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Abstract

Data typically represented in regular domains, such as images, can have a higher1

level of relational information, either between data samples or even relations2

within samples. With this perspective data points can be enriched by explicitly3

accounting for this connectivity. We analyze various approaches for unsupervised4

representation learning and investigate the importance of considering topological5

information. We show that each of the representations learned by these models may6

have critical importance for further downstream tasks, and that accounting for the7

topological features can improve the modeling capabilities for certain problems.8

1 Introduction9

It is widely agreed that graphs are the ideal structure to enable relational deep learning [Hamilton10

et al., 2017]. Prior work has shown that metagraphs incorporating relational information about the11

dataset can improve unsupervised representation learning in finding less complex models that preserve12

relational information without loosing representational expressivity [Dumancic and Blockeel, 2017].13

In predictive modelling, relational representations can be superior to ordinary ones [Dumancic and14

Blockeel, 2017, Manica et al., 2019]. In generative tasks, relational distribution comparison was15

demonstrated to facilitate the learning of generative models across incomparable spaces [Bunne et al.,16

2019].17

Here, we study the impact of the topological information in learning data representations. Specifi-18

cally, we focus on the trade-off between leveraging data point features and relational information,19

considering a specturm of models for learning representations. This ranges from Variational Au-20

toencoders [Kingma and Welling, 2013] to node embedding techniques based on random walks on21

graphs [Grover and Leskovec, 2016], passing through graph neural networks [Veličković et al., 2018]22

and the proposed Graph-Regularized Variational Autoencoders (GR-VAE), our adaptation of VAEs23

where the latent space is regularized through a metagraph representing relations between samples24

of the dataset. The methods considered are evaluated on different datasets and downstream tasks25

where the impact of the topology can be appropriately assessed. Initially, we examine the impact26

of implicitly accounting for the topology to validate the GR-VAE in synthetic studies. Thereafter,27

we move to evaluating all the methods, by comparing performance in downstream tasks based on28

learned representations in two tasks: text classification and chemical reactions.29

2 Methods30

In this section we present the different models compared in this study. Our approach is to explore a31

spectrum of models with varying availability of features and topology (see Figure 1).32

2.1 Implicit topological learning33

We first explore VAEs [Kingma and Welling, 2013] which only intake features from the nodes, thus34

serving as a baseline model agnostic to topological information.35
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Figure 1: Topology influence spectrum in the light of the model considered. From left to right we selected
the models in order to smoothly transition from a case where only the point/node features are relevant (left,
standard VAE) to the opposite end of the spectrum where only the topological properties are considered (right,
node2vec). In the middle we find the cases where the point node features and the topology are blended, either
implicitly via a regularizer in the GR-VAE case or explicitly in the DGI case.

Graph-Regularized VAE. We then introduce a variation of VAEs [Kingma and Welling, 2013],36

defined as Graph-Regularized VAEs (GR-VAE), that augments the trade-off between reconstruction37

error and KL divergence by a topological constraint. In GR-VAE, the latent space is regularized38

through a metagraph present in the data. We suggest that accounting for information on how different39

samples relate (henceforth referred to as graph) may help at obtaining more powerful representations,40

especially where these relationships are directly involved with a downstream task of interest.41

Our approach adds a term to the loss defined by the set of constraints to the samples’ representation42

in the latent space given the distances of the samples’ metagraph. For a given set of samples, S, we43

can compute their distances in the latent space D, as well as over the graph G. For each node, ν, we44

expect the distances to the other nodes, once embedded in D, to resemble the distances over G. Thus,45

we enforce a constraint aimed to preserve the relative distances in the two spaces. Formally, fixing a46

node ν and considering any pair of nodes (i, j), we can define the following penalty term:47

φ(dD, dG , ν, i, j) =


(dD(ν, j)− dD(ν, i))+ if dG(ν, i) > dG(ν, j)
(dD(ν, i)− dD(ν, j))2 if dG(ν, i) = dG(ν, j)
(dD(ν, i)− dD(ν, j))+ if dG(ν, i) < dG(ν, j)

(1)

where dD and dG are metrics defined in the latent space and over the graph respectively.48

We select L2 norm as dD and the geodesic distance [Floyd, 1962] as dG and then modify49

the standard VAE loss adding the penalty term computed over the set of samples of interest:50 ∑
ν∈ S

∑
(i,j)∈ S× S φ(dD, dG , ν, i, j), and introducing a parmeter γ ≥ 0 regulates the strength of51

the penalty (see Appendix subsection A.2).52

2.2 Explicit topological learning53

Notably, GR-VAE is devised to infer topological information solely from a soft constraint, without54

inductive biases such as graph convolutions. On the other side of the spectrum, graph neural networks55

(GNN) instead model topology explicitly. Here we consider two models from the literature Deep56

Graph Infomax (DGI) [Veličković et al., 2018] and node2vec [Grover and Leskovec, 2016]. For57

details see Appendix A.4.58

2.3 Datasets59

First, for the validation of implicit topological learning, we use a synthetic dataset of point-couds with60

underlying metagraph connectivity and an extension of MNIST with implicit topology between the61

labels (connecting them in an chain from 0 to 9). Secondly, we utilized three text datasets involving62

explicit topological modelling,: Cora, CiteSeer, and PubMed [Sen et al., 2008], and a published63

chemical representation dataset [Jin et al., 2017] with a compound pair prediction task. For details64

about the datasets see A.5.65

3 Results66

We break our experimental results in two parts based on the division previously made beewteen67

implicit and explicit topological learning (in Section 2).68
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Implicit topological learning. First, we analyze the validity of implicitly learning the topology69

through the proposed extended VAE formulation. In this section we present the results on implicit70

topological learning using VAE and GR-VAE, focusing on MNIST and imposing an artificial, chain-71

like topology between digits. As we can see in Figure 2, the topology has a stark influence on how72

the different digits’ images organize in the latent space. Interestingly, this behaviour translates into a73

consistent improvement on the accuracy of downstream tasks directly related to the metagraph as74

well as in the other metrics considered, namely reconstruction loss and silhouette score (see Table 1)75

These findings are corroborated when analyzing synthetic datasets and using graph theory algorithms,76

we can demonstrate that the topology is indeed preserved (see Appendix A.6).77

Table 1: Quantitative results for the MNIST experiment. We report results for three different models with
varying number of dimensions in the latent space: 3, 16, and 64. For each one we explore four training setups, a
regular VAE (γ = 0) and three intensities of GR-VAE (γ ∈ {1, 10, 100}). We then report the reconstruction loss
and the silhouette score of the test samples in the latent space. Furthermore we train two downstream models:
k-NN and a classification tree, and we report their average F1 scores over a 5-fold cross-validation. Table A2
adds some extra analysis.

Latent dimensions 3 16 64
GR γ 0 1 10 100 0 1 10 100 0 1 10 100
Reconstruction loss 141 143 147 172 83 82 84 105 81 79 81 95
Silhouette score .052 .092 .216 .195 .074 .096 .141 .178 .055 .060 .112 .168
K-NN .634 .711 .766 .816 .928 .933 .946 .940 .938 .941 .947 .937
Tree .574 .643 .700 .753 .737 .728 .808 .818 .692 .725 .777 .819

Figure 2: Qualitative analysis of the latent representations learned in the MNIST case. A. PCA projection
of the samples in the latent space under different training regimes. The original latent space has 16 dimensions.
The metagraph is a chain connecting each class from 0 to 9 in order (a representation can be seen on the top
right). The samples can be seen coloured by class pertinence. See Figure A3 for more details.

Explicit topological learning. The second set of experiments explores the full topological spec-78

trum, meaning that we account for both implicit and explicit topology on a set of different tasks.79

For the text datasets we run all the models with minor adaptations (for details see Appendix A.4). As80

downstream task we consider the classification of the documents, i.e. nodes, using a logistic regression81

evaluated on the test set. The splits were reused from Yang et al. [2016]. Our results (see Table 2)82

show clearly the strong performance of DGI in the three datasets. Interestingly DGI’s performance83

drops when only obtaining batched information. As the authors point out when comparing to GCN,84

DGI seems to benefit from the fact that it has access to the entire graph [Veličković et al., 2018].85

Node2vec outperforms both VAE and GR-VAE in Cora and PubMed, however it falls behind in86

CiteSeer. We assume that that difference arises due to the relative importance of the graph topology87

in the different datasets. The relationship between VAE and GR-VAE also reflects this balance. That88

duality shows how this information may aid in cases where it’s more relevant for the downstream89

task, but it may hinder in cases where the direct link between topology and class (or downstream90

task) is weaker or straight non-existent.91

The results of the experiments run on the chemical reactions dataset can be seen in Table 3. Similarly92

to the text dataset, using DGI gave the best performance, although the results are more nuanced.93

The type of encoder seems critical since using an encoder pretrained in a different dataset yielded94

situations where the DGI performs worse than the VAE encoder alone. The opposite end is when95

combining all the methods used in the study, where DGI using node embeddings finetuned with a96
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Table 2: Results on the text representations. Accuracy results for the text classification task in the Cora,
CiteSeer, and PubMed dataset. In this particular experiment GR-VAE model was trained with equally weighted
factors (γ = 1) of the loss components (reconstruction, KL-divergence and graph regularization).

Model Cora CiteSeer PubMed Input data
Random 0.152 0.152 0.322 –
VAE 0.530 0.531 0.525 V
GR-VAE 0.607 0.492 0.32 V, E
DGI 0.819 0.684 0.736 V, E
DGI (batched training) 0.738 0.611 0.722 V, E
node2vec 0.719 0.464 0.676 E

Table 3: Results for chemical reactions experiment. We report the accuracy on the downstream reaction
task. The annotations specify details about the encoder: Finetuned denotes that the VAE or GR-VAE has been
finetuned on chemical reaction data (on a different split from the downstream reactions), in the case of the DGI
the annotation references to which VAE model was used for encoding the SMILES. For each instance of the
GR-VAE we display which γ we used in training.

Model GR γ Accuracy Model GR γ Accuracy
Random – 0.5 node2vec – 0.5
VAE – 0.5740 DGI (VAE) – 0.5003
VAE (finetuned) – 0.5613 DGI (VAE finetuned) – 0.6248
GR-VAE (finetuned) 0.5 0.5631 DGI (GR-VAE finetuned) 0.5 0.6602
GR-VAE (finetuned) 1 0.5470 DGI (GR-VAE finetuned) 1 0.5617
GR-VAE (finetuned) 2 0.5624 DGI (GR-VAE finetuned) 2 0.5507
GR-VAE (finetuned) 5 0.5543 DGI (GR-VAE finetuned) 5 0.5321

GR-VAE achieves the highest accuracy. It is interesting to observe such a behavior, where we see97

that among the three top performing models a plain VAE with no topological information is present.98

This seems to suggest that the quality of the SMILES embedding is key in the task considered.99

4 Discussion100

Here, we explored the importance of topological information in learning data representations. We101

demonstrated the addition of inter-sample relational information as a means to improve learned repre-102

sentations, and stressed the trade-off between leveraging sample features and relational information.103

We have described a novel loss that expands the VAE by leveraging a relational metagraph and104

described under which circumstances this added factor becomes a support for further downstream105

tasks. Most evident are our MNIST results, where adding data that is directly linked to the downstream106

task of interest creates a more useful arrangement of the latent space, resulting in improvements of107

the downstream prediction using these embeddings in all the explored setups. It is worth emphasizing108

that the regularized introduced in the GR-VAE, can not only inject topological awareness into non-109

topological models, but also be combined with them to achieve superior performance in downstream110

prediction tasks—as we see in the chemical reaction case. Furthermore, we explore scenarios where111

the metagraph is less obviously linked to the end prediction. In those, the benefit of adding a graph112

regularizer (i.e. GR-VAE vs. VAE) is more subtle. Our work opens the door to further exploring113

ways to evaluate which representation are more useful for given downstream tasks as well as, creating114

metrics to quantitatively evaluate so. In short, this work aims to be a motivation for looking at the115

manifold and a small step towards understanding how inter-sample relational information can be116

beneficial, even in those cases where this data is not explicitly ingested by the model or where the117

link to a particular end goal may not be obvious.118
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Statement of Broader Impact119

Topology-based representation learning is an exciting field that is still far from its maturity. Nev-120

ertheless, understanding the impact of biasing learned representations accounting for relational121

information, may already help us to extend machine learning applications to unexplored fields,122

such as polymer biochemistry and green chemistry, that play a pivotal role towards meeting the123

sustainable development goals (https://www.globalgoals.org/). To increase the impact and the124

availability of this work we released the source code for the GR-VAE and all the experiments:125

https://anonymous.4open.science/r/TopoWorkshopNeurIPS_GRVAE_submission/.126
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A Appendix175

A.1 Graph Regularized VAE details176

In Figure A1 a detailed description of the GR-VAE architecture is depicted.177

Per node reconstruction loss
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Figure A1: Complete overview of the GR-VAE approach. Notice that, the notation dνi in the distance matrix
abbreviates dD(ν, i) from Equation 1.

A.2 GR-VAE loss178

The overall loss function of the GR-VAE thus becomes:179

LGR-VAE(X;θ) = LVAE(X;θ) + γ
∑
ν∈ S

∑
(i,j)∈ S× S

φ(dD, dG , ν, i, j) (2)

where X are the features of the samples in S, θ the network parameters and γ ≥ 0 regulates the180

strength of the penalty.181

A.3 SMILES embedding182

The SMILES VAE used for the chemical reaction dataset was implemented following the description183

in [Born et al., 2020]. It consists of two layers of stack-augmented GRUs [Joulin and Mikolov, 2015]184

in both encooder and decoder and is trained with teacher forcing [Williams and Zipser, 1989], token185

dropout [Bowman et al., 2015] and one-hot encodings.186

The dataset consisted of 500,000 molecules represented as canonical SMILES strings from Pub-187

Chem [Kim et al., 2015].188

A.4 Explicit topological learning models189

Deep Graph Infomax. Here, we consider to a Deep Graph Infomax (DGI), a state-of-the-art190

GNN for unsupervised representation learning [Veličković et al., 2018]. DGI relies on maximizing191

mutual information between subgraphs (themselves derived with GCNs) yielding representations that192

facilitate downstream node-wise classification tasks.193

node2vec. Finally, we utilize node2vec [Grover and Leskovec, 2016], which only consumes topo-194

logical information but no node-specific features. The node2vec algorithm learns a compressed195

feature space that maximizes the probability to preserve local neighborhoods. With the exception of196

node2vec, the specific details for the configuration of each model will depend on the dataset we are197

evaluating on, thus will be detailed in each of the datasets’ results.198
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A.5 Detailed dataset description199

A.5.1 Synthetic data: a qualitative assesment200

First, we consider a synthetic dataset with arbitrarily generated graphs on a plane. Each node’s201

features will be composed by the combination of the first two edges directions’ (in the case of202

nodes with a single edge the feature vector is padded with zeros), resulting in a feature vector of 4203

dimensions. Thus, each node holds partial, yet insufficient topological information about the graph.204

As described above, the entire graph is then used to regularize the latent space.205

A.5.2 MNIST206

On a similar line we expanded this experiments by taking MNIST [LeCun et al., 2010] and generating207

a topology across the different labels by chaining the samples from 0 all the way to 9. We use208

this dataset to further test the model’s capability of affecting the topology of the latent where the209

individual node features are of higher complexity, at least when compared to the synthetic data, while210

maintaining comparable reconstruction performance to the non-constrained scenario.211

A.5.3 Text representation212

We evaluate three classification datasets: Cora, CiteSeer, and PubMed [Sen et al., 2008]. These213

datasets contain networks of documents linked by the citation links between documents. The text214

of the document is represented as a bag-of-words, which we take as a feature vector for each of the215

documents. Furthermore, each document corresponds to a particular task. We divide each dataset,216

and use a part of it to train the embedding and the other part on a downstream class prediction task,217

using the embedding model mentioned above.218

A.5.4 Chemical reaction representation219

Finally, we analyze the influence of the topology in learning effective representations for molecules220

in the context of chemical reactions, a topic that has testified a surge in popularity in the recent past221

as a field for deep learning applications [Schwaller et al., 2019]. To this end, we adopt the dataset222

compiled by Jin et al. [2017] where we represent reagents, reactants and products using SMILES223

representations [Weininger, 1988], using the splits provided. For each molecule we extract features224

using the encoder of a VAE based on stack-augmented GRU layers [Joulin and Mikolov, 2015],225

as proposed in Born et al. [2020], pretrained on PubChem [Kim et al., 2015] (more details can be226

found in the Appendix A.3). As for the topological reaction representation we consider a bipartite227

graph connecting the products to all the reactants and reagents. Each reaction bipartite graph is then228

used to generate the resulting final graph connecting all the nodes that are shared between different229

reactions. Using the training split provided by Jin et al. [2017], the models are finetuned as follows:230

VAE at molecule level, GR-VAE and DGI at reaction level (GR-VAE in an implicit form through the231

loss regularizer), node2vec on the aggregated graph. Furthermore, DGI uses the different VAEs and232

GR-VAEs as part of its encoder.233

To evaluate the quality of the representations learned and the impact of the topology, we consider234

the task of predicting whether two molecules are respectively reactant/reagent and products of a235

valid chemical reaction. The resulting binary classification task has an inherent relation with the236

underlying reaction network. For VAE, GR-VAE and node2vec we represent a pair of molecules as237

the concatenation of the encoded molecules/nodes in the respective latent spaces. In the DGI case, we238

represent the pair as the embedding of a graph connecting the molecules. These representations are239

then trained on the validation split and later evaluated on the test split as defined by Jin et al. [2017].240

A.6 Synthetic data implicit learning results241

Here we show the extended results for the implicit learning tasks (i.e. synthetic and MNIST datasets).242

Figure A2 shows the results of two different graph configurations of point clouds. Figure A3, extends243

the results shown in Figure 2 by displaying a sample of the original samples and their reconstruction,244

and the distance matrix between the different centroids for the points of each class.245

Figure A4 shows expanded results for a setup where the VAE was mapping to a latent space of 3246

dimensions. In that case we can see that with a strong regularizer we still accomplish our desired247

objective of organizing the point clouds as a chain. This setup, with only 3 dimensions where to map248

the points, challenges the model and makes it more difficult to obtain reconstructions as faithful to249
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Figure A2: Learned representations on two synthetic datasets with different topology. This figure displays
qualitatively how GR-VAE affects the latent space topology under different conditions, specifically when
compared to its non-constrained counterpart. The plots on top show the latent space, the ones in the bottom show
the feature space, for the first two features. The two datasets (left and right) had different topologies, shown as a
graph, next the color bar (all colors across plots correspond to the nodes’ ids). On the features plots both the
original data (round marker) and the reconstructed data (cross marker) are shown.

Table A1: Shortest Hamiltonian Path (SHP) distance to an ordered chain. This table displays the distance
from each SHP to an ordered chain (0 to 9) using FastDTW. For reference, the average distance of a random
connected path is 30.03± 6.5 (computed with 1000 random sequences).

Latent space
dimensions

3 16 64
– 23 23 27
1 31 31 27
10 0 31 3
100 0 0 0

the original images as those we saw with models with more dimensions (Figure A3). However it250

comes useful to display how the embeddings done using the graph regularizer can help at creating251

clear distinctions between sample groups. For instance, the non-regularized VAE mixes a number of252

digits (see Figure A4B), while the models that were regularized manage to reconstruct the same digit253

(i.e. class), usually at the expense of generating reconstructions that are less faithful to the original254

image in term of details or style255

To validate the qualitative assessment on the model’s ability to restore the original chain as shown256

in Figure A3, we computed the Shortest Hamiltonian Paths (SHP) [Held and Karp, 1962] on a fully257

connected graph of 10 nodes (representing the centroids of the labels in the latent space) where the258

network topology (i.e. edge weights) was given by the pairwise distances of the centroids. If the SHP259

of such a graph is a chain from 0 to 9 it proves that the topology is preserved perfectly in the latent260

space. To compare the different chains we used Dynamic Time Warping Müller [2007], a distance261

measure based on time series alignment computed with FastDTW1. An optimal topology corresponds262

to a DTW distance of 0. The results for the later can be seen in Table A1, the full chains can be seen263

in Table A2.264

1https://github.com/slaypni/fastdtw

9



Figure A3: Qualitative analysis of the latent representations learned in the MNIST case. Figure with
extended information about the MNIST results. A. PCA projection of the samples in the latent space under
different training regimes. The original latent space has 16 dimensions. The metagraph is a chain connecting
each class from 0 to 9 in order (a representation can be seen on the top right). The samples can be seen coloured
by class pertinence. B. Display of a reduced set of the original samples (bottom row) and their reconstructions
(top row). These were taken from the test set. C. Distance matrix between the centroids of each label’s point
cloud. The shortest path Hamiltonian, computed using the centroids, is displayed at the bottom (0 was always
used as the starting node).

Figure A4: Qualitative analysis of the latent representations learned in the MNIST case (with a latent
space size 3). Figure with extended information about the MNIST results, it displays same set of experiments
run in Figure A3, but using a VAE with a latent space of 3 dimensions. For that reason A. directly displays all
the latent space dimensions (not a PCA projection). It also includes an extra setting (γ = 10) for the regularizer.
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Table A2: Shortest Hamiltonian Paths. Full chains obtained when running SHP over the class centroids of the
samples in the latent space. We can see that with the biggest value of the regularizer (γ = 100) SHPs recover
the original chain used for the constraint.

Latent space dimensions
γ 3 16 64
no regularizer 0 5 8 3 2 6 1 7 9 4 0 6 2 8 5 3 1 7 9 4 0 6 4 9 7 1 3 5 8 2
1 0 6 4 9 7 8 5 3 2 1 0 6 4 7 9 8 5 3 2 1 0 6 4 9 7 1 3 5 8 2
10 0 6 4 9 7 8 5 2 3 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 8 9 7
100 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
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