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Abstract

The ability to discover objects from raw videos and to predict their future dynamics1

is crucial for achieving general intelligence. While existing methods accomplish2

these two tasks separately, i.e., learning object segmentation with fixed dynamics3

or learning dynamics with known system states, we explore the feasibility of4

jointly accomplishing the two together in a self-supervised setting for physical5

environments. Critically, we show on real video datasets that learning object6

dynamics improves the accuracy of discovering dynamical objects.7

1 Introduction8

Cognitive science researchers have studied how humans understand both scenes and events since the9

1970s [3, 8, 51, 45]. Inspired by these studies, AI researchers have been striving to build intelligence10

systems with similar abilities [59, 5, 60, 12]. Most recent work pursues these two objectives11

separately, e.g., supervised and unsupervised object discovery [28, 32, 55, 39, 26, 25, 7, 41, 20] and12

learning physics and dynamics from data [9, 54, 55].13

Meanwhile, inspired by cognitive science research about how infants can develop their perceptual14

system and learn the physical world simultaneously in a self-supervised fashion by observing and15

interacting with moving objects [33, 2], recent studies hypothesize that such joint learning of object16

discovery and dynamics should also be feasible for machines. In particular, recent progress on17

object discovery from motion, e.g., [52, 53, 18, 56, 50, 36, 19], shows that the existence of dynamics18

prediction, even when the dynamical models are primitive, improves the accuracy of object discovery.19

In parallel, machine learning for physics has achieved significant progress in recent years, with20

applications to physical property prediction [24], protein or material generation [34, 14, 47], particle-21

based simulation [46, 11], among many others. Notably, neural ODE [11] and its successor [27, 15,22

43] have demonstrated strong capabilities of neural networks in approximating dynamical systems.23

In most settings, however, the states of physical objects are assumed to be given, with only a few24

studies, e.g., [9, 18], attempted to learn state of objects from video.25

In this work, we show that the accuracy of object discovery in physical environments can be further26

improved when the dynamical model is trainable and represents a hypothesis space that covers the27

ground truth dynamics, and on the other hand, an incorrect assumption about dynamics may result in28

faulty segmentation of objects. As shown in Figure 1, our model is based on a factorized generative29

model for object discovery and a trainable neural ODE for dynamics prediction [11]. The component30

linking the object discovery and the dynamical model is a state encoder, which maps a time sequence31

of object masks to object states such as position, orientation, and their time derivatives. Unlike32
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Figure 1: Our framework consists of four components: mask encoder, component VAE, state encoder, and
dynamical model.

previous studies where the dynamics is fixed, our model introduces the challenge of jointly learning33

for object discovery and for dynamics prediction.34

The key contributions of the paper are as follows:35

• We present effective learning architecture, loss, and algorithm for solving the challenge posed by36

the joint learning task.37

• We empirically test our model on two video datasets: real-world double pendulum, and real-world38

3D block tower falling. We show that through joint learning of object discovery and dynamical39

model, our method outperforms recent object segmentation methods that use factorized generative40

model [7, 41] or primitive dynamics [18, 53]. The learned dynamical model can also predict the41

movement of objects in long-term.42

2 Method43

By integrating a trainable dynamical model into an object discovery framework, our model jointly44

learns object masks and predicts object interactions. As shown in Figure 1, The learning framework is45

composed of: (1) a mask encoder that encodes an input video frame into object masks using attention46

modules, (2) a component variational autoencoder (VAE) that encodes the concatenated image and47

object masks into object-wise latent representations, which can be decoded back into an image and48

reconstructed masks, (3) a prefixed state encoder that computes the center of mass, orientations, and49

their time derivatives for each masked object, (4) a dynamical model that evolves states along time.50

The mask encoder. Let a video with T time frames be I = {I0, ..., IT }, where It ∈ RH×W×351

is an RGB image with height H and width W . A mask encoder, denoted by fψ(·) with trainable52

parameters ψ, encodes an image into one background mask and C object masks: fψ(It) = Mt ≜53

{mt
0,m

t
1, ...,m

t
C}, where mt

c ∈ [0, 1]H×W and mt
0 represents the background mask. Since masks54

should cover all pixels in the scene, the sum of all masks is 1:
∑C
c=0m

t
c = JH,W . Let qc represent55

the area unexplored until iteration c. To discover objects in the scene, we adopt the method in [7].56

The attention module Attentionψ recurrently discovers objects through57

mc = qc−1(Attentionψ(I, qc−1)), qc = qc−1(1−Attentionψ(I, qc−1)), ∀c = 1, ..., C, q0 = 1. (1)

The component VAE. For the cth mask, the encoder encodes the image I to a latent posterior58

distribution, denoted as pϕ(zc|I,mc). The latent vector zc for each mask mc is decoded back to59

both the image likelihood pθ(Ic|zc) and the mask prediction likelihood pθ(dc|zc). The reconstructed60

image is a summation over all channels I =
∑C
c=0mcIc. ϕ and θ are trainable component VAE61

encoder and decoder parameters.62

The state encoder. computes the state (xtc) based on each object mask (mt
c): fs(m

t
c) = xtc. The63

state is composed of the center of mass ptc ∈ R2, velocity ṗtc ∈ R2, orientation rtc ∈ R, and angular64

velocity ṙtc ∈ R of each object. Therefore xtc ∈ R6. In our implementation, the state encoder first65

extracts pixel coordinates of an object based on its mask and then computes the state from these66
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coordinates. The collection of coordinates ltc is computed by an element-wise multiplication of mask67

mt
c with a 2D coordinate grid g ∈ [−1, 1]H×W×2. The center of mass ptc is retrieved as the mean of68

ltc, and the orientation rtc as the direction of the principle axis of ltc through differentiable singular69

value decomposition. The time derivatives ṗtc and ṙtc are computed by a finite difference using the70

position and orientation of the current and the previous time steps: ṗtc = ptc − pt−1
c , ṙtc = rtc − rt−1

c .71

Note that the state encoder is a non-trainable differentiable program, which is able to backpropagate72

gradients from the dynamical model back to the mask encoder.73

The dynamical model. The dynamical model fξ predicts future states given the current state:74

xt+∆t = fξ(x
t,∆t), where ξ are trainable model parameters and ∆t is a time span. The state xt is75

concatenated by states of each mask, denoted as xt = [xt1, ..., x
t
C ] ∈ RC×6. fξ is composed of a76

neural ODE: ẋt = fode(x
t,∆t), and a differentiable ODE solver (e.g., Euler or Runge-Kutta):77

x̂t+∆t = fξ(x
t,∆t) = ODESolver(fode, xt, t, t+∆t). (2)

Future object masks can be predicted by applying affine transformations using the predicted states:78

m̂t+1
c = τ(m̂t

c, x̂
t+1
c , x̂tc), m̂

0
c = m0

c , x̂
0
c = x0c ,∀c ≥ 1, (3)

where τ is a differentiable affine transformation given rotation and translation [31].79

Training losses. In a nutshell, the training loss consists of (1) a time-independent reconstruction loss80

regarding the mask encoder and the VAE, and (2) a time-dependent dynamics loss that is dependent on81

both the mask encoder and the dynamical model. The reconstruction loss includes a standard VAE loss82

and a KL regularization. The VAE loss has two terms: the first term is the negative log-likelihood of83

the generated image distribution, denoted as Lθ = − log
∑C
c=0mcpθ(I|zc); the second term is the KL84

divergence of the learned latent distribution from the prior, denoted as Lϕ = KL(pϕ(zc|I,mc)||p(z)),85

where the prior follows a standard normal distribution: p(z) = N (0, 1). The KL regularization loss86

is the KL divergence of the encoded mask distribution from the decoded mask prediction distribution,87

denoted as Lψ,θ = KL(pψ(dc|I)||pθ(mc|zc). Together, the reconstruction loss is:88

Lrecon = min
ψ,ϕ,θ

Lθ + αLψ,θ + βLψ,θ (4)

The dynamics loss is composed of a state loss and a mask loss. The state loss measures the difference89

between the state encoded from an image and the state predicted by the dynamical model using past90

encoded states. Through preliminary experiments, we notice that the state loss alone may lead to a91

trivial solution during training convergence, where states are both encoded and predicted as being92

constant, therefore minimizing the state loss without learning the actual dynamics. To avoid this, we93

introduce an additional mask loss that measures the difference between the masks encoded from the94

image and those evolved by the dynamical model. Thus, the performance of dynamics prediction is95

measured in both the state and the mask spaces. Together, the dynamics loss is:96

Ldynamics = min
ψ,ξ

T∑
t=1

(∥∥∥x̂t − xt
∥∥∥
2
+ γ

C∑
c=1

∥∥∥m̂t
c −mt

c

∥∥∥
2

)
. (5)

The overall training loss is a weighted sum of the reconstruction, dynamics, and regularization loss:97

Ltotal = Lrecon + ηLdynamics. (6)

3 Experiments98

Experiment settings. We conduct experiments on video datasets of two physical environments:99

a video-recorded double pendulum dataset, and a video-recorded 3D block tower dataset. The100

double-pendulum dataset is video recorded from actual experiments and shared by [9]. The 3D block101

tower dataset, introduced in [38], provides a collection of videos showcasing block stacks that may102

or may not fall. The dataset comprises 516 videos, each featuring 2 to 4 blocks of various colors.103

To quantify the object discovery performance, we employ the intersection over union (IoU) metric,104

which compares the encoded masks and ground truth segmentation.105
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Model IOU SSIM

Norm. Cuts 0.226(0.186) -
Crisp Boundary 0.321(0.071) -
Slot attention 0.398(0.026) 0.9955
Monet 0.339(0.056) 0.9880
OP3 0.677(0.025) 0.9939
Podnet 0.598(0.036) 0.9929
This paper 0.849(0.033) 0.9940
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Figure 2: The quantitative and qualitative object discovery and dynamical prediction result on the double
pendulum dataset. (a) The quantitative object discovery result; (b) The qualitative object discovery result; (c)
The state loss over time; (d) The qualitative dynamical prediction results.

Real-world video recording of double pendulum. We compare our method against baselines in106

Figure 2(a). Our method performs the best, with only a few pixels on the edge of the blue pendulum107

being mistakenly grouped with the gray pendulum, as shown in Figure 2(b). We note that while108

our model achieves low dynamics prediction error in the state space (Figure 2(c)), it has limited109

understanding of geometric relations of objects (Figure 2(d)), leaving room for improvement.110

Model IoU Detection

Norm. Cuts 0.652 (0.006) 0.849 (0.018)
UVOD 0.029 (0.001) 0.0 (0.0)
Monet 0.521 (0.005) 0.537 (0.003)
OP3 0.311 (0.004) 0.250 (0.007)
Podnet 0.837 (0.004) 0.908 (0.008)
This paper 0.898 (0.016) 1.0(0.0)

Input Monet Podnet Ours

Figure 3: The quantitative and qualitative
object discovery on the block tower dataset.

3D Real-world Block Tower. To compute 3D states from111

2D masks, we first extract 2D states from our state encoder112

and then project them to 3D using the back-projection113

model pretrained by [18]. Since the number of objects in114

the scene can vary, we choose to measure the detection115

performance of models as well as the object segmentation116

IoU for evaluation.117

We compare our method with baselines in Figure 3. We118

observe that Monet tends to group objects with similar119

colors together, such as the blue and green blocks, and120

occasionally misclassifies light or dark regions as part of121

the background. Podnet exhibits good object detection per-122

formance but encounters challenges in object discovery,123

as shown in Figure 3. Podnet struggles with accurately de-124

lineating the boundary between the green and blue blocks.125

In the second row, it misidentifies a shadow as an object126

rather than perceiving it as part of the background. Addi-127

tionally, in the third row, it fails to detect a portion of the128

yellow block. In comparison, our model achieves more129

accurate object detection and object discovery. This improvement highlights the effectiveness of130

incorporating a trainable nonlinear dynamical model into the segmentation framework.131

4 Conclusion132

In this work, we present a model that decomposes images into multiple objects and predicts the133

dynamics of these objects. We show that ill-posed assumptions of dynamics may result in false object134

discovery. Our model with trainable nonlinear dynamics is capable of accurately discovering objects135

while predicting their future movements. For future work, we envision an extension to interactions136

among non-rigid objects that require both explicit and implicit state encoding for time-variant shape137

and color changes (e.g., cell migration).138
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A Related Work305

Object discovery from static images. Our method is related to object discovery, which aims to306

decompose a scene into compositional objects by segmentation. Motivated by Gestalt psychology [37],307

object discovery enables scene understanding [22, 59, 60, 40], vision reasoning [17, 59], and physical308

reasoning [13, 55, 12, 54, 5, 29]. The conventional approach to object discovery is to cluster the309

image pixels based on low-level vision information such as texture and color using graph-based310

inference [44] or normalized cuts algorithms [21]. Learning-based methods often require supervisory311

information such as segmentation masks [28, 32], physical simulators [55, 39], or depth maps [19].312

However, such supervisory data can be expensive or sometimes infeasible. Recent self-supervised313

methods learn to discover objects by minimizing a reconstruction loss, i.e., they encode scenes into314
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masks, which are then decoded back to scenes. [26, 25, 7, 41, 20]. Among these, [7, 20] discover315

objects one-by-one during the encoding, and [41, 26] discover all objects together but iteratively316

refine the discovery.317

Motion segmentation. Motion segmentation extends object discovery from static images to videos;318

yet, it is conventionally less concerned about predicting future movements of the discovered objects.319

Optical flow is a conventional method to segment all moving objects as foreground of videos [6, 35].320

Recent learning based approaches rely on salient motions to segment common objects with similar321

appearance from video [56, 16, 23, 4, 42, 57, 10, 49, 58, 1].322

Learning dynamics for physical environment. In parallel to motion segmentation are studies323

on learning dynamics, which focus on training dynamical models to predict system states, while324

assuming that the definition of system states are known. Recent work attempts to directly learn state325

representations and dynamics through images. Among these, [9] estimates the dimension of the latent326

state space via intrinsic dimension estimation. Similar to these efforts, our method jointly learns327

state representation and dynamics, but instead of learning a latent representation which has unknown328

physical meaning, we explicitly encode states as object center of mass and orientation, which are329

interpretable and suffice for rigid objects. Extension to soft bodies is possible, but will be left for330

future work.331

Object discovery using dynamics. Our study is most relevant to object discovery using dynamics,332

where objects and their dynamics are jointly learned from raw videos [52, 53, 18, 56, 50, 36, 19]. The333

key idea is that both the dynamics that govern the interaction of objects and some object properties,334

e.g., geometries of rigid bodies, are time-invariant and can be used as an inductive bias to improve335

the learning of object discovery. Among these studies, [18] learns object states and predicts their336

future states using linear extrapolation. [53] discovers entity variables by a model-base reinforcement337

learner. [52] segments the objects by modeling the relations and interaction of objects using a338

recurrent neural network. These existing studies use simple and fixed dynamical models to support339

object discovery. We show in this paper that the accuracy of object discovery can be further improved340

by jointly learning a dynamical model from a hypothesis space that covers the true dynamics.341

B Detailed Experiment Setting342

Experiment setup. The architecture of the mask encoder and the VAE follows that of Monet [7].343

In experiments, we set the number of object masks to C = 3. Before we compute object states from344

the masks, we filter out masks with less than 5 activated pixels with the assumption that small objects345

do not exist (or should not affect the dynamics). This treatment helps the convergence. Also note that346

the computation of the principal axis is direction agnostic because both v and −v are eigenvectors of347

a data matrix. Therefore instead of computing the angle and angular velocity (r, drdt ), we compute348

(cos2 r, d cos
2 r

dt ) which have a period of π, and use these in the computation of state losses. The349

(r, dr) are still used in the affine transformation function to compute the mask losses.350

The trainable dynamical model for the two-body system is a four-layer fully-connected feedforward351

network with 20 neurons for each hidden layer. For the double pendulum case, we expand the352

network to 5 layers, with [20, 40, 40, 20] neurons for the respective hidden layers. For the block tower353

dataset, we use the same dynamical model as double pendulum. We use tanh as the activation for354

all networks. In our experiment, the length of dynamics for training T is 5.355

The training process consists of two steps. Following Podnet, we first pre-train the mask encoder and356

the VAE to minimize the reconstruction loss until convergence. This is because adding dynamics loss357

at an early stage when no objects are discovered and states are physically meaningless will destabilize358

the training process. After the pretrain stage, the mask encoder can successfully separate objects359

out from the background, although multiple objects can still be mistakenly grouped as one. Next,360

we train the whole model including dynamical model to jointly minimize the reconstruction and361
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the dynamics losses. The hyperparameters are set to α = 0.5, β = 0.25, γ = 1 and η = 1e4. The362

optimizer is RMSprop and the learning rate is 1e-4. We use a NIVIDA-V100 for all training.363

Baseline. Two conventional algorithms for unsupervised object segmentation: normalized cuts [48],364

and crispy boundary detection [30], as well as four learning-based unsupervised/self-supervised object365

discovery methods: Monet [7], Slot attention [41], Podnet [18], and OP3 [53], are used as baselines366

for comparison. Normalized cuts is a graph partition method treating pixels of an image as vertices367

of a graph, partitioning groups of vertices measured by normalized cut. Crisp boundary detection is368

a semantic edge detection method and can also be used for image segmentation by edges. Monet369

and Slot attention are unsupervised encoder and decoder architecture, but do not leverage dynamics.370

As an improvement from Monet, Podnet uses dynamics for object discovery, yet the non-trainable371

dynamics follows simple linear extrapolation: xt = fξ(x
t−1) = xt−1 + 1

t−1

∑t−1
i=1(x

i− xi−1). OP3372

uses a probabilistic dynamical model on the object-centric latent variable to discover the objects. The373

details of baseline setup are in the appendix. Our method is different from Podnet in that we introduce374

a trainable dynamical model that is flexible enough to cover the ground truth dynamics instead of375

linear extrapolation. Compared with OP3, the state in our model has known physical meaning and376

the dynamical model is deterministic.377

Performance metrics. To quantify the object discovery performance, we employ the intersection378

over union (IoU) metric, which compares the encoded masks and ground truth segmentation. Since379

the encoded masks (i.e., the three channels) can be ordered differently than the ground truth, we380

compute IoU by pairing a ground truth segmentation with each encoded mask and take the maximum381

IoU. We then take the average IoU across all test video frames. Additionally, for most learning-based382

methods, we incorporate the assessment of image reconstruction quality using the structural similarity383

index measure (SSIM), reflecting the convergence of the training algorithm. It is important to note384

that even if the learning achieves high image reconstruction quality, the learned model may still not385

be proficient at correctly identifying objects if the performance metric for object discovery is low.386

To quantify the dynamics prediction performance, we report the error between states computed from387

the masks and those predicted by the dynamical model. In addition, we visualize the evolution of388

object masks by computing the masks from the mask encoder for the initial frame and applying affine389

transformations based on the predicted states for up to 9 time steps, as described in Equation 3. The390

time derivatives ṗ0c and ṙ0c are computed by the first two video frames along with the mask encoder.391
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