner region, and an single product unit per partition, and then connect them611

following the RG structure. This would deliver a smooth and (structured-)decomposable circuit that is612

20

Under review as submission to TMLR

Algorithm 1 overparamAndTensorizepR, F , Kq
Input: a RG R over variables X, the sum layers width
K, and the type of input functions F .
Output: A tensorized circuit c over X.

1: L Ð emptyMap Ź From regions to layers
2: for each region Y P postOrderTraversalpRq do
3: if Y is partitioned into tpZpiq

1 , Zpiq

2 qu
N
i“1 then

4: Λ Ð ∅
5: C Ð 1 if Y “ X else K
6: for i “ 1 to N do
7: ℓ Ð SumProdLayerpLrZpiq

1 s, LrZpiq

2 s, C, Kq

8: Λ Ð Λ Y tℓu

9: LrYs Ð poppΛq if |Λ|“1 else SumLayerpΛq

10: else Ź Y is a leaf region in R
11: LrYs Ð InputLayerpY, K, Fq

12: return A circuit having LrXs as output layer

Algorithm 2 SumProdLayerpℓ1, ℓ2, C, Kq
Input: Layers ℓ1, ℓ2 with width K and output width C.
Output: A composition of sum & product layers.

1: procedure (parameterizeTucker)
2: Let W P RCˆK2

be the sum layer parameters
3: return ℓ computing W pℓ1pZ1q b ℓ2pZ2qq

4: procedure (parameterizeCP)
5: Let Qp1q, Qp2q

P RCˆK be the parameters
6: return ℓ computing pQp1qℓ1pZ1qq d pQp2qℓ2pZ2qq

Algorithm 3 SumLayerptℓiuN
i“1q

Input: Input layers tℓiu
N
i“1 having scope Y and width

K, with N ą 1. Output: A sum layer.
1: Let W P RKˆpNKq be the sum layer parameters
2: return ℓ computing Wp ||

N
i“1 ℓipYqq

sparsely connected, and it is in fact the strategy that the many structure learning algorithms discussed613

in the previous section were implicitly using (Gens & Domingos, 2013; Vergari et al., 2015; Molina et al.,614

2018). We can adapt this strategy to the “deep learning recipe”, and output instead an overparameterized615

circuit that is locally densely-connected. With overparameterization we refer to the process of “populating”616

a RG with not one but many sum, product and input units of the same scope. The resulting tensorized617

computational graph (Def. 7) has many more learnable parameters and lends itself to be parallelized on618

GPU, as we can vectorize computational units sharing the same scope as to form dense layers. Algorithm 1619

details the overparameterization and tensorization process. The algorithm takes as input: a RG R, the type620

of input functions F (e.g., Gaussians), and the number of sum units K which governs the expressiveness of621

the circuit, or equivalently the rank of the factorization.6 Furthermore, we can customize the choice of input622

layers as well as how to stack sum and product layers together, yielding many ways to build circuits with623

different degrees of efficiency and expressiveness.624

Constructing input layers. The first step of Algorithm 1 consists of associating input units to leaf625

regions, i.e., regions that are not further decomposed. Leaf regions are often univariate, i.e., of the form626

Y “ tXju for some variable Xj P X. For each leaf region over a variable Xj we introduce K input units, each627

computing a function fi : dompXjq Ñ R. To guarantee the non-negativity of the output in monotonic PCs, fi628

are often chosen to be non-negative, e.g., by choosing them to be probability mass or density functions (Choi629

et al., 2020). However, one can possibly choose fi from a much wider set of expressive function families, e.g.,630

polynomial splines (de Boor, 1971; Loconte et al., 2024a), neural networks (Shao et al., 2020; Correia et al.,631

2023; Gala et al., 2024a;b) and normalizing flows (Sidheekh et al., 2023). See also Opportunity 4. Then, the632

input units can be tensorized by effectively replacing them with an input layer ℓ : dompXjq Ñ RK such that633

ℓpXjqi “ fipXjq with i P rKs can be computed in parallel (L11 in Algorithm 1). Next, sum and product634

layers are built and connected according to the variables partitioning specified in the given RG.635

4.3 Abstracting sum and product layers into modules636

Alongside input layers, we introduced the other atomic “Lego blocks” for tensorized circuits in637

Def. 7: sum layers, Hadamard and Kronecker product layers. In the following, we will use638

these blocks to create composite layers that will act as further abstractions that can be seam-639

lessly plugged in Algorithm 1. These composite layers include: Tucker (Fig. 11), CP (Fig. 15)640

and CPJ (Fig. 16) layers. Each of these layers encodes a local factorization and stacks and con-641

nects internal sum and product units in a different way as to increase expressiveness or efficiency.642

6As in a (hierarchical) Tucker factorization, we can select d different numbers of units, one for each layer, thus encoding a
K1, . . . , Kd-rank factorization. For simplicity, we assume that K1 “ K2 “ . . . “ Kd.

21

Under review as submission to TMLR

X1,X2 X2,X3X3 X1

X1,X2,X3

Figure 12: A region node split into two partitionings
ptX1, X2u, tX3uq and ptX1u, tX2, X3uq of tX1, X2, X3u (above)
is overparameterized using Tucker layers having parameters
Wp1q, Wp2q P RKˆK2 , and with an additional sum layer pa-
rameterized by Wp3q P RSˆp2Kq, for some S ą 0 (right).

Wp1q Wp2q

Wp3q

W

Figure 11: Tucker layer

Note that given our semantics for tensorized layers, stacking these composite ab-643

stractions by applying Algorithm 1 over a RG will always output a tensorized644

circuit that is smooth and (structured-)decomposable (Def. 8).645

We start by considering composite layers that adopt the connectivity of compu-646

tational units in the Tucker factorization, as showed in Fig. 2. This is a pattern647

introduced in architectures such as RAT-SPNs (Peharz et al., 2020c) and EiNets648

(Peharz et al., 2020a). There, a region node over YĎX and partitioned into649

pZ1, Z2q is parameterized as a layer ℓ that is a composition of a Kronecker product650

layer followed by a sum layer, i.e., computing651

ℓpYq “ W pℓ1pZ1q b ℓ2pZ2qq (Tucker-layer)

where W P RKˆK2 is the parameter matrix for a given number of units K, and ℓ1, ℓ2 are its input layers (in652

grey in Fig. 11), each computing a K-dimensional vector obtained via overparameterization and tensorization653

of region nodes over Z1, Z2, respectively. Algorithm 2 composes sum and product layers as to construct654

Eq. (Tucker-layer), and it is called to overparameterize the circuit (see L6-8 in Algorithm 1). However,655

note that the flexibility provided by Algorithm 1 allows us to define other possible parameterizations in656

Algorithm 2, without changing the rest of the algorithm.657

Overparameterizing multiple partitionings, the Mixing layer case. Some RGs can have multiple658

partitionings for a same region, as shown in Fig. 12. More formally, given a region node Y Ď X, we can split659

it into N ą 1 different partitioning, i.e., tpZpiq
1 , Zpiq

2 quN
i“1, with Y “ Zpiq

1 Y Zpiq
2 for every i. This is the case of660

the PD RG used in EiNets (Peharz et al., 2020a), and the proposed QG (see Section 4.1 and Fig. 10). We661

illustrate an example of such RG in Fig. 12. The design adopted in EiNets to overparameterize them is to662

build an apparently special layer called mixing layer by Peharz et al. (2020a) computing663

ℓpYq “
Nÿ

i“1
wi: d ℓipYq (Mixing-layer)

where W P RNˆK denote the parameter matrix of ℓ, and each ℓi is a layer that outputs a K-dimensional664

vector. However, we observe that Eq. (Mixing-layer) can be computed by a simple sum layer that already665

conforms to our Def. 7. In fact, Eq. (Mixing-layer) can be rewritten as ℓpYq “ W1p || N
i“1 ℓipYqq, where666

W1 P RKˆpNKq is the parameter matrix obtained by concatenating N diagonal matrices tW1
iuN

i“1 along the667

columns, with W1
i P RKˆK for i P rKs. This observation demystifies the need of treating mixing layers as yet668

another type of layers, which happens to be the case in current EiNets implementations (Peharz et al., 2020a;669

Braun, 2021). Algorithm 3 specifies the construction of the generalization of the mixing layer as a single670

sum layer (used in L9 of Algorithm 1). Section 4.3 illustrates the overparameterization and tensorization of671

a region being decomposed in more than one partitioning. Note that from our perspective it becomes clear672

that such a sum layer does not necessarily increase the expressiveness, i.e., at the scalar unit level one could673

merge connected sum units as a single sum unit. For this reason, in Section 6 we experiment with mixing674

layers whose parameter entries are fixed during learning.7675

7And we found that empirically this speeds up learning and does improve performances a bit.

22

Under review as submission to TMLR

4.4 Folding to Further Accelerate Learning and Inference676

The final and optional step of our proposed pipeline (Fig. 9) consists of stacking together the layers that677

share the same functional form as to increase GPU parallelism. We name this step folding. Note that678

folding is only a syntactic transformation of the circuit, i.e., it does not change the encoded function and679

hence it preserves its expressiveness. This simple syntactic “rewriting” of a circuit can however significantly680

impact learning and inference performance. In fact, folding is the core ingredient of the additional speed-up681

introduced by EiNets (Peharz et al., 2020a) with respect to the same non-folded circuit architectures such682

as RAT-SPNs (Peharz et al., 2020c) which share with EiNets the other architecture details, e.g., the use of683

Tucker layers (see Table 1). As such, the difference in performance that is usually reported when treating684

RAT-SPNs and EiNets as two different PC model classes (see e.g., Liu et al. (2023a)) must depend on other685

factors, such as the choice of the RG or a discrepancy in other hyperparameters used to learn these models,686

e.g., the chosen optimizer. By disentangling these aspects in our pipeline, we can design experiments that687

truly highlight which factors are responsible for increased performance (see Section 6).688

Folding layers. To retrieve the folded representation of the Tucker layer (Eq. (Tucker-layer)), we need689

to stack the parameter matrices along a newly-introduced dimension, which we call the fold dimension.690

Then, we can compute products accordingly to such extra dimension. For instance, given a set tℓpnquF
n“1 of691

Tucker layers having scopes tYpnquF
n“1, respectively, we evaluate them in parallel with a single folded layer692

ℓ computing a F ˆ K matrix and defined as693

ℓ
´ďF

n“1
Ypnq

¯
n:

“ Wn::

”
ℓ1

´ďF

n“1
Zpnq

1

¯
n:

b ℓ2

´ďF

n“1
Zpnq

2

¯
n:

ı
with n P rF s (Tucker-folded)

where ℓ1 (resp. ℓ2) denotes a folded layer computing the F left (resp. right) inputs to ℓpnq, each defined694

over variables Zpnq
1 (resp. Zpnq

2), and each Wn:: P RKˆK2 is the parameter matrix of ℓpnq. In other words,695

Wn:: is the n-th slice along the first dimension of a tensor W P RF ˆKˆK2 obtained by stacking together696

the parameter matrices of each Tucker layer. Since the same region node can possibly take part in multiple697

partitionings of other region nodes (e.g., see Fig. 9i), we might have folded inputs ℓ1, ℓ2 computing the same698

outputs. We illustrate an example of this in Fig. 9iii, which shows the folding of two Tucker sum-product699

layers sharing one input. For this reason, while folding provides considerable speed-ups when evaluating a700

tensorized circuit, it might come at the cost of increased memory usage depending on the chosen RG.701

How to choose the layers to fold? It remains to decide how to choose the layers to fold together.702

The simplest way is traversing the tensorized circuit top-down (i.e., from the outputs towards the inputs)703

and to fold layers located at the same depth in the computational graph. However, note that we can also704

fold layers at different depth. For example, all input layers can be folded together if they encode the same705

input functional for all variables. This is the approach adopted in EiNets (Peharz et al., 2020a) and the706

one that will be used in all our experiments and benchmarks (see Section 6). However, note that this is707

not regarded as the optimal way to fold layers, and different ways of choosing the layers to fold might708

bring additional speed-ups and memory savings when tailored for specific architectures. While we do not709

investigate different ways of folding layers other than the one mentioned above, the disentanglement of the710

folding and overparameterization steps (Section 4.2) in our proposed pipeline will foster future work to rely711

on the wide literature on parallelizing generic computational graphs (Shah et al., 2023).712

5 Compressing Circuits and Sharing Parameters via Tensor Decompositions713

In this section, we exploit again the literature of tensor factorizations to improve the design and learning714

of circuit architectures. We start by observing that as the parameters in circuit layers in our pipeline are715

stored in large tensors (see e.g., Eqs. (Tucker-layer) and (Tucker-folded)) they can in principle be factorized716

again. And since factorizations are circuits (Proposition 1), in the end we obtain several variants of circuit717

architectures and layers, some of which are new and offer an interesting trade-off between speed and accuracy718

(Section 5.2), while others are implicitly being used in the construction of existing circuits and tensor719

factorizations (Table 1). Again, we start from Tucker layers, with the aim of compressing a deep circuit720

using them, i.e., approximating it by using less parameters.721

23

Under review as submission to TMLR

Wp1q Wp2q

W

(a)

(b)

Ap1q Ap2q

BJ CJ

A

BJAp1q CJAp2q

DJA

(c)

Figure 14: Compressing Tucker layers into CP layers. Given a (fragment of) tensorized circuit equipped
with Tucker layers (a), we compress it by computing a CP factorization for each parameter matrix Wp1q,
Wp2q, and W. By doing so, we recover a different parameterization given by the factor matrices of the CP
factorizations, and the product layers now compute a Hadamard product of their inputs (b). Finally, we can
simplify the circuit by collapsing consecutive sum layers (c). The circuit structure showed in (a) is typical
of RAT-SPNs and EiNets architectures, while the one in (c) captures the connectivity in HCLTs, MPS/TTs,
BMs and more (Table 1), since it interleaves Hadamard product and sum layers (e.g., see MPS/TT in Fig. 8).

5.1 Compressing Tucker layers722

Although expressive, Tucker layers in circuits require learning and storing K3 parameters, encoded in the723

matrix W P RKˆK2 in Eq. (Tucker-layer), which can be reshaped as the three dimensional tensor W P724

RKˆKˆK . More in general, by relaxing the assumption of binary RGs made so far, a Tucker layer taking N725

input layers will be parameterized by KN`1 parameters. To retrieve a more space efficient parameterization726

of a Tucker layer, we propose to compress its parameter tensor W via a rank-R canonical polyadic (CP)727

factorization, which we define below.728

Definition 10 (CP factorization (Carroll & Chang, 1970)). Let T P RI1ˆ¨¨¨ˆId be a d-dimensional tensor.729

The rank-R canonical polyadic (CP) of T factorizes it as a sum of R rank-1 tensors, i.e.,730

T «
Rÿ

r“1
vp1q

:r ˝ ¨ ¨ ¨ ˝ vpdq
:r or in element-wise notation ti1¨¨¨id

«
Rÿ

r“1
v

p1q
i1r ¨ ¨ ¨ v

pdq
idr (16)

where Vpjq P RIj ˆR with j P rds are factor matrices.731

Note that a CP factorization can be represented as a circuit as it is a special case of the Tucker factorization732

(Proposition 1). With this in mind, we proceed by decomposing the W P RKˆKˆK parameter tensor of a733

Tucker layer via a rank-R CP factorization such that R ! K, i.e.,734

W «
Rÿ

r“1
a:r ˝ b:r ˝ c:r or in element-wise notation wijk «

Rÿ

r“1
airbjrckr (17)

where A, B, C P RKˆR are newly-introduced parameter matrices. This new parameterization requires only735

3KR parameters and unlocks a faster evaluation of Tucker layers. That is, we can rewrite the function736

computed by a Tucker layer ℓ in element-wise notation as737

ℓpYq “ A
”´

BJℓ1pZ1q
¯

d
´

CJℓ2pZ2q
¯ı

(18)

where ℓ1, ℓ2 are input layers to ℓ having width K and scopes Z1, Z2, respectively.738

24

Under review as submission to TMLR

Qp1q Qp2q

Figure 15: CP layer.

Therefore, evaluating a compressed Tucker layer that has undergone the CP factor-739

ization requires time OpKRq (Eq. (18)), rather than OpK3q (Eq. (Tucker-layer)).740

On top of this, we observe that if we use a CP factorization to all Tucker layers in741

a PC, we will obtain a circuit in which sum and product layers are not alternated742

anymore. For example, starting from the Tucker layers in Fig. 14a, we would obtain743

a new architecture where product layers can be followed by two sum layers, as in744

Fig. 14b, e.g., one parameterized by Ap1q P RKˆR feeding another sum layer param-745

eterized by BJ P RRˆK . As we can always rewrite any composition of consecutive746

sum layers with a single sum layer parameterized by a product of matrices (e.g.,747

by BJAp1q P RRˆR), we can collapse the adjacent sum layers as to obtain the simplified architecture in748

Fig. 14c. More formally, under such observation and by assuming that ℓ1, ℓ2 are also Tucker layers being749

decomposed, we can rewrite Eq. (18) as750

ℓpYq “
´

Qp1qℓ1pZ1q
¯

d
´

Qp2qℓ2pZ2q
¯

(CP-layer)

where Qp1q, Qp2q P RRˆR are parameter matrices of sum layers, such that Qp1q “ BJAp1q, Qp2q “ CJAp2q.751

That is, we reduced the overall width of each layer from K to the smaller R while still approximately comput-752

ing a Tucker layer, by assuming that W was originally low-rank. From now on, we will refer to Eq. (CP-layer)753

as CP layer. This is a new compositional abstraction we can use instead of Tucker layers in Algorithm 2754

to build tensorized circuits out of a RG. For monotonic PCs, one can still recover the Tucker layer factor-755

ization above by replacing the CP factorization (Eq. (17)) with its non-negative version (Cichocki & Phan,756

2009), which ensures the factors A, B, C and hence Qp1q, Qp2q to be non-negative matrices. Furthermore, a757

folded version of Eq. (CP-layer) can be obtained similarly to the one for Eq. (Tucker-layer) (see Section 4.4).758

Q

Figure 16: CPJ layer.

Finally, we introduce another type of layer which is very similar to the CP-layer759

above except that the Hadamard product is performed before the vector-matrix760

multiplication. We denote this sum-product layer as CPJ, spelled CP-transpose or761

CP-T. Formally, a CPJ layer ℓ computes762

ℓpYq “ Q pℓ1pZ1q d ℓ2pZ2qq , (CPJ-layer)

where Q P RRˆR. The main difference between using CP and CPJ layers is when763

these are applied on top of input layers, as there might be a slight difference in764

expressiveness. For instance, the product of two mixtures of Gaussians is different765

from a mixture of the product of two Gaussians.766

Architectures such as HCLTs are latent tree models (Choi et al., 2011) and as such they can be rewritten as767

tensorized circuits using CPJ layers (Table 1) plus one additional sum layer, as illustrated in Fig. 18. More768

specifically, since HCLTs are monotonic circuits, we can interpret each of the parameter matrices Q P RRˆR`769

in Eq. (CPJ-layer) as conditional probability tables8 of the form ppZi | Zjq with latent variables Zi, Zj770

attached to the latent tree model the HCLT is compiled from (as we mentioned in Section 4.1). In other771

words, the difference between these tensorized circuit architectures and others such as EiNets or RAT-SPNs772

translates to simply a CP factorization of parameters if one fixes the same RG. In Appendix B we show that773

the same line of thought can be applied to the many tensorized PC architectures that have been developed774

so far. That is, Appendix B further details how the tensorized PC architectures reported in Table 1 can be775

understood and built within our pipeline, by specifying which RG and sum and product layer composition776

to use (Tucker, CP or CPJ), and whether to fold the computational graph or not. Next, we show how we777

can further exploit tensor factorizations as to build and compress folded tensorized circuit architectures.778

5.2 Parameter Sharing by Tensor Factorizations779

We now focus on the problem of sharing parameters across layers in a tensorized PC. Again, we will exploit780

tensor factorizations for this task. Consider a tensorized PC built out of a RG as per our pipeline (Section 4.2).781

It is reasonable to assume that layers located at the same depth of the RG could store similar structure in782

8The term CPJ is indeed a pun on the term conditional probability tables (CPTs) in the Bayesian network terminology.

25

Under review as submission to TMLR

Z1

X1 Z2
Z3

X2 Z4
X3

X4

(a) Latent tree model

ppX1|Z1q

ppX2|Z2q

ppX3|Z3q

ppX4|Z4q

ppZ1qppZ2|Z1q

ppZ3|Z1q

ppZ4|Z2q

(b) Tensorized PC

Figure 18: PGMs can be com-
piled as tensorized PCs. We
show how the PGM in (a), a
latent tree model (LTM), with
latent variables Zi and observ-
able variables Xi, can be com-
piled in the tensorized PC over
X in (b) using input, dense, and
CPJ layers parameterized by the
conditional probability tables of
the LTM, following the compila-
tion algorithm proposed by Liu
& Van den Broeck (2021b).

their parameter tensors. For example, two distinct layers having adjacent pixel patches of the same size as783

scope may apply a similar transformation to their respective inputs, because we can assume the distributions784

of the two pixel patches to be quite similar. If the RG is a perfectly balanced binary tree, folding the resulting785

circuit translates to folding layers located at the same depth in the computational graph, i.e., layers that are786

likely to share the same structure in parameter space. This motivates us to implement parameter sharing as787

a factorization across layers being folded.788

Specifically, we start by compressing a folded Tucker layer (Eq. (Tucker-folded)) and to retrieve a new layer789

that implements the aforementioned parameter sharing, we again decompose its parameter tensor via a CP790

factorization (Def. 10). This time, we will have to decompose W P RF ˆKˆKˆK , i.e., the fourth-order tensor791

obtained by reshaping of the parameter tensor of a folded Tucker layer ℓ, where F indicates the folding792

dimension. By applying a rank-R CP factorization such that R ! K, we obtain that793

W «
Rÿ

r“1
d:r ˝ a:r ˝ b:r ˝ c:r or in element-wise notation wnijk «

Rÿ

r“1
dnrairbjrckr (19)

where A, B, C P RKˆR and D P RF ˆR. Note that A, B, C are independent of the fold dimension and are794

effectively shared among folds. By decomposing the parameter tensor in Eq. (Tucker-folded) as in Eq. (19)795

and by collapsing sum layers as done for the Tucker layer above, we can rewrite Eq. (Tucker-folded) as796

ℓ
´ďF

n“1
Ypnq

¯
n:

“ dn: d
´

Qp1qℓ1

´ďF

n“1
Zpnq

1

¯
n:

¯
d

´
Qp2qℓ2

´ďF

n“1
Zpnq

2

¯
n:

¯
n P rF s (CPS-layer)

where Qp1q, Qp2q P RRˆR do not depend on the fold dimension, and D P RF ˆR. However, we can go797

further in sharing parameters and drop the fold-dependent parameter matrix D from Eq. (CPS-layer), hence798

effectively fixing it to be a matrix of ones. The reason is that its contribution can be “absorbed” by the799

matrices associated to the following sum layers (i.e., similarly to the “collapse” of consecutive sum layers800

shown in Fig. 14). We will refer to this layer as CPXS. Our experiments (Section 6) support this conjecture:801

as we experiment with both CPS and CPXS, we find they achieve comparable performances for distribution802

estimation. These two new composite layers are a nice addition to the circuit literature, and possible803

inspiration to further layer designs.804

Opportunity 7. Many new layer and circuit architectures

So far we introduced Tucker, CP, CPJ, CPS and CPXS as possible composite layers for circuits and
tensor factorizations. However, one is not limited to this list and can design new ones: as long as
they are compositions of the same building blocks outlined in Def. 7, they can be seamlessly plugged
into Algorithm 1 as to construct new tensor factorizations represented as tensorized circuits.

805

26

Under review as submission to TMLR

Our experiments (Section 6) show the combination of RG and layer choices can have a significant
impact on the resulting performances of the chosen architecture (may it be time and memory require-
ments or accuracy as distribution estimators), hence justifying further exploring the design space of
PC architectures. Lastly, we remark that one is not limited to pick the same composite layer for each
node in a RG, according to Algorithm 1. From the point of view of tensor factorizations, this would
result in a peculiar “Frankenstein” hierarchical tensor factorization that mixes different local factor-
izations. We have previously shown in Fig. 6 an example of such a hierarchical tensor factorization.
From a ML perspective, determining which layer structure to select for each RG node can be cast as
a neural architecture search task (Ren et al., 2021).

806

Table 2: Distribution estimation results. We report the test-set bpd of our best architectures, QT-CP-
512 and QG-CP-512, and compare them against HCLT (Liu & Van den Broeck, 2021b), RAT-SPN (Peharz
et al., 2020c), SparsePC (Dang et al., 2022a), IDF (Hoogeboom et al., 2019), BitSwap (Kingma et al., 2019),
BBans (Townsend et al., 2019) and McBits (Ruan et al., 2021). SparsePC is a structure learning algorithm
for PCs that iteratively finetunes both structure and parameters of a trained PC and can potentially be
applied as a post-processing step to the PCs we are learning with our pipeline. HCLT results are taken from
(Gala et al., 2024a). Dataset CelebA* is preprocessed using the lossless YCoCg transform.

QT-CP-512 QG-CP-512 HCLT RAT Sp-PC IDF BitS BBans McB
(CL-CP) (RND-Tucker)

Mnist 1.17 1.17 1.21 1.67 1.14 1.90 1.27 1.39 1.98
F-mnist 3.38 3.32 3.34 4.29 3.27 3.47 3.28 3.66 3.72
Emn-mn 1.70 1.64 1.70 2.56 1.52 2.07 1.88 2.04 2.19
Emn-le 1.70 1.62 1.75 2.73 1.58 1.95 1.84 2.26 3.12
Emn-ba 1.73 1.66 1.78 2.78 1.60 2.15 1.96 2.23 2.88
Emn-by 1.54 1.47 1.73 2.72 1.54 1.98 1.87 2.23 3.14

QT-CP-256 QG-CP-128

CelebA 5.33 5.33
CelebA* 5.24 5.20

6 Empirical Evaluation: Which RG and Layers to use?807

Destructuring modern PC architectures (as well as tensor factorizations) into our pipeline (Fig. 9) allows us808

to create new tensorized architectures by simply following a mix & match approach (Table 1). At the same809

time, it helps us understand what really matters between different model classes from the point of views810

of expressiveness, speed of inference and easiness of optimization. We can now in fact easily disentangle811

key ingredients such as the role of RGs and the choice of composite layers in modern circuit architectures,812

and pinpoint which is responsible for a boost in performance. For example, HCLTs have been considered as813

one of the best performing circuit model architectures in recent benchmarks (Liu et al., 2022; 2023a), but814

until now it has not been clear why they were outperforming other architectures such as RAT-SPNs and815

EiNets. Within our framework, we can try to answer that question by answering more precise questions:816

is it the effect of their RG that is learned from data (Section 4.1)?, the use of their composite sum-product817

layer parameterization (Section 5.1)? or are other hyperparameter choices the culprit? (spoiler: it is going818

to be the use of CP layers).819

Specifically, in this section we are interested in answering the following three research questions following820

a rigorous empirical investigation. RQ1) What are the computational resources needed (time and GPU821

memory) at test and training time for some of the many tensorized architectures we can now build? RQ2)822

What is the impact of the choice of RG and composite sum-product layer on the performance of tensorized823

circuits trained as distribution estimators? RQ3) Can we retain (most of) the performances of pre-trained824

tensorized PCs using Tucker layers if we factorize these into CP layers as illustrated in Fig. 14a Ñ Fig. 14b?825

Note that we are not asking what is the impact of folding (Section 4.4), as we already know the answer:826

27

Under review as submission to TMLR

folding is essential for large-scale tensorized architectures. As such, throughout all experiments, we use827

folded tensorized circuits. We emphasise that the aim of our experiments is not to reach state-of-the-art828

results in distribution estimation, but rather that of understanding the role of the ingredients of tensorized829

circuit architectures. All experiments were run on a single NVIDIA RTX A6000 GPU with 48GB of memory.830

A new circuit nomenclature. We remark that HCLT, EiNets, RAT-SPNs, and all the other acronyms831

in Table 1 do not denote different model classes but just different architectures. They are instances of832

the same model class: smooth and (structured-)decomposable circuits. In the following, we will denote a833

tensorized architecture as [RG]-[sum-product layer], possibly followed by K, the number of units used for834

overparameterizing layers as in Algorithm 1. Under this nomenclature, RAT-SPNs and EiNets will both835

be encoded as RND-Tucker when they are both build with a random RG. When they are built with a836

Poon&Domingos RG, they will instead be referred to as PD-Tucker, meanwhile HCLTs will become CL-CP.837

Task & Datasets. We will mainly evaluate our architectures by performing distribution estimation on838

image datasets. We use the Mnist-family, which includes 6 datasets of gray-scale 28x28 images—Mnist839

(LeCun et al., 2010), FashionMnist (Xiao et al., 2017), and EMNIST with its 4 splits (Cohen et al., 2017)—840

and the CelebA dataset down-scaled at 64x64 (Liu et al., 2015), which we explore in two versions: one with841

RGB pixels and the other with pixels preprocessed by the lossless YCoCg color-coding (Malvar & Sullivan,842

2003), as recent results suggested that such a transform can greatly lower bpds.9 Furthermore, we perform843

experiments on tabular data with continuous variables. In particular, we will evaluate different tensorized844

layers by performing density estimation on 5 UCI datasets, as they are typically used to evaluate normalizing845

flows (Papamakarios et al., 2017). We report the statistics of the UCI dataset in Table E.5.846

Parameter optimization. We train circuits to estimate the probability distribution that is assumed to847

have generated the images, considering each pixel as a random variable. As such, the input units in the848

circuit represent Categorical distributions having 256 values. For RGB images, we associate three Categorical849

distribution units per pixel (one per color channel). Instead, for the 5 UCI datasets (Table E.5), we use850

input units representing univariate Gaussian distributions, and we learn both the means and the standard851

deviations. We perform maximum likelihood by stochastic gradient ascent, i.e., want to maximize the852

following objective853

LpB, cq “
ÿ

xPB
logpcpxqq ´ logpZq, (20)

where Z “ ř
x cpxq is the partition function of the PC c10, and B a batch of training data. After some854

preliminary experiments, we found that optimizing PCs with Adam (Kingma & Ba, 2015) using a learning855

rate of 10´2 delivered, on average, the best performing models for the datasets we considered. We also856

settled to reparameterize the circuit sum parameters via clamping and setting ϵ “ 10´19 (Eq. (11)) after857

each optimization step as to keep them non-negative, as it was giving the best learning dynamics among all858

possible reparameterizations (Section 3.2). In the following, we will summarize our findings when answering859

RQ1-3, while distilling recommendations for practitioners on how to build and learn circuits.860

RQ1) Benchmarking time & space for different tensorized architectures. For these experiments,861

we consider the following RGs: PD, as commonly used in architectures such as RAT-SPNs and EiNets, and862

the two novel light-weight and data-agostic RGs we introduced in Section 4.1, QTs 11 and QGs . We do863

not consider RND as it is usually just a balanced binary tree (Peharz et al., 2020c), and as such would864

yield the same time and memory performance of a QT. For the same reason we do not consider CL as865

they are tree RGs that end up being quasi-balanced after being rooted.12 For layers, we consider Tucker866

(Eq. (Tucker-layer)), CP (Eq. (CP-layer)), CPS (Eq. (CPS-layer)) and CPXS (Section 5.2).867

9We take this evidence from Liu et al. (2023a;b), which use however a lossy variant of the YCoCg transform that unfortunately
artificially inflates likelihoods. As such, their bpds for PCs are not directly comparable with ours, nor with the other deep
generative models in their tables. We confirmed this issue in their evaluation protocol via personal communication.

10After training, one can efficiently “embed” the normalization constant in the parameters of a PC, effectively renormalizing
them (and thus yielding a partition function Z equal to 1), as detailed in Peharz et al. (2015).

11Throughout our experiments, we will refer to QT-4 simply as QT.
12The root is chosen to be the barycenter of the graph to increase parallelism (Dang et al., 2021; 2022c).

28

Under review as submission to TMLR

24 26 28 210 212

K

101

102

103
Test Time (ms)

24 26 28 210 212

K

101

102

103

Train Time (ms)

24 26 28 210 212

K

0

5

10

15

Test Memory (GB)

24 26 28 210 212

K

0

10

20

30

40
Train Memory (GB)

QT-CP
QT-CPS
QG-CP
QG-Tucker
QG-CPS
PD-CP
PD-Tucker
PD-CPS

Figure 19: Benchmarking the role of RGs and composite layers in tensorized circuits. We report
the average time (ms) and GPU memory usage (GiBs) to process a batch of 128 samples from Mnist for
different tensorized architectures—listed in the legend on the right—at different values of K (x-axis). The
stats are reported for both test and training scenarios, where for training one has to expect additional
overhead from performing gradient ascent.

In Fig. 19, we report the average time and GPU memory peak required to process a batch of data from Mnist868

for several tensorized PC architectures built by mix & matching different RGs and type of sum-product layers869

mentioned above, when possible on our GPU budget. For each architecture, we vary the model size by varying870

K, the number of units for each layer, in t16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192u. We observe that871

the QT and QG region graphs deliver more scalable architectures than those based on the commonly used872

PD which is consistently slower and uses more memory. At the same time, one can see that CP and CPS
873

layers scale more gracefully: CP can accommodate K “ 210 with QT as a RG and CPS even larger values874

of K, up to 213 with QG as well. Doing this is instead computationally impractical for Tucker layers on our875

GPUs, which allow only for K “ 128 at most. We underline that this is expected as models using Tucker876

layers have more parameters than those using CP layers for the same model size K. This also explain why877

the architecture QT-Tucker is missing: QTs iteratively split images in 4 parts (Algorithm D.2) and therefore878

appling Tucker layers would require OpK4q parameters for such architectures, which is unfeasible even for879

K “ 16 on our GPUs.880

We emphasise that non-folded versions of these architectures, e.g. RAT-SPNs (Peharz et al., 2020c), can be881

orders of magnitude slower, therefore hindering both learning and deployment in practice. In Fig. E.1 in the882

Appendix, we show the results of the same benchmark reported in Fig. 19 but for the CelebA dataset, which883

is more challenging because it is equivalent to perform distribution estimation on a much higher dimensional884

space (12, 288 “ 64 ˆ 64 ˆ 3 instead of 784 “ 28 ˆ 28 ˆ 1).13. From this additional experiment, we can885

conclude that even in higher dimensions the scaling behavior of RGs and layers is the same. Finally, in886

Fig. E.3, we zoom on a comparison between CPS and CPXS. There, we show that for the same choice of887

RG and K, CPS and CPXS layers require the same time/space resources as expected, with CPXS only being888

slightly faster at training-time.889

Takeaway 1.

QT and QG should be preferred to PD as RGs if we want to scale circuits, with the former being
the most scalable than the latter. Layer-wise, CP layers scale, as expected, to larger values of K than
Tucker layers and for even larger layers parameter sharing (CPS, CPXS) is recommended.

890

RQ2) Accuracy as distribution estimators. We now test our tensorized PCs as distribution estimators891

and we consider our mixed&matched architecture from RQ1. For each architecture, we vary the model size892

by varying K, the number of units for each layer, in t16, 32, 64, 128, 256, 512u for the MNIST family and up893

to 256 for CelebA. To assess the effect of learning RGs from data, we compare against HCLTs (CL-CPJin894

our nomenclature) as reported in (Dang et al., 2022a). We use a batch size of 256, and train for at most 200895

13Note that for our RQ1, all image datasets with the same resolutions would yield the very same results. So the fact we pick
as a grey-scale dataset MNIST and not F-MNIST is not really important.

29

Under review as submission to TMLR

16 32 64 128 256 512
K

1.20

1.25

1.30

1.35

1.40

Te
st

 b
pd

Mnist

QT-CP
QT-CPS
QG-CP
QG-Tucker
QG-CPS
PD-CP
PD-Tucker
PD-CPS

16 32 64 128 256 512
K

3.3

3.4

3.5

3.6

3.7

3.8
Fashion Mnist

16 32 64 128 256
K

5.4

5.6

5.8

6.0

6.2
CelebA

Figure 20: Overparameterizing tensorized architectures delivers better performing models when
using QTs and QGs, but not when using PDs. We report the test-set bpd (y-axis) at different values of
K (x-axis) for Mnist (left), FashionMnist (middle) and CelebA (right) averaged over 5 runs for different
tensorized architectures, which we report in the legend on the right. We keep the mixing layers in QG- and
PD-based models fixed and normalized. We use a batch size of 256.

epochs stopping training if the validation log-likelihood does not improve after 5 epochs. We use the average896

test-set bits-per-dimension (bpd) as the evalutation criterion, i.e. bpdpD, cq “ ´LpD, cq{pd ¨ log 2q, where d897

is the number of features in dataset D and L is defined as in Eq. (20).898

In Fig. 20 we report the average test-set bpd on Mnist, FashionMnist and CelebA. An immediate899

visible pattern emerges when comparing the architectures w.r.t. the choice of RG: Both QT- and QG-based900

architectures outperform those based on PD, and also manage to scale to larger datasets like CelebA.901

On average, the best performing architectures are those built out of QGs. This is expected as such RGs,902

different from QTs, allow different partitionings for a same region (and therefore require the usage of mixing903

layers as discussed in Eq. (Mixing-layer)). The PD region graphs, despite being DAG-shaped as QGs, deliver904

underperforming tensorized architectures, suggesting that bigger models, while carrying more expressively,905

are harder to train, a behavior also noted by Liu et al. (2023a). This is particularly evident looking at the906

trend of PD-based architectures on FashionMnist.907

In Table 2, we compare our best performing architectures, with other state-of-the-art probabilistic models908

even outside the circuit literature. Our architectures deliver close-to state-of-the-art results, outperforming909

some VAE- and flow-based models. When compared with RGs learned from data, as it is the case for HCLT,910

we note that our simpler, data-agnostic alternatives, QTs and QGs, perform equally well or better. Using911

them instead of the a CL RG saves the quadratic cost needed to learn the corresponding Chow-Liu tree912

(Dang et al., 2021).913

As for the choice of type of sum-product layer, Tucker and CP layers deliver very similar performance on914

PD. We conjecture that this is due to PD being harder to train in general, as for other RGs the trend915

changes. In fact, with QT and QG, we observe that Tucker delivers the best bpds for the smallest values916

for K. Scaling it to larger Ks is impractical however. CP and variants not only scale better (see RQ1 and917

Fig. 19), but are able to deliver the best bpds for larger K. As expected, CP consistently outperforms CPS
918

having more learnable parameters. However, if one has to privilege time over accuracy, CPS can be a useful919

alternative. Finally, we report results for CPXS layers and learnable mixing layers in Appendix E, along920

with the results showed in Fig. 20 in tabular form. We confirm that CPS and CPXS layers are equivalently921

accurate and that one does not have to learn mixing layer parameters in tensorized PCs with DAG-shaped922

RGs Section 4.3. All these conclusions carry over also to a larger image dataset such as CelebA, using or923

not the lossless YCoCg color-coding.924

Density estimation on tabular datasets. Finally, we perform density estimation experiments on UCI925

datasets (Table E.5), and compare the results achieved by tensorized PCs constructed by our pipeline by926

parameterizing a RND RG (Section 4.1) with either CP or Tucker layers. To give context to our results, we927

show the average test log-likelihoods achieved by normalizing flow models (Papamakarios et al., 2021) that928

are often evaluated on UCI datasets: MADE (Germain et al., 2015), RealNVP (Dinh et al., 2017), MAF929

(Papamakarios et al., 2017) and NSF (Durkan et al., 2019). As additional baselines, we show results of other930

30

Under review as submission to TMLR

Table 3: Tucker layers are harder to scale than CP layers on high-dimensional UCI datasets.
We show the best average test log-likelihoods achieved by normalizing flow models (top) and tensorized
PCs that can be instantiated from our pipeline (bottom). See main text for their description. Tensorized
PCs obtained by parameterizing random binary tree RGs (Section 4.1) with CP (RND-CP) perform better
on higher-dimensional datasets Hepmass and MiniBooNE than those with Tucker layers (RND-Tucker),
while the latter have an advantage on lower-dimensional datasets such as Power and Gas. For RND-CP
and RND-Tucker, we report the layer width (K) of the best performing model as a subscript of the log-
likelihoods. Fig. E.5 shows training and test log-likelihoods achieved by varying the layer width K. Details
in Appendix E.1.

Power Gas Hepmass M.BooNE BSDS300
MADE (Germain et al., 2015) -3.08 3.56 -20.98 -15.59 148.85
RealNVP (Dinh et al., 2017) 0.17 8.33 -18.71 -13.84 153.28
MAF (Papamakarios et al., 2017) 0.24 10.08 -17.73 -12.24 154.93
NSF (Durkan et al., 2019) 0.66 13.09 -14.01 -9.22 157.31
Gaussian -7.74 -3.58 -27.93 -37.24 96.67
EiNet-LRS (Sidheekh et al., 2023, RND-Tucker) 0.36 4.79 -22.46 -34.21 —
TTDE Novikov et al. (2021, LT-CPJ) 0.46 8.93 -21.34 -28.77 143.30
RND-CP 0.28256 5.01256 ´22.5264 ´30.69128 120.8264
RND-Tucker 0.5264 8.41256 ´23.4732 ´31.308 119.0964

PCs supporting tractable marginalization: a single multivariate Gaussian, Einsum networks (Peharz et al.,931

2020a) with input layers encoding flows (EiNet-LRS) (Sidheekh et al., 2023), and TTDE (Novikov et al.,932

2021). We emphasize that both EiNet-LRS and TTDE can be built using our pipeline and characterized933

with our nomenclature, the former as RND RGs parameterized by Tucker layers, and the latter as LT RGs934

parameterized by CPJlayers (Table 1). Table 3 shows that CP layers to deliver better performances than935

Tucker layers on high-dimensional UCI datasets and therefore in the case of deeper tensorized PCs. On the936

other hand, Tucker layers outperform CP layers on the lower-dimensional UCI datasets. We believe this937

is due the parameters of Tucker layers being more difficult to train and scale, similarly to our observation938

for Mnist and FashionMnist in the case of QG RGs in Fig. 20. We further detail in Appendix E.1 the939

experimental setting, and show in Fig. E.5 the results achieved by varying the layer width K.940

Takeaway 2.

In the case of image datasets, our recommendation for a go-to architecture is QG-CP-K, with the
largest possible K one can squeeze in their GPU memory. If computational resources are not enough,
one can trade-off accuracy with speed and use QT-{CP,CPS }-K. As a general trend, the simpler
the architecture the easier training and scaling are. This is also suggested by our results on UCI
datasets, where the simpler CP layers can perform better for high-dimensional datasets than Tucker.

941

RQ3) Compressing circuits with Tucker layers. For our last research question, consider the problem942

when a trained circuit with Tucker layers is given, and we want to compress it into a smaller one using CP943

layers by using our compression pipeline as illustrated in Fig. 14a and Fig. 14b. With this in mind, we944

investigate the change in performance, if any, w.r.t. the number of tunable parameters. Specifically, for945

each folded Tucker layer (Eq. (Tucker-folded)) in the given circuit, parameterized with a tensor W of shape946

F ˆKˆKˆK we compress each tensor slice Wf ::: by performing non-negative (NN) CP factorization via947

alternating least squares (Shashua & Hazan, 2005). This optimization eventually delivers a tensor W 1 of948

shape F ˆ3ˆRˆK for a R-ranked factorization.949

31

Under review as submission to TMLR

1 2 4 8 16 32
R

1.2

1.4

1.6

1.8

Te
st

 b
pd

QG-32 Mnist

Tucker NN-CP NN-CP + Train Random + Train

1 2 4 8 16 32 64
R

1.38

1.40

1.42

PD-64 Mnist

1 2 4 8 16 32
R

3.5

4.0

QG-32 Fashion Mnist

1 2 4 8 16 32
R

3.75

3.80
PD-32 Fashion Mnist

1 2 4 8 16 32
R

5.5

6.0

6.5

QG-32 CelebA

Figure 21: Compressing Tucker layers into CP layers (Fig. 14a Ñ Fig. 14b) can yield smaller and
accurate models as seen when we performing non-negative (NN) CP factorization via alternating least
squares (Shashua & Hazan, 2005). In each plot, we report the bpd of a pre-trained Tucker-layered PC
(dashed blue line), whose RG, size K and dataset on which it was trained on are detailed on the top. We
report the bpd of several R-ranked NN-CP factorizations of such PCs (red curves), which we then use as
initialization for further fine-tuning (green curves). Finally, we report the bpd of Tucker-compressed PCs
(Fig. 14b) trained from a random initialization of their parameters (yellow curves).

We sketch the results of our investigation in Fig. 21. As expected, taking a pre-trained Tucker-layered PC950

(blue dashed line) and compressing its parameters via NN-CP factorization leads to a similar-performing951

model as the rank R of the approximation increases, as shown by the bpd trend of the red curves in Fig. 21.952

Interestingly, we observe a key difference between the two region graphs utilized. For tensorized PCs based953

on PD region graphs, even a rank 1 approximation (i.e. R “ 1) leads to a relatively small bpd lose, while954

this is not the case for PCs built out of QGs. We conjecture that PD-based PCs have parameter tensors that955

are of much lower rank than QG-based PCs, and that very deep PCs learn low-rank parameter matrices.956

Next, we investigate whether we can use these compressed models as an effective initialization scheme for957

smaller circuits, which we further train (fine-tune) to maximize the training data likelihood (Eq. (20)).958

Again, we see a different trend when comparing w.r.t. the region graph used, as shown by the bpds encoded959

as green curves in Fig. 21. Specifically, for PD-based PCs such fine-tuning leads to a quick overfitting already960

in the first optimization steps, leading to much higher bpds on test data. In contrast, fine-tuning QG-based961

PCs leads to models that consistently match or even outperform the original Tucker-based PCs (blue dashed962

line), i.e., we observe green curves consistently being below red curves and breaking the dashed blue lines.963

As an additional baseline, we use the architecture of these compressed models (Fig. 14b) but train them964

from scratch: starting from a random initialization of its parameters. Fig. 21 illustrates that the NN-CP965

initialization can be better than a random one as it leads to better performing models when using QG RGs966

(yellow curves over green curves). This trend flips when using PD region graphs (yellow curves below green967

curves), again signaling that much information for these models could be stored in the RG more than in968

the parameters of the circuit. This, in turn, suggests that while new hierarchical factorizations with highly969

intricated RGs but very low-rank inner tensors are possible, they might be harder to learn effectively.970

Takeaway 3.

Deep circuits encode distributions in highly-structured factorizations whose parameters can be effec-
tively further compressed, e.g., by NN-CP factorizations. This yields a simple and effective procedure
to distill a smaller tractable model from a larger one: compress each layer of the latter, then fine-tune
the former by maximum-likelihood estimation.

971

7 Additional Related Work972

In the previous sections, we surveyed and bridged the literature of circuit representations and tensor fac-973

torizations, and as such we have already reviewed several related works from both communities. Now, we974

discuss works that partially tried to establish this connection in the past, by trying to connect to probabilistic975

graphical models.976

32

Under review as submission to TMLR

Tensor networks and PGMs. TNs (Orús, 2013) are widely used to model many-body systems in physics977

and quantum mechanics (Schollwoeck, 2010), and have been used to simulate quantum computations on978

classical hardware (Markov & Shi, 2008). They have been applied more recently for machine learning979

applications (Stoudenmire & Schwab, 2016; Han et al., 2018; Efthymiou et al., 2019; Bonnevie & Schmidt,980

2021). As they essentially an alternative formalism for probabilistic graphical models over discrete variables981

(Koller & Friedman, 2009), people have started drawing connections between the two formalisms. For982

example, Bonnevie & Schmidt (2021) connects non-negative MPS/TTs to PGMs and offers routines for983

probabilistic reasoning. Similarly, Glasser et al. (2020) explores the same connection, but instead of drawing984

TNs as PGMs, they draw them as factor graphs (Kschischang et al., 2001).985

Interestingly, these works are not aware of the latent variable interpretation of non-negative factorizations986

(Section 3.1) as they miss the connection through circuits. For the same reason, they are limited to au-987

toregressive sampling (Opportunity 3). To the best of our knowledge, this latent-variable perspective has988

been (re)discovered only very recently in this concurrent work by Ghalamkari et al. (2024) who proposes the989

classical expectation-maximization (EM) algorithm to learn them. EM is a consolidated way to learn the990

parameters of circuits (Peharz et al., 2016; 2020a) by maximum likelihood.991

Instead, by representing non-negative tensor factorizations as monotonic PCs, we effortlessly unlock the992

developed theory and algorithms required to perform complex probabilistic inference, with possible appli-993

cations in lossless compression (Liu et al., 2022), neuro-symbolic AI with correctness guarantees (Ahmed994

et al., 2022) and constrained text generation (Zhang et al., 2023). Finally, results about the succinctness995

or expressive efficiency of these factorizations (Glasser et al., 2019) have been used recently to prove circuit996

lowerbounds (Loconte et al., 2024a;b).997

Probabilistic circuits and PGMs. The modern formulation of PCs has been introduced for the first998

time in (Vergari et al., 2019b) as a unifying framework for several existing tractable probabilistic models999

(TPMs) including arithmetic circuits, (Darwiche, 2001), probabilistic decision graphs (Jaeger, 2004), and-or1000

graphs (Marinescu & Dechter, 2009), cutset networks (Rahman et al., 2014), sum-product networks (Poon1001

& Domingos, 2011) and more (Choi et al., 2020). The aim of PCs has been to abstract away from the1002

different syntaxes and model formalisms of the above TPMs and focus on structural properties that enable1003

tractable inference in each. Non-negative tensor factorizations and tensor networks have been underlooked1004

in this effort so far. Several ways to compile discrete PGMs into PCs (or one of the above formalisms) have1005

been devised in the past (Oztok & Darwiche, 2017; Shen et al., 2016; Choi et al., 2013). These compilation1006

techniques yield sparse deterministic circuits, and only recently PCs have started to be represented first1007

in code (Peharz et al., 2020c;a; Liu & Van den Broeck, 2021b) and then formally (Loconte et al., 2024a)1008

as tensorized architectures. Perhaps this lack of tensorized compilation targets has hidden the connection1009

between PCs and matrix and tensor factorizations. The closest connection we are aware of can be found in1010

Jaini et al. (2018b): they bridge sum-product networks to hierarchical mixture models and HMMs and hint1011

at a connection with tensorial mixture models (Sharir et al., 2017) a variant of hierarchical Tucker (Def. 5).1012

Loconte et al. (2024a) formally reduced MPSs and BMs to circuits and started drawing a bridge with the1013

literature on expressiveness of tensor factorizations (Glasser et al., 2019).1014

Matrix factorizations and circuit complexity results. Finding lower bounds to the rank of matrix1015

factorizations can be used as a proxy to prove lower bounds to the size of circuits satisfying particular1016

structural properties (de Colnet & Mengel, 2021). Proving an exponential (w.r.t. the number of variables)1017

size lower bound for a class of circuits shows a limitation on which functions they can compute in polynomial1018

time and number of parameters, thus allowing us to precisely separate circuit classes in terms of their1019

expressiveness (Valiant, 1979; Martens & Medabalimi, 2014). Recently, lower bounding the non-negative1020

rank (Gillis, 2020) and the square root rank (Fawzi et al., 2014; Lee & Wei, 2014) of matrices has been used1021

to draw an expressiveness hierarchy of classes of PCs with negative real and complex-valued parameters for1022

distribution estimation (Loconte et al., 2024a;b). Since circuits generalize many tensor network factorizations1023

(see Section 2.4), showing size lower bounds for a class of circuits can be used to show size lower bounds1024

for tensor networks regardless of their structure, e.g. as shown by Loconte et al. (2024b) in generalizing a1025

known rank lower bound for real Born machines obtained by squaring a MPS/TT (Glasser et al., 2019).1026

33

Under review as submission to TMLR

8 Conclusion1027

In this paper, we laid the foundations to connect two communities in ML that developed independently but1028

are sharing many research directions: circuits and tensor factorizations. Despite their apparently different1029

syntax, the way they are usually presented, and the tasks in which they are commonly employed, these1030

two formalisms significantly overlap in semantics and potential applications. We create this bridge between1031

communities by first establishing a formal reduction of popular tensor factorizations to circuits in Section 2.1032

We hope this can propel research on how to design more and more scalable low-rank parameterization1033

for probabilistic inference. To this end, we highlighted a number of possible future venues for the matrix1034

and tensor factorization communities that leverage the connection with circuits we established: designing1035

hierarchical factorizations with non-tree structures (Opportunity 1); using the property-driven calculus that1036

circuits offer to automatically derive tractable algorithms in a compositional way (Opportunity 2); treat non-1037

negative (hierarchical) factorizations as deep latent variable models (Opportunity 3); devise factorizations1038

over non-discrete and non-linear input spaces (Opportunity 4); embed logical constraints to realize neuro-1039

symbolic systems that can reason with symbolic knowledge (Opportunity 5); devising alternative ways to1040

compactly encode distributions, going beyond probability masses or densities (Opportunity 6); as well as1041

devising flexible factorizations by changing only the structure of (some) layers in a circuit representation1042

(Opportunity 7).1043

From the point of view of the circuit community, we leveraged this connection to systematize and demys-1044

tify the construction of modern tensorized and overparameterized circuits (Section 4). We proposed a single1045

pipeline that generalizes existing (tensor factorization and circuit) architectures and introduced a new nomen-1046

clature, based on the steps of our pipeline, to understand old but also new architectures that can be created1047

by mixing & matching these steps (see Table 1). Our empirical analysis of popular ways to combine these1048

ingredients highlights how lower-rank structures can be easier to learn and useful to compress higher-rank1049

layers (Section 6). Finally, we distilled our findings in clear-cut recommendations (Takeaways 1 to 3) for1050

practitioners that want to learn and scale circuits on high-dimensional data, and we hope this can foster1051

future rigorous analysis.1052

Broader Impact Statement1053

This work is fundamental research in probabilistic modeling and reasoning and as such the algorithms and1054

architectures discussed here can impact many possible downstream applications, in ways that go beyond our1055

control. For example, circuits, or tensor factorizations, could be used in computer vision classifiers to amplify1056

the bias already encoded in non-curated datasets or be used in safety-critical applications without eliciting1057

valid safety requirements. Since it is hard to foresee all possible future misuses, we urge practitioners to pay1058

attention to concrete problematic uses of our methodologies: use the time that tractable models save while1059

performing inference to reflect on the direct impact your application can have.1060

References1061

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari. Semantic1062

probabilistic layers for neuro-symbolic learning. In Advances in Neural Information Processing Systems1063

35 (NeurIPS), volume 35, pp. 29944–29959. Curran Associates, Inc., 2022.1064

Magda Amiridi, Nikos Kargas, and Nicholas D. Sidiropoulos. Low-rank characteristic tensor density es-1065

timation part i: Foundations. IEEE Transactions on Signal Processing, 70:2654–2668, 2022. doi:1066

10.1109/TSP.2022.3175608.1067

Atharva Awari, Harrison Nguyen, Samuel Wertz, Arnaud Vandaele, and Nicolas Gillis. Coordinate descent1068

algorithm for nonlinear matrix decomposition with the relu function. arXiv preprint, 2024.1069

Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. Tucker: Tensor factorization for knowledge graph1070

completion. In EMNLP-IJCNLP, pp. 5184–5193. Association for Computational Linguistics, 2019.1071

34

Under review as submission to TMLR

Christopher M. Bishop and Nasser M. Nasrabadi. Pattern recognition and machine learning. J. Electronic1072

Imaging, 16:049901, 2006.1073

Rasmus Bonnevie and Mikkel N. Schmidt. Matrix product states for inference in discrete probabilistic1074

models. Journal of Machine Learning Research, 22:187:1–187:48, 2021.1075

Steven Braun. Simple-einet: An EinsumNetworks Implementation, 2021. URL https://github.com/1076

braun-steven/simple-einet.1077

Diego Calanzone, Stefano Teso, and Antonio Vergari. Towards logically consistent language models via1078

probabilistic reasoning. arXiv preprint arXiv:2404.12843, 2024.1079

J. Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scaling via an1080

n-way generalization of “eckart-young” decomposition. Psychometrika, 35:283–319, 1970.1081

Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. Artificial1082

Intelligence., 172(6-7):772–799, 2008.1083

Song Cheng, Lei Wang, Tao Xiang, and Pan Zhang. Tree tensor networks for generative modeling. Physical1084

Review B, 99(15):155131, 2019.1085

Arthur Choi, Doga Kisa, and Adnan Darwiche. Compiling probabilistic graphical models using sentential1086

decision diagrams. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty: 12th European1087

Conference, ECSQARU 2013, Utrecht, The Netherlands, July 8-10, 2013. Proceedings 12, pp. 121–132.1088

Springer, 2013.1089

Arthur Choi, Guy Van den Broeck, Adnan Darwiche, Qiang Yang, and Michael Wooldridge. Tractable1090

learning for structured probability spaces: A case study in learning preference distributions. In 24th1091

International Joint Conference on Artificial Intelligence (IJCAI), volume 2015, pp. 2861–2868. IJCAI,1092

2015.1093

Myung Jin Choi, Vincent YF Tan, Animashree Anandkumar, and Alan S Willsky. Learning latent tree1094

graphical models. Journal of Machine Learning Research, 12:1771–1812, 2011.1095

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying framework for1096

tractable probabilistic modeling. Technical report, University of California, Los Angeles (UCLA), 2020.1097

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE1098

Transactions on Information Theory, 14(3):462–467, 1968a.1099

CKCN Chow and Cong Liu. Approximating discrete probability distributions with dependence trees. IEEE1100

transactions on Information Theory, 14(3):462–467, 1968b.1101

Andrzej Cichocki and Anh Huy Phan. Fast local algorithms for large scale nonnegative matrix and tensor1102

factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 92-A(3):708–721, 2009.1103

Andrzej Cichocki, Rafal Zdunek, and Shun-ichi Amari. Nonnegative matrix and tensor factorization [lecture1104

notes]. IEEE signal processing magazine, 25(1):142–145, 2007.1105

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: Extending MNIST to1106

handwritten letters. In IJCNN 2017, pp. 2921–2926, 2017. doi: 10.1109/IJCNN.2017.7966217.1107

Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor analysis.1108

In Annual Conference Computational Learning Theory, 2015.1109

Alvaro H. C. Correia, Gennaro Gala, Erik Quaeghebeur, Cassio de Campos, and Robert Peharz. Contin-1110

uous mixtures of tractable probabilistic models. In The Thirty-Seventh AAAI Conference on Artificial1111

Intelligence (AAAI-23), 2023.1112

35

https://github.com/braun-steven/simple-einet
https://github.com/braun-steven/simple-einet
https://github.com/braun-steven/simple-einet

Under review as submission to TMLR

Meihua Dang, Antonio Vergari, and Guy Van den Broeck. Strudel: A fast and accurate learner of structured-1113

decomposable probabilistic circuits. The International Journal of Approximate Reasoning (IJAR), 140:1114

92–115, 2021.1115

Meihua Dang, Anji Liu, and Guy Van den Broeck. Sparse probabilistic circuits via pruning and growing.1116

Advances in Neural Information Processing Systems (NeurIPS), 35:28374–28385, 2022a.1117

Meihua Dang, Anji Liu, Xinzhu Wei, Sriram Sankararaman, and Guy Van den Broeck. Tractable and1118

expressive generative models of genetic variation data. In Research in Computational Molecular Biology,1119

pp. 356–357, 2022b. doi: 10.1007/978-3-031-04749-7_26.1120

Meihua Dang, Antonio Vergari, and Guy Van den Broeck. Strudel: A fast and accurate learner of structured-1121

decomposable probabilistic circuits. International Journal of Approximate Reasoning, 140:92–115, 2022c.1122

Adnan Darwiche. Decomposable negation normal form. Journal of the ACM (JACM), 48:608–647, 2001.1123

Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the ACM (JACM),1124

50(3):280–305, 2003.1125

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009.1126

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial Intelligence1127

Research (JAIR), 17:229–264, 2002.1128

Carl de Boor. Subroutine package for calculating with B-splines. Technical report, Los Alamos National1129

Lab. (LANL), 1971.1130

Alexis de Colnet and Stefan Mengel. A compilation of succinctness results for arithmetic circuits. In 18th1131

International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 205–215,1132

2021.1133

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value decomposition.1134

SIAM Journal on Matrix Analysis and Applications, 21:1253–1278, 2000.1135

Luc De Raedt, Robin Manhaeve, Sebastijan Dumancic, Thomas Demeester, and Angelika Kimmig. Neuro-1136

symbolic= neural+ logical+ probabilistic. In NeSy@ IJCAI, 2019.1137

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks. Advances in neural informa-1138

tion processing systems, 24, 2011.1139

Aaron W. Dennis and Dan Ventura. Learning the architecture of sum-product networks using clustering on1140

variables. In Advances in Neural Information Processing Systems 25 (NeurIPS), pp. 2033–2041. Curran1141

Associates, Inc., 2012.1142

Nicola Di Mauro, Antonio Vergari, Teresa Maria Altomare Basile, and Floriana Esposito. Fast and accurate1143

density estimation with extremely randomized cutset networks. In ECML/PKDD, 2017.1144

Nicola Di Mauro, Floriana Esposito, Fabrizio G. Ventola, and Antonio Vergari. Sum-product network1145

structure learning by efficient product nodes discovery. Intelligenza Artificiale, 12:143–159, 2019.1146

Nicola Di Mauro, Gennaro Gala, Marco Iannotta, and Teresa M.A. Basile. Random probabilistic circuits.1147

In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, volume 161 of1148

Proceedings of Machine Learning Research, pp. 1682–1691. PMLR, 27–30 Jul 2021.1149

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. In 5th Inter-1150

national Conference on Learning Representations (ICLR), 2017.1151

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In Advances in1152

Neural Information Processing Systems 32 (NeurIPS), pp. 7511–7522. Curran Associates, Inc., 2019.1153

36

Under review as submission to TMLR

Stavros Efthymiou, Jack D. Hidary, and Stefan Leichenauer. Tensor network for machine learning. ArXiv,1154

abs/1906.06329, 2019.1155

Hamza Fawzi, João Gouveia, Pablo A. Parrilo, Richard Z. Robinson, and Rekha R. Thomas. Positive1156

semidefinite rank. Mathematical Programming, 153:133–177, 2014.1157

Richard P. Feynman. Negative probability. In Quantum Implications: Essays in Honour of David Bohm,1158

pp. 235–248. Methuen, 1987.1159

Gennaro Gala, Cassio de Campos, Robert Peharz, Antonio Vergari, and Erik Quaeghebeur. Probabilis-1160

tic integral circuits. In Proceedings of The 27th International Conference on Artificial Intelligence and1161

Statistics, volume 238 of Proceedings of Machine Learning Research, pp. 2143–2151. PMLR, 2024a.1162

Gennaro Gala, Cassio de Campos, Antonio Vergari, and Erik Quaeghebeur. Scaling continuous latent variable1163

models as probabilistic integral circuits, 2024b.1164

Aryo Pradipta Gema, Dominik Grabarczyk, Wolf De Wulf, Piyush Borole, Javier Antonio Alfaro, Pasquale1165

Minervini, Antonio Vergari, and Ajitha Rajan. Knowledge graph embeddings in the biomedical domain:1166

Are they useful? a look at link prediction, rule learning, and downstream polypharmacy tasks. arXiv1167

preprint arXiv:2305.19979, 2023.1168

Robert Gens and Pedro M. Domingos. Learning the structure of sum-product networks. In International1169

Conference on Machine Learning, 2013.1170

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked autoencoder for1171

distribution estimation. In 32nd International Conference on Machine Learning (ICML), pp. 881 – 889,1172

2015.1173

Kazu Ghalamkari, Jesper Løve Hinrich, and Morten Mørup. Non-negative tensor mixture learning for1174

discrete density estimation. arXiv preprint arXiv:2405.18220, 2024.1175

Nicolas Gillis. Nonnegative Matrix Factorization. Society for Industrial and Applied Mathematics (SIAM),1176

2020.1177

Ivan Glasser, Ryan Sweke, Nicola Pancotti, Jens Eisert, and Ignacio Cirac. Expressive power of tensor-1178

network factorizations for probabilistic modeling. In Advances in Neural Information Processing Systems1179

32 (NeurIPS), pp. 1498–1510. Curran Associates, Inc., 2019.1180

Ivan Glasser, Nicola Pancotti, and J Ignacio Cirac. From probabilistic graphical models to generalized tensor1181

networks for supervised learning. IEEE Access, 2020.1182

Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM journal on matrix analysis and1183

applications, 31(4):2029–2054, 2010.1184

Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan Zhang. Unsupervised generative modeling using1185

matrix product states. Physical Review X, 8:031012, Jul 2018.1186

John Hood and Aaron J. Schein. The ALℓ0CORE tensor decomposition for sparse count data. In Proceedings1187

of The 27th International Conference on Artificial Intelligence and Statistics, volume 238 of Proceedings1188

of Machine Learning Research, pp. 4654–4662. PMLR, 02–04 May 2024.1189

Emiel Hoogeboom, Jorn W. T. Peters, Rianne van den Berg, and Max Welling. Integer discrete flows and1190

lossless compression. In NeurIPS, pp. 12134–12144, 2019.1191

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and1192

Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth International Conference1193

on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.1194

Manfred Jaeger. Probabilistic decision graphs—combining verification and ai techniques for probabilistic1195

inference. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(supp01):1196

19–42, 2004.1197

37

Under review as submission to TMLR

Priyank Jaini, Amur Ghose, and Pascal Poupart. Prometheus: Directly learning acyclic directed graph1198

structures for sum-product networks. In European Workshop on Probabilistic Graphical Models, 2018a.1199

Priyank Jaini, Pascal Poupart, and Yaoliang Yu. Deep homogeneous mixture models: Representation,1200

separation, and approximation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,1201

and R. Garnett (eds.), Advances in Neural Information Processing Systems (NeurIPS), volume 31. Curran1202

Associates, Inc., 2018b.1203

Yong-Deok Kim and Seungjin Choi. Nonnegative tucker decomposition. In CVPR. IEEE Computer Society,1204

2007.1205

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International1206

Conference on Learning Representations (ICLR), 2015.1207

Friso Kingma, Pieter Abbeel, and Jonathan Ho. Bit-swap: Recursive bits-back coding for lossless compres-1208

sion with hierarchical latent variables. In Proceedings of the 36th International Conference on Machine1209

Learning, volume 97 of Proceedings of Machine Learning Research, pp. 3408–3417, 2019.1210

Doga Gizem Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential decision1211

diagrams. In International Conference on Principles of Knowledge Representation and Reasoning, 2014.1212

Tamara G. Kolda. Multilinear operators for higher-order decompositions. Technical report, Sandia National1213

Laboratories, 2006.1214

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. Society of Industrial and1215

Applied Mathematics (SIAM) Review, 51(3):455–500, 2009.1216

Tamara G. Kolda, Brett W. Bader, and Joseph P. Kenny. Higher-order web link analysis using multilinear1217

algebra. In ICDM, pp. 242–249. IEEE Computer Society, 2005.1218

Daphne. Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. Adaptive1219

computation and machine learning. MIT Press, 2009.1220

Pieter M. Kroonenberg. Applied Multiway Data Analysis. Wiley Interscience, 2007.1221

Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the sum-product algorithm.1222

IEEE Transactions on information theory, 47(2):498–519, 2001.1223

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs [Online].1224

Available: http://yann.lecun.com/exdb/mnist, 2, 2010.1225

Troy Lee and Zhaohui Wei. The square root rank of the correlation polytope is exponential. ArXiv,1226

abs/1411.6712, 2014.1227

Valentin Leplat, Le Thi Khanh Hien, Akwum Onwunta, and Nicolas Gillis. Deep nonnegative matrix1228

factorization with beta divergences. arXiv preprint arXiv:2309.08249, 2023.1229

Anji Liu and Guy Van den Broeck. HCLT reference implementation, 2021a. URL https://github.com/1230

Tractables/ProbabilisticCircuits.jl.1231

Anji Liu and Guy Van den Broeck. Tractable regularization of probabilistic circuits. In Advances in Neural1232

Information Processing Systems 34 (NeurIPS), pp. 3558–3570. Curran Associates, Inc., 2021b.1233

Anji Liu, Stephan Mandt, and Guy Van den Broeck. Lossless compression with probabilistic circuits. In1234

International Conference on Learning Representations, 2022.1235

Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scaling up probabilistic circuits by latent variable1236

distillation. In The Eleventh International Conference on Learning Representations (ICLR), 2023a.1237

38

https://github.com/Tractables/ProbabilisticCircuits.jl
https://github.com/Tractables/ProbabilisticCircuits.jl
https://github.com/Tractables/ProbabilisticCircuits.jl

Under review as submission to TMLR

Xuejie Liu, Anji Liu, Guy Van den Broeck, and Yitao Liang. Understanding the distillation process from deep1238

generative models to tractable probabilistic circuits. In International Conference on Machine Learning,1239

pp. 21825–21838. PMLR, 2023b.1240

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In1241

Proceedings of International Conference on Computer Vision (ICCV), December 2015.1242

Lorenzo Loconte, Nicola Di Mauro, Robert Peharz, and Antonio Vergari. How to turn your knowledge1243

graph embeddings into generative models via probabilistic circuits. In Advances in Neural Information1244

Processing Systems 37 (NeurIPS). Curran Associates, Inc., 2023.1245

Lorenzo Loconte, M. Sladek Aleksanteri, Stefan Mengel, Martin Trapp, Arno Solin, Nicolas Gillis, and1246

Antonio Vergari. Subtractive mixture models via squaring: Representation and learning. In The Twelfth1247

International Conference on Learning Representations (ICLR), 2024a.1248

Lorenzo Loconte, Stefan Mengel, and Antonio Vergari. Sum of squares circuits, 2024b.1249

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, and Dawei Song. A tensorized1250

transformer for language modeling. In NeurIPS, pp. 2229–2239, 2019.1251

Henrique Malvar and Gary Sullivan. Ycocg-r: A color space with rgb reversibility and low dynamic range.1252

ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q, 6, 2003.1253

Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea Passerini, and Ste-1254

fano Teso. Bears make neuro-symbolic models aware of their reasoning shortcuts. In Uncertainty in1255

Artificial Intelligence (UAI), 2024a.1256

Emanuele Marconato, Stefano Teso, Antonio Vergari, and Andrea Passerini. Not all neuro-symbolic con-1257

cepts are created equal: Analysis and mitigation of reasoning shortcuts. Advances in Neural Information1258

Processing Systems, 36, 2024b.1259

Antonio Mari, Gennaro Vessio, and Antonio Vergari. Unifying and understanding overparameterized circuit1260

representations via low-rank tensor decompositions. In 6th Workshop on Tractable Probabilistic Modeling,1261

2023.1262

Radu Marinescu and Rina Dechter. And/or branch-and-bound search for combinatorial optimization in1263

graphical models. Artificial Intelligence, 173(16-17):1457–1491, 2009.1264

Igor L. Markov and Yaoyun Shi. Simulating quantum computation by contracting tensor networks. SIAM1265

Journal on Computing, 38(3):963–981, 2008.1266

James Martens and Venkatesh Medabalimi. On the expressive efficiency of sum product networks. arXiv1267

preprint arXiv:1411.7717, 2014.1268

Alejandro Molina, Sriraam Natarajan, and Kristian Kersting. Poisson sum-product networks: A deep ar-1269

chitecture for tractable multivariate poisson distributions. In AAAI Conference on Artificial Intelligence,1270

2017.1271

Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana Esposito, and Kristian1272

Kersting. Mixed sum-product networks: A deep architecture for hybrid domains. In AAAI Conference on1273

Artificial Intelligence, 2018.1274

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning on1275

multi-relational data. In ICML, pp. 809–816. Omnipress, 2011.1276

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational machine1277

learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2015.1278

Georgii S. Novikov, Maxim E. Panov, and Ivan V. Oseledets. Tensor-train density estimation. In 37th1279

Conference on Uncertainty in Artificial Intelligence (UAI), volume 161 of Proceedings of Machine Learning1280

Research, pp. 1321–1331. PMLR, 2021.1281

39

Under review as submission to TMLR

Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled1282

pair states. Annals of Physics, 349:117–158, 2013.1283

Ivan. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33:2295–2317, 2011.1284

Umut Oztok and Adnan Darwiche. On compiling dnnfs without determinism. ArXiv, abs/1709.07092, 2017.1285

Yannis Panagakis, Jean Kossaifi, Grigorios G. Chrysos, James Oldfield, Mihalis A. Nicolaou, Anima Anand-1286

kumar, and Stefanos Zafeiriou. Tensor methods in computer vision and deep learning. Proceedings of the1287

IEEE, 109(5):863–890, 2021.1288

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation.1289

In Advances in Neural Information Processing Systems 30 (NeurIPS), pp. 2338–2347. Curran Associates,1290

Inc., 2017.1291

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-1292

narayanan. Normalizing flows for probabilistic modeling and inference. The Journal of Machine Learning1293

Research (JMLR), 22(1):2617–2680, 2021.1294

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On theoretical properties of1295

sum-product networks. In Artificial Intelligence and Statistics, pp. 744–752. PMLR, 2015.1296

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent variable interpretation in1297

sum-product networks. IEEE transactions on pattern analysis and machine intelligence, 39(10):2030–2044,1298

2016.1299

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro M. Domingos. On the latent variable interpretation1300

in sum-product networks. IEEE Transactions on Pattern Analalysis and Machine Intelligence, 39(10):1301

2030–2044, 2017.1302

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp, Kristian1303

Kersting, and Zoubin Ghahramani. RAT-SPN reference implementation, 2019. URL https://github.1304

com/cambridge-mlg/RAT-SPN.1305

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van1306

Den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable learning of1307

tractable probabilistic circuits. In 37th International Conference on Machine Learning (ICML), volume1308

119 of Proceedings of Machine Learning Research, pp. 7563–7574. PMLR, 2020a.1309

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van1310

Den Broeck, Kristian Kersting, and Zoubin Ghahramani. EiNets reference implementation, 2020b. URL1311

https://github.com/cambridge-mlg/EinsumNetworks.1312

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp, Kristian1313

Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and effective approach to1314

probabilistic deep learning. In 35th Conference on Uncertainty in Artificial Intelligence (UAI), volume1315

115 of Proceedings of Machine Learning Research, pp. 334–344. PMLR, 2020c.1316

David Pérez-García, F. Verstraete, Michael M. Wolf, and Juan Ignacio Cirac. Matrix product state repre-1317

sentations. Quantum Information and Computing, 7(5):401–430, 2007. ISSN 1533-7146.1318

Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured decomposability.1319

In 23rd Conference on Artificial Intelligence (AAAI), volume 8, pp. 517–522, 2008.1320

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In IEEE International1321

Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–690. IEEE, 2011.1322

Harsh Poonia, Moritz Willig, Zhongjie Yu, Matej Zečević, Kristian Kersting, and Devendra Singh Dhami.1323

χSPN: Characteristic interventional sum-product networks for causal inference in hybrid domains. In1324

The 40th Conference on Uncertainty in Artificial Intelligence (UAI), 2024.1325

40

https://github.com/cambridge-mlg/RAT-SPN
https://github.com/cambridge-mlg/RAT-SPN
https://github.com/cambridge-mlg/RAT-SPN
https://github.com/cambridge-mlg/EinsumNetworks

Under review as submission to TMLR

Lawrence Rabiner and Biinghwang Juang. An introduction to hidden Markov models. IEEE ASSP magazine,1326

3(1):4–16, 1986.1327

Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. Cutset networks: A simple, tractable, and1328

scalable approach for improving the accuracy of chow-liu trees. In Machine Learning and Knowledge1329

Discovery in Databases: European Conference, ECML PKDD 2014, Nancy, France, September 15-19,1330

2014. Proceedings, Part II 14, pp. 630–645. Springer, 2014.1331

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang. A1332

comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing Surveys1333

(CSUR), 54(4):1–34, 2021.1334

Elina Robeva and Anna Seigal. Duality of graphical models and tensor networks, 2017.1335

Yangjun Ruan, Karen Ullrich, Daniel S. Severo, James Townsend, Ashish Khisti, Arnaud Doucet, Alireza1336

Makhzani, and Chris Maddison. Improving lossless compression rates via monte carlo bits-back coding.1337

In Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of1338

Machine Learning Research, pp. 9136–9147, 2021.1339

Berkant Savas and Lars Eldén. Handwritten digit classification using higher order singular value decompo-1340

sition. Pattern Recognit., 40(3):993–1003, 2007.1341

Ulrich Schollwoeck. The density-matrix renormalization group in the age of matrix product states. Annals1342

of Physics, 326:96–192, 2010.1343

Nimish Shah, Wannes Meert, and Marian Verhelst. Efficient Execution of Irregular Dataflow Graphs.1344

Springer, 2023.1345

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, and Kris-1346

tian Kersting. Conditional sum-product networks: Imposing structure on deep probabilistic architectures.1347

In International Conference on Probabilistic Graphical Models, pp. 401–412. PMLR, 2020.1348

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, and1349

Kristian Kersting. Conditional sum-product networks: Modular probabilistic circuits via gate functions.1350

International Journal of Approximate Reasoning, 140:298–313, 2022.1351

Or Sharir, Ronen Tamari, Nadav Cohen, and Amnon Shashua. Tensorial mixture models. ArXiv,1352

abs/1610.04167, 2017.1353

Amnon Shashua and Tamir Hazan. Non-negative tensor factorization with applications to statistics and1354

computer vision. In Proceedings of the 22nd international conference on Machine learning, pp. 792–799,1355

2005.1356

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic circuits of probabilistic1357

models. In Advances in Neural Information Processing Systems 29 (NeurIPS). Curran Associates, Inc.,1358

2016.1359

Yaoyun Shi, Luming Duan, and Guifré Vidal. Classical simulation of quantum many-body systems with a1360

tree tensor network. Physical Review A, 74:022320, 2005.1361

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions.1362

Founddations and Trends in Theoretical Computer Science, 5:207–388, 2010.1363

Sahil Sidheekh and Sriraam Natarajan. Building expressive and tractable probabilistic generative models:1364

A review. arXiv preprint arXiv:2402.00759, 2024.1365

Sahil Sidheekh, Kristian Kersting, and Sriraam Natarajan. Probabilistic flow circuits: Towards unified deep1366

models for tractable probabilistic inference. In 39th Conference on Uncertainty in Artificial Intelligence1367

(UAI), volume 216 of Proceedings of Machine Learning Research, pp. 1964–1973. PMLR, 2023.1368

41

Under review as submission to TMLR

Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E. Papalexakis, and1369

Christos Faloutsos. Tensor decomposition for signal processing and machine learning. IEEE Transactions1370

on Signal Processing, 65(13):3551–3582, 2017. doi: 10.1109/TSP.2017.2690524.1371

Le Song, Mariya Ishteva, Ankur Parikh, Eric Xing, and Haesun Park. Hierarchical tensor decomposition1372

of latent tree graphical models. In International Conference on Machine Learning, pp. 334–342. PMLR,1373

2013.1374

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. In Advances in Neural1375

Information Processing Systems 29 (NeurIPS), pp. 4799–4807. Curran Associates, Inc., 2016.1376

Ping Liang Tan and Robert Peharz. Hierarchical decompositional mixtures of variational autoencoders.1377

In Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of1378

Machine Learning Research, pp. 6115–6124. PMLR, 09–15 Jun 2019.1379

Alex Townsend and Lloyd N. Trefethen. Continuous analogues of matrix factorizations. Proceedings of the1380

Royal Society A: Mathematical, Physical and Engineering Sciences, 471, 2015.1381

James Townsend, Thomas Bird, and David Barber. Practical lossless compression with latent variables using1382

bits back coding. In ICLR 2019, 2019.1383

Volker Tresp, Sahand Sharifzadeh, Hang Li, Dario Konopatzki, and Yunpu Ma. The tensor brain: A unified1384

theory of perception, memory, and semantic decoding. Neural Computation, 35:156–227, 2021.1385

L. R. Tucker. The extension of factor analysis to three-dimensional matrices. In Contributions to mathe-1386

matical psychology., pp. 110–127. Holt, Rinehart and Winston, 1964.1387

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31:279–311,1388

1966.1389

Leslie G. Valiant. Negation can be exponentially powerful. In 11th Annual ACM Symposium on Theory of1390

Computing, pp. 189–196, 1979.1391

Emile van Krieken, Pasquale Minervini, Edoardo Ponti, and Antonio Vergari. On the independence assump-1392

tion in neurosymbolic learning. In Forty-first International Conference on Machine Learning, 2024.1393

M. Alex O. Vasilescu and Demetri Terzopoulos. Multilinear image analysis for facial recognition. In ICPR1394

2002, pp. 511–514. IEEE Computer Society, 2002.1395

Joshua Vendrow, Jamie Haddock, and Deanna Needell. A generalized hierarchical nonnegative tensor de-1396

composition. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1397

4473–4477, 2021.1398

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Simplifying, regularizing and strengthening1399

sum-product network structure learning. In Machine Learning and Knowledge Discovery in Databases:1400

European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part II1401

15, pp. 343–358. Springer, 2015.1402

Antonio Vergari, Robert Peharz, Nicola Di Mauro, Alejandro Molina, Kristian Kersting, and Floriana Es-1403

posito. Sum-product autoencoding: Encoding and decoding representations using sum-product networks.1404

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.1405

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and understanding sum-product1406

networks. Machine Learning, 108(4):551–573, 2019a.1407

Antonio Vergari, Nicola Di Mauro, and Guy Van den Broeck. Tractable probabilistic models: Representa-1408

tions, algorithms, learning, and applications. Tutorial at the 35th Conference on Uncertainty in Artificial1409

Intelligence (UAI), 2019b.1410

42

Under review as submission to TMLR

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A compositional atlas1411

of tractable circuit operations for probabilistic inference. In Advances in Neural Information Processing1412

Systems 34 (NeurIPS), pp. 13189–13201. Curran Associates, Inc., 2021.1413

Maarten De Vos, Lieven De Lathauwer, Bart Vanrumste, Sabine Van Huffel, and Wim Van Paesschen.1414

Canonical decomposition of ictal scalp EEG and accurate source localisation: Principles and simulation1415

study. Computational Intelligence and Neuroscience, 2007, 2007.1416

Thomas Wedenig, Rishub Nagpal, Gaetan Cassiers, Stefan Mangard, and Robert Peharz. Exact soft an-1417

alytical side-channel attacks using tractable circuits. In International Conference on Machine Learning,1418

2024a.1419

Thomas Wedenig, Rishub Nagpal, Gaëtan Cassiers, Stefan Mangard, and Robert Peharz. Exact soft an-1420

alytical side-channel attacks using tractable circuits. In International Conference on Machine Learning,1421

2024b.1422

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking1423

Machine Learning Algorithms. ArXiv, abs/1708.07747, 2017.1424

Mingxue Xu, Yao Lei Xu, and Danilo P. Mandic. Tensorgpt: Efficient compression of the embedding layer1425

in llms based on the tensor-train decomposition. CoRR, abs/2307.00526, 2023.1426

Zhongjie Yu, Martin Trapp, and Kristian Kersting. Characteristic circuits. In Thirty-seventh Conference on1427

Neural Information Processing Systems (NeurIPS), 2023.1428

Zhe Zeng, Paolo Morettin, Fanqi Yan, Antonio Vergari, and Guy Van den Broeck. Scaling up hybrid proba-1429

bilistic inference with logical and arithmetic constraints via message passing. In International Conference1430

on Machine Learning, pp. 10990–11000. PMLR, 2020.1431

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for autoregressive1432

language generation. In 40th International Conference on Machine Learning (ICML), volume 202 of1433

Proceedings of Machine Learning Research, pp. 40932–40945. PMLR, 2023.1434

Han Zhao, Pascal Poupart, and Geoffrey J Gordon. A unified approach for learning the parameters of1435

sum-product networks. Advances in neural information processing systems, 29, 2016.1436

43

Under review as submission to TMLR

A Proofs1437

A.1 Tucker as a Circuit1438

Proposition 1 (Tucker as a circuit). Let T P RI1ˆ¨¨¨ˆId be a tensor being decomposed via a multilinear rank-1439

pR1, . . . , Rdq Tucker factorization, as in Eq. (2). Then, there exists a circuit c over variables X “ tXjud
j“11440

with dompXjq “ rIjs, j P rds computing the same factorization. Moreover, we have that |c| P Opśd
j“1 Rjq.1441

Proof. We prove it constructively by giving the structure and parameters of c. That is, we build a circuit c1442

over variables X computing1443

cpXq “ cpx1, . . . , xdq “
R1ÿ

r1“1
¨ ¨ ¨

Rdÿ

rd“1
wr1¨¨¨rd

c1,r1 px1q ¨ ¨ ¨ cd,rd
pxdq. (21)

Note that in Eq. (21) each product cin
1,r1

px1q ¨ ¨ ¨ cin
d,rd

pxdq can be computed by a product unit cprod
r1¨¨¨rd over1444

variables X. Moreover, we encode each cin
j,rj

as an input unit, for all j P rds and rj P rRjs. In addition, the1445

collection of sums
řR1

r1“1 ¨ ¨ ¨ řRd

rd“1 that are weighted by the wr1¨¨¨rd
can be computed by a single sum unit1446

having
śd

j“1 Rj inputs, i.e., the products cprod
r1¨¨¨rd with rj P rRjs for all j. Therefore, we have that the overall1447

circuit size is |c| P Opśd
j“1 Rjq. Finally, we take wr1¨¨¨rd

as the entries of the core tensor W , and make1448

each input unit cin
j,rj

compute cin
j,rj

pxjq “ v
pjq
xj ,rj for the factor matrices tVpjqud

j“1 in the Tucker factorization.1449

That is, cpXq computes the same Tucker factorization given by hypothesis.1450

A.2 Hierarchical Tucker as Deep a Circuit1451

Proposition 2 (Hierarchical Tucker as a deep circuit). Let T P RI1ˆ¨¨¨ˆId be a tensor being decomposed us-1452

ing hierarchical Tucker factorization according to a RG R (Def. 5). Then, there exists a circuit c over variables1453

X “ tXjud
j“1 with dompXjq “ rIjs, computing the same factorization. Furthermore, given tYpiqum

i“1 Ă 2X
1454

the set of all non-leaf region nodes Ypiq Ď X being factorized into pZpiq
1 , Zpiq

2 q in R, with corresponding1455

Tucker factorization multilinear rank pRYpiq , RZpiq

1
, RZpiq

2
q, we have that |c| P O

´řm
i“1 RYpiqRZpiq

1
RZpiq

2

¯
.1456

Proof. Similarly to our proof for Proposition 1, we prove it constructively by giving the structure and1457

parameters of c. That is, we rewrite the recursive rules used to define a hierarchical Tucker factorization1458

showed in Def. 5 in terms of equivalent circuit computational units. For every leaf region Z “ tXju in1459

R, we introduce the input units cin
j,rj

, rj P rRZs, each computing cj,rj pxjq “ v
pjq
xjrj for the factor matrix1460

Vpjq of the hierarchical Tucker factorization given by hypothesis. Next, we recursively introduce sum and1461

product units by following the hierarchical variables factorization defined in R. That is, for every non-leaf1462

region node Y Ď X being partitioned into pZ1, Z2q in R, we introduce sum and product units that encode1463

a Tucker factorization related to the region node Y. More formally, given pRY, RZ1 , RZ2 q the multilinear1464

rank associated to the region node Y, we introduce the sum units csum
Y,s, with s P rRYs. Moreover, we1465

introduce the product units cprod
Y,r1,r2

, with r1 P rRZ1 s and r2 P rRZ2 s. Each sum unit csum
Y,s has the product1466

units tcprod
Y,r1,r2

uRZ1 ,RZ2
r1“1,r2“1 as inputs, and is parameterized by weights tws,r1,r2 uRZ1 ,RZ2

r1“1,r2“1. Furthermore, we1467

recursively define the inputs to each product unit cprod
Y,r1,r2

to be the pair of sum units csum
Z1,r1

and csum
Z2,r2

, for all1468

r1 P rRZ1 s and r2 P rRZ2 s. By setting the parameters of each sum unit θs,r1,r2 to be the entries of the core1469

tensor WpYq (see Eq. (6)), we recover that the constructed composition of sum and product units encodes1470

the Tucker factorization associated to Y. Finally, in the case of the root region Y “ X in R, we have that1471

RY “ 1 by hypothesis, and therefore the output of the circuit is given by the sum unit csum
X,1. Since the circuit1472

c built in this way consists of a composition of Tucker factorizations represented as circuits (Proposition 1),1473

the circuit size is |c| P Opřm
i“1 RYpiqRZpiq

1
RZpiq

2
q, with tYpiqum

i“1 being the set of non-leaf regions in R.1474

44

Under review as submission to TMLR

B Many Tensorized PC Architectures can be Obtained through our Pipeline1475

We will consider one tensorized PC architecture at a time, and show how its construction can be understood1476

in terms of simple design choices presented in our pipeline: (1) the region graph to parameterize (Section 4.1),1477

(2) the sum and product layers chosen (Sections 4.2 and 4.3 and Section 5), and (3) whether the architecture1478

is folded or not (Section 4.4).1479

Poon & Domingos circuits (Poon & Domingos, 2011) for image data follow the homonomous region graph1480

structure. While the circuit is not tensorized, i.e., the computational units defined over the same variable1481

scope are not replicated and tensorized into layers, we can still see them as a tensorized circuit where the1482

width of each layer is 1. Furthermore, no folding is performed to the best of our knowledge.1483

Randomized-and-tensorized circuits (RAT-SPN) (Peharz et al., 2020c) are obtained by parameter-1484

izing a randomly-constructed binary tree region graph (named RND in this paper). In particular, in this1485

architecture Kronecker product layers and sum layers are alternated, thus being equivalent to circuits with1486

Tucker layers (Eq. (Tucker-layer)) in our pipeline. In the original implementation of RAT-SPNs (Peharz1487

et al., 2019), layers are no folded.1488

Einsum networks (EiNets) (Peharz et al., 2020a) include a folded version of RAT-SPNs, as well as1489

tensorized and folded circuits obtained by overparameterizing the PD region graph. See Peharz et al.1490

(2020b) and Braun (2021) for known available implementations.1491

Hidden Chow-Liu Tree (HCLT) circuits (Liu & Van den Broeck, 2021b) are tensorized circuits obtained1492

by compiling a tree-shaped graphical model that is learned with the Chow-Liu algorithm (Chow & Liu,1493

1968a). Therefore, it can be obtained in our pipeline by parameterizing the CL region graph with CPJ layers1494

whose parameter matrices encode conditional probability tables. HCLTs have been originally implemented1495

within the Juice.jl Julia library (Liu & Van den Broeck, 2021a), which also includes a parallelization scheme1496

using custom CUDA kernels that fuse sum and products operations.1497

Non-negative matrix-product states (MPSRě0) have been shown to be equivalent to hidden-markov-1498

models (HMMs) (Rabiner & Juang, 1986) up to renormalization (Glasser et al., 2019). Given a total ordering1499

of variables X1, . . . , Xd, it is known we can compile an HMM into an equivalent structured decomposable1500

circuit (Vergari et al., 2019b), which has the same structure of the tensorized circuit encoding an MPS1501

showed in Fig. 8. Therefore, we can represent an HMM/MPSRě0 in our circuit construction pipeline by1502

parameterizing a linear-tree region graph (called LT in this paper) with CPJ layers.1503

Born machines (BM) (Han et al., 2018) and Tensor-Train Density Estimators (TTDE) (Novikov1504

et al., 2021) are probabilistic models used to estimate probability mass functions and probability density1505

functions, respectively. They are obtained by efficiently squaring an MPS, which is a structured decomposable1506

tensorized circuit as for Proposition 3. Note that such a tensorized circuit can be obtained using the same1507

region graph and tensorized layer used to construct a non-negative MPS, but instead just relax the non-1508

negativity assumption over its parameters. It is known that squaring a MPS (resp. a structured decomposable1509

tensorized circuit) yields a BM (resp. another structured decomposable tensorized circuit having the same1510

layers but with a quadratic width increase). See e.g. Proposition 3 in Loconte et al. (2024a). Therefore, BMs1511

and TTDEs can be retrieved through our circuit construction pipeline by overaparameterizing a linear-tree1512

region graph (LT) with CPJlayers, followed by efficiently squaring the resulting circuit (Vergari et al., 2021).1513

Squared non-monotonic PCs (NPC2) (Loconte et al., 2024a) are generalizations of BMs and TTDEs1514

that also include the squaring of tensorized circuits obtained by overparameterizing a random binary tree1515

region graph (as in RAT-SPNs above), as well as using Tucker layers instead of CPJlayers. Furthermore,1516

the original implementation of NPC2 allows circuits to be folded.1517

Tree Tensor Networks (TTNs) (Cheng et al., 2019) are tree-shaped hierarchical tensor factorizations1518

represented through the tensor network formalism. TTNs factorizations are equivalent to hierarchical Tucker,1519

but one choose a particular structure based on the data distribution being modelled. For image data, Cheng1520

et al. (2019) proposed a TTN structure obtained by recursively splitting an image in half, alternating1521

horizontal and vertical splits. This structure is analogous to our quad tree region graph (QT), but allowing1522

splitting image patches in just two parts (rather than four).1523

45

Under review as submission to TMLR

C Sampling1524

In Algorithm C.1, we interpret the entries of each non-negative parameter matrix WSˆK in c as the pa-1525

rameters of categorical distributions associated to S latent variables, each taking values in t1, . . . , Ku. Note1526

that we can always normalize a PC s.t. its normalization constant is equal to 1 thus yielding parameter1527

matrices that sum up to 1 along every row, as detailed in (Peharz et al., 2015). Then, sampling a data1528

point x translates to iteratively sampling from such latent variables (see L8-13 of the algorithm) according1529

to the hierarchical structure of the circuit, i.e. following a topological order like a breadth first search (BFS).1530

Note that sampling the latent variables corresponding to a sum layer corresponds to choosing (i) a selection1531

of the input layers on which recursively continue sampling, and (ii) a particular computational unit within1532

each selected layer. The information (i) and (ii) for each layer is stored in dictionaries (see L1-4). Due to1533

decomposability (Def. 8), sampling from a product layer ℓ translates to choosing a selection of the input1534

computational units, as they will be defined on different variables. Unlike sum layers where we sample from1535

Categoricals to select such units, in product layers they are unequivocally determined by which product1536

unit of ℓ has been selected previously and whether ℓ is an Kronecker or Hadamard layer (see L14-20). We1537

sample all sum and product layers as explained below. Finally, it remains to sample from the input layers1538

and assign values to the variables the PC is defined on. We sample from an input layer ℓ when at least one1539

input units within ℓ has been selected by the sampling procedure above for sum and product layers. That1540

is, given X P X the variable on which ℓ depends on and nk the k-th input unit to sample from, we sample1541

an assignment to X from nk (see L21-25).1542

Algorithm C.1 samplingTensorizedPCpc, Nq
Input: A tensorized PC c over X “ tXiu

D
i“1, a positive integer N .

Output: Samples S P RNˆD drawn from c.
Assumptions: (1) c is normalized: all sum layer parameters sum up to 1 over the columns; (2) Each input layer is
defined over a single RV; (3) the width of a layer is a multiple of K.
Notes: (1) All assignments preceded by the symbol @ can be parallelized; (2) unravel-index is the homonymous numpy
function but whose indexing starts from 1 instead of 0.

1: S Ð tℓ : r s | @ℓ P cuŹ mapping layers to sample indices
2: U Ð tℓ : r s | @ℓ P cu Ź mapping layers to unit indices
3: Srcs Ð rN s

4: Urcs Ð 1N

5: for each inner layer ℓ P BFSpcq do
6: L Ð list of the L input layers of ℓ
7: if Sr ℓ s is empty then skip
8: else if ℓ is a sum layer with W P RKˆKL then
9: v Ð vector of size |Sr ℓ s| with values in rKLs

10: vi Ð sample from categorical with p “ wUrℓsi,:
11: idx1, idx2 Ð unravel-indexpv, pL, Kqq

12: @i P rLs : SrLriss.extendpSr ℓ sr idx1 ““ i sq

13: UrLriss.extendpidx2r idx1 ““ i sq

14: else if ℓ is a Kronecker prod. layer then
15: idx-list Ð unravel-indexpUr ℓ s, pK, q

L
i“1q

16: @i P rLs : SrLriss.extendpSr ℓ sq

17: UrLriss.extendpidx-listrksq

18: else if ℓ is a Hadamard prod. layer then
19: @i P rLs : SrLriss.extendpSr ℓ sq

20: UrLriss.extendpUr ℓ sq

21: S Ð RNˆD

22: for each input layer ℓ P c s.t. Srℓs ‰ r s do
23: j Ð scpℓq

24: pairs Ð vstackpSrℓs, Urℓsq

25: @pi, kq P pairs : Sij Ð sample k-th unit of ℓ

26: return samples S

D Region Graphs: Quad-Graphs and Quad-Trees1543

Algorithm D.1 details the construction of our proposed RGs for image-data: QTs and QGs. The algorithm1544

takes as input the height (H) and width (W) of the image, and a flag (isTree), which specifies whether to1545

enforce the output RG to be a tree (QT) or not (QG). The algorithm builds a RG in a bottom-up fashion,1546

merging regions associated to smaller patches to bigger patches, starting from the single pixels. Specifically,1547

to build QTs—QT-4s to be precise—we merge regions using Algorithm D.2, whereas for QGs we merge1548

regions using Algorithm D.3.1549

46

Under review as submission to TMLR

X11 X12 X21 X22

X11X12 X11X21 X21X22 X12X22 X31 X32 X13 X23

X11X12

X21X22

X31X32 X13X23 X33

X11X12X13

X21X22X23

X11X12

X21X22

X31X32

X31X32X33 X13X23X33

X11X12X13

X21X22X23

X31X32X33

Figure D.1: The quad graph
(QG). We illustrate the quad
graph RG delivered by Algo-
rithm D.1 passing H “ 3, W “ 3
and isTree “ False as input argu-
ments. The region graph is un-
balanced as the image size (3ˆ3)
is not a power of 2. Differently
from our quad trees (QTs), QGs
have regions partitioned in more
than a single way (e.g., the root
region node), and regions can be
shared among partitions. For ex-
ample, in a QT, the top region
could only be partitioned in a
single way into two or four sub-
regions, respectively called QT-2
and QT-4 region graphs.

Algorithm D.1 buildQuadGraphpH, W, isTreeq
Input: Image height H, image width W , and whether
to enforce the output RG to be a tree.
Output: a RG over H ¨ W variables.

1: S Ð tYij “ tXiju | pi, jq P rHs ˆ rW su

2: R Ð a RG having leaf regions S
3: h Ð H; w Ð W
4: while h ą 1 _ w ą 1 do
5: h Ð rh{2s; w Ð rw{2s; S1

Ð ∅
6: for i, j P rhs ˆ rws do
7: ∆ Ð pt2i´1, 2iuˆt2j´1, 2juq

Ş
prHsˆrW sq

8: if |∆| “ 1 then
9: Let Ypq P S s.t. pp, qq P ∆

10: addRegionpR, Ypqq

11: else if |∆| “ 2 then
12: Let Ypq, Yrs P S s.t.
13: pp, qq, pr, sq P ∆, p ă r, q ă s
14: addPartitionpR, Ypq Y Yrs, tYpq, Yrsuq

15: else Ź |∆| “ 4
16: if isTree then mergeTreepR, ∆, Sq

17: else mergeDAGpR, ∆, Sq

18: Yij Ð
Ť

pr,sqP∆ Yrs s.t. Yrs P S
19: S1

Ð S1
Y tYiju

20: S Ð S1

21: return R

Algorithm D.2 mergeTreepR, ∆, Sq
Input: a RG R, a set of four coordinates ∆,
and a collection of regions S.
Behavior: It merges the regions indexed by ∆
in R by forming a tree structure.

1: Let Zuv “ Yp`u q`v P S s.t.
2: pp ` u, q ` vq P ∆, u, v P t0, 1u

3: Y Ð Z00 Y Z01 Y Z10 Y Z11
4: addPartitionpR, Y, tZ00, Z01, Z10, Z11uq

Algorithm D.3 mergeDAGpR, ∆, Sq
Input: a RG R, a set of four coordinates ∆,
and a collection of regions S.
Behavior: It merges the regions indexed by ∆
in R by forming a DAG structure.

1: Let Zuv “ Yp`u q`v P S s.t.
2: pp ` u, q ` vq P ∆, u, v P t0, 1u

3: Y Ð Z00 Y Z01 Y Z10 Y Z11
4: addPartitionpR, Y, tZ00 Y Z01, Z10 Y Z11uq

5: addPartitionpR, Y, tZ00 Y Z10, Z01 Y Z11uq

6: addPartitionpR, Z00 Y Z01, tZ00, Z01uq

7: addPartitionpR, Z10 Y Z11, tZ10, Z11uq

8: addPartitionpR, Z00 Y Z10, tZ00, Z10uq

9: addPartitionpR, Z01 Y Z11, tZ01, Z11uq

We illustrate in Fig. D.1 the resulting QG obtained via Algorithm D.1 with H “ 3, W “ 3 and isTree “ False.1550

The QG is unbalanced as HW is not a power of 2.1551

47

Under review as submission to TMLR

E Additional Results1552

24 26 28

K

102

Test Time (ms)

24 26 28

K

102

Train Time (ms)

24 26 28

K

5.0

7.5

10.0

12.5

15.0

17.5
Test Memory (GB)

24 26 28

K

10

20

30

40

Train Memory (GB)
QT-CP
QT-CPS
QG-CP
QG-Tucker
QG-CPS
PD-CP

Figure E.1: Benchmarking the role of RGs and composite layers in tensorized circuits on CelebA.
We report the average time (ms) and GPU memory usage (GiBs) to process a batch of samples for different
tensorized architectures—listed in the legend on the right—at different values of K (x-axis). The stats are
reported both at test and training time. The benchmark is conducted using the CelebA dataset with a
batch size of 128.

16 32 64 128 256 512
K

1.20

1.25

1.30

1.35

1.40

Te
st

 b
pd

Mnist

QT-CP
QT-CPS
QG-CP
QG-Tucker
QG-CPS
PD-CP
PD-Tucker
PD-CPS

16 32 64 128 256 512
K

3.3

3.4

3.5

3.6

3.7

3.8

Fashion Mnist

16 32 64 128 256
K

5.4

5.6

5.8

6.0

6.2
CelebA

Figure E.2: Overparameterizing tensorized architectures delivers better performing models
when using QTs and QGs, but not when using PDs. Different from Fig. 20, we here learn the
mixing layers in QG- and PD-based models. We report the test-set bpd (y-axis) at different values of
K (x-axis) for Mnist (left), FashionMnist (middle) and CelebA (right) averaged over 5 runs for different
tensorized architectures, which we report in the legend on the right. We use a batch size of 256.

24 26 28 210 212

K

101

102

103
Test Time (ms)

24 26 28 210 212

K

101

102

103

Train Time (ms)

24 26 28 210 212

K

0

5

10

15

Test Memory (GB)

24 26 28 210 212

K

0

10

20

30

40
Train Memory (GB)

QT-CPXS

QT-CPS

QG-CPXS

QG-CPS
PD-CPXS
PD-CPS

Figure E.3: For the same choice of RG and K, CPS and CPXS layers require the same time/space
resources, with CPXS only being slightly faster at training-time. We report time (ms) and GPU
memory usage (GiBs) at different values of K (x-axis) at both test-time and training-time for different
tensorized architectures listed in the legend on the right. The benchmark is conducted on Mnist using a
batch size of 128.

48

Under review as submission to TMLR

16 32 64 128 256 512
K

1.25

1.30

1.35

1.40

Te
st

 b
pd

Mnist

16 32 64 128 256 512
K

3.5

3.6

3.7

3.8

Fashion Mnist

16 32 64 128 256
K

5.8

6.0

6.2

CelebA
QT-CPXS

QT-CPS

QG-CPXS

QG-CPS
PD-CPXS
PD-CPS

Figure E.4: CPXS and CPS layers are equivalently accurate when used in different tensorized ar-
chitectures. We report the test-set bpd (y-axis) averaged over 5 runs for different tensorized architectures—
listed in the legend on the right—at different values of K (x-axis). We use the Mnist, FashionMnist and
CelebA datasets, and a batch size of 256.

Table E.1: Mnist distribution estimation results. Test-set bpd on Mnist averaged over 5 runs for
different tensorized PC architectures. We report 3 standard deviations from the mean.

RG Learn
Mixing-Layer K CP CPXS CPS Tucker

PD Yes

16 1.383 ˘ 0.008 1.392 ˘ 0.008 1.392 ˘ 0.007 1.380 ˘ 0.006
32 1.380 ˘ 0.007 1.387 ˘ 0.005 1.387 ˘ 0.008 1.375 ˘ 0.004
64 1.379 ˘ 0.009 1.384 ˘ 0.005 1.387 ˘ 0.009 1.372 ˘ 0.004

128 1.379 ˘ 0.003 1.386 ˘ 0.006 1.394 ˘ 0.006 OOM
256 1.377 ˘ 0.005 1.386 ˘ 0.008 1.394 ˘ 0.009 OOM
512 1.375 ˘ 0.009 1.385 ˘ 0.007 1.390 ˘ 0.011 OOM

PD No

16 1.381 ˘ 0.007 1.402 ˘ 0.008 1.389 ˘ 0.006 1.377 ˘ 0.005
32 1.381 ˘ 0.009 1.394 ˘ 0.011 1.385 ˘ 0.003 1.377 ˘ 0.004
64 1.376 ˘ 0.002 1.387 ˘ 0.005 1.383 ˘ 0.004 1.381 ˘ 0.006

128 1.375 ˘ 0.003 1.388 ˘ 0.004 1.387 ˘ 0.003 OOM
256 1.373 ˘ 0.005 1.392 ˘ 0.006 1.390 ˘ 0.009 OOM
512 1.370 ˘ 0.002 1.395 ˘ 0.014 1.384 ˘ 0.008 OOM

QT N/A

16 1.283 ˘ 0.004 1.395 ˘ 0.008 1.374 ˘ 0.008 N/A
32 1.242 ˘ 0.004 1.345 ˘ 0.030 1.336 ˘ 0.009 N/A
64 1.217 ˘ 0.002 1.301 ˘ 0.019 1.308 ˘ 0.003 N/A

128 1.196 ˘ 0.004 1.273 ˘ 0.028 1.284 ˘ 0.002 N/A
256 1.184 ˘ 0.002 1.245 ˘ 0.028 1.266 ˘ 0.003 N/A
512 1.175 ˘ 0.001 1.225 ˘ 0.010 1.251 ˘ 0.002 N/A

QG Yes

16 1.249 ˘ 0.004 1.375 ˘ 0.014 1.346 ˘ 0.010 1.235 ˘ 0.012
32 1.213 ˘ 0.003 1.334 ˘ 0.010 1.317 ˘ 0.004 1.225 ˘ 0.011
64 1.190 ˘ 0.003 1.280 ˘ 0.017 1.289 ˘ 0.003 1.258 ˘ 0.005

128 1.179 ˘ 0.001 1.240 ˘ 0.015 1.265 ˘ 0.004 OOM
256 1.177 ˘ 0.004 1.218 ˘ 0.021 1.244 ˘ 0.003 OOM
512 1.180 ˘ 0.009 1.205 ˘ 0.011 1.225 ˘ 0.004 OOM

QG No

16 1.248 ˘ 0.003 1.369 ˘ 0.039 1.346 ˘ 0.004 1.233 ˘ 0.004
32 1.212 ˘ 0.003 1.313 ˘ 0.027 1.313 ˘ 0.006 1.222 ˘ 0.004
64 1.185 ˘ 0.002 1.276 ˘ 0.010 1.285 ˘ 0.006 1.257 ˘ 0.005

128 1.171 ˘ 0.002 1.259 ˘ 0.011 1.258 ˘ 0.004 OOM
256 1.173 ˘ 0.009 1.245 ˘ 0.009 1.236 ˘ 0.002 OOM
512 1.177 ˘ 0.006 1.235 ˘ 0.010 1.212 ˘ 0.010 OOM

49

Under review as submission to TMLR

Table E.2: FashionMnist distribution estimation results. Test-set bpd on FashionMnist averaged
over 5 runs for different tensorized PC architectures. We report 3 standard deviations from the mean.

RG Learn
Mixing-Layer K CP CPXS CPS Tucker

PD Yes

16 3.719 ˘ 0.014 3.757 ˘ 0.008 3.757 ˘ 0.011 3.719 ˘ 0.015
32 3.705 ˘ 0.012 3.738 ˘ 0.011 3.739 ˘ 0.005 3.709 ˘ 0.004
64 3.725 ˘ 0.011 3.749 ˘ 0.009 3.750 ˘ 0.007 3.731 ˘ 0.014

128 3.752 ˘ 0.005 3.774 ˘ 0.009 3.782 ˘ 0.005 OOM
256 3.790 ˘ 0.011 3.801 ˘ 0.013 3.807 ˘ 0.018 OOM
512 3.836 ˘ 0.019 3.836 ˘ 0.024 3.845 ˘ 0.017 OOM

PD No

16 3.715 ˘ 0.004 3.785 ˘ 0.010 3.748 ˘ 0.011 3.716 ˘ 0.007
32 3.700 ˘ 0.017 3.758 ˘ 0.009 3.736 ˘ 0.005 3.709 ˘ 0.004
64 3.721 ˘ 0.011 3.764 ˘ 0.012 3.746 ˘ 0.011 3.736 ˘ 0.006

128 3.752 ˘ 0.012 3.791 ˘ 0.007 3.775 ˘ 0.010 OOM
256 3.779 ˘ 0.012 3.824 ˘ 0.006 3.799 ˘ 0.014 OOM
512 3.814 ˘ 0.012 3.860 ˘ 0.024 3.829 ˘ 0.015 OOM

QT N/A

16 3.589 ˘ 0.005 3.806 ˘ 0.042 3.772 ˘ 0.031 N/A
32 3.497 ˘ 0.003 3.731 ˘ 0.032 3.720 ˘ 0.007 N/A
64 3.442 ˘ 0.003 3.648 ˘ 0.019 3.671 ˘ 0.005 N/A

128 3.408 ˘ 0.003 3.584 ˘ 0.011 3.620 ˘ 0.009 N/A
256 3.392 ˘ 0.001 3.544 ˘ 0.014 3.576 ˘ 0.013 N/A
512 3.381 ˘ 0.002 3.518 ˘ 0.018 3.536 ˘ 0.007 N/A

QG Yes

16 3.459 ˘ 0.004 3.741 ˘ 0.030 3.690 ˘ 0.019 3.446 ˘ 0.004
32 3.381 ˘ 0.002 3.635 ˘ 0.026 3.611 ˘ 0.016 3.416 ˘ 0.006
64 3.341 ˘ 0.004 3.555 ˘ 0.020 3.563 ˘ 0.020 3.518 ˘ 0.012

128 3.326 ˘ 0.002 3.487 ˘ 0.018 3.523 ˘ 0.006 OOM
256 3.326 ˘ 0.003 3.449 ˘ 0.018 3.484 ˘ 0.004 OOM
512 3.326 ˘ 0.004 3.409 ˘ 0.011 3.444 ˘ 0.009 OOM

QG No

16 3.464 ˘ 0.005 3.717 ˘ 0.051 3.677 ˘ 0.031 3.446 ˘ 0.008
32 3.385 ˘ 0.004 3.624 ˘ 0.051 3.600 ˘ 0.011 3.417 ˘ 0.005
64 3.339 ˘ 0.004 3.578 ˘ 0.032 3.540 ˘ 0.009 3.499 ˘ 0.006

128 3.319 ˘ 0.004 3.523 ˘ 0.036 3.501 ˘ 0.017 OOM
256 3.317 ˘ 0.002 3.491 ˘ 0.013 3.470 ˘ 0.005 OOM
512 3.317 ˘ 0.005 3.467 ˘ 0.032 3.425 ˘ 0.010 OOM

50

Under review as submission to TMLR

Table E.3: CelebA distribution estimation results (using RGB values). Test-set bpd on CelebA
averaged over 3 runs for different tensorized PC architectures. We report 3 standard deviations from the
mean.

RG Learn
Mixing-Layer K CP CPXS CPS Tucker

QT N/A

16 5.828 ˘ 0.008 6.237 ˘ 0.026 6.171 ˘ 0.006 N/A
32 5.612 ˘ 0.012 6.024 ˘ 0.032 5.981 ˘ 0.007 N/A
64 5.457 ˘ 0.010 5.831 ˘ 0.022 5.843 ˘ 0.017 N/A

128 5.374 ˘ 0.002 5.732 ˘ 0.044 5.766 ˘ 0.022 N/A
256 5.332 ˘ 0.002 5.739 ˘ 0.037 5.753 ˘ 0.014 N/A

QG Yes

16 5.756 6.161 6.072 5.742
32 5.532 5.960 5.880 5.498
64 5.391 5.816 5.751 OOM

128 5.329 5.771 5.715 OOM
256 OOM 5.731 5.702 OOM

QG No

16 5.755 ˘ 0.010 6.292 ˘ 0.037 6.069 ˘ 0.006 5.738 ˘ 0.011
32 5.528 ˘ 0.023 6.056 ˘ 0.072 5.875 ˘ 0.016 5.494 ˘ 0.023
64 5.392 ˘ 0.026 5.906 ˘ 0.052 5.746 ˘ 0.010 OOM

128 5.335 ˘ 0.027 5.742 ˘ 0.067 5.725 ˘ 0.039 OOM
256 OOM 5.691 ˘ 0.034 5.667 ˘ 0.014 OOM

Table E.4: CelebA distribution estimation results using lossless YCoCg transform. Test-set bpd
on CelebA over 1 single run for different tensorized PC architectures. We note how performance are
consistently better than those in Table E.3, confirming that using the YCoCg transform helps. Note that
results in this table are directly comparable with those in Table E.3 because the transformation used is
lossless (and operates on discrete data, hence does not require a correction by the log-determinant).

RG Learn
Mixing-Layer K CP CPXS CPS Tucker

QT N/A

16 5.604 5.770 5.831 N/A
32 5.447 5.656 5.648 N/A
64 5.321 5.584 5.589 N/A

128 5.248 5.570 5.549 N/A
256 5.238 5.522 5.548 N/A

QG No

16 5.541 5.840 5.757 5.541
32 5.383 5.660 5.622 5.383
64 5.273 5.544 5.510 OOM

128 5.205 5.536 5.500 OOM
256 OOM 5.579 5.489 OOM

51

Under review as submission to TMLR

E.1 Results on UCI Tabular Datasets1553

Number of samples
D train validation test

Power 6 1,659,917 184,435 204,928
Gas 8 852,174 94,685 105,206

Hepmass 21 315,123 35,013 174,987
MiniBooNE 43 29,556 3,284 3,648

BSDS300 63 1,000,000 50,000 250,000

Table E.5: UCI dataset statistics. Di-
mensionality D and number of samples of
each dataset split after the preprocessing by
Papamakarios et al. (2017).

Density estimation on tabular datasets. Following Papamakarios et al. (2017), we evaluate our ten-1554

sorized architectures for density estimation on five tabular datasets. For each dataset, we randomly construct1555

8 binary tree region graphs (cf. Section 4.1), and build a mixture of tensorized PCs based of them. Specif-1556

ically, following our mix-and-match approach Table 1, we build RND-CP and RND-Tucker architectures1557

which we run for several model sizes K and learning rates (see below). Differently from images, all these1558

datasets contain continuous features, which we model using input layers encoding Gaussian likelihoods. We1559

train all PCs for up to 1000 epochs or until convergence, using Adam as optimizer and 512 as batch size.1560

Furthermore, we perform the experiments using three different learning rates: 10´3, 5 ¨ 10´3, and 10´2, and1561

report the best results according to the validation set log-likelihood.1562

Results. Fig. E.5 reports the best results from our models, where we see that Tucker layers outperform1563

CP layers on the two lowest dimensional datasets – Power and Gas – which also have the highest number of1564

training data points (see Table E.5). On the other hand, CP-based architectures outperform Tucker-based1565

ones on the other three datasets (Hepmass, MiniBooNE and BSDS300), even though the latter have a much1566

higher number of trainable parameters then the former for a fixed K (i.e., K2 for CP while K3 for Tucker).1567

Our results suggest that the more aggressive over-parameterization of Tucker layers lead to a more difficult1568

optimization for high-dimensional datasets and thus for deeper tensorized PCs.1569

24 25 26 27 28

0.2

0.4

K =

Power

24 25 26 27 28

2.5

5.0

7.5

K =

Gas

23 24 25 26 27

−24

−23

K =

Hepmass

23 24 25 26 27

−35

−30

K =

MiniBooNE

22 23 24 25 26

115

120

125

K =

BSDS300

CP (train)

CP (test)

Tucker (train)

Tucker (test)

Power Gas Hepmass M.BooNE BSDS300

MADE -3.08 3.56 -20.98 -15.59 148.85
RealNVP 0.17 8.33 -18.71 -13.84 153.28
MAF 0.24 10.08 -17.73 -12.24 154.93
NSF 0.66 13.09 -14.01 -9.22 157.31

Gaussian -7.74 -3.58 -27.93 -37.24 96.67
EiNet-LRS 0.36 4.79 -22.46 -34.21 —
TTDE 0.46 8.93 -21.34 -28.77 143.30
RND-CP 0.28 5.01 -22.52 -30.69 120.82
RND-Tucker 0.52 8.41 -23.47 -31.30 119.09

Figure E.5: Tucker layers are harder to scale than CP layers on high-dimensional UCI datasets.
The right table is the one reported in Table 3. The left plots show the train and test log-likelihoods of
our architectures as the size K of the layers increases. We observe that increasing K is generally beneficial
for CP layers in all UCI datasets (left). However, increasing K in Tucker layers can decrease performances
for higher-dimensional datasets, as shown for the cases of Hepmass and MiniBooNE. The left plots showing
the train set log-likelihoods (dotted lines) are evidence that the decrease of performances of tensorized PCs
with Tucker layers is not due to overfitting.

52

	Introduction
	From Tensor Factorizations to Circuits
	Shallow Tensor Factorizations are Shallow Circuits
	Hierarchical Tensor Factorizations are Deep Circuits
	Representing Circuits in a Tensorized Formalism
	Tensor Networks as Deep Circuits

	From Non-negative Factorizations to Circuits for Probabilistic modeling
	Non-negative tensor factorizations as generative models
	How to parameterize probability tensor factorizations?
	Reliable Neuro-symbolic integration
	Infinite-Dimensional Probability Tensors and Continuous Factorizations

	How to Build and Scale Circuits: A Tensorized Perspective
	Building and Learning Region Graphs
	Overparameterize & Tensorize Circuits
	Abstracting sum and product layers into modules
	Folding to Further Accelerate Learning and Inference

	Compressing Circuits and Sharing Parameters via Tensor Decompositions
	Compressing Tucker layers
	Parameter Sharing by Tensor Factorizations

	Empirical Evaluation: Which RG and Layers to use?
	Additional Related Work
	Conclusion
	Proofs
	Tucker as a Circuit
	Hierarchical Tucker as Deep a Circuit

	Many Tensorized PC Architectures can be Obtained through our Pipeline
	Sampling
	Region Graphs: Quad-Graphs and Quad-Trees
	Additional Results
	Results on UCI Tabular Datasets

