Compress then Serve: Serving Thousands of LoRA Adapters
with Little Overhead

Rickard Briiel Gabrielsson! Jiacheng Zhu'! Onkar Bhardwaj’> Leshem Choshen'? Kristjan Greenewald >
Mikhail Yurochkin? Justin Solomon '

Abstract

Fine-tuning large language models (LLMs) with
low-rank adapters (LoRAs) has become common
practice, often yielding numerous copies of the
same LLM differing only in their LoRA updates.
This paradigm presents challenges for systems
that serve real-time responses to queries that each
involve a different LoRA. Prior works optimize
the design of such systems but still require con-
tinuous loading and offloading of LoRAs, as it is
infeasible to store thousands of LoRAs in GPU
memory. To mitigate this issue, we investigate
the efficacy of compression when serving LoORA
adapters. We consider compressing adapters indi-
vidually via SVD and propose a method for joint
compression of LoRAs into a shared basis paired
with LoRA-specific scaling matrices. Our exper-
iments with up to 500 LoRAs! demonstrate that
compressed LoRAs preserve performance while
offering major throughput gains in realistic serv-
ing scenarios with over a thousand LoRAs, main-
taining 75% of the throughput of serving a single
LoRA.

1. Introduction

The myriad uses for foundation models (FMs) has led to a
proliferation of specialized models, each fine-tuned to per-
form downstream tasks. The growing number of parameters
of these models, however, incurs significant costs both for
the fine-tuning and for serving these models.

To avoid fine-tuning giant foundation models, parameter-
efficient fine-tuning (PEFT) algorithms update a smaller
set of values that define an edit to the original model. An
especially successful PEFT method is low-rank adaptation

'MIT CSAIL *MIT-IBM Watson Al Lab. Correspondence to:
Rickard Briiel Gabrielsson <brg@mit.edu>.

Work presented at the ES-FoMo Workshop at ICML 2024, Vienna,
Austria. PMLR 235, 2024. Copyright 2024 by the author(s).

! Available at: https://huggingface.co/
Lots—-of-LoRAs

%)
(O]
21601 2
8 vi.:..‘.:.‘."\,.u‘—‘-—-—n_\,
0140+ ". N
wn * \
% "0 ~
0'120 *e L)
&) *
100 @= LoRA
2 =% = Individual (ours)
. v 3
'§w 80 Joint (ours) "~.,.
° 60 No LoRAs
£ [)
64 128 256 512 1024

Unigue LoRAs served

Figure 1. Throughput gains when serving 1000s of compressed
LoRAs with VLLM.

(LoRA) [8], which achieves parameter-efficient fine-tuning
by learning low-rank additive changes to neural network ma-
trices. Because of the low-rank parameterization, these ma-
trices (called adapter weights) contain orders-of-magnitude
fewer parameters than the base model. LoRA can achieve
performance on par with full fine-tuning [8]. In addition,
by merging the adapter weights into the base model, the
fine-tuned model does not suffer from increased latency.

LoRA’s popularity has triggered a growing need to serve
large collections of LoRA adapters at the scale where serv-
ing multiple copies of the base model becomes infeasible
[25]. In the extreme, one may wish to serve hundreds to
thousands of LoRAs, where each incoming request requires
a different LoRA adapter, e.g., for a personalized chat as-
sistant. To this end, S-LoRA [25] separates the base model
computation from individual LoRA computations and opti-
mizes the system’s inner workings via custom CUDA ker-
nels and memory management to increase the throughput
when serving multiple LoRAs. Despite the optimized sys-
tem design, serving LoRAs still has a fundamental limita-
tion: when the number of adapters is large, they need to
be constantly loaded and offloaded from GPU memory to
accommodate incoming requests, degrading throughput. We
present extended related work discussion in Appendix A.

In this work, we consider the problem of compressing a

https://huggingface.co/Lots-of-LoRAs
https://huggingface.co/Lots-of-LoRAs

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

collection of LoRAs. We have two key objectives: (1)
preserving the performance of the original LoRAs and (2)
improving the throughput of serving many LoRAs. We
formulate LoORA compression as a reconstruction problem,
where the goal is to approximate the original adapters via
collections of matrices of a smaller total size. We investigate
two approaches: compressing each LoRA individually by
lowering its rank via SVD and compressing LoRAs jointly
by finding a shared basis and LoRA-specific scaling ma-
trices. The former is inspired by [11], who demonstrated
that lowering LoRA ranks is beneficial for multi-task learn-
ing and model merging. For the latter, we propose a joint
compression algorithm inspired by models for joint diago-
nalization.

Our individual and joint compression methods present in-
teresting trade-offs. For example, joint compression can
achieve extreme parameter count reduction when represent-
ing any specific LORA by using a shared basis that can be
pre-loaded onto the GPU. The shared basis, however, will
typically increase the rank of LoRAs. On the other hand,
individual compression can reduce the rank, but is limited
in terms of its compression efficiency. We investigate how
these trade-offs affect throughput when serving 1000s of
LoRAs using vLLM [12], a state-of-the-art LLM serving
system. In Figure 1 we illustrate the benefits of compression
and the effect of these trade-offs. When serving over 1000
LoRAs, compression increases throughput over 2 times and
maintains 75% of the throughput of serving the base LLM
(or a single LoORA merged into the LLM).

‘We summarize our main contributions below:

* We formulate the problem of compressing a collection of
LoRAs and propose two solutions: individual and joint
compression.

» We establish theoretical guarantees for the reconstruction
error central to our compression formulation and verify
the relation between reconstruction loss and performance
empirically.

* We train a collection of 500 high-quality LoRAs for
Mistral-7B-Instruct-v0.2 [10] on 500 natural
instruction tasks [27] and demonstrate that our compres-
sion techniques can preserve the performance of the origi-
nal LoRAs. We will release the 500 LoRAs to facilitate
future work on LoRA compression as well as the code to
compress new models.

* We incorporate LORA compression into a state-of-the-art
LLM serving system and demonstrate that it is possible to
serve over 1000 LoR As across thousands of asynchronous
requests with throughput comparable to serving a single
LoRA.

* We analyze the trade-offs between individual and joint
compression, presenting opportunities for further improve-
ment of LLM serving systems.

2. Rank-Based LoRA Compression

LoRA updates are parameterized by pairs of matrices A, B,
whose product B A updates the fixed weight matrices W, €
R?2>d4 of a neural network foundation model. Given an
input z to a layer, the output of the LoRA-updated model at
this layer is (Wy + BA)x.

In formulating our compression algorithms, we consider a
collection of given LoRA adapters {(A;, B;)}_, that we
would like to serve. We let r; refer to the rank of the LoRA
adapter-pair (A4;, B;),i.e., B; € RIBX7i A, € R"*d4 We
consider a simple baseline parameter reduction approach
§2.1 as well as a more aggressive joint diagonalization
method in §2.2.

2.1. Independent Compression via SVD

The simplest approach is to replace each rank-r; LoRA
adapter B; A; with a reduced rank-r approximation, where

typically r < 2370 | 7y

SVD,(B;4;) = U;S; VT,

1
Vi=1,....n M

(r —SVD)

Thanks to the Eckart-Young Theorem, this strategy finds
the rank-r approximation that best fits B; A; in terms of
Frobenius norm. As EiViT can be saved as a single matrix,
this approach reduces the number of parameters used from
>;(da+dp)r; to rn(da + dpg). While this approximation
is effective, it is limited in its compression abilities as n
increases, since it does not share information across LoRAs.
This shortcoming motivates our next approach.

2.2. Joint Diagonalization

Next, we suggest a Joint Diagonalization (JD) method,
which optimizes a shared basis onto which we can project
the set of n LoRAs. This will allow structure to be shared,
implicitly clustering the collection of LoRAs.

In this model, each LoRA-product B; A; is factorized into
the form UX;V, where U and V are shared across all Lo-
RAs and ¥; is specific to each LoRA. In this formulation,
every X; shares the same rank 7. This allows U and V to be
pre-loaded onto the GPU, with ¥; loaded when necessary
for each batch. The matrices ¥; can be either diagonal or
small square matrices, accelerating the forward pass com-
pared to conventional multi-LoRA serving configurations.

Objective function. Motivated by the relationship of singu-
lar value decomposition to minimizing the Frobenius norm
of the reconstruction error, we also propose to minimize the
Frobenius norm of the adapter matrix approximation error.

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Specifically, we use the following objective function:

n

. T2
{Ei}g}:?w;u&& —US VT2,)

Using the Frobenius norm has the added benefit of making
the objective convex in each argument separately, suggest-
ing the possibility of efficient optimization. This objective
function is underdetermined, however, so we consider two
constrained regimes below.

Full ¥; approximation. The first method we call JD — Full.
Without loss of generality, U and V' can be constrained
to be orthogonal, so long as 3; remains an unconstrained
full matrix. JD — Full adopts this restriction to make the
optimization better posed, but note it does not restrict the
expressiveness of the objective (2). This setting yields the
following optimization problem:

JD-Full,({B;Ai}}-)

n
= argmin Z |1 BiA;i — UV 1o
3 i=1
vTu=vTv=I, '

(JD — Full)
(3)

J

An efficient alternating algorithm to solve this objective
function can be found in Appendix C.

Diagonal X; approximation. As an alternative, we can
leave U, V' unconstrained (other than to have r columns)
and instead constrain the matrices 3J; to be diagonal (but not
necessarily positive). This formulation yields the following
optimization problem:

JD-Diag, ({ B; A }7-)
n
= argmin Z | B; A; — Udiag(Z)V " |30
{E UV o
(JD — Diag)
(4)

An efficient alternating least squares algorithm to optimize
this objective can be found in Appendix C. This diagonal ver-
sion has some per-LoRA parameter savings when compared
to JD — Full, since the diagonal >; only needs r parameters
instead of 2.

In Appendix D we establish theoretical bounds for the re-
construction loss of the JD — Full algorithm and discuss its
connections to merging LoRAs [23; 9].

3. Training LoRAs & Evaluating Task
Performance

3.1. Training

We trained LoRA adapters on 500 natural instruction tasks
[27] using Mistral-7B-Instruct-v0.2 [10] as the
base model. All LoRA adapters were configured with a rank
of 16, i.e., Vi, r; = 16.

We selected 10 diverse tasks (Table 2 in Appendix F) man-
ually for consistent evaluation across experiments and ran-
domly sampled an additional 490 tasks, resulting in a total
of 500 tasks. These tasks were exclusively in English (both
input and output), ensuring higher quality and thorough
review [27]. Each task dataset was divided into training,
validation, and test sets. Hyperparameters, such as early
stopping, were tuned using the validation sets. Evaluation
on the test sets demonstrated that LoRA consistently outper-
formed the base model in terms of both Rouge scores and
loss metrics, as shown in Table 1. Details are provided in
Appendix F.

Table 1. Comparison of metrics before and after LoRA training
across 500 tasks.

Metric Base Model LoRA
Loss 499+ 3.11 0.43 +0.57
Exact Match 2.28 +7.89 66.66 4= 34.34
Rouge-1 20.38 £18.90 76.74 £+ 24.89
Rouge-L 19.66 & 18.16 76.22 4 25.27

3.2. Evaluation

We evaluated multiple metrics for the natural instruction
tasks, including cross-entropy loss, Rouge-1, Rouge-L [15],
exact match, and agreement between uncompressed and
compressed LoRA. Here, agreement measures the exact
match in task-generations between the uncompressed LoRA
model and the compressed LoRA model, rather than com-
paring to ground truth data. While detailed results and
discussions for all metrics are provided in the Appendix, our
primary focus in the main text is on Rouge-L. We find that
all metrics correlate, but Rouge-L correlates most strongly
with downstream utility. This finding aligns with prior work
[27], which demonstrates that Rouge-L correlates well with
classification accuracy.

Joint diagonalization optimizes reconstruction error mea-
sured by the Frobenius norm, and our theoretical analysis
in §D bounds this reconstruction error. Empirically, re-
construction error and downstream Rouge-L performance
correlate.

Instead of listing the absolute performance of different meth-

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

ods, we compute the performance difference between the
base model and the LoRA model for each task. We present
the ratio

method-performance
LoRA-performance

Performance relative to LORA :=

for the specific method in question, highlighting relative
improvement with respect to the uncompressed LoRA and
the base model.

4. Experiments
4.1. Task Performance

For each method, we vary the number of n LoRAs that are
compressed and the compression rank . We run each exper-
iment three times with different random seeds and report the
mean and standard deviation. See Table 3 for results where
we evaluate on the same ten manually selected tasks (Table
2) across settings. Every compressed collection of LoRAs
contains these 10 tasks (i.e., in-distribution tasks), and each
collection contains the smaller collections as subsets.

Figure 2a plots the mean performance improvement rel-
ative to uncompressed LoRAs (y-axis) against the GPU
parameter saved ratio, i.e., the reduction in per-LoRA
parameters (x-axis). Similarly, Figure 2b relates mean
performance improvement to the total parameter saved
ratio. Both the independent compression via SVD and
joint diagonalization methods significantly compress the
LoRAs while preserving—and occasionally enhancing—
performance. Notably, the JD methods are unique in their
ability to approach the compression efficacy of a single
LoRA, although this aggressive reduction in size may de-
crease performance in larger LoORA collections. As shown
in Figure 4, the JD methods achieve the highest through-
put. These results provide practitioners with a spectrum of
methods and configurations, enabling them to optimize the
balance between throughput, compression, and performance
according to their specific requirements.

4.2. Performance and Reconstruction Error

Figure 3 relates reconstruction error and performance. The
y-axis measures mean performance improvement of Rouge-
L relative to uncompressed LoRA, and the x-axis quanti-
fies the mean reconstruction error between the compressed
reconstruction of the product BA and the original uncom-
pressed product BA. Although the relationship between
performance and reconstruction error is nonlinear, it demon-
strates a generally decreasing, somewhat exponential trend.
Notably, the minimal reconstruction error does not corre-
late with optimal performance, indicating that a degree of
lossy reconstruction may be advantageous for enhancing
generalization.

4.3. Throughput of Serving Compressed LoRAs

Figure 4 studies the efficacy of compression in a real-world
serving scenario. We consider a varying number of rank-16
LoRAs, using a dataset of Shakespeare sonnets as inputs?
arriving asynchronously. We measure throughput, i.e., the
number of requests served per second when generating ten
tokens per request. In these experiments, the base model
is Mistral 7B Instruct as in the previous experiments; we
simulate random LoRAs and assign inputs to LoRAs at
random. Experiments were conducted on A100 80GB GPU
capped at 30% memory consumption. This is done to reflect
cost concerns in practical situations where a service provider
might want to serve many LoRAs from cheaper hardware
with lower memory than higher-end GPUs. This setting
also takes into account the scenario where the LLM is large
compared to the size of GPU and yet a provider may want
to serve many LoRAs efficiently using the same device.

Although LoRAs are meant as parameter-efficient adapters,
when serving over 200 LoRAs, the throughput starts to de-
grade rapidly, illustrating the challenge of serving many
LoRAs. When serving over 500 LoRAs, our compression
methods provide over 2 x improvement in throughput, and at
over 1000 LoRAs, JD-Full-64 serves at 75% of the through-
put of the base LLM (equivalent to serving a single LoRA
after merging it with the LLM).

Next, we analyze trade-offs between the compression meth-
ods. Each compression method except JD-Full-64 and JD-
Diag-128 starts to degrade faster at a certain point as the
number of LoRAs increases; this point is the threshold at
which compressed LoRAs no longer fit into the GPU mem-
ory and the throughput degrades due to scheduling. The
JD LoRAs are the most efficient in terms of memory con-
sumption, and we can simultaneously load all 1024 LoRAs.
Due to their increased rank (e.g., each LoRA is of rank 128
for JD-Diag-128), however, the throughput starts lower, but
degrades at a lower rate. We conclude that for the current
vLLM design, when serving a moderate number of LoRAs,
SVD compression provides favorable throughput as long as
it can fit all LoRAs into memory. When serving a large num-
ber of LoRAs that cannot fit into memory even with SVD
compression, JD is the better option, as it can fit all LoRAs
onto the GPU at the cost of a slight throughput reduction
due to its larger rank.

Fast LoRA [28] is a recent work that aims to alleviate the
batched matrix multiplication (BMM) bottleneck when serv-
ing many LoRAs. They propose an adapter parameteriza-
tion that replaces addition with elementwise multiplication,
avoiding BMM and improving LoRA throughput at lower
ranks. Our JD LoRA formulation also circumvents or heav-

https://www.kaggle.com/datasets/
shivamshindel23/william—-shakespeares—sonnet

https://www.kaggle.com/datasets/shivamshinde123/william-shakespeares-sonnet
https://www.kaggle.com/datasets/shivamshinde123/william-shakespeares-sonnet

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

e

~1.01

[]

)

o100 ¥

S

[

2

© 0.99

[

" LoRA Num: 10

20.98{ « LoRANum:50

g © LoRA Num: 100

5 ® LoRA Num: 500

£ 0971 v svb

& o JD-Full

JD-Diagonal

0.96 T

0.2 0.4 0.6 0.8
GPU Workload Parameter Saved Ratio (1)

1.0

(a) Performance with GPU parameter saved ratio

—)@
101 p
S v v
o 1.00 v v
S
[/ y
2 ([
099 <
ol Q
° LoRA Num: 10
£0.98{ + LoRANum:50
g * LoRA Num: 100)
5 @ LoRA Num: 500 () .
£097{ v swD | @&
[g y
a e JD-Full o
JD-Diagonal
0.96 T I - : ! !
0.0 0.2 0.4 0.6 0.8 1.0

Total Parameter Saved Ratio (1)

(b) Performance with total parameter saved rate

Figure 2. We qualitatively illustrate the performance of JD-LoRA. The GPU workload parameter saved ratio indicates the number of
parameters saved compared to LoRA during inference when switching between different LoRAs. For JD-Diagonal methods, it is computed

aS Tpergpu 1= 1 — =005,
n of LoRAs for different tasks. It is computed as: r¢otqr 1= 1 —

2xr yp*d+Kx*rjp

The total parameter saved ratio depicts the number of parameters saved for a system with a large number

adid , where ryp and r1,ra are the rank for JD-LoRA and

LoRA respectively, d is the weight dimension, and 7 is the number ofLLoRAs served.

g
o
=)
g

o
©
v

o
©
o

o
©
vl

o
©
o

LoRA Num:
LoRA Num:
LoRA Num:
LoRA Num:

o
9
v

v@® v

oz 1

10

100
500

SVD
JD-Full
JD-Diagonal

Performance Relative to LoRA

o
S
=)
040 - -

o
o
a

0.0 0.2 0.4 0.6 0.8
Reconstruction error

Figure 3. Reconstruction error vs. performance.

160

g ct“‘-s-.___v ~

o e TSR —

140 - ——— AN

o \ .
PRGN
o .

120 —— R
=2 @9 LoRA & <Ny
g ¥y svb-8 vy '~
51001 —%— SVD-4 N u
2 JD-Full64 > v
g -® JDFull-128 -

3 801 ;
£ -@- |D-Diag-128
-4 |D-Diag-256 ...
601 NoloRAs = ®
64 128 256 512 1024

Unique LoRAs served

Figure 4. Throughput when serving varying number
of LoRAs with vLLM.

ily reduces the impact of BMM (see Appendix H), and both
individual and joint compression methods can be applied to
Fast LoRAs.

5. Discussion

This study introduces approaches to LoORA compression,
addressing significant challenges facing foundation mod-
els and large language models. Our contributions include
theoretical formulations, empirical validation, and practical
implementations that enhance understanding and applica-
tion of LLMs in scalable environments. The implications of
our findings are manifold. Our theoretical guarantees for re-
construction error not only increase confidence in the use of
compressed models but also lay a groundwork for future ex-
plorations in this area. Demonstrating that our compression
techniques can preserve up to 100% of the original LoRAs’
performance highlights the effectiveness of our methods.
Furthermore, integrating LoRA compression into state-of-
the-art LLM serving systems demonstrates the potential for
resource optimization, with throughput for thousands of
LoRAs nearing that of a single LoRA. In conclusion, our
research significantly advances the deployment of LLMs by
providing robust, scalable, and efficient compression solu-
tions. The ability of compressed LoRAs to maintain high
performance while facilitating substantial resource savings
opens new avenues for the broader application and adoption
of LLMs across various industries. We encourage the com-
munity to build upon our findings and the shared LoRAs to
further explore and enhance the utility of these technologies.

6. Acknowledgments

The MIT Geometric Data Processing Group acknowledges
the generous support of Army Research Office grants
WOI11INF2010168 and W911NF2110293, from the CSAIL
Systems that Learn program, from the MIT-IBM Watson Al
Laboratory, from the Toyota—CSAIL Joint Research Center,

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

and from an Amazon Research Award.

References
[1] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A

[2

3

[4

[5

[6

[7

[8

[9

[}

—_

[}

]

]

[—

]

—

survey of model compression and acceleration for deep
neural networks. arXiv preprint arXiv:1710.09282,
2017.

Leshem Choshen, Elad Venezian, Noam Slonim, and
Yoav Katz. Fusing finetuned models for better pre-
training. ArXiv, abs/2204.03044, 2022.

Leshem Choshen, Elad Venezian, Shachar Don-
Yehiya, Noam Slonim, and Yoav Katz. Where to
start? analyzing the potential value of intermedi-
ate models. In Houda Bouamor, Juan Pino, and
Kalika Bali, editors, Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1446—-1470, Singapore, December
2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.90. URL https://
aclanthology.org/2023.emnlp-main. 90.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. Qlora: Efficient finetuning of quan-
tized llms. Advances in Neural Information Processing
Systems, 36, 2024.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey
of quantization methods for efficient neural network
inference. In Low-Power Computer Vision, pages 291—
326. Chapman and Hall/CRC, 2022.

Moshik Hershcovitch, Leshem Choshen, Andrew
Wood, Ilias Enmouri, Peter Chin, Swaminathan Sun-
dararaman, and Danny Harnik. Lossless and near-
lossless compression for foundation models. arXiv

preprint arXiv:2404.15198, 2024.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-
efficient transfer learning for nlp. In International
conference on machine learning, pages 2790-2799.
PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685,
2021.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. Lorahub: Efficient
cross-task generalization via dynamic lora composi-
tion, 2024.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. Mistral 7b. arXiv
preprint arXiv:2310.06825, 2023.

Weisen Jiang, Baijiong Lin, Han Shi, Yu Zhang, and
James T Kwok. Byom: Building your own multi-
task model for free. arXiv preprint arXiv:2310.01886,
2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ton Stoica. Efficient memory
management for large language model serving with
pagedattention. In Proceedings of the 29th Sympo-
sium on Operating Systems Principles, pages 611-626,
2023.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and
Jason Yosinski. Measuring the intrinsic dimension of
objective landscapes, 2018.

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. Scaling down to scale up: A guide
to parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.15647, 2023.

Chin-Yew Lin. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74-81, Barcelona, Spain, July
2004. Association for Computational Linguistics. URL
https://aclanthology.org/W04-1013.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay
Mohta, Tenghao Huang, Mohit Bansal, and Colin A
Raffel. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. Advances
in Neural Information Processing Systems, 35:1950—
1965, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. Dora: Weight-
decomposed low-rank adaptation, 2024.

Michael Matena and Colin Raffel. Merging mod-
els with fisher-weighted averaging. arXiv preprint
arXiv:2111.09832, 2021.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang.
Pissa: Principal singular values and singular vectors
adaptation of large language models. arXiv preprint
arXiv:2404.02948, 2024.

Mohammed Mugeeth, Haokun Liu, Yufan Liu, and
Colin Raffel. Learning to route among specialized

experts for zero-shot generalization. arXiv preprint
arXiv:2402.05859, 2024.

https://aclanthology.org/2023.emnlp-main.90
https://aclanthology.org/2023.emnlp-main.90
https://aclanthology.org/W04-1013

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Kimia Nadjahi, Kristjan Greenewald, Rickard Briiel
Gabrielsson, and Justin Solomon. Slicing mutual
information generalization bounds for neural net-
works. In ICML 2023 Workshop Neural Com-
pression: From Information Theory to Applica-
tions, 2023. URL https://openreview.net/
forum?id=cbLcwK3SZ1i.

Colin Raffel. Building machine learning models like
open source software. Communications of the ACM,
66(2):38-40, 2023.

Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu,
Svetlana Lazebnik, Yuanzhen Li, and Varun Jampani.
Ziplora: Any subject in any style by effectively merg-
ing loras. arXiv preprint arXiv:2311.13600, 2023.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra.
The truth is in there: Improving reasoning in language
models with layer-selective rank reduction. In The
Twelfth International Conference on Learning Rep-

resentations, 2024. URL https://openreview.

net/forum?id=0zX92bu8VA.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper,
Nicholas Lee, Shuo Yang, Christopher Chou, Banghua
Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gon-
zalez, and Ion Stoica. S-lora: Serving thousands of
concurrent lora adapters, 2023.

Sheng Wang, Boyang Xue, Jiacheng Ye, Jiyue
Jiang, Liheng Chen, Lingpeng Kong, and Chuan
Wu. Prolora: Partial rotation empowers more
parameter-efficient lora. ArXiv, abs/2402.16902, 2024.
URL https://api.semanticscholar.org/
CorpusID:268032580.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. arXiv preprint
arXiv:2204.07705, 2022.

Yeming Wen and Swarat Chaudhuri. Batched low-rank
adaptation of foundation models, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. Huggingface’s transformers:
State-of-the-art natural language processing, 2020.

[30]

[31]

[32]

[33]

[34]

[35]

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak
Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi,
Yair Carmon, Simon Kornblith, and Ludwig Schmidt.
Model soups: averaging weights of multiple fine-tuned
models improves accuracy without increasing infer-
ence time. In International Conference on Machine
Learning, 2022.

Prateek Yadav, Leshem Choshen, Colin Raffel, and
Mohit Bansal. Compeft: Compression for communi-
cating parameter efficient updates via sparsification
and quantization. arXiv preprint arXiv:2311.13171,
2023.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. TIES-merging: Resolving
interference when merging models. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems, 2023. URL https://openreview.net/
forum?id=xtaX3WyCjl.

Yuchen Zeng and Kangwook Lee. The expressive
power of low-rank adaptation, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-
efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi,
Haitz Saez de Ocariz Borde, Rickard Briiel Gabriels-
son, Leshem Choshen, Marzyeh Ghassemi, Mikhail
Yurochkin, and Justin Solomon. Asymmetry in low-
rank adapters of foundation models. arXiv preprint
arXiv:2402.16842, 2024.

https://openreview.net/forum?id=cbLcwK3SZi
https://openreview.net/forum?id=cbLcwK3SZi
https://openreview.net/forum?id=ozX92bu8VA
https://openreview.net/forum?id=ozX92bu8VA
https://api.semanticscholar.org/CorpusID:268032580
https://api.semanticscholar.org/CorpusID:268032580
https://openreview.net/forum?id=xtaX3WyCj1
https://openreview.net/forum?id=xtaX3WyCj1

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

A. Related Work

Parameter-efficient fine-tuning (PEFT) has become a prevalent method for updating foundation models thanks to the need
for efficiency in training and communication [14]. Many PEFT methods have been proposed, e.g. [7; 16], but the most used
in practice is LoRA [8], partially due to the ease of switching between LoRAs in inference time.

Several works propose improvements to LoRA [17; 26], sometimes with algebraic methods like SVD [19; 34; 11] or by
leveraging its statistical properties [35; 33]. Relatively few methods, however, accelerate inference times. S-LoRA [25]
provides an efficient means of switching between LoRAs. F-LoRA [28] adapts training to reduce batch multiplications
and thus to accelerate inference. Our method achieves a similar outcome (see Appendix H) without changing the LoRA
formulation or requiring that LoRAs be trained in a dedicated way; from this perspective, an advantage of our work is that
future generic improvements to LoRA will also benefit (e.g., [19]).

There are many efforts to compress models [1; 5; 24; 13]—including some that consider LoRAs specifically—to accelerate
inference. Predominantly, pruning and sparsification methods delete some of the weights [31], and quantization methods
reduce the precision of the weights [4]. Some works compress weights to reduce model size but typically require
decompression and hence do not save GPU memory [6]. Similarly to our work, while most methods increase speed at the
cost of performance, a few note increased performance and generalization after compression [31; 21; 6; 24]. Our work also
relates to model merging [2; 30; 18] and mixture of experts methods [20]. Such methods reuse models trained by others
[3; 22], serving them together as one compressed model. Despite this similarity, these methods create a single general model
that acts on any input, while our model allows for more performant per-task solutions.

B. Limitations

Compression techniques, while reducing time or memory constraints, invariably lose information, which can increase with
the number of models compressed. Consequently, while our approach seeks to minimize this loss, it is axiomatic that
compression will diminish information to some degree.

Our methodology compresses a collection of known models. Introducing new models may necessitate either recompression,
projecting into a suboptimal basis, or opting to use some models in an uncompressed state.

Empirically, our methods achieve reasonable balances between the number of models compressed, the amount of information
retained, and throughput. Nonetheless, these benefits can be accompanied by increased latency as more models are
compressed.

C. Joint Diagonalization Algorithms
C.1. Alternating Methods

Our goal is to derive algorithms that optimize (2). Common to both methods, we expand the objective functional:

D O IBiA;i — UiV |[f = Y tr((Bid; — USV T)(B;A; — US;V'") ") by definition
=Y [tr(BiAAT Bl) = 20(BAVE[UT) + r(US;VTVEUT)]

= const. — 2> _tr(B;A,VE[UT) +) |US VT2, 5)

Using this expansion, we now consider the two settings discussed in §2.2.

Case 1: Non-diagonal ¥;, orthogonal U, V. Setting the derivative of (5) with respect to ¥; to zero, we find

¥, = XHU, V) =U"B;A;V. (6)

8

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

We simplify our objective function after plugging in this expression:

D IBiA; = USiV T |[f + const. = Y [[[8i|y, — 2tx(BiA;VE]UT)] from (5)

= [tr(UTBAVVTABU) - 2te(BiAVV T A B UUT)] from (6)

=—> w(BAVVTABIUUT).

Substituting (6), we find

n n

Uspr Vopr = arg._max S |UTBAV 3, = arg max > [SHU V). ™
vtu=I = Utu=1 =
vvi=r = vvi=r =

Note that

> IUTB AV |[fy = tr ((Z BZ-AZ-VVTAZTBZ-T> UUT>

i=1 i=1

= tr ((Z B A,;TUUTAiB,;> VVT> ,
i=1
by the identity || A%, = tr(AT A). Hence, we optimize (7) by alternating between U and V:

« U iteration: Define M =), B;A,VV T A/ B/ Parenthesizing this expression properly requires only O((m + n)r)
storage/computation time. With this definition, we maximize tr(MUU) over U satisfying UTU = I. Since M is
positive semidefinite, the optimum is to take U to be the r eigenvectors of M with largest eigenvalue, equivalent to an

SVD problem.
* Viteration: Define N :=)", ATBUUT B;A;. Similarly to the previous step, we take V' to contain the 7 eigenvectors
of N with largest eigenvalue, again solvable using an SVD.

This method decreases the objective in each step.

Case 2: Diagonal X;. If constrain 3; to be diagonal, we interpret our objective function (2) as a “triple least squares”
problem. We compute gradients:

Vo) |Bidi —USVT [}, =2) (USVT = BiA)VE]
Vv Y IBidi —US VT |}, =2) (VE/UT - A/ BUS;

Ve, Y Bidi = ULV |}, = 20T (USVT = BiA)V

7

These expressions suggest efficient 7 x r linear systems to solve for U, V:

-1
U= (ZBiAivle> (Z zivTvzj>

-1
V= (ZAIBJU&) (Z ZZUTUZZ) :

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

For X;, we extract the diagonal from our gradient above:
diag(UTUS,VTV); = (UTUS,VTV);
= Z(UTU)ijimm(VTV)mj

= (UTU o VTV)diag(%;)
dlag(UTBzAﬂ/)] = Z(UTBi)jm(AiV)mj

= Z(UTBi)jm(VTAiT)jm
= (U B;o VA
— diag(%;) = (UTUoVTV)"{UTB; o VAN
Here o denotes the Hadamard product.

Combining these expressions, we use a simple coordinate descent algorithm cycling between the following three steps:

1. Solve for U

2. Solve for V

3. Solve for the ¥3;’s

4. Optionally, normalize so Y, [|%; %, = 1

C.2. Additional Eigenvalue Iteration Algorithm

For the first case in §C.1, we introduce an alternative algorithm that eschews the use of SVD. This alternative is optimized
for GPU execution, enabling tractable runs to convergence.

To derive this algorithm, we employ Lagrange multipliers to formulate the derived objective from (7):

Uopts Vopt = arg_max > |UT B A,V ||, ®)
Utu=I
Vv T=1
yielding the expression
1 1 1
A= f§||UTBiAiVH§m - 5tr(XT(I -U')) - 5tr(YT(I - VTV)). ©)
Taking the derivatives gives
Vuh ==Y Bi(AV)(VTANBU)+UX (10)
VvA=-> Al (BJU)UTB)(AV)+VY (11)

Setting these derivatives to zero shows

> Bi(AV)(VTAN(BU)=UX (12)
S Al (BIU)UTB)(AV) = VY. (13)

Here, one can show that the Lagrange multiplier matrices X and Y are diagonal and nonnegative, since the problem reduces
to an eigenvalue problem when either U or V is fixed; this is essentially the argument behind the alternating algorithm in
Appendix C. Hence, taking inspiration from classical eigenvalue iteration, we use the following updates to improve our

10

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

estimates of U and V:

U 37 B AVB) (V)T AT (BTU®) (1

yD S AT(BIUM)(UE)T B (4, v®) (15)
[

U(k‘H) — orthogonalize(UO(k+1)) (10

yk+D) orthogonalize(vo(kJrD) 4

Here, the function orthogonali ze orthogonalizes the columns of a matrix, e.g. by using the @) part of the reduced-size
QR factorization. Although we lack a formal convergence proof, in practice we find that this method reliably reaches a local
optimum of our problem.

By executing matrix operations in the specified sequence, these computations can be rapidly performed on GPUs. Note the
expressions above are parenthesized to avoid constructing a large matrix product as an intermediate computation.

D. Theoretical Analysis

While SVD-based approaches are relatively well-understood, in this section, we seek to better understand the role of the
joint diagonalization method presented in §2.2. We will focus on the full-X; case with orthogonal U, V matrices. Note
that, for the same 7, the r—JD —Diag has at least as large reconstruction error as 7—JD — Full since it imposes an additional
constraint on the ;.

Firstly, note that perfect reconstruction can be achieved if and only if r is large enough:

Proposition D.1. Suppose that for all i, rank(B; A;) = r;, and let
7 = max {rank([Al, o Ay]), rank([B] ..., Bz])})

Note max;r; <17 < E?:l r4. Then JD — Full (3) with r = T achieves lossless compression (perfect reconstruction), and
using v < T will give nonzero reconstruction error.

Proof. There exist U, V such that all the B;, A; are in the spans of U, V resp. if and only if r > 7. O

Due to training noise, 7 will equal >_-_, r; almost always. This implies that in most realistic settings, the joint diagonalization
approach is a lossy reconstruction.

This reconstruction loss can be significant, as the following theorem shows (proved in Appendix E):

Theorem D.2. Consider n LoRAs ({A;, B;}™_,) with r,n < d?, and form the matrix

L= vec(BiAr) -+ vec(Bp4,) |.

Let o be the singular values of L, sorted from largest to smallest, and let &; be the singular values of Z?zl B;A;. Then,
using JD — Full (3),

min(r?,n)

r n n
Za—? < Z ||21||%r0 = Z HUZ%VTH%ro < Z 032'7
j=1 i=1

i=1 j=1

implying the sum of squared Frobenius norms of the reconstructed LoRAs satisfies

n min(r?,n) 2 n min(r2,n) o
2 IUSV T [y =1 95 <1 gnd 2i=l UV = BiAillfy, - 1 21 05

Y 1Bidillz, = X 03 > i 1BiAily, B > i10;

In other words, if the singular values of L are not concentrated in the top r? entries, significant reconstruction error is
unavoidable.

Remark D.3 (Lower bound and merging). The lower bound Z;Zl 5]2 could be achieved by setting all the ¥; equal, i.e.,
using a fully merged model instead of only merging the subspaces U, V' and allowing ¥; to vary with i.

11

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Remark D.4 (Upper bound and clustering). The upper bound is smallest when the LoRAs are relatively clustered, i.e., when
groups of vectors vec(B;A;) are similar. This situation raises the magnitude of the largest singular values of L, raising
the upper bound in the proposition. As the LoRAs are d x d matrices that can be thought of as points in d> dimensional
space, for typical values of d well into the hundreds, it is likely that unrelated LoRAs will be unclustered, i.e., they will have
relatively low inner products with each other.

For the case of orthogonal LoRAs, the singular values of L are the norms of the LoRAs, and we immediately have the
following corollary: *

Corollary D.5. Suppose (e.g., due to normalization) that the inputs to the joint diagonalization algorithm all have unit Frobe-
nius norm, i.e., | B; Ai||ro = 1. Moreover, assume that the LoRAs are all orthogonal in the sense tr((B;A;)(B;jA;)T) =0
fori # j. Then, using the JD — Full method (3), we have 1 < 37" | ||;||3,, < min(r?,n), implying that the sum of
squared Frobenius norms of the reconstructed LoRAs satisfies

1 n UV - BiA |2 2
1— = 2 E’L:l H - ! ||Fro S 1 — min (7', 1> .
n Zi:l ||B7«A7«||Fro n

This implies that for the common setting where 72 < n, the reconstructed LoRAs will be significantly smaller than the
original LoRAs and necessarily have significant reconstruction error.

The results in this section illustrate the tradeoffs of using joint diagonalization. If the LoRAs are similar or well-clustered,
reconstruction error will be low. On the other hand, if the LoRAs are random and orthogonal, reconstruction error will be
high.

Note that high reconstruction error for the weights does not necessarily imply poor ability to approximate the desired
LLM outputs. The loss space of transformers is highly complex, and the tendency of the Frobenius-norm based joint
diagonalization is to find subspaces that are shared with many LoRAs when r is large, and merge subspaces together towards
the mean when 7 is small. When 7 is severely below the natural rank of the problem, this tendency towards averaging all or
some of the LoRA signals directly connects to the concept of merging LoRAs, whose success [23; 9] could explain the
success of our procedure despite the nonlinearity of the underlying transformers.

E. Proof of Theorem D.2

Proof. For the lower bound, note that by Jensen’s inequality,

n 2
U BiAV

i=1

n
S NUTBAV [fo >

i=1

)

Fro

for any U, V. Hence,
2

Uﬁi&&v

=1

n
sup Z U B;AiV |3, > sup
U,V ESt(k,d) = U,VeSt(k,d)

(18)

Fro

By the definition of singular value decomposition, the right hand side of (18) is maximized with U, V' being the top r
singular vectors of Y. | B;A;, yielding |[UT Y27 | BiAiVHIQJ‘ro =7 _, 52, Recalling that ¥; = U " B; A;V yields the
lower bound.

For the upper bound, recall that 32; = U " B; A;V. Rearranging,
vec(X;) = (VI @ U)vec(B;A;).

Define
¥ = [vec(X1),. .., vec(B,)]-

By our previous simplification, -
S=(V'e@U")L.

3 A result for isotropic Gaussian LoRAs could be obtained via the quantiles of the Marchenko-Pastur Law.

12

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Tabte

—Maim Evatuation Tasks

Task Number Name Type Domain
task280 stereoset_classification_stereotype_type classification stereoset
task190 snli_classification snli image captions
task391 causal_relationship commonsense cause and effect
task290 tellmewhy_question_answerability answerability story
task1391 winogrande_easy_answer_generation commonsense social and physical
task1342 amazon_us_reviews_title title generation amazon reviews
task442 com_qa_paraphrase_question_generation question generation wikipedia
task620 ohsumed_medical_subject_headings_answer_generation keyword tagging scientific
task1598 nyc_long_text_generation data to text restaurants
task039 qasc_find_overlapping_words overlap extraction natural science
Now

Y IZillE = I8l = tr (V@ U)(V @ U))(ELLT))
=1

Since U, V are orthogonal and size d x r, the top 2 eigenvalues of the symmetric matrix (V @ U)(V ® U) T will be equal
to 1, and the rest will equal 0. The eigenvalues of the symmetric matrix LL " will be equal to the squared singular values of
L. We can then apply the Von Neumann trace inequality to obtain the upper bound.

The last statement follows from the Pythagorean theorem and the fact that the 3; is a projection of B; A; to the U,V
subspace. O

Note that we have only used the fact that the matrix (V' ® U) has singular values equal to 1; we have not used the fact that it
has Kronecker product structure. On the other hand, each vector vec(B; 4;) is a sum of r; Kronecker products and cannot
be expressed as a Kronecker product. As a result, while the upper bound in the Von Neumann trace inequality is achieved if
the eigenvectors of the two matrices align, the Kronecker product structure is a severe constraint and the upper bound we
have provided is generous.

F. Training LoRAs

We trained LoRA adapters on 500 natural instruction tasks [27] using Mistral-7B-Instruct—-v0.2 [10] as the base
model. All LoRA adapters were configured with a rank of 16, i.e., Vi, r; = 16. We selected 10 diverse tasks manually for
consistent evaluation across experiments and randomly sampled an additional 490 tasks, resulting in a total of 500 tasks.
These tasks were exclusively in English (both input and output), ensuring higher quality and thorough review [27]. Each
task dataset was divided into training, validation, and test sets (80-10-10). Hyperparameters, such as early stopping, were
tuned using the validation sets; that is, we train for five epochs and take the best-performing epoch-checkpoint per validation
loss. Evaluation on the test sets demonstrated that LORA consistently outperformed the base model in terms of both Rouge
scores and loss metrics (see Table 1).

We use Huggingface [29] in our implementation. For the base model, we use quantization with configuration:

BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_qgquant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloatlé,
)

and LoRA configuration:

LoraConfig(
r=16,

13

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

lora_alpha=32,

target_modules=["g_proj", "k_proj", "v_proj"l,
lora_dropout=0.05,

bias="none",

task_type="CAUSAL_LM",
init_lora_weights=init_lora_weights,

G. Joint Diagonalization Details

We normalize each LoRA adapter to have a Frobenius norm of one prior to running joint diagonalization. This normalization
enhances performance and reduces the variance in reconstruction error. We restore the original norms of the LoRA adapters
before reconstruction and testing.

H. Avoiding Batched Matrix Multiplication (BMM)

In the envisioned deployment scenario, a service provider hosts a large collection of LoRAs. Upon receiving a request, each
user specifies both the input data and the desired LoRA identifier. The provider then processes the base model augmented
with the specified LoRA for each user’s data. As a provider is batching a collection of requests for GPU parallelization, they
can expect to frequently have more than one unique LoRA identifier per batch.

Traditionally, a specific LoRA is integrated into the base model by transforming Wy — Wy + B; A;. Serving multiple LoRAs
conventionally would necessitate maintaining and executing a separate copy of the base model for each LoRA, bringing
substantial computational overhead. Alternatively, the computation for Wy and B; A;x can be performed independently and
subsequently merged. This strategy necessitates only a single instance of Wx computation and storage of LoRA-specific
parameters rather than the entire base model.

Consider the batch processing of BAx, where boldface indicates that B;, A; are stacked into tensors of dimensions

(b x m x r)and (b x r x n) respectively, with batched data x shaped (b x | x n):

Ax < (bxrxn)x (bxlxn)— (bx1xr) bmm
B(Ax) < (bxmxr)x (bxIxr)— (bxIxm) bmm.

Here, “bmm” denotes batched matrix multiplication, a known bottleneck in both throughput and latency. Consider the
corresponding operations for our joint compression scheme, UXV T 2:
VIix e (Fxn)x (bx1lxn)— (bx1x7) broadcasted
S(VTx) ¢ (bx7) x (bx1x7) = (bx1x7) broadcasted

UEVx) ¢ (mx7) x (bx1x7)— (bx1xm) broadcasted

In our optimized setup, batched matrix multiplications can be completely circumvented if the >; matrices are diagonal. If
not, given that ¥ < m, n, any required batched matrix multiplication remains computationally inexpensive.

1. Additional Results

This section elaborates on the results that underpin the figures presented in the main text and showcases a consistent
correlation across various evaluation metrics. Additionally, we assess the significance of achieving convergence and the
performance of compression on new unseen LoRA models. Note that compression rate here corresponds to the parameter
saved ratio used in the main part of the paper.

I.1. Relative Rouge-L Performance and Compression Rate

Table 3 presents comprehensive results from the experiments underlying Figure 2b for each evaluation task. Additionally,
we incorporate results using the Ties-merging benchmark [32], which consolidates all LoR A-adapters into a single adapter
of identical configuration and parameter count; this integration significantly compromises performance.

14

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Compression
| | task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 | |

base 0.26 £000 | 0.02 =000 | 0.19 £000 | 0.42 +000 | 0.11 £000 | 0.47 000 | 0.11 000 | 0.23 £000 | 0.19 £0.00 | 0.77 £000 | 0.28 021 0.00

‘ lora ‘ 1.00 +0.00 ‘ 1.00 +0.00 ‘ 1.00 +0.00 | 1.00 +0.00 ‘ 1.00 +0.00 ‘ 1.00 + 0.00 ‘ 1.00 +0.00 ‘ 1.00 =+ 0.00 ‘ 1.00 +0.00 ‘ 1.00 =+ 0.00 ‘ 1.00 +0.00 ‘ 0.00

10 0.81 £000 | 0.57 002 | 0.45 004 | 0.10 £001 | 0.83 £0.01 | 0.47 £0.00 | 0.69 £0.01 | 0.57 £0.00 | 0.82 +0.01 | 0.85 +0.00 | 0.62 +023 0.00

50 0.59 £000 | 0.41 000 | 0.18 £005 | 0.03 001 | 0.91 £001 | 0.31 £000 | 0.65 000 | 0.62 000 | 0.32 004 | 0.84 £000 | 0.48 +028 0.00

TIES 100 0.55 £000 | 0.40 000 | 0.20 £005 | 0.01 £002 | 0.88 £0.00 | 0.33 £000 | 0.64 +0.00 | 0.57 £002 | 0.01 000 | 0.82 +£000 | 0.44 +030 0.00
500 0.37 £000 | 0.26 000 | 0.01 £000 | 0.00 £000 | 0.83 £0.00 | 0.29 £0.00 | 0.57 £0.00 | 0.37 £0.00 | 0.01 £0.00 | 0.43 £ 000 | 0.31 =026 0.00

SVD 2 0.98 £003 | 1.07 002 | 1.00 000 | 1.00 000 | 1.00 000 | 0.98 001 | 1.00 001 | 1.00 £0.10 | 1.00 001 | 1.00 £001 | 1.00 +0.04 0.88

SVD SVD 4 0.99 £004 | 1.04 001 | 1.00 000 | 1.00 000 | 1.00 £001 | 1.00 £000 | 0.99 £0.02 | 0.99 £008 | 0.99 001 | 1.00 £001 | 1.00 +003 0.75
SVD 8 1.00 + 000 | 1.02 £001 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.01 £000 | 1.00 £001 | 1.01 £0.01 | 1.01 £0.00 | 1.00 +0.01 0.50

SVD 16 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.00 +0.00 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 +0.00 | 1.00 =000 0.00

16D 1.02 £001 | 1.01 001 | 1.00 000 | 1.00 001 | 0.99 000 | 0.96 £000 | 1.02 002 | 1.13 003 | 0.99 002 | 0.98 001 | 1.01 £005 1.00

32D 1.01 001 | 1.05 £001 | 1.00 £000 | 0.99 £000 | 1.01 £001 | 0.99 000 | 0.97 £001 | 1.05 +003 | 1.00 £001 | 1.00 £ 001 | 1.00 +0.03 1.00

10 diagonal (D) 64D 1.00 £ 000 | 1.03 +001 | 1.00 000 | 1.00 £000 | 1.00 £0.00 | 1.00 000 | 1.01 £001 | 0.99 +001 | 1.01 000 | 1.01 £000 | 1.00 +0.01 1.00
128D 1.00 £000 | 1.01 001 | 1.00 000 | 1.00 £000 | 1.00 £0.00 | 1.00 £000 | 1.01 £0.01 | 0.99 £001 | 1.00 000 | 1.00 +0.00 | 1.00 001 1.00

256 D 1.00 £ 0.00 | 1.00 +0.00 | 1.00 +0.00 | 1.00 +0.00 | 1.00 000 | 1.00 000 | 1.00 +000 | 1.00 +000 | 1.00 £000 | 1.00 £000 | 1.00 + 000 1.00

16 F 1.02 £000 | 1.06 001 | 1.00 000 | 1.00 £000 | 0.99 001 | 0.98 £000 | 1.01 002 | 1.07 £000 | 1.01 001 | 1.00 000 | 1.01 003 1.00

32F 1.02 001 | 1.04 £001 | 1.00 000 | 1.00 000 | 1.00 £000 | 0.99 £0.00 | 0.96 £001 | 1.00 002 | 1.00 £001 | 1.01 £000 | 1.00 +0.02 0.99

10 full (F) 64 F 1.00 £ 000 | 1.03 +001 | 1.00 £000 | 1.00 000 | 1.00 £000 | 1.00 000 | 1.01 £001 | 0.98 +001 | 1.01 000 | 1.01 £000 | 1.00 +0.01 0.97
128 F 1.00 £000 | 1.01 001 | 1.00 000 | 1.00 000 | 1.00 £0.00 | 1.00 £000 | 1.00 £0.00 | 0.99 £000 | 1.00 000 | 1.00 +0.00 | 1.00 =000 0.88

256 F 1.00 +0.00 | 1.00 +0.00 | 1.00 +0.00 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.00 +000 | 1.00 £000 | 1.00 +0.00 0.50

16 D 0.98 £004 | 0.98 £001 | 1.00 £000 | 0.92 £006 | 0.84 £0.07 | 0.92 £0.02 | 0.68 £0.05 | 0.87 £0.10 | 0.88 +0.07 | 0.83 +0.02 | 0.89 +0.10 1.00

32D 1.00 £002 | 1.02 002 | 1.00 £000 | 0.99 £000 | 0.96 +0.01 | 0.95£002 | 0.84 002 | 1.00 013 | 0.98 001 | 0.88 +0.01 | 0.96 007 1.00

50 diagonal (D) 64D 1.02 +000 | 1.05 002 | 1.00 £000 | 1.00 £0.00 | 0.99 001 | 0.97 000 | 0.99 +001 | 1.09 £003 | 1.01 £001 | 0.90 £0.01 | 1.00 +0.05 1.00
128D 1.01 o001 | 1.08 £001 | 1.00 £000 | 1.00 £000 | 0.99 £001 | 0.98 £000 | 0.98 £001 | 1.11 £003 | 1.00 £000 | 1.00 £0.01 | 1.01 +0.04 1.00

256 D 1.01 £o001 | 1.03 001 | 1.00 000 | 1.00 £000 | 1.00 £0.01 | 1.00 £000 | 0.97 003 | 1.01 £003 | 1.00 001 | 1.01 001 | 1.00 002 1.00

16 F 0.99 004 | 1.00 £001 | 1.00 £001 | 0.96 £001 | 0.95+£002 | 0.94 £0.01 | 0.64 £0.00 | 1.01 £ 0.5 | 0.97 +0.02 | 0.87 +0.00 | 0.93 +0.12 1.00

32F 1.02 £000 | 1.00 002 | 1.00 000 | 1.00 £000 | 0.98 +0.01 | 0.96 £000 | 0.95 +001 | 1.09 +002 | 1.01 002 | 0.89 001 | 0.99 +005 0.99

50 full (F) 64 F 1.02 +001 | 1.06 £002 | 1.00 £000 | 1.00 £0.00 | 0.99 001 | 0.98 001 | 1.03 £001 | 1.11 000 | 1.00 £001 | 0.98 +0.02 | 1.02 £0.04 0.97
128 F 1.02 000 | 1.06 +001 | 1.00 £000 | 1.00 £000 | 1.00 £001 | 0.98 £000 | 0.98 £001 | 1.03 £004 | 1.00 £001 | 1.00 £000 | 1.01 +0.03 0.88

256 F 1.00 £000 | 1.02 000 | 1.00 000 | 1.00 £000 | 1.00 £0.00 | 0.99 £000 | 1.01 001 | 1.00 000 | 1.01 000 | 1.01 000 | 1.00 001 0.50

16D 0.80 £0.07 | 0.89 =006 | 0.93 £003 | 0.96 001 | 0.50 £009 | 0.78 001 | 0.28 £0.07 | 0.52 010 | 0.78 £0.03 | 0.81 £002 | 0.72 022 1.00

32D 0.95 +006 | 0.98 £001 | 1.00 £000 | 0.91 £006 | 0.80 £0.14 | 0.89 £0.06 | 0.60 £0.10 | 0.77 £ 026 | 0.91 +0.02 | 0.83 +0.02 | 0.86 +0.14 1.00

100 diagonal (D) 64D 1.01 £003 | 1.01 £001 | 1.00 £000 | 0.98 £0.02 | 0.96 +001 | 0.94 001 | 0.88 £005 | 1.11 +0.08 | 0.96 002 | 0.87 +0.03 | 0.97 +0.07 1.00
128 D 1.01 £000 | 1.02 001 | 1.00 000 | 1.00 £000 | 0.99 001 | 0.97 £000 | 1.00 £003 | 1.11 £002 | 0.99 001 | 0.89 £0.02 | 1.00 +005 1.00

256 D 1.00 000 | 1.06 +000 | 1.00 £000 | 1.00 £000 | 0.99 £000 | 0.98 £000 | 1.00 £001 | 1.11 £003 | 1.00 £001 | 0.98 £0.01 | 1.01 +£0.04 1.00

16 F 0.95 £001 | 0.97 003 | 0.97 £003 | 0.97 003 | 0.93 £001 | 0.92 001 | 0.64 +003 | 0.89 £0.16 | 0.87 £0.02 | 0.83 £001 | 0.89 011 1.00

32F 1.00 002 | 0.99 £001 | 1.00 000 | 1.00 £000 | 0.97 001 | 0.95 +000 | 0.86 £003 | 1.12 +003 | 0.96 £001 | 0.87 000 | 0.97 +0.07 0.99

100 full (F) 64 F 1.02 £ 000 | 1.00 +0.02 | 1.00 000 | 1.00 000 | 0.98 £000 | 0.96 000 | 0.99 +001 | 1.09 +001 | 0.99 +002 | 0.89 £0.00 | 0.99 +0.05 0.97
128 F 1.01 £001 | 1.05 =001 | 1.00 000 | 0.99 £000 | 1.00 £0.00 | 0.98 £000 | 1.03 001 | 1.10 £001 | 1.01 000 | 0.99 001 | 1.02 £004 0.88

256 F 1.01 £ 001 | 1.03 001 | 1.00 £000 | 1.00 000 | 1.01 000 | 0.99 000 | 0.98 +000 | 1.00 +003 | 1.01 £000 | 1.01 £000 | 1.00 +0.01 0.50

16 D 0.57 £007 | 0.53 £003 | 0.83 £004 | 0.78 £0.16 | 0.85 £0.04 | 0.68 £0.07 | 0.24 £0.01 | 0.43 £0.01 | 0.76 +0.06 | 0.79 +0.01 | 0.65 +0.20 1.00

32D 0.61 £012 | 0.52 007 | 0.83 £002 | 0.84 012 | 0.91 £002 | 0.71 £005 | 0.29 005 | 0.47 £008 | 0.79 £0.04 | 0.79 £001 | 0.68 020 1.00

500 diagonal (D) 64D 0.73 +002 | 0.59 011 | 0.89 004 | 0.97 +0.00 | 0.94 +0.00 | 0.83 +005 | 0.45 +0.09 | 0.50 £0.07 | 0.82 +002 | 0.80 +002 | 0.75 018 1.00
128D 0.84 £000 | 0.91 £003 | 0.97 £003 | 0.98 £001 | 0.94 £000 | 0.88 £0.02 | 0.60 £0.15 | 0.53 £0.01 | 0.85 £ 005 | 0.80 +0.02 | 0.83 +0.15 1.00

256 D 0.99 £003 | 0.99 =001 | 1.00 000 | 1.00 000 | 0.96 £000 | 0.92 £003 | 0.66 +0.06 | 0.84 £0.14 | 0.92 £0.02 | 0.84 £001 | 0.91 o011 1.00

16 F 0.57 £001 | 0.41 £005 | 0.78 £001 | 0.97 £000 | 0.96 £0.00 | 0.83 £0.01 | 0.64 £000 | 0.53 £0.03 | 0.83 +0.01 | 0.83 +0.00 | 0.74 +0.18 1.00

32F 0.79 £005 | 0.56 =004 | 0.93 £002 | 0.98 000 | 0.97 £000 | 0.90 001 | 0.69 001 | 0.50 £000 | 0.86 002 | 0.83 £001 | 0.80 +0.16 0.99

500 full (F) 64 F 1.02 £0.00 | 0.96 +001 | 0.94 +001 | 1.00 001 | 0.96 000 | 0.97 001 | 0.73 £001 | 0.54 +001 | 0.91 001 | 0.86 000 | 0.89 +0.14 0.97
128 F 1.03 001 | 0.97 £002 | 0.99 £000 | 1.00 £000 | 0.98 £000 | 0.96 £000 | 0.87 £001 | 1.07 £002 | 0.98 £0.00 | 0.87 £0.00 | 0.97 +0.06 0.88

256 F 1.03 £000 | 1.02 001 | 1.00 000 | 1.00 £000 | 0.99 001 | 0.97 £001 | 0.99 002 | 1.03 +001 | 1.00 001 | 0.87 +0.00 | 0.99 +005 0.50

Table 3. Relative In-Distribution ROUGE-L scores for various tasks and methods

I.2. Absolute Rouge-L Performance and Compression Rate

Table 4 provides the full results behind Table 3, but with Rouge-L scores instead of relative performance compared to LoRA.

L.3. Relative Rouge-1 Performance and Compression Rate

Table 5 provides full results for relative performance of Rouge-1, which shows the same trends as the results for relative
performance of Rouge-L (Table 3).

L4. Absolute Rouge-1 Performance and Compression Rate

Table 6 provides full results for absolute performance of Rouge-1, which shows the same trends as the results for absolute
performance of Rouge-L (Table 4).

15

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Compression
‘ ‘ task039 ‘ task190 ‘ task280 ‘ task290 ‘ task391 ‘ task442 ‘ task620 ‘ task1342 ‘ task1391 ‘ task1598 ‘ ‘
base 24.44 +0.00 1.60 000 | 19.13 £000 | 39.22 +000 | 10.27 000 | 3546 £000 | 7.85 +0.00 6.22 £000 | 17.82+000 | 38.87 £000 | 20.09 + 1332 0.00
lora 95.00 £000 | 86.00 +£0.00 | 99.00 000 | 93.67 £000 | 94.33 000 | 74.88 £000 | 74.40 £000 | 26.68 +000 | 95.00 +000 | 50.32 £ 000 | 78.93 + 2248 0.00
SVD 2 93.15£277 | 91.98 £1.99 | 99.09 +0.18 | 93.44 +014 | 93.89 +035 | 73.74 £051 | 7455 +£098 | 26.80 279 | 95.06 +135 | 50.21 £ 044 | 79.19 + 2264 0.88
SVD SVD 4 94.01 £360 | 89.15+071 | 99.05 £0.09 | 93.65 £003 | 94.66 063 | 74.89 £033 | 73.61 £1.15 | 26.34 +213 | 93.98 1077 | 50.47 £ 054 | 78.98 +22.60 0.75
SVD 8 95.00 £000 | 87.37 £057 | 99.05 £0.09 | 93.65 +003 | 94.36 038 | 74.58 £012 | 75.07 £000 | 26.71 £027 | 95.51 +1.09 | 50.89 +007 | 81.07 +21.64 0.50
SVD 16 95.00 £000 | 86.00 +£0.00 | 99.00 000 | 93.67 000 | 94.33 000 | 74.90 £003 | 7423 £018 | 26.68 £000 | 95.00 £000 | 50.30 £ 002 | 78.36 +2297 0.00
16D 96.67 058 | 87.00 £1.00 | 99.00 000 | 94.00 067 | 93.11 £038 | 72.08 006 | 76.26 £1.19 | 30.11 £079 | 94.00 £1.73 | 49.30 £046 | 79.15 + 2218 1.00
32D 95.67 058 | 90.00 £1.00 | 99.00 000 | 93.00 £033 | 94.89 051 | 73.86 031 | 71.92 £084 | 27.89 £070 | 94.67 £058 | 50.36 £026 | 79.13 £2275 1.00
10 diagonal (D) 64D 95.00 £000 | 88.33 +058 | 99.00 000 | 93.67 +0.00 94,78 +£038 | 74.61 £0.13 | 74.97 +058 | 26.35 025 | 96.00 000 | 50.99 + 006 | 79.37 + 2294 1.00
128D 95.00 £000 | 86.67 058 | 99.00 £0.00 | 93.67 £000 | 94.33 1000 | 74.92 £013 | 74.96 £051 | 26.45 +023 | 95.00 000 | 50.21 £ 012 | 79.02 + 22584 1.00
256D 95.00 £000 | 86.00 +£0.00 | 99.00 000 | 93.67 000 | 94.33 000 | 74.88 £000 | 74.40 £0.00 | 26.68 £000 | 95.00 £ 000 | 50.27 £ 002 | 78.92 + 2277 1.00
16 F 97.00 £000 | 91.00 +1.00 | 99.00 000 | 93.56 £019 | 93.56 069 | 73.60 £036 | 74.94 +125 | 28.66 +003 | 96.00 +1.00 | 50.15 +020 | 79.75 +2272 1.00
32F 96.67 £058 | 89.33 £058 | 99.00 £000 | 93.22 £019 | 9444 1019 | 7411 £019 | 71.74 £059 | 26.74 £050 | 94.67 £058 | 50.63 £024 | 79.06 2301 0.99
10 full (F) 64 F 95.00 £0.00 | 88.67 £0.58 | 99.00 +0.00 | 93.67 +0.00 94.56 +038 | 74.56 £0.13 | 7547 +058 | 26.26 +034 | 96.00 000 | 50.89 +0.17 | 79.41 + 2297 0.97
128 F 95.00 £000 | 86.67 058 | 99.00 000 | 93.67 £000 | 94.33 £ 000 | 75.04 £003 | 74.40 000 | 26.53 £013 | 95.00 £000 | 50.36 £0.03 | 79.00 + 22381 0.88
256 F 95.00 £000 | 86.00 +0.00 | 99.00 +000 | 93.67 000 | 94.33 000 | 74.90 £003 | 7429 +0.19 | 26.68 +000 | 95.00 +000 | 50.30 +003 | 78.92 + 2277 0.50
16 D 92.76 £353 | 84.67 £1.15 | 99.00 £ 000 | 86.17 £581 | 79.68 +621 | 69.07 £1.54 | 50.65 +£397 | 23.27 +:260 | 83.90 +:643 | 41.86 +096 | 71.10 +23.99 1.00
32D 95.33 £208 | 87.33 £208 | 99.00 £000 | 92.60 £029 | 90.32 £ 104 | 71.16 £147 | 62.51 164 | 26.60 £354 | 93.33 £ 115 | 44.35 £041 | 76.25 £ 2381 1.00
50 diagonal (D) 64D 97.00 £0.00 | 90.33 £1.53 | 99.00 +0.00 | 93.78 +0.19 93.00 £058 | 72.37 £035 | 73.39 £093 | 29.06 +080 | 95.67 058 | 4543 +034 | 78.90 +23.29 1.00
128D 96.33 £058 | 92.67 058 | 99.00 000 | 93.56 £019 | 93.00 £058 | 73.32 £024 | 73.03 £1.09 | 29.51 £093 | 95.00 £000 | 50.16 £0.74 | 79.56 + 2251 1.00
256 D 95.67 £058 | 88.33 £058 | 99.00 £000 | 93.56 £019 | 94.67 067 | 74.82 £024 | 72.36 £207 | 26.90 075 | 95.33 £ 058 | 50.73 £ 046 | 79.14 £ 2290 1.00
16 F 94.06 £354 | 85.67 £1.15 | 98.67 £ 058 | 90.35 +137 | 89.90 £ 191 | 70.32 £066 | 47.62 £728 | 26.88 +396 | 92.33 £ 153 | 43.68 £ 024 | 73.95 £ 2473 1.00
32F 97.00 £000 | 85.67 153 | 99.00 000 | 93.67 £000 | 92.22 4069 | 71.88 £030 | 71.01 £1.02 | 29.07 +065 | 95.67 + 153 | 44.97 £ 041 | 78.02 +23.18 0.99
50 full (F) 64 F 96.67 058 | 91.00 £200 | 99.00 +0.00 | 93.56 +0.19 93.22 +051 | 73.16 041 | 76.28 +051 | 29.67 +0.12 | 9533 +058 | 49.31 +1.00 | 79.72 + 2250 0.97
128 F 97.00 £000 | 91.00 +1.00 | 99.00 +000 | 93.33 000 | 94.11 +051 | 73.51 £023 | 73.17 058 | 27.53 112 | 95.00 + 100 | 50.56 +006 | 79.42 + 2293 0.88
256 F 95.00 £000 | 88.00 +0.00 | 99.00 +000 | 93.67 000 | 94.44 +019 | 74.25 £021 | 7497 058 | 26.79 009 | 96.00 +000 | 50.86 +0.19 | 79.30 + 2252 0.50
16 D 7643 £707 | 76.67 £493 | 91.61 275 | 89.99 £ 107 | 47.55 +856 | 58.08 £0.72 | 20.77 +£550 | 13.90 279 | 73.93 +:313 | 40.74 £ 085 | 58.97 + 26583 1.00
32D 90.10 £585 | 84.00 £1.00 | 99.00 000 | 85.52 +534 | 75.69 £1275 | 66.62 £4.18 | 44.66 £7.26 | 20.49 +707 | 86.67 + 186 | 42.01 £094 | 69.48 +25.14 1.00
100 diagonal (D) 64D 95.56 +£249 | 86.67 £0.58 | 99.00 £0.00 | 92.24 + 168 90.89 £1.17 | 70.35 +045 | 65.62 +403 | 29.58 +202 | 91.67 +231 | 43.64 +136 | 76.52 +23.02 1.00
128D 96.00 £000 | 87.33 +1.15 | 99.00 000 | 93.89 £019 | 93.00 +058 | 72.70 £030 | 74.34 £207 | 29.66 +054 | 93.67 +058 | 44.82 £ 089 | 78.44 + 2287 1.00
256D 95.00 £000 | 91.00 +0.00 | 99.00 +000 | 93.56 +019 | 93.11 +0.19 | 73.05 £020 | 74.52 +095 | 29.67 +067 | 95.33 +058 | 49.42 +065 | 79.37 + 2238 1.00
16 F 90.70 £1.07 | 83.00 £265 | 96.00 +£3.00 | 91.22 £294 | 87.94 £ 054 | 68.72 £105 | 47.57 +25¢ | 23.75 +433 | 82.33 +208 | 41.51 £ 067 | 71.27 £ 2423 1.00
32F 95.33 £1.53 | 85.00 +1.00 | 99.00 000 | 93.50 £022 | 91.44 +084 | 70.94 £002 | 63.64 198 | 29.82 £081 | 91.67 +058 | 43.94 £018 | 76.43 £ 2301 0.99
100 full (F) 64 F 97.00 000 | 85.67 +1.53 | 99.00 000 | 93.78 0.9 | 92.56 +0.19 | 72.11 +008 | 73.29 064 | 29.15 +024 | 9433 £153 | 44.97 +005 | 78.18 +23.03 0.97
128 F 96.33 058 | 90.33 +058 | 99.00 +000 | 93.00 000 | 93.89 +0.19 | 73.11 £036 | 76.50 +1.01 | 29.45 +035 | 96.00 000 | 49.81 +034 | 79.74 + 2247 0.88
256 F 96.33 £058 | 88.67 +058 | 99.00 +000 | 93.67 000 | 94.89 +0.19 | 7440 £o016 | 72.90 +0.12 | 26.77 068 | 96.00 000 | 50.83 £ 009 | 79.35 +23.04 0.50
16D 54.44 £687 | 46.00 £265 | 8221 +£359 | 73.38 + 1497 | 80.08 £371 | 51.02 £531 | 17.49 £ 110 | 11.58 £ 021 | 72.67 +603 | 39.65 £ 028 | 52.85 + 2459 1.00
32D 58.08 £1152 | 45.00 £608 | 82.06 £ 169 | 78.62 £ 1123 | 85.57 £148 | 5298 +381 | 21.73 £395 | 12.53 +226 | 75.33 +4.04 | 39.78 042 | 55.17 +25.18 1.00
500 diagonal (D) 64D 69.21 £203 | 50.67 +9.29 | 88.33 404 | 91.11 +038 | 88.78 038 | 62.36 +352 | 33.36 +669 | 13.34 £1.86 | 77.67 +231 | 40.42 +098 | 61.53 +25.83 1.00
128D 79.77 037 | 78.00 £300 | 95.89 +283 | 91.89 +139 | 88.67 +000 | 6592 +179 | 44.98 £ 1098 | 14.14 +0.19 | 81.00 +500 | 40.34 + 050 | 68.06 +2592 1.00
256D 93.83 £252 | 8533 058 | 99.00 +000 | 93.78 £019 | 90.56 +038 | 68.95 £192 | 49.39 +436 | 22.33 +378 | 87.33 231 | 42.15 +073 | 73.27 £ 2560 1.00
16 F 5430 £1.13 | 35.67 +462 | 77.67 058 | 91.00 £000 | 90.56 +0.19 | 62.47 £079 | 47.56 +029 | 14.18 £067 | 79.00 £ 1.00 | 41.58 £023 | 59.40 + 2451 1.00
32F 7510 +£492 | 48.00 £361 | 91.67 £1.53 | 91.56 +0.19 | 91.56 +038 | 67.37 +083 | S51.17 o081 | 13.44 +002 | 81.67 +153 | 41.92 +042 | 6534 +2534 0.99
500 full (F) 64 F 96.94 +o042 | 82.67 +058 | 9333 +058 | 93.89 +069 | 90.67 £000 | 72.30 +071 | 54.63 £079 | 14.49 +027 | 86.33 +058 | 43.16 £ 008 | 72.84 + 2625 0.97
128 F 97.67 058 | 83.67 +153 | 98.00 £0.00 | 93.56 019 | 92.00 000 | 71.92 £019 | 65.02 +0s1 | 28.49 +055 | 93.00 000 | 43.85 +0.12 | 76.72 +£2339 0.88
256 F 98.00 £000 | 88.00 +£1.00 | 99.00 +0.00 | 93.78 019 | 93.00 o088 | 7245 +038 | 73.77 +121 | 27.59 039 | 95.33 +058 | 43.81 017 | 78.47 £ 2380 0.50

Table 4. Absolute In-Distribution ROUGE-L scores for various tasks and methods

L.5. Relative Exact-Match Performance and Compression Rate

Table 7 provides full results for relative performance of exact-match, which shows the same trends as the results for relative
performance of Rouge-L (Table 3).

L.6. Absolute Exact-Match Performance and Compression Rate

Table 8 provides full results for absolute performance of exact-match, which shows the same trends as the results for absolute
performance of Rouge-L (Table 4).

L7. Loss and Compression Rate

Table 9 provides full results for test loss (cross-entropy), which shows the same trends as the results for relative performance
of Rouge-L (Table 3).

I.8. Agreement and Compression Rate

Table 10 provides full results for agreement, which shows the same trends as the results for relative performance of Rouge-L
(Table 3). Note that agreement measures the exact match in task generations between the uncompressed LoRA model and
the compressed LoRA model, rather than comparing to the task’s ground truth data. The comparison is very strict and
requires an exact match between the generations of the two models (LoRA and the compressed LoRA), comparing each

16

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Compression
| | task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 | |

base 0.26 £000 | 0.02 000 | 0.19 £000 | 0.42 +000 | 0.11 £000 | 0.51 £000 | 0.11 £0.00 | 0.26 £000 | 0.19 000 | 0.80 £000 | 0.29 022 0.00

‘ lora ‘ 1.00 +0.00 ‘ 1.00 +0.00 ‘ 1.00 +0.00 | 1.00 +0.00 ‘ 1.00 +0.00 | 1.00 +0.00 ‘ 1.00 +0.00 ‘ 1.00 =+ 0.00 ‘ 1.00 +0.00 ‘ 1.00 =+ 0.00 ‘ 1.00 +0.00 ‘ 0.00

SVD 2 0.98 £003 | 1.07 £002 | 1.00 £000 | 1.00 £000 | 1.00 £0.00 | 0.99 £0.00 | 1.01 001 | 1.00 £0.00 | 1.00 £0.01 | 0.99 +0.01 | 1.00 +0.04 0.88

SVD SVD 4 0.99 £004 | 1.04 =001 | 1.00 000 | 1.00 000 | 1.00 £001 | 1.00 £000 | 0.99 001 | 0.99 £008 | 0.99 001 | 1.01 £000 | 1.00 +0.03 0.75
SVD 8 1.00 000 | 1.02 £001 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 000 | 1.01 £000 | 1.00 £0.01 | 1.01 £001 | 1.01 000 | 1.00 +o0.01 0.50

SVD 16 1.00 + 000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £0.00 | 1.00 £000 | 1.00 £0.00 | 1.00 +0.00 0.00

16D 1.02 £001 | 1.01 001 | 1.00 £000 | 1.00 £001 | 0.99 000 | 0.97 £000 | 1.03 002 | 1.12 003 | 0.99 002 | 0.99 000 | 1.01 £004 1.00

32D 1.01 001 | 1.05 £001 | 1.00 £0.00 | 0.99 £000 | 1.01 001 | 0.99 000 | 0.97 001 | 1.04 003 | 1.00 £001 | 1.01 001 | 1.01 002 1.00

10 diagonal (D) 64D 1.00 +0.00 | 1.03 001 | 1.00 £000 | 1.00 £000 | 1.00 +000 | 1.00 000 | 1.01 £001 | 0.99 +o.01 | 1.01 £000 | 1.01 000 | 1.00 +o0.01 1.00
128D 1.00 £000 | 1.01 001 | 1.00 000 | 1.00 £000 | 1.00 +0.00 | 1.00 £000 | 1.01 001 | 0.99 £001 | 1.00 000 | 1.00 +000 | 1.00 001 1.00

256 D 1.00 000 | 1.00 £000 | 1.00 £0.00 | 1.00 000 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.00 £0.00 | 1.00 £000 | 1.00 000 | 1.00 +0.00 1.00

16 F 1.02 000 | 1.06 001 | 1.00 £000 | 1.00 £000 | 0.99 £001 | 0.99 £000 | 1.01 £002 | 1.07 £000 | 1.01 £001 | 1.00 £000 | 1.02 £0.03 1.00

32F 1.02 £001 | 1.04 001 | 1.00 000 | 1.00 £000 | 1.00 £0.00 | 0.99 £000 | 0.96 001 | 1.00 002 | 1.00 001 | 1.01 £0.00 | 1.00 +002 0.99

10 full (F) 64 F 1.00 £ 000 | 1.03 £001 | 1.00 £000 | 1.00 £000 | 1.00 £0.00 | 1.00 £000 | 1.01 £001 | 0.98 £ 001 | 1.01 000 | 1.01 £000 | 1.00 +0.01 0.97
128 F 1.00 £000 | 1.01 001 | 1.00 000 | 1.00 £000 | 1.00 000 | 1.00 000 | 1.00 000 | 0.99 +000 | 1.00 000 | 1.00 +0.00 | 1.00 000 0.88

256 F 1.00 000 | 1.00 £000 | 1.00 £0.00 | 1.00 +000 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.00 £0.00 | 1.00 £000 | 1.00 000 | 1.00 +0.00 0.50

16 D 0.98 £004 | 0.98 001 | 1.00 +£000 | 0.92 +006 | 0.85+006 | 0.94 £002 | 0.69 005 | 0.88 £0.10 | 0.88 007 | 0.86 £001 | 0.90 +0.10 1.00

32D 1.00 002 | 1.02 £002 | 1.00 £000 | 0.99 £000 | 0.96 £001 | 0.96 £002 | 0.85 002 | 1.00 £0.12 | 0.98 £0.01 | 0.90 £0.00 | 0.97 +0.06 1.00

50 diagonal (D) 64D 1.02 000 | 1.05 +002 | 1.00 £000 | 1.00 £000 | 0.99 +001 | 0.97 001 | 0.99 001 | 1.09 £003 | 1.01 £001 | 0.94 000 | 1.01 £0.04 1.00
128D 1.01 001 | 1.08 001 | 1.00 £0.00 | 1.00 000 | 0.99 +001 | 0.98 000 | 0.98 +002 | 1.10 +003 | 1.00 +000 | 1.01 £001 | 1.02 004 1.00

256 D 1.01 o001 | 1.03 £001 | 1.00 £000 | 1.00 £000 | 1.00 £001 | 1.00 £000 | 0.97 £003 | 1.00 £003 | 1.00 £001 | 1.01 £0.00 | 1.00 +0.02 1.00

16 F 0.99 £004 | 1.00 001 | 1.00 £001 | 0.96 001 | 0.95+002 | 0.95 001 | 0.65 +009 | 1.01 £015 | 0.97 002 | 0.88 +0.01 | 0.94 £0.11 1.00

32F 1.02 000 | 1.00 £002 | 1.00 £000 | 1.00 £000 | 0.98 £001 | 0.97 £000 | 0.96 £001 | 1.09 £003 | 1.01 £002 | 0.93 £0.00 | 0.99 +0.04 0.99

50 full (F) 64 F 1.02 001 | 1.06 £0.02 | 1.00 £0.00 | 1.00 +000 | 0.99 +001 | 0.98 000 | 1.03 001 | 1.11 £000 | 1.00 +001 | 0.99 001 | 1.02 +0.04 0.97
128 F 1.02 000 | 1.06 £001 | 1.00 000 | 1.00 000 | 1.00 001 | 0.98 +000 | 0.98 £001 | 1.03 004 | 1.00 £001 | 1.01 £000 | 1.01 +0.02 0.88

256 F 1.00 000 | 1.02 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 0.99 £000 | 1.01 £001 | 1.00 £000 | 1.01 £000 | 1.01 £0.00 | 1.00 +0.01 0.50

16D 0.80 £0.07 | 0.89 006 | 0.93 £003 | 0.96 001 | 0.51 £009 | 0.81 002 | 0.30 +0.07 | 0.54 011 | 0.78 £0.03 | 0.83 £002 | 0.73 021 1.00

32D 0.95 £006 | 0.98 001 | 1.00 000 | 0.91 006 | 0.80 £0.13 | 0.91 £005 | 0.62 0.0 | 0.78 025 | 0.91 £0.02 | 0.85 £001 | 0.87 0.4 1.00

100 diagonal (D) 64D 1.01 £ 003 | 1.01 £001 | 1.00 £000 | 0.98 +002 | 0.96 +001 | 0.95 001 | 0.90 £0.05 | 1.11 £007 | 0.96 +002 | 0.88 +0.02 | 0.98 +0.07 1.00
128 D 1.01 000 | 1.02 001 | 1.00 000 | 1.00 £000 | 0.99 001 | 0.98 £000 | 1.00 003 | 1.11 £002 | 0.99 001 | 0.92 000 | 1.00 £ 005 1.00

256 D 1.00 000 | 1.06 £000 | 1.00 £0.00 | 1.00 £000 | 0.99 000 | 0.98 +000 | 1.00 £001 | 1.11 £003 | 1.00 £001 | 0.99 002 | 1.01 +0.04 1.00

16 F 0.95 £001 | 0.97 003 | 097 £003 | 0.97 003 | 0.93 £001 | 0.93 001 | 0.66 003 | 0.90 £0.16 | 0.87 002 | 0.85 £001 | 0.90 +0.10 1.00

32F 1.00 £0.02 | 0.99 001 | 1.00 000 | 1.00 £000 | 0.97 001 | 0.96 000 | 0.87 003 | 1.12 003 | 0.96 001 | 0.89 £0.00 | 0.98 007 0.99

100 full (F) 64 F 1.02 + 000 | 1.00 002 | 1.00 £0.00 | 1.00 000 | 0.98 +000 | 0.97 000 | 0.99 £0.01 | 1.10 £001 | 0.99 +002 | 0.93 001 | 1.00 +0.04 0.97
128 F 1.01 o001 | 1.05 001 | 1.00 000 | 0.99 £000 | 1.00 000 | 0.98 £000 | 1.03 001 | 1.10 £001 | 1.01 000 | 1.00 000 | 1.02 +003 0.88

256 F 1.01 001 | 1.03 £001 | 1.00 £0.00 | 1.00 £000 | 1.01 000 | 1.00 000 | 0.98 000 | 1.00 £0.03 | 1.01 £000 | 1.01 £0.00 | 1.00 +0.01 0.50

16 D 0.57 £007 | 0.53 £003 | 0.83 £004 | 0.78 0.6 | 0.85 £004 | 0.73 £007 | 0.24 £0.02 | 0.45 £001 | 0.76 006 | 0.81 £000 | 0.66 +020 1.00

32D 0.61 £012 | 0.52 007 | 0.83 £002 | 0.84 012 | 0.91 £002 | 0.75 005 | 0.30 +0.05 | 0.49 £007 | 0.79 004 | 0.82 001 | 0.69 +020 1.00

500 diagonal (D) 64D 0.73 +002 | 0.59 =011 | 0.89 004 | 0.97 £0.00 | 0.94 £000 | 0.86 +003 | 0.46 +0.09 | 0.51 £0.07 | 0.82 £002 | 0.83 +001 | 0.76 0.8 1.00
128D 0.84 +£000 | 0.91 £003 | 0.97 £003 | 0.98 £001 | 0.94 £000 | 0.90 £0.02 | 0.62 +0.14 | 0.54 £0.01 | 0.85 +0.05 | 0.83 001 | 0.84 +0.15 1.00

256 D 0.99 £003 | 0.99 001 | 1.00 000 | 1.00 000 | 0.96 000 | 0.93 002 | 0.68 005 | 0.85£0.14 | 0.92 002 | 0.85 000 | 0.92 011 1.00

16 F 0.57 £001 | 0.41 005 | 0.78 £001 | 0.97 000 | 0.96 £000 | 0.86 £001 | 0.65 000 | 0.55 002 | 0.83 001 | 0.84 £000 | 0.74 £ 0.8 1.00

32F 0.79 £005 | 0.56 £004 | 0.93 £002 | 0.98 £000 | 0.97 £0.00 | 0.92 £000 | 0.70 £0.01 | 0.52 £0.00 | 0.86 +0.02 | 0.85 +0.00 | 0.81 +0.16 0.99

500 full (F) 64 F 1.02 000 | 0.96 001 | 0.94 £001 | 1.00 £001 | 0.96 +000 | 0.97 001 | 0.74 001 | 0.55 001 | 0.91 +001 | 0.87 000 | 0.89 +0.14 0.97
128 F 1.03 001 | 0.97 £002 | 0.99 000 | 1.00 £000 | 0.98 £000 | 0.97 000 | 0.88 £001 | 1.07 002 | 0.98 £000 | 0.90 000 | 0.98 +0.05 0.88

256 F 1.03 000 | 1.02 £001 | 1.00 £000 | 1.00 £000 | 0.99 £001 | 0.97 £000 | 1.00 £002 | 1.04 £002 | 1.00 £001 | 0.93 £0.00 | 1.00 +0.03 0.50

Table 5. Relative In-Distribution ROUGE-1 scores for various tasks and methods

sample one at a time.

L.9. Reconstruction Error and Compression Rate

Table 11 provides the full results of the experiments behind Figure 3 for every evaluation task.

L.10. Performance of Compressing Unseen/New LoRAs

Table 12 provides results for JD-full, where we project new unseen LoRAs into the shared basis. Our findings indicate
that while compressing a new LoRA within the original space improves upon the baseline, it can degrades performance
compared to uncompressed LoRAs

I.11. Convergence

Table 13 presents outcomes where the JD-Full algorithm is executed until convergence. Our convergence criterion is defined
as follows:

max (|Ups1 — UsU} Upst [[5vo/ | U1 [Fros Vi1 — ViV, Vi [livo /| Vit lrvo) < 7 (19)

17

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Compression
‘ ‘ task039 ‘ task190 ‘ task280 ‘ task290 ‘ task391 ‘ task442 ‘ task620 ‘ task1342 ‘ task1391 ‘ task1598 ‘ ‘
base 24.44 +0.00 1.60 000 | 19.13 £000 | 39.22 +000 | 10.42 +000 | 39.88 £000 | 8.05+0.00 6.96 £000 | 17.82+000 | 55.03 £000 | 22.26 + 1653 0.00
lora 95.00 £000 | 86.00 +0.00 | 99.00 000 | 93.67 £000 | 94.33 000 | 78.43 £o000 | 74.90 £000 | 26.87 £000 | 95.00 £ 000 | 68.66 +000 | 81.19 +2059 0.00
SVD 2 93.15£277 | 91.98 £1.99 | 99.09 +0.18 | 93.44 +014 | 93.89 +035 | 77.33 £029 | 7540 £1.01 | 26.90 +268 | 95.06 +135 | 67.71 +049 | 81.40 +2078 0.88
SVD SVD 4 94.01 £360 | 89.15+071 | 99.05 £0.09 | 93.65 £003 | 94.66 063 | 78.42 £023 | 74.09 £1.12 | 26.47 +206 | 93.98 077 | 69.37 +021 | 81.28 +2072 0.75
SVD 8 95.00 £000 | 87.37 £057 | 99.05 £0.09 | 93.65 +003 | 94.36 038 | 78.21 £003 | 75.57 £000 | 26.88 £027 | 95.51 +1.09 | 69.33 +008 | 83.06 +19.77 0.50
SVD 16 95.00 £000 | 86.00 +£0.00 | 99.00 000 | 93.67 000 | 94.33 000 | 78.44 £003 | 74.73 o018 | 26.87 £000 | 95.00 £000 | 68.62 £0.04 | 80.76 +21.05 0.00
16D 96.67 058 | 87.00 £1.00 | 99.00 000 | 94.00 067 | 93.11 £038 | 76.08 £0.17 | 77.26 £1.47 | 30.15 £072 | 94.00 £1.73 | 68.25 £018 | 81.55 +2003 1.00
32D 95.67 058 | 90.00 £1.00 | 99.00 000 | 93.00 £033 | 94.89 £051 | 77.46 024 | 7253 £1.00 | 27.98 £071 | 94.67 £058 | 69.16 £041 | 81.44 +2080 1.00
10 diagonal (D) 64D 95.00 £0.00 | 88.33 £0.58 | 99.00 £0.00 | 93.67 +0.00 94,78 £ 038 | 78.28 £0.07 | 7547 +058 | 26.53 +025 | 96.00 000 | 69.36 005 | 81.64 +21.06 1.00
128D 95.00 £000 | 86.67 058 | 99.00 £0.00 | 93.67 £000 | 94.33 1000 | 78.45 £016 | 75.46 £051 | 26.64 £023 | 95.00 £000 | 68.70 £0.14 | 81.29 +2092 1.00
256D 95.00 £000 | 86.00 +£0.00 | 99.00 000 | 93.67 £000 | 94.33 000 | 78.43 £000 | 74.90 £000 | 26.87 £000 | 95.00 £ 000 | 68.59 +003 | 81.18 +2056 1.00
16 F 97.00 £000 | 91.00 +£1.00 | 99.00 000 | 93.56 £019 | 93.56 069 | 77.64 £025 | 7578 £125 | 28.71 £009 | 96.00 +1.00 | 68.69 008 | 82.09 + 2068 1.00
32F 96.67 £058 | 89.33 £058 | 99.00 £000 | 93.22 £019 | 94.44 1019 | 77.84 £021 | 7224 059 | 26.84 £050 | 94.67 £058 | 69.55 £008 | 81.38 L2111 0.99
10 full (F) 64 F 95.00 £0.00 | 88.67 £0.58 | 99.00 +0.00 | 93.67 +0.00 94.56 +038 | 78.19 £0.08 | 75.97 +058 | 26.43 +034 | 96.00 000 | 69.38 +0.11 | 81.69 +21.07 0.97
128 F 95.00 £000 | 86.67 058 | 99.00 000 | 93.67 £000 | 94.33 £ 000 | 78.46 £003 | 74.90 000 | 26.72 £013 | 95.00 £000 | 68.65 £0.03 | 81.24 +2091 0.88
256 F 95.00 £000 | 86.00 +0.00 | 99.00 +000 | 93.67 +000 | 9433 +000 | 78.44 £003 | 7479 +0.19 | 26.87 +000 | 95.00 +000 | 68.64 +003 | 81.17 + 2056 0.50
16 D 92.76 £353 | 84.67 £1.15 | 99.00 £ 000 | 86.17 £581 | 79.83 +608 | 73.55 £139 | 51.72 +£378 | 23.75 +266 | 83.90 +:643 | 59.05 +094 | 73.44 +2208 1.00
32D 95.33 £208 | 87.33 £208 | 99.00 £0.00 | 92.60 £029 | 90.35+100 | 7543 £133 | 63.84 £1.64 | 26.97 +321 | 93.33 £ 115 | 61.94 +032 | 78.61 +21.60 1.00
50 diagonal (D) 64D 97.00 £0.00 | 90.33 £1.53 | 99.00 +0.00 | 93.78 +0.19 93.00 £058 | 76.27 £049 | 74.39 +090 | 29.28 + 081 | 95.67 058 | 64.84 +027 | 81.36 +2083 1.00
128D 96.33 £058 | 92.67 058 | 99.00 £ 000 | 93.56 +019 | 93.00 +058 | 77.24 £019 | 73.76 £ 125 | 29.58 £093 | 95.00 £ 000 | 69.04 +054 | 81.92 + 2044 1.00
256 D 95.67 £058 | 88.33 £058 | 99.00 £000 | 93.56 £019 | 94.67 067 | 78.45 £014 | 72.86 £207 | 27.00 077 | 95.33 £ 058 | 69.61 +o0.1s | 81.45 +21.00 1.00
16 F 94.06 £354 | 85.67 £1.15 | 98.67 £ 058 | 90.35 +137 | 89.97 178 | 74.46 £o058 | 49.03 £7.07 | 27.14 £394 | 92.33 £153 | 60.26 +1.03 | 76.19 + 2280 1.00
32F 97.00 £000 | 85.67 153 | 99.00 000 | 93.67 £000 | 92.22 +069 | 75.86 £022 | 71.68 +065 | 29.26 £0.70 | 95.67 £1.53 | 63.88 £0.10 | 80.39 +£ 2081 0.99
50 full (F) 64 F 96.67 058 | 91.00 £200 | 99.00 +0.00 | 93.56 +0.19 93.22 +051 | 77.17 +038 | 77.11 +051 | 29.75 003 | 9533 +058 | 68.13 075 | 82.09 +20.33 0.97
128 F 97.00 £000 | 91.00 +1.00 | 99.00 000 | 93.33 000 | 94.11 +051 | 77.23 £017 | 73.67 058 | 27.62 + 112 | 95.00 + 100 | 69.40 +0.16 | 81.74 +2097 0.88
256 F 95.00 £000 | 88.00 +0.00 | 99.00 +000 | 93.67 000 | 94.44 £ 019 | 77.97 024 | 7547 +058 | 26.96 +009 | 96.00 +000 | 69.28 +005 | 81.58 +2092 0.50
16 D 7643 £707 | 76.67 £493 | 91.61 275 | 89.99 £ 107 | 47.89 £862 | 63.17 £131 | 2223 £527 | 14.46 +289 | 73.93 +313 | 57.17 £ 105 | 61.35 +2578 1.00
32D 90.10 £585 | 84.00 £1.00 | 99.00 000 | 85.52 +534 | 75.88 £1257 | 71.15 £361 | 46.10 £739 | 21.04 £ 676 | 86.67 + 186 | 58.64 + 102 | 71.81 +2339 1.00
100 diagonal (D) 64D 95.56 +£249 | 86.67 £0.58 | 99.00 £0.00 | 92.24 + 168 90.89 +1.17 | 74.57 +050 | 67.07 +381 | 29.78 +1.92 | 91.67 +231 | 60.28 +1.51 | 78.77 +20.77 1.00
128D 96.00 £000 | 87.33 +1.15 | 99.00 000 | 93.89 £019 | 93.00 +058 | 76.68 £018 | 74.84 £223 | 29.79 +050 | 93.67 +058 | 63.49 +034 | 80.77 +2047 1.00
256D 95.00 £000 | 91.00 +0.00 | 99.00 000 | 93.56 +019 | 93.11 +0.19 | 76.93 £023 | 75.13 +0s4 | 29.75 +073 | 95.33 +058 | 67.89 + 134 | 81.67 +2028 1.00
16 F 90.70 £1.07 | 83.00 £265 | 96.00 +£3.00 | 91.22 £294 | 87.94 £ 054 | 73.07 £093 | 49.41 204 | 24.17 +422 | 82.33 +208 | 58.18 £ 044 | 73.60 + 2223 1.00
32F 9533 £1.53 | 85.00 +1.00 | 99.00 +000 | 93.50 022 | 91.44 +084 | 75.00 £019 | 65.09 +223 | 30.20 +081 | 91.67 +058 | 60.92 +026 | 78.72 +2072 0.99
100 full (F) 64 F 97.00 000 | 85.67 +1.53 | 99.00 000 | 93.78 0.9 | 92.56 +0.19 | 76.01 £0.13 | 73.96 089 | 29.46 +021 | 9433 +153 | 64.07 +037 | 80.58 +2059 0.97
128 F 96.33 £058 | 90.33 +058 | 99.00 +000 | 93.00 £000 | 93.89 +0.19 | 77.04 £o030 | 77.33 £101 | 29.49 £035 | 96.00 £000 | 68.76 £025 | 82.12 +£2035 0.88
256 F 96.33 £058 | 88.67 +058 | 99.00 £000 | 93.67 000 | 94.89 +0.19 | 78.16 +0.18 | 73.40 £0.12 | 26.86 068 | 96.00 £000 | 69.47 £023 | 81.64 +2115 0.50
16D 54.44 £687 | 46.00 £265 | 8221 +£359 | 73.38 + 1497 | 80.13 £368 | 57.42 £529 | 1833 £133 | 12.19 £ 030 | 72.67 £603 | 55.79 £ 020 | 55.26 +23.92 1.00
32D 58.08 £1152 | 45.00 608 | 82.06 £ 169 | 78.62 £ 1123 | 85.57 £148 | 59.19 +£370 | 22.76 £395 | 13.15 +1.94 | 7533 +404 | 56.07 +052 | 57.58 +2433 1.00
500 diagonal (D) 64D 69.21 £203 | 50.67 +9.29 | 88.33 404 | 91.11 +038 | 88.78 038 | 67.71 +259 | 34.79 +686 | 13.80 £1.95 | 77.67 £231 | 56.78 +0.73 | 63.89 +24.67 1.00
128D 79.77 037 | 78.00 £300 | 95.89 +283 | 91.89 +139 | 88.67 +000 | 70.27 +1.73 | 46.64 + 1058 | 14.63 +025 | 81.00 +5.00 | 56.88 +055 | 70.36 +24.21 1.00
256D 93.83 £252 | 8533 058 | 99.00 +000 | 93.78 019 | 90.56 +038 | 73.25 +186 | 51.14 +386 | 22.93 +386 | 87.33 231 | 58.48 £ 020 | 75.56 +2356 1.00
16 F 5430 £1.13 | 35.67 +462 | 77.67 058 | 91.00 000 | 90.56 +0.19 | 67.63 £045 | 48.81 +035 | 14.70 065 | 79.00 + 100 | 57.66 +0.19 | 61.70 + 2368 1.00
32F 75.10 +£492 | 48.00 £361 | 91.67 £1.53 | 91.56 +0.19 | 91.56 +038 | 72.03 +0.15 | 52.63 +086 | 13.93 +0.02 | 81.67 +153 | 58.50 +020 | 67.66 +24.07 0.99
500 full (F) 64 F 96.94 +o042 | 82.67 058 | 93.33 +058 | 93.89 +069 | 90.67 £000 | 75.99 +064 | 55.63 £1.07 | 14.74 +027 | 86.33 +058 | 59.43 £ 005 | 74.96 +24.62 0.97
128 F 97.67 058 | 83.67 +153 | 98.00 £0.00 | 93.56 £019 | 92.00 000 | 75.80 £0.16 | 66.19 081 | 28.67 049 | 93.00 £000 | 61.53 £0.13 | 79.01 £ 2115 0.88
256 F 98.00 £0.00 | 88.00 £1.00 | 99.00 000 | 93.78 £o.19 | 93.00 £088 | 76.33 £029 | 74.60 £121 | 27.82 £042 | 9533 £058 | 63.70 £0.14 | 80.96 +2126 0.50

Table 6. Absolute In-Distribution ROUGE-1 scores for various tasks and methods

where the tolerance threshold 7 is set to 0.001. Due to the slow per-iteration computation times of the primary JD-Full
algorithm, which quickly reaches an approximate optimum but then has a long tail of convergence for final digits of precision,
we devised an alternative eigenvalue iteration algorithm (Appendix C.2) optimized for GPU acceleration. Our analysis
indicates that adherence to this convergence criterion does not significantly alter the results.

L.12. Out-of-distribution Performance (LoRA-hub)

For completeness, we incorporate results using the protocol of LoRA-hub [9]. That is, 100 LoRA-adapters are sampled,
independent of the evaluation task, representing a measure of out-of-distribution performance. This also means that each
result on a task is averaged across all 100 LoRA-adapters (as there is no a priori LoRA-to-task mapping). These results were
obtained without normalizing the LoR A-adapters before applying the JD algorithms, a step we later identified as beneficial.
We present performance comparison in Table 15. Table 14 presents the average agreement between uncompressed and
compressed LoRA across 10 evaluation tasks. Results per task for JD-diagonal and JD-full are shown in Table 16 and Table
17, respectively.

From these tables, we find that the JD algorithms successfully maintain performance in this out-of-distribution context.

18

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Compression
| | task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 | |

base 0.00 £0.00 | 0.00 =000 | 0.02+000 | 0.00 000 | 0.00£000 | 0.00 000 | 0.00+0.00 | 0.00 £000 | 0.00 0.00 | 0.00 000 | 0.00 +0.01 0.00

‘ lora ‘ 1.00 +0.00 ‘ 1.00 + 0.00 ‘ 1.00 +0.00 | 1.00 +0.00 ‘ 1.00 +0.00 ‘ 1.00 + 0.00 ‘ 1.00 +0.00 ‘ 1.00 +0.00 ‘ 1.00 + 0.00 ‘ 1.00 +0.00 ‘ 1.00 + 0.00 ‘ 0.00

SVD 2 0.98 £003 | 1.07 £002 | 1.00 £000 | 0.99 £001 | 0.98 £0.01 | 0.98 £0.03 | 0.94 £001 | 1.03 £0.17 | 1.00 001 | 0.15+029 | 0.91 +028 0.88

SVD SVD 4 0.99 £004 | 1.04 001 | 1.00 000 | 1.00 000 | 1.0I £002 | 1.11 £000 | 0.97 £0.02 | 0.99 £013 | 0.99 001 | 0.90 £017 | 1.00 +0.08 0.75
SVD 8 1.00 000 | 1.02 £001 | 1.00 £0.00 | 1.00 000 | 1.00 001 | 1.02 +005 | 1.00 £000 | 1.00 000 | 1.01 £001 | 1.00 000 | 1.00 +0.02 0.50

SVD 16 1.00 + 000 | 1.00 +000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 0.99 £001 | 1.00 £000 | 1.00 £000 | 1.00 +£0.00 | 1.00 +0.00 0.00

16 D 1.02 + 001 | 1.01 £001 | 1.00 £000 | 1.01 £002 | 0.96 £001 | 1.11 £o0.11 | 0.89 £003 | 1.19 £004 | 0.99 £002 | 0.33 £058 | 0.95 £027 1.00

32D 1.01 £001 | 1.05 =001 | 1.00 000 | 0.98 001 | 1.02+002 | 1.11 £000 | 0.93 001 | 1.10 £004 | 1.00 001 | 0.67 058 | 0.98 £0.19 1.00

10 diagonal (D) 64D 1.00 +0.00 | 1.03 +001 | 1.00 +000 | 1.00 000 | 1.02 001 | 1.11 +000 | 0.99 +001 | 1.00 000 | 1.0l 000 | 0.67 +0.58 | 0.98 +0.19 1.00
128D 1.00 000 | 1.01 £001 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £001 | 1.00 £000 | 1.00 £000 | 1.00 £0.00 | 1.00 +0.00 1.00

256 D 1.00 £0.00 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.00 £0.00 | 1.00 £000 | 1.00 000 | 1.00 +000 | 1.00 000 | 1.00 +0.00 | 1.00 =000 1.00

16 F 1.02 000 | 1.06 001 | 1.00 £000 | 1.00 £001 | 0.97 £003 | 1.15 006 | 0.92 £002 | 1.17 £004 | 1.0l £001 | 0.67 £058 | 1.00 020 1.00

32F 1.02 £001 | 1.04 001 | 1.00 £000 | 0.98 001 | 1.00 001 | 1.11 000 | 0.92 001 | 1.02 004 | 1.00 001 | 1.00 000 | 1.01 005 0.99

10 full (F) 64 F 1.00 £0.00 | 1.03 +001 | 1.00 +000 | 1.00 000 | 1.01 001 | 1.07 £006 | 1.01 £001 | 1.00 000 | 1.01 000 | 1.00 £0.00 | 1.01 +0.03 0.97
128 F 1.00 000 | 1.01 001 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £000 | 1.00 £0.00 | 1.00 +0.00 0.88

256 F 1.00 £0.00 | 1.00 000 | 1.00 000 | 1.00 £000 | 1.00 £0.00 | 1.00 £000 | 1.00 001 | 1.00 +000 | 1.00 000 | 1.00 +0.00 | 1.00 =000 0.50

16 D 0.91 £006 | 0.98 001 | 1.00 £000 | 0.91 009 | 0.78 £005 | 0.89 £029 | 0.34 +0.06 | 0.50 £045 | 0.86 007 | 0.00 £000 | 0.72 +035 1.00

32D 1.00 002 | 1.02 £002 | 1.00 £000 | 1.00 £001 | 0.90 £003 | 0.85 +042 | 0.56 £004 | 0.98 £023 | 0.98 £0.01 | 0.00 £000 | 0.83 +£034 1.00

50 diagonal (D) 64D 1.02 000 | 1.05 +002 | 1.00 £000 | 1.00 +001 | 0.95 +002 | 1.15+017 | 0.81 £0.03 | 1.14 £000 | 1.01 £001 | 0.00 000 | 0.91 +0.33 1.00
128D 1.01 001 | 1.08 £001 | 1.00 000 | 1.00 £001 | 0.95 +002 | 1.04 £006 | 0.92 £003 | 1.21 007 | 1.00 £000 | 0.67 058 | 0.99 +0.20 1.00

256D 1.01 o001 | 1.03 £001 | 1.00 £000 | 1.00 £001 | 1.01 £002 | 1.11 £000 | 0.95 £004 | 1.02 £004 | 1.00 £001 | 1.00 £000 | 1.01 +0.04 1.00

16 F 0.96 £005 | 1.00 =001 | 1.00 £001 | 0.95+004 | 0.87 £001 | 1.04 £006 | 0.31 £0.08 | 0.98 £023 | 0.97 £0.02 | 0.00 £000 | 0.81 +035 1.00

32F 1.02 000 | 1.00 £002 | 1.00 £000 | 1.00 £000 | 0.92 £003 | 1.15 006 | 0.73 £004 | 1.17 £004 | 1.01 £0.02 | 0.00 £0.00 | 0.90 +033 0.99

50 full (F) 64 F 1.02 001 | 1.06 002 | 1.00 £000 | 1.00 +001 | 0.96 +002 | 1.22 000 | 0.94 001 | 1.17 £004 | 1.00 001 | 0.00 000 | 0.94 +0.33 0.97
128 F 1.02 000 | 1.06 £001 | 1.00 £0.00 | 0.99 £000 | 0.99 002 | 1.15+006 | 0.92 £001 | 1.10 008 | 1.00 £001 | 1.00 000 | 1.02 +0.07 0.88

256 F 1.00 000 | 1.02 £000 | 1.00 £000 | 1.00 £000 | 1.00 £001 | 1.04 £006 | 0.99 £000 | 1.00 £000 | 1.01 £000 | 1.00 £000 | 1.01 +0.02 0.50

16D 0.54 £016 | 0.89 £006 | 0.90 £004 | 0.89 £005 | 0.42 £0.08 | 0.44 £0.00 | 0.08 £0.02 | 0.00 £0.00 | 0.76 +0.05 | 0.00 +0.00 | 0.49 =036 1.00

32D 0.85 £015 | 0.98 =001 | 1.00 000 | 0.86 013 | 0.70 £0.14 | 0.74 028 | 0.28 £0.07 | 0.48 £055 | 0.91 002 | 0.00 £000 | 0.68 +036 1.00

100 diagonal (D) 64D 1.00 +0.04 | 1.01 £001 | 1.00 £000 | 0.98 £0.02 | 0.88 £004 | 1.07 £0.06 | 0.58 £009 | 1.10 004 | 0.96 £002 | 0.00 £ 000 | 0.86 +0.32 1.00
128D 1.01 000 | 1.02 £001 | 1.00 £000 | 1.01 £001 | 0.95 +002 | 1.11 £000 | 0.81 £006 | 1.21 £0.00 | 0.99 £0.01 | 0.00 £000 | 0.91 £033 1.00

256 D 1.00 £000 | 1.06 000 | 1.00 £000 | 1.00 £001 | 0.96 001 | 1.11 011 | 0.92 002 | 1.21 £007 | 1.00 001 | 0.00 £0.00 | 0.93 £033 1.00

16 F 0.85 +£003 | 0.97 £003 | 0.97 £003 | 0.95 £006 | 0.80 £0.02 | 0.81 £0.17 | 0.29 £0.04 | 0.60 £034 | 0.87 £0.02 | 0.00 +0.00 | 0.71 + 033 1.00

32F 0.99 £002 | 0.99 =001 | 1.00 000 | 1.00 001 | 0.90 £003 | 1.04 £006 | 0.55 004 | 1.07 £007 | 0.96 001 | 0.00 £000 | 0.85 +032 0.99

100 full (F) 64 F 1.02 +0.00 | 1.00 002 | 1.00 000 | 1.00 +001 | 0.94 001 | 1.04 £006 | 0.78 001 | 1.14 +000 | 0.99 £002 | 0.00 £000 | 0.89 031 0.97
128 F 1.01 o001 | 1.05 001 | 1.00 £000 | 0.98 £000 | 0.98 £o01 | 1.15 006 | 0.94 £001 | 1.21 £000 | 1.01 £000 | 0.33 £058 | 0.97 £o028 0.88

256 F 1.01 £001 | 1.03 001 | 1.00 000 | 1.00 £000 | 1.02 001 | 1.19 £006 | 0.93 001 | 1.02 004 | 1.01 000 | 1.00 000 | 1.02 +006 0.50

16 D 0.22 £010 | 0.53 003 | 0.81 £005 | 0.33 £049 | 0.70 £0.03 | 0.15 £017 | 0.03 001 | 0.00 £000 | 0.76 £0.06 | 0.00 £000 | 0.35 +034 1.00

32D 0.27 £0a18 | 0.52 £007 | 0.82 £002 | 0.49 £037 | 0.75 £0.01 | 0.22 £0.11 | 0.05 £0.05 | 0.02 £0.04 | 0.79 +0.04 | 0.00 +0.00 | 0.39 +033 1.00

500 diagonal (D) 64D 0.40 +004 | 0.59 =011 | 0.89 004 | 0.91 £0.01 | 0.80 £001 | 0.48 +006 | 0.13 +0.04 | 0.05+0.08 | 0.82 £002 | 0.00 +000 | 0.51 +034 1.00
128D 0.61 £004 | 0.91 003 | 0.97 £003 | 0.93 005 | 0.80 £000 | 0.74 £017 | 0.22 +011 | 0.12 £008 | 0.85 005 | 0.00 £000 | 0.61 +036 1.00

256D 0.95 002 | 0.99 001 | 1.00 £000 | 1.00 £001 | 0.86 £0.01 | 0.85 £028 | 0.28 £0.06 | 0.55 £039 | 0.92 +0.02 | 0.00 £0.00 | 0.74 + 036 1.00

16 F 0.21 £002 | 0.41 005 | 0.78 £001 | 0.90 000 | 0.86 £001 | 0.59 £006 | 0.21 001 | 0.12 £004 | 0.83 £0.01 | 0.00 £000 | 0.49 +033 1.00

32F 0.54 £008 | 0.56 £004 | 0.93 £002 | 0.92 £001 | 0.90 £0.01 | 0.63 £0.13 | 0.26 £0.02 | 0.14 £0.00 | 0.86 +0.02 | 0.00 +0.00 | 0.57 +033 0.99

500 full (F) 64 F 0.99 +003 | 0.96 =001 | 0.94 001 | 1.01 £003 | 0.87 £000 | 1.04 +0.17 | 0.36 +0.00 | 0.14 +0.00 | 0.91 £0.01 | 0.00 +000 | 0.72 +038 0.97
128 F 1.02 001 | 097 £002 | 0.99 000 | 1.00 £001 | 0.92 +000 | 1.15+006 | 0.61 001 | 1.07 £0.00 | 0.98 £000 | 0.00 000 | 0.87 033 0.88

256 F 1.03 000 | 1.02 £001 | 1.00 £000 | 1.00 £001 | 0.95 003 | 1.00 £000 | 0.78 £0.01 | 1.07 £0.00 | 1.00 £0.01 | 0.00 £0.00 | 0.89 +031 0.50

Table 7. Relative In-Distribution exact match scores for various tasks and methods

19

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Compression
‘ ‘ task039 ‘ task190 ‘ task280 ‘ task290 ‘ task391 ‘ task442 ‘ task620 ‘ task1342 ‘ task1391 ‘ task1598 ‘
base 0.00 + 0.00 0.00 000 | 2.00 +0.00 0.00 + 0.00 0.00 +0.00 0.00 £000 | 0.00 £000 | 0.00+000 | 0.00+£000 | 0.00+000 | 0.20 060 0.00
lora 95.00 000 | 86.00 £0.00 | 99.00 £000 | 81.00 000 | 83.00 £000 | 9.00 £000 | 69.00 000 | 14.00 £000 | 95.00 £0.00 | 1.00 000 | 63.20 £3730 0.00
SVD 2 93.09 +288 | 91.98 £1.99 | 99.09 £018 | 80.32 042 | 81.68 £105 | 8.83£030 | 65.14 £056 | 14.36 £244 | 95.06 £1.35 | 0.15 £ 029 | 62.97 £3757 0.88
SVD SVD 4 93.94 £373 | 89.15 071 | 99.05 £009 | 80.95 009 | 83.97 189 | 10.00 000 | 66.68 £ 1.11 | 13.83 £176 | 93.98 £077 | 0.90 £0.17 | 63.24 £3728 0.75
SVD 8 95.00 £000 | 87.37 £057 | 99.05 £009 | 80.96 008 | 83.09 £1.13 | 9.22 £044 | 69.00 000 | 14.00 £000 | 95.51 109 | 1.00 £000 | 66.69 =36.13 0.50
SVD 16 95.00 000 | 86.00 +0.00 | 99.00 £000 | 81.00 000 | 83.00 000 | 9.00 £000 | 68.50 055 | 14.00 000 | 95.00 £000 | 1.00 000 | 61.68 +35.02 0.00
16D 96.67 058 | 87.00 £1.00 | 99.00 £000 | 82.00 £200 | 79.33 115 | 10.00 100 | 61.33 £208 | 16.67 058 | 94.00 £1.73 | 0.33 058 | 62.63 £3736 1.00
32D 95.67 058 | 90.00 £1.00 | 99.00 £000 | 79.00 £1.00 | 84.67 153 | 10.00 000 | 64.00 £1.00 | 15.33 £058 | 94.67 058 | 0.67 £058 | 63.30 £37.77 1.00
10 diagonal (D) 64D 95.00 +000 | 88.33 +058 | 99.00 +0.00 | 81.00 + 0.00 84.33 +1.15 | 10.00 +0.00 | 68.33 +058 | 14.00 +0.00 | 96.00 000 | 0.67 +058 | 63.67 +37.99 1.00
128D 95.00 000 | 86.67 +0.58 | 99.00 000 | 81.00 =000 | 83.00 000 | 9.00 £000 | 69.33 +058 | 14.00 000 | 95.00 £000 | 1.00 000 | 63.30 £37.52 1.00
256D 95.00 £000 | 86.00 £0.00 | 99.00 £000 | 81.00 000 | 83.00 000 | 9.00 £000 | 69.00 000 | 14.00 £000 | 95.00 £000 | 1.00 £000 | 63.20 +37.77 1.00
16 F 97.00 000 | 91.00 £1.00 | 99.00 £000 | 80.67 058 | 80.67 +208 | 10.33 £ 058 | 63.33 £1.53 | 16.33 058 | 96.00 £1.00 | 0.67 058 | 63.50 £37.77 1.00
32F 96.67 058 | 89.33 +0s8 | 99.00 £000 | 79.67 o058 | 83.33 +oss | 10.00 000 | 63.33 £058 | 14.33 +058 | 94.67 +o0s8 | 1.00 £0.00 | 63.13 £37.84 0.99
10 full (F) 64 F 95.00 +000 | 88.67 £058 | 99.00 +0.00 | 81.00 000 | 83.67 +1.15 9.67 +058 | 69.67 058 | 14.00 £0.00 | 96.00 £0.00 | 1.00 000 | 63.77 +37.99 0.97
128 F 95.00 000 | 86.67 058 | 99.00 £000 | 81.00 000 | 83.00 £000 | 9.00 £000 | 69.00 000 | 14.00 £000 | 95.00 £000 | 1.00 000 | 63.27 £37.82 0.88
256 F 95.00 000 | 86.00 +0.00 | 99.00 £000 | 81.00 000 | 83.00 000 | 9.00 000 | 68.67 +058 | 14.00 000 | 95.00 £000 | 1.00 £0.00 | 63.17 £37.77 0.50
16 D 86.33 £6.11 | 84.67 115 | 99.00 +000 | 73.67 £7.37 | 64.33 £404 | 8.00 £265 | 23.67 £404 | 7.00 £624 | 82.00 656 | 0.00 £000 | 52.87 +37.48 1.00
32D 95.33 £208 | 87.33 £208 | 99.00 +000 | 80.67 £1.15 | 7433 £208 | 7.67 £379 | 38.33 £306 | 13.67 £321 | 93.33 115 | 0.00 £000 | 58.97 +3838 1.00
50 diagonal (D) 64D 97.00 +000 | 90.33 £153 | 99.00 000 | 81.33 058 | 79.00 +1.73 | 10.33 +1.53 | 56.00 +1.73 | 16.00 £ 0.00 | 95.67 +058 | 0.00 £000 | 62.47 +37.87 1.00
128 D 96.33 £0ss | 92.67 £058 | 99.00 £000 | 80.67 058 | 79.00 £1.73 | 9.33 £o058 | 63.67 £208 | 17.00 £1.00 | 95.00 £000 | 0.67 £058 | 63.33 £37.74 1.00
256 D 95.67 058 | 88.33 £058 | 99.00 £000 | 80.67 058 | 84.00 200 | 10.00 000 | 65.67 £252 | 14.33 £ 058 | 95.33 £058 | 1.00 £0.00 | 63.40 +£37.84 1.00
16 F 91.67 +503 | 85.67 +1.15 | 98.67 +o058 | 77.33 +289 | 7233 +115 | 933 £o0s8 | 21.33 £586 | 13.67 +£321 | 92.33 £1.53 | 0.00 £0.00 | 56.23 + 3857 1.00
32F 97.00 000 | 85.67 £153 | 99.00 +000 | 81.00 £000 | 76.67 £208 | 10.33 £o058 16.33 058 | 95.67 £153 | 0.00 000 | 61.20 +£37.52 0.99
50 full (F) 64 F 96.67 +058 | 91.00 £200 | 99.00 000 | 80.67 +0.58 79.67 +1.53 | 11.00 £0.00 | 64.6 .58 | 16.33 +058 | 95.33 £058 | 0.00 £000 | 63.43 +37.65 0.97
128 F 97.00 000 | 91.00 +1.00 | 99.00 £000 | 80.00 000 | 82.33 £153 | 10.33 o058 | 63.67 x058 | 15.33 £ 115 | 95.00 £1.00 | 1.00 000 | 63.47 +£37.50 0.88
256 F 95.00 000 | 88.00 £0.00 | 99.00 £000 | 81.00 000 | 83.33 £os58 | 9.33 £o058 | 68.00 000 | 14.00 £000 | 96.00 000 | 1.00 £000 | 63.47 +3795 0.50
16D 51.33 £1504 | 76.67 493 | 89.33 £379 | 72.33 £404 | 3500700 | 400000 | 567 15 | 0.00+£000 | 72.33 £451 | 0.00 000 | 40.67 £35.13 1.00
32D 80.67 1464 | 84.00 £1.00 | 99.00 £000 | 70.00 £ 1054 | 58.33 £ 1124 | 6.67 £252 | 1933 £451 | 6.67 £764 | 86.00£1.73 | 0.00 £0.00 | 51.07 £37.79 1.00
100 diagonal (D) 64D 94.67 404 | 86.67 +0.58 | 99.00 £000 | 79.00 £173 | 72.67 +351 9.67 058 | 40.00 624 | 15.33 +058 | 91.67 £231 | 0.00 +0.00 | 58.87 +£37.41 1.00
128 D 96.00 £000 | 87.33 £1.15 | 99.00 £000 | 81.67 058 | 79.00 £1.73 | 10.00 000 | 55.67 £4.16 | 17.00 £000 | 93.67 058 | 0.00 £000 | 61.93 +3733 1.00
256 D 95.00 000 | 91.00 +0.00 | 99.00 000 | 80.67 o058 | 79.33 058 | 10.00 100 | 63.33 £1.15 | 17.00 £ 100 | 95.33 £058 | 0.00 £0.00 | 63.07 £3754 1.00
16 F 81.00 £265 | 83.00 265 | 96.00 +3.00 | 77.33 462 | 66.67 +1.53 | 7.33 £153 | 20.00 £300 | 833 +473 | 82.33 +208 | 0.00 £000 | 52.20 +36.95 1.00
32F 9433 £153 | 85.00 £1.00 | 99.00 £000 | 81.33 xo058 | 74.33 £252 | 9.33 £os58 | 38.00 £265 | 15.00 £1.00 | 91.67 058 | 0.00 £000 | 58.80 +37.59 0.99
100 full (F) 64 F 97.00 +000 | 85.67 +1.53 | 99.00 +0.00 | 81.33 +058 77.67 +0.58 9.33 +058 | 54.00 +1.00 | 16.00 £000 | 94.33 +1.53 | 0.00 000 | 61.43 +3753 0.97
128 F 96.33 £058 | 90.33 £058 | 99.00 £000 | 79.00 000 | 81.67 o058 | 10.33 o058 | 64.67 x058 | 17.00 000 | 96.00 £000 | 0.33 058 | 63.47 £37.60 0.88
256 F 96.33 £ 058 | 88.67 £058 | 99.00 £000 | 81.00 000 | 84.67 £os8 | 10.67 o058 | 64.33 o058 | 14.33 £058 | 96.00 £000 | 1.00 £000 | 63.60 +37.92 0.50
16 D 20.67 981 | 46.00 £265 | 80.67 £493 | 26.33 +£39.55 | 58.00 +£265 1.33+153 | 200+100 | 0.00+000 | 72.67 603 | 0.00 000 | 30.77 £ 3230 1.00
32D 25.67 1674 | 45.00 £ 608 | 81.67 +208 | 39.67 2970 | 62.00 +1.00 | 2.00 + 1.00 3.33 +321 0.33 +058 | 75.33 £404 | 0.00 000 | 33.50 +3226 1.00
500 diagonal (D) 64D 38.00 £346 | 50.67 +£9.29 | 88.33 +404 | 7333 £1.15 | 6633 +1.15 | 4.33 +058 8.67 +289 0.67 +1.15 | 77.67 +231 | 0.00 £000 | 40.80 +33.98 1.00
128D 57.67 £379 | 78.00 £3.00 | 95.67 £321 | 75.67 416 | 66.00 £000 | 6.67 £153 | 1533 £737 | 1.67 £115 | 81.00 £500 | 0.00 000 | 47.77 £3633 1.00
256 D 90.67 208 | 8533 +058 | 99.00 000 | 81.33 o058 | 71.67 115 | 7.67 252 | 1933 £404 | 7.67 £551 | 87.33 £231 | 0.00 £0.00 | 55.00 £3935 1.00
16 F 19.67 £208 | 35.67 462 | 77.67 058 | 73.00 000 | 71.67 058 | 533 o058 | 1433 058 | 1.67 £058 | 79.00 £1.00 | 0.00 000 | 37.80 +3274 1.00
32F 51.67 +751 | 48.00 £361 | 91.67 £153 | 74.67 058 | 74.67 £115 | 567 £115 | 17.6 a5 | 2.00+£000 | 81.67 £1.53 | 0.00 £0.00 | 44.77 +3457 0.99
500 full (F) 64 F 94.00 +265 | 82.67 +058 | 93.33 +os8 | 81.67 208 | 72.00 +000 | 9.33 153 | 25.00 000 | 2.00 +000 | 86.33 +058 | 0.00 =000 | 54.63 + 38.82 0.97
128 F 96.67 058 | 83.67 £1.53 | 98.00 £000 | 80.67 058 | 76.00 000 | 10.33 £058 | 42.00 £1.00 | 15.00 £000 | 93.00 000 | 0.00 £000 | 59.53 +37.42 0.88
256 F 98.00 +0.00 | 88.00 +£1.00 | 99.00 £000 | 81.33 058 | 79.00 265 | 9.00 £000 | 54.00 £1.00 | 15.00 £000 | 95.33 £058 | 0.00 £0.00 | 61.87 £38.12 0.50

Table 8. Absolute In-Distribution exact match scores for various tasks and methods

20

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Compression
| | task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 | |

base 8.59 £008 | 9.15+£000 | 2.55 000 | 2.88 £000 | 2.34 £0.00 | 3.46 £004 | 6.40 018 | 5.55 000 | 8.60 £000 | 2.67 £0.00 | 522 +266 0.00

‘ lora ‘ 0.36 +0.01 ‘ 0.17 £ 0.00 ‘ 0.01 000 | 0.12 + 000 ‘ 0.11 + 000 ‘ 0.76 +0.02 ‘ 1.17 007 ‘ 1.94 +0.00 ‘ 0.16 +0.00 ‘ 0.85 +0.00 ‘ 0.56 + 059 ‘ 0.00

SVD 2 0.32 001 | 0.15+000 | 0.01 £000 | 0.12 £000 | 0.10 £000 | 0.76 £0.02 | 1.13 £ 008 | 1.94 £0.00 | 0.13 £0.00 | 0.97 +0.00 | 0.56 +0.60 0.88

SVD SVD 4 0.33 £001 | 0.16 =000 | 0.01 £000 | 0.12+000 | 0.11 £000 | 0.76 002 | 1.14 008 | 1.94 £000 | 0.14 000 | 0.86 £000 | 0.56 +059 0.75
SVD 8 0.35 £001 | 0.17 000 | 0.01 £000 | 0.12+000 | 0.11 £000 | 0.77 £002 | 1.16 £0.07 | 1.94 £000 | 0.15 000 | 0.84 £000 | 0.50 +057 0.50

SVD 16 0.36 £001 | 0.17 000 | 0.01 £000 | 0.12+000 | 0.11 000 | 0.76 002 | 1.14 006 | 1.94 £000 | 0.16 000 | 0.85 £000 | 0.56 +059 0.00

16D 0.33 £001 | 0.15 =001 | 0.01 £000 | 0.12 =000 | 0.10 £000 | 0.76 £003 | 1.13 008 | 1.95 £001 | 0.14 000 | 1.00 £002 | 0.57 0561 1.00

32D 0.33 £001 | 0.16 =000 | 0.01 £000 | 0.12+000 | 0.10 £000 | 0.75 002 | 1.11 007 | 1.93 £000 | 0.14 001 | 0.88 £000 | 0.55 +0.60 1.00

10 diagonal (D) 64D 0.35 +001 | 0.17 000 | 0.01 £000 | 0.12 +0.00 | 0.11 +£0.00 | 0.75 002 | 1.11 +0.07 | 1.94 £000 | 0.15 000 | 0.84 +0.00 | 0.55 +059 1.00
128 D 0.35 £001 | 0.17 =000 | 0.01 £000 | 0.12+000 | 0.11 £000 | 0.75 002 | 1.11 007 | 1.94 £000 | 0.16 =000 | 0.84 £000 | 0.56 +059 1.00

256 D 0.36 £001 | 0.17 000 | 0.01 £000 | 0.12+000 | 0.11 £000 | 0.75 002 | 1.12 +007 | 1.94 £000 | 0.16 000 | 0.85 £000 | 0.56 +059 1.00

16 F 0.33 £000 | 0.15 =000 | 0.01 £000 | 0.12 =000 | 0.10 £000 | 0.76 002 | 1.20 +0.02 | 1.95 £000 | 0.13 000 | 0.97 £000 | 0.57 =061 1.00

32F 0.33 £001 | 0.16 =000 | 0.01 £000 | 0.12+000 | 0.10 £000 | 0.75 002 | 1.11 007 | 1.94 £000 | 0.14 000 | 0.86 £000 | 0.55 +0.60 0.99

10 full (F) 64 F 0.34 +001 | 0.16 =000 | 0.01 £000 | 0.12 +0.00 | 0.11 +£0.00 | 0.75 002 | 1.11 +0.07 | 1.94 +000 | 0.15 000 | 0.84 +0.00 | 0.55 +059 0.97
128 F 0.35 £001 | 0.17 =000 | 0.01 £000 | 0.12+000 | 0.11 £000 | 0.75 002 | 1.12 +0.07 | 1.94 £000 | 0.16 000 | 0.84 £000 | 0.56 +059 0.88

256 F 0.36 £001 | 0.17 =000 | 0.01 £000 | 0.12+000 | 0.11 £000 | 0.75 002 | 1.12 +007 | 1.94 £000 | 0.16 000 | 0.85 £000 | 0.56 +059 0.50

16 D 0.61 £006 | 0.19 002 | 0.03 £o001 | 0.29 004 | 0.36 £0.04 | 0.95 £005 | 1.73 £021 | 2.66 022 | 0.32 x0a1 | 1.98 £o01 | 0.91 +os8 1.00

32D 0.37 £002 | 0.16 000 | 0.01 £000 | 0.19 £003 | 0.18 £0.01 | 0.85£005 | 1.37 014 | 2.12 £ 005 | 0.16 000 | 1.65 +0.03 | 0.71 073 1.00

50 diagonal (D) 64D 0.33 £002 | 0.15 000 | 0.01 £000 | 0.12 000 | 0.10 £000 | 0.79 £0.02 | 1.12 008 | 1.97 £001 | 0.13 £001 | 1.13 £003 | 0.59 +0.63 1.00
128D 0.33 £001 | 0.15+000 | 0.01 £000 | 0.12£000 | 0.10 £0.00 | 0.76 £0.03 | 1.10 005 | 1.93 £0.01 | 0.14 £ 000 | 0.93 +0.01 | 0.56 +0.60 1.00

256 D 0.34 £001 | 0.16 =000 | 0.01 £000 | 0.12+000 | 0.10 £000 | 0.76 £003 | 1.11 005 | 1.93 £000 | 0.15 000 | 0.85 £000 | 0.55 =059 1.00

16 F 0.47 £006 | 0.17 =000 | 0.02 000 | 0.20 £002 | 0.19 £004 | 0.86 £003 | 1.71 0.0 | 2.20 £004 | 0.17 001 | 1.84 £007 | 0.78 + 00 1.00

32F 0.36 £002 | 0.16 000 | 0.0 £000 | 0.14 £000 | 0.11 £0.00 | 0.80 £0.03 | 1.14 £ 008 | 2.00 £0.01 | 0.14 £ 000 | 1.32 £ 002 | 0.62 +0.65 0.99

50 full (F) 64 F 0.33 +001 | 0.15 +000 | 0.01 £000 | 0.12 +000 | 0.10 +000 | 0.77 £003 | 1.10 006 | 1.94 +0.00 | 0.13 £000 | 1.02 000 | 0.57 +0.61 0.97
128 F 0.33 £001 | 0.16 000 | 0.00 £000 | 0.12+000 | 0.10 £000 | 0.76 £003 | 1.11 005 | 1.93 £000 | 0.14 000 | 0.87 £000 | 0.55 +0.60 0.88

256 F 0.35 001 | 0.16 000 | 0.01 £000 | 0.12 £000 | 0.11 £0.00 | 0.76 £0.03 | 1.11 £0.05 | 1.94 £ 000 | 0.15 £ 000 | 0.84 £0.00 | 0.55 +0.59 0.50

16D 1.69 £049 | 0.26 004 | 0.18 £0.07 | 0.34 £002 | 1.01 020 | 1.45 010 | 3.59 025 | 3.72 +072 | 0.44 020 | 2.37 009 | 1.51 £132 1.00

32D 0.67 £024 | 0.18 £0.01 | 0.06 £005 | 0.31 £006 | 0.35+008 | 1.04 015 | 1.97 +013 | 2.88 £070 | 0.22 001 | 2.12 £007 | 0.98 £ 098 1.00

100 diagonal (D) 64D 0.39 +006 | 0.16 +000 | 0.01 £000 | 0.18 £0.02 | 0.14 +0.01 | 0.86 +002 | 1.39 +007 | 2.18 £0.04 | 0.17 £000 | 1.79 +0.02 | 0.73 +0.76 1.00
128 D 0.32 £000 | 0.15 =000 | 0.01 £000 | 0.12+000 | 0.10 £000 | 0.79 002 | 1.19 002 | 2.00 001 | 0.14 001 | 1.24 £004 | 0.61 £ 065 1.00

256 D 0.32 £000 | 0.15 =000 | 0.01 £000 | 0.12 +000 | 0.10 £000 | 0.77 002 | 1.16 000 | 1.94 £000 | 0.13 000 | 0.96 +0.01 | 0.56 +061 1.00

16 F 0.66 £0.07 | 0.19 001 | 0.03 £001 | 0.25 002 | 0.29 £002 | 0.99 £007 | 2.50 +051 | 2.63 £003 | 0.24 002 | 2.21 £008 | 1.00 = 1.01 1.00

32F 0.40 £000 | 0.17 =000 | 0.01 £000 | 0.15 +001 | 0.13 £001 | 0.85+002 | 1.53 x02 | 2.17 £006 | 0.15 001 | 1.93 £004 | 0.75 + 050 0.99

100 full (F) 64 F 0.34 +001 | 0.15 +000 | 0.01 £000 | 0.12 +0.00 | 0.11 £000 | 0.79 001 | 1.23 + 007 | 1.98 001 | 0.15 000 | 1.26 +0.01 | 0.61 +065 0.97
128 F 0.32 £000 | 0.15 =000 | 0.01 £000 | 0.12 =000 | 0.10 £000 | 0.77 002 | 1.16 001 | 1.94 £000 | 0.13 000 | 0.99 001 | 0.57 =061 0.88

256 F 0.33 £000 | 0.16 =000 | 0.00 £000 | 0.12+000 | 0.10 £000 | 0.76 £002 | 1.15 +001 | 1.93 £000 | 0.14 000 | 0.86 £000 | 0.56 +0.60 0.50

16D 295 +028 | 0.81 £025 | 0.27 £0.09 | 0.67 £028 | 0.52 £0.07 | 2.06 £030 | 4.85 £031 | 3.94 £ 042 | 0.50 £ 005 | 2.50 003 | 1.91 +1.57 1.00

32D 2.33 £030 | 0.69 0.6 | 0.24 £005 | 0.50 0.6 | 0.37 +007 | 1.86 025 | 4.73 +035 | 3.81 £059 | 0.39 004 | 2.46 £005 | 1.74 £ 155 1.00

500 diagonal (D) 64D 1.67 018 | 0.49 +o0.16 | 0.13 £004 | 0.29 +002 | 0.23 +002 | 1.32 028 | 3.99 +036 | 3.41 £028 | 0.32 +005 | 2.35+011 | 1.42 +1.37 1.00
128 D 1.12 + 002 | 0.24 £003 | 0.04 £003 | 0.21 £004 | 0.22 £003 | 1.08 £006 | 3.05 £087 | 3.09 £037 | 0.26 £003 | 2.31 £0.04 | 1.16 £ 120 1.00

256 D 0.54 £003 | 0.18 =001 | 0.01 £000 | 0.16 001 | 0.15+001 | 0.92 £008 | 242 014 | 2.51 £013 | 0.19 001 | 2.09 £002 | 0.92 099 1.00

16 F 2.14 £006 | 0.71 004 | 028 £000 | 0.27 001 | 0.21 £000 | 1.14 £004 | 3.06 £ 027 | 2.71 £001 | 0.34 001 | 2.21 £o01 | 1.31 £ 108 1.00

32F 1.17 £ 007 | 0.46 £004 | 0.08 £004 | 0.21 001 | 0.17 £000 | 0.99 £004 | 2.69 £0.10 | 2.47 £002 | 0.25 £002 | 2.11 £0.04 | 1.06 098 0.99

500 full (F) 64 F 0.51 +003 | 0.21 =000 | 0.02 000 | 0.17 £0.01 | 0.14 £000 | 0.88 £004 | 2.19 014 | 2.34 +0.03 | 0.20 £000 | 1.97 +002 | 0.86 +090 0.97
128 F 0.39 £001 | 0.16 000 | 0.01 £000 | 0.13 £000 | 0.11 £0.00 | 0.81 £0.03 | 1.42 £007 | 2.03 £ 001 | 0.16 000 | 1.71 001 | 0.69 +0.73 0.88

256 F 0.32 £001 | 0.15 +000 | 0.01 £000 | 0.12 000 | 0.10 £000 | 0.77 001 | 1.18 +0.04 | 1.96 £000 | 0.14 001 | 1.25 000 | 0.60 +0.64 0.50

Table 9. Absolute In-Distribution test loss for various tasks and methods

21

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average ‘ Compression
| | task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 | |
base 0.00 =+ 0.00 0.00 +0.00 1.00 +0.00 0.00 +0.00 0.00 =+ 0.00 0.00 +0.00 0.00 =+ 0.00 0.00 +0.00 0.00 =+ 0.00 0.00 +0.00 0.10 + 030 0.00
‘ lora ‘ 100.00 +0.00 ‘ 100.00 +0.00 | 100.00 +0.00 ‘ 100.00 +0.00 ‘ 100.00 +0.00 ‘ 100.00 +0.00 | 100.00 +0.00 ‘ 100.00 +0.00 | 100.00 +0.00 ‘ 100.00 +0.00 | 100.00 +0.00 ‘ 0.00
10 41.00 000 | 53.67 +058 | 44.33 404 10.33 058 | 46.33 404 1.00 +0.00 8.00 +0.00 8.00 =+ 0.00 76.67 +1.15 1.00 +0.00 29.03 +25.69 0.00
50 24.00 000 | 38.67 +058 17.67 £4.62 2.00 +0.00 56.33 +058 1.00 +0.00 8.00 +0.00 8.00 +0.00 29.67 +289 0.00 +0.00 18.53 £ 18.07 0.00
TIES 100 22.00 000 | 38.00 %000 18.67 £4.62 1.00 +1.73 51.67 462 1.00 +0.00 8.00 = 0.00 7.33 £058 2.00 = 0.00 0.00 +0.00 14.97 £17.20 0.00
500 8.00 +0.00 25.00 +0.00 1.00 +0.00 0.00 +0.00 59.00 +0.00 0.00 +0.00 3.00 +0.00 6.00 £0.00 2.00 +0.00 0.00 +0.00 10.40 +18.02 0.00
SVD 2 88.33 £065 | 91.92 090 | 100.00 000 | 97.25 +045 | 92.83 +039 | 76.50 £151 | 66.00 + 141 58.08 £1.16 | 98.67 £049 583 094 | 77.54 2761 0.88
SVD SVD 4 93.00 £000 | 96.58 051 | 100.00 £000 | 100.00 £000 | 96.75 +0s87 | 88.83 £15 | 90.67 £123 | 72.17 058 | 98.67 +049 16.67 £178 | 85.33 +2431 0.75
SVD 8 98.89 £ 0.60 98.58 £051 | 100.00 +000 | 100.00 000 | 99.42 +051 93.44 £o073 97.22 £ 044 82.78 +1.64 99.00 + 0.00 60.00 087 | 93.75 + 1154 0.50
SVD 16 100.00 +0.00 | 100.00 000 | 100.00 £0.00 | 100.00 £000 | 100.00 000 | 99.67 050 | 99.50 +0.55 99.67 +050 | 100.00 000 | 98.11 078 | 99.69 +0.68 0.00
16D 8333 £ 153 88.33 +058 | 100.00 +000 | 97.00 + 200 88.33 115 57.00 100 | 48.67 £321 50.67 £493 | 97.67 £1.53 533 £11s 71.63 £2953 1.00
32D 93.00 100 | 95.33 +0s8 | 100.00 £000 | 98.00 £100 | 93.67 £153 80.67 231 78.67 + 115 68.00 £1.73 | 98.33 £0.58 14.67 252 | 82.03 +24.99 1.00
10 diagonal (D) 64 D 99.00 + 0.00 97.00 + 100 | 100.00 +0.00 | 100.00 +0.00 | 98.00 +0.00 90.67 + 153 95.33 + 115 79.67 + 153 99.00 + 0.00 55.00 +436 | 91.37 +13.78 1.00
128D 100.00 £000 | 99.33 058 | 100.00 £0.00 | 100.00 £0.00 | 100.00 000 | 96.67 153 | 98.33 115 | 95.67 £231 | 100.00 000 | 91.67 £351 | 98.17 +294 1.00
256 D 100.00 +0.00 | 100.00 +0.00 | 100.00 £000 | 100.00 £000 | 100.00 £0.00 | 100.00 £0.00 | 100.00 000 | 99.33 £ 115 | 100.00 £000 | 9500 £100 | 99.43 £157 1.00
16 F 83.00 £200 | 93.00 £100 | 100.00 000 | 98.33 o058 | 91.67 +o0ss | 6433 £321 | 5933 £115 | 52.67 153 | 98.33 +o0s8 633 £115 | 7470 £2871 1.00
32F 91.33 £0s58 | 96.00 £100 | 100.00 £000 | 98.33 £058 | 9433 £oss | 84.00+200 | 83.00+173 | 70.33+153 | 99.00 £100 | 22.00 £265 | 83.83 £2282 0.99
10 full (F) 64 F 99.00 + 0.00 97.33 +0s8 | 100.00 +000 | 100.00 000 | 99.33 + 1.15 91.33 £ 153 96.33 +0.58 81.67 £231 99.00 + 0.00 5833 +153 | 9223 + 1276 0.97
128 F 99.67 +058 | 99.33 058 | 100.00 £000 | 100.00 £0.00 | 100.00 £000 | 97.67 £ 1.15 | 100.00 £000 | 95.67 £115 | 100.00 000 | 91.00 £1.00 | 98.33 +289 0.88
256 F 100.00 +0.00 | 100.00 +0.00 | 100.00 000 | 100.00 £000 | 100.00 £000 | 99.67 £o058 | 99.67 £o058 | 99.67 058 | 100.00 £000 | 98.00 £100 | 99.70 £070 0.50
16D 52.67 £451 86.67 £306 | 100.00 +000 | 85.00 £346 | 6533 +379 25.33 £503 10.00 £1.00 | 10.67 +1026 | 81.00 656 0.00 +0.00 51.67 +36.18 1.00
32D 69.67 +321 88.67 +1.53 | 100.00 +000 | 95.00 +200 80.00 +3.00 | 36.67 £5.13 17.00 +2.65 26.33 £503 | 95.00 +200 0.00 +0.00 60.83 +36.02 1.00
50 diagonal (D) 64D 79.67 +252 91.00 + 1.00 100.00 +0.00 | 97.67 +058 88.00 + 1.00 52.00 + 1.00 36.67 +5.69 4133 + 115 96.00 + 1.00 0.33 +o0s8 68.27 + 3266 1.00
128D 90.00 100 | 91.33 +058 | 100.00 £000 | 98.33 +058 | 90.67 +208 73.67 £208 | 63.67 £153 56.33 o058 | 98.00 +0.00 7.33 £ 115 76.93 + 2179 1.00
256D 94.67 +0.58 96.33 058 | 100.00 000 | 99.67 o058 | 96.33 + 115 87.33 £ 058 87.00 +2.65 71.67 153 | 99.67 =058 31.67 £1.15 | 86.43 +2041 1.00
16 F 61.67 £306 | 89.67 + 115 99.67 +0.58 90.67 +252 | 78.33 £351 34.00 + 1.00 7.00 + 346 25.00 £624 | 90.00 +1.00 0.00 +0.00 57.60 + 36.59 1.00
32F 71.00 £1.00 | 89.00 +1.73 | 100.00 +0.00 | 98.00 +0.00 85.00 +100 | 47.00 £173 | 29.00 £300 | 35.00 200 | 98.00 +1.00 0.00 +0.00 65.20 +3400 0.99
50 full (F) 64 F 81.67 +058 93.67 +1.15 100.00 +0.00 | 98.33 +058 90.67 +2.08 61.67 +1.53 5433 +153 5133 115 98.33 + 058 3.33 +058 73.33 +29.89 0.97
128 F 91.00 £1.00 | 94.33 o058 | 100.00 £000 | 99.00 £000 | 9333 £153 | 81.67 o058 | 75.00 173 | 67.67 +208 | 98.67 o058 16.67 £058 | 81.73 +2446 0.88
256 F 97.00 000 | 98.00 £000 | 100.00 £000 | 100.00 £000 | 99.67 £o058 | 92.00 £000 | 9433 £115 | 79.67 £153 | 99.00 £000 | 5733 £252 | 91.70 £ 13.11 0.50
16D 33.00 £519 | 79.33 £560 | 89.33 £551 80.00 + 361 3533 603 4.00 £1.73 3.00 + 1.00 0.00 +0.00 71.33 £451 0.00 £000 | 39.53 +3615 1.00
32D 51.00 £7.81 90.00 £1.00 | 100.00 +000 | 88.00 700 | 58.67 1168 | 17.67 £1026 | 7.67 +289 9.33 + 1286 86.33 +252 0.00 £000 | 50.87 +3843 1.00
100 diagonal (D) 64 D 68.00 + 265 87.33 £1.53 | 100.00 +000 | 94.33 +4.04 80.33 + 208 38.00 +3.00 19.67 +4.51 2833 £1.53 92.67 + 115 0.33 + 058 60.90 +34.91 1.00
128D 82.00 +200 | 90.00 £200 | 100.00 +000 | 97.33 +058 85.33 058 55.33 £208 34.33 £379 36.67 252 | 94.67 +o058 0.00 +0.00 67.57 £3295 1.00
256D 90.00 100 | 93.00 200 | 100.00 £000 | 97.67 058 | 91.67 +o58 71.67 £513 | 59.67 £153 58.00 000 | 97.67 +o058 4.00 + 1.00 76.33 + 2888 1.00
16 F 49.00 +2.00 89.67 £321 97.00 +3.00 84.33 +£3.06 65.33 £252 20.67 +£833 6.33 +208 8.33 £473 81.33 +208 0.00 +0.00 50.20 +37.06 1.00
32F 65.00 £346 | 90.33 +153 | 100.00 £000 | 96.33 +153 80.00 +265 | 41.33 £321 16.00 £000 | 29.33 £208 | 92.00 +265 0.00 +0.00 61.03 3543 0.99
100 full (F) 64 F 72.33 £ 058 89.67 £153 | 100.00 £0.00 | 97.67 058 86.00 + 1.00 53.00 + 1.00 3533 +153 38.00 + 173 94.67 +0.58 0.00 +0.00 66.67 +3254 0.97
128 F 84.33 £ 153 92.33 £153 | 100.00 000 | 98.00 000 | 91.33 +058 68.67 058 | 56.00 £100 | 57.67 115 | 99.00 +000 5.33 £o0s8 75.27 £ 2867 0.88
256 F 91.67 £ 1.15 96.67 £0.58 | 100.00 +000 | 100.00 000 | 94.33 +058 84.67 +058 | 78.00 £000 | 69.67 058 | 99.00 000 | 22.00 +100 | 83.60 +2308 0.50
16D 8.00 +3.61 50.33 £321 | 79.67 £493 | 28.00 £4244 | 56.67 +289 0.67 £ 115 0.33 + 058 0.00 +0.00 71.67 +6.03 0.00 £000 | 29.53 £33.14 1.00
32D 14.33 £11.02 | 50.00 £ 751 80.67 £208 | 43.00 £3148 | 60.67 +0.58 0.67 £ 115 1.67 + 115 0.00 +0.00 74.33 £a04 0.00 £000 | 32.53 +£3293 1.00
500 diagonal (D) 64D 25.67 £1.15 | 5733 1234 | 87.33 £4.04 78.33 £ 115 65.33 +3.06 5.33 +351 3.67 £1.15 1.00 +1.73 76.67 +231 0.00 +0.00 40.07 +35.20 1.00
128D 38.33 +321 84.00 £300 | 96.00 £300 | 81.33 231 | 65.67 £ 115 11.67 £473 5.33 +208 2.00 + 1.00 80.00 + 5.00 0.00 £000 | 46.43 +37.69 1.00
256D 53.33 £oss | 91.33 208 | 100.00 £000 | 89.00 +265 | 76.00 £200 | 20.67 +6581 6.00 +1.73 12.00 £800 | 86.33 £231 0.00 £000 | 53.47 +38.66 1.00
16 F 8.33 +208 39.67 £462 | 76.67 058 | 78.00 £000 | 72.67 +058 6.00 +0.00 5.67 + 058 0.00 +0.00 78.00 + 1.00 0.00 £000 | 36.50 +3484 1.00
32F 33.67 £416 | 5333 £416 | 92.67 £153 | 77.00 £173 | 75.00 +200 14.33 £153 8.00 +0.00 0.00 £0.00 80.67 + 153 0.00 £000 | 43.47 +3528 0.99
500 full (F) 64 F 56.00 + 265 8533 £o058 | 94.33 +os8 89.33 +289 | 7433 £ 115 36.33 £ 115 9.00 + 1.00 2.67 +1.15 84.00 + 1.00 0.00 +0.00 53.13 +£3677 0.97
128 F 69.33 £ 058 87.67 £ 153 99.00 + 0.00 96.33 £1.53 80.33 £ 115 45.00 +2.00 16.33 o058 31.00 £1.73 92.00 + 0.00 0.00 +0.00 61.70 £3477 0.88
256 F 79.67 058 89.33 xo058 | 100.00 +000 | 97.67 +058 87.33 058 57.00 + 1.00 35.00 +100 | 42.00£100 | 95.00 +1.00 0.00 +0.00 68.30 +3234 0.50

Table 10. Absolute In-Distribution agreement for various tasks and methods

22

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average
| task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598 |

SVD 2 0.29 £0.00 | 0.43 000 | 0.31 £000 | 0.40 £0.00 | 0.38 £0.00 | 0.31 £000 | 0.37 £0.00 | 0.31 £0.00 | 0.42 000 | 0.30 £0.00 | 0.35 £0.05

SVD SVD 4 0.16 £0.00 | 0.24 +000 | 0.16 +000 | 0.25 £000 | 0.23 000 | 0.17 +000 | 0.22 £0.00 | 0.16 £0.00 | 0.25 + 000 | 0.16 +0.00 | 0.20 +0.04
SVD 8 0.06 £0.00 | 0.09 000 | 0.06 £000 | 0.11 £0.00 | 0.10 £0.00 | 0.07 £0.00 | 0.09 £0.00 | 0.06 £0.00 | 0.11 000 | 0.06 £0.00 | 0.08 £ 0.02

16 D 0.37 002 | 0.51 £002 | 0.36 +001 | 0.57 £0.02 | 0.55 +000 | 0.39 +002 | 0.49 £0.01 | 0.36 £0.02 | 0.53 £ 003 | 0.39 +001 | 0.45 +0.08

32D 0.21 £0.01 | 0.28 +000 | 0.20 +001 | 0.35 000 | 0.33 001 | 0.22 +001 | 0.31 £001 | 0.20 001 | 0.32 001 | 0.22 +000 | 0.26 +0.06

10 diagonal (D) 64 D 0.10 £0.00 | 0.11 001 | 0.09 £000 | 0.18 £0.01 | 0.18 £0.00 | 0.10 £000 | 0.15 £0.01 | 0.09 £000 | 0.14 £0.00 | 0.09 £0.00 | 0.12 +0.04
128D 0.02 £0.00 | 0.01 +000 | 0.02 +000 | 0.03 £000 | 0.04 000 | 0.02 +000 | 0.03 £0.00 | 0.02 £0.00 | 0.02 +000 | 0.02 £0.00 | 0.03 +0.01

256D 0.00 £0.00 | 0.00 £0.00 | 0.00 £000 | 0.00 £0.00 | 0.00 £0.00 | 0.00 £000 | 0.00 £0.00 | 0.00 £0.00 | 0.00 000 | 0.00 £000 | 0.00 + 0.00

16 F 0.35 £ 000 | 0.46 000 | 0.34 £000 | 0.51 £0.00 | 0.47 001 | 0.36 +001 | 0.45 +£0.01 | 0.35 £001 | 0.49 000 | 0.35 £001 | 0.41 +0.06

32F 0.20 £0.00 | 0.24 +000 | 0.20 +000 | 0.30 £0.00 | 0.29 000 | 0.22 +000 | 0.27 £0.00 | 0.20 £0.00 | 0.27 000 | 0.21 +0.00 | 0.24 +0.04

10 full (F) 64 F 0.10 £0.00 | 0.10 £0.00 | 0.09 £000 | 0.13 £0.00 | 0.13 £0.00 | 0.10 £000 | 0.12 £0.00 | 0.09 £000 | 0.12 000 | 0.10 £000 | 0.11 +0.02
128 F 0.02 £0.00 | 0.02 +000 | 0.02 +000 | 0.01 £0.00 | 0.02 +0.00 | 0.02 +000 | 0.02 +£000 | 0.02 +000 | 0.01 £000 | 0.02 +000 | 0.02 + 0.00

256 F 0.00 +£0.00 | 0.00 £0.00 | 0.00 000 | 0.00 +000 | 0.00 £0.00 | 0.00 000 | 0.00 000 | 0.00 £0.00 | 0.00 000 | 0.00 +000 | 0.00 +0.00

16 D 0.66 001 | 0.69 001 | 0.88 £001 | 0.76 £0.03 | 0.95 002 | 0.91 001 | 0.83 £0.02 | 0.88 £0.03 | 0.72 002 | 0.88 £0.02 | 0.82 +0.10

32D 0.50 001 | 0.52 +002 | 0.73 £001 | 0.58 £0.03 | 0.88 £0.03 | 0.79 +003 | 0.72 £0.01 | 0.75 001 | 0.57 002 | 0.75 +001 | 0.68 £o0.12

50 diagonal (D) 64 D 0.34 +001 | 0.37 001 | 0.52 +000 | 0.38 001 | 0.71 £0.02 | 0.58 £0.01 | 0.54 +0.00 | 0.56 +000 | 0.44 +001 | 0.58 +001 | 0.50 +o0.11
128D 0.21 £001 | 0.22 001 | 0.31 £000 | 0.22 £000 | 0.51 001 | 0.42 +001 | 0.38 £0.00 | 0.39 £0.00 | 0.27 000 | 0.40 +0.00 | 0.33 +0.10

256 D 0.10 £0.00 | 0.12 +000 | 0.16 +000 | 0.10 £0.00 | 0.29 001 | 0.21 +000 | 0.19 +000 | 0.23 £0.01 | 0.15 +000 | 0.20 +0.00 | 0.18 +0.06

16 F 0.57 001 | 0.60 001 | 0.86 £001 | 0.71 £0.02 | 0.95 001 | 0.88 001 | 0.81 £0.00 | 0.83 001 | 0.67 001 | 0.86 £001 | 0.78 £o0.12

32F 0.47 o001 | 0.48 001 | 0.71 £0.00 | 0.55 +001 | 0.78 001 | 0.69 +001 | 0.69 £0.00 | 0.65 +001 | 0.53 001 | 0.71 £0.00 | 0.63 +0.11

50 full (F) 64 F 0.33 £0.00 | 0.35 +£000 | 0.45 £0.00 | 0.36 £0.00 | 0.56 £0.00 | 0.50 £0.01 | 0.47 £0.00 | 0.49 000 | 0.39 001 | 0.49 000 | 0.44 +0.08
128 F 0.19 000 | 0.21 000 | 0.25 £000 | 0.19 £0.00 | 0.35 000 | 0.30 000 | 0.28 £0.00 | 0.31 £0.00 | 0.24 000 | 0.30 £0.00 | 0.26 +0.05

256 F 0.09 £0.00 | 0.10 +000 | 0.10 +000 | 0.08 £0.00 | 0.16 000 | 0.13 +000 | 0.12 +0.00 | 0.15+0.00 | 0.11 000 | 0.13 +000 | 0.12 +0.02

16 D 0.90 +0.01 | 0.85 001 | 0.87 £003 | 0.88 +002 | 0.68 £0.02 | 0.91 £001 | 0.97 001 | 0.98 001 | 0.96 £0.01 | 1.00 £000 | 0.90 +0.09

32D 0.83 £0.02 | 0.77 £ 000 | 0.77 £ 001 | 0.78 £0.00 | 0.55 +0.02 | 0.79 +001 | 0.94 £0.02 | 0.94 £0.03 | 0.87 000 | 0.98 +001 | 0.82 +0.12

100 diagonal (D) 64D 0.67 £0.01 | 0.63 +000 | 0.59 +002 | 0.63 001 | 0.40 000 | 0.62 +001 | 0.86 £002 | 0.82 002 | 0.71 003 | 0.93 +0.00 | 0.68 +0.15
128D 0.49 £ o001 | 047 000 | 0.42 £001 | 0.45 £000 | 0.27 002 | 0.44 001 | 0.73 £0.01 | 0.69 £0.02 | 0.59 002 | 0.80 £002 | 0.53 £o.16

256 D 0.32 £000 | 0.31 +000 | 0.26 +001 | 0.30 £000 | 0.15 +001 | 0.28 +000 | 0.51 £0.02 | 0.51 £0.02 | 0.40 001 | 0.61 +001 | 0.36 +£0.14

16 F 0.88 +£0.00 | 0.82 000 | 0.84 £001 | 0.86 +000 | 0.67 0.01 | 0.88 £001 | 0.99 +000 | 0.96 001 | 0.91 £0.01 | 1.00 £000 | 0.88 +0.09

32F 0.78 £0.00 | 0.72 000 | 0.73 £0.00 | 0.74 £0.00 | 0.52 000 | 0.74 001 | 0.94 £o0.01 | 0.89 £000 | 0.77 002 | 0.99 £0.00 | 0.78 £0.13

100 full (F) 64 F 0.60 £0.00 | 0.57 £000 | 0.57 £0.00 | 0.57 £0.00 | 0.39 £0.00 | 0.56 £000 | 0.76 +0.00 | 0.73 £0.00 | 0.60 000 | 0.83 £001 | 0.62 +0.12
128 F 0.40 £0.00 | 0.38 £0.00 | 0.35 000 | 0.37 £0.00 | 0.25 000 | 0.37 £000 | 0.52 £0.00 | 0.54 £0.00 | 0.45 000 | 0.60 £0.00 | 0.42 £0.10

256 F 0.21 £0.00 | 0.20 +000 | 0.18 +0.00 | 0.19 £0.00 | 0.13 +0.00 | 0.19 +000 | 0.30 £0.00 | 0.34 £0.00 | 0.26 000 | 0.38 +0.00 | 0.24 +0.08

16D 0.97 000 | 0.73 £0.00 | 0.96 £000 | 1.00 £000 | 0.99 £0.01 | 0.96 £001 | 0.90 £000 | 0.92 000 | 1.00 £000 | 1.00 £000 | 0.94 +0.08

32D 0.96 £0.00 | 0.70 000 | 0.92 £001 | 0.98 001 | 0.96 001 | 0.93 001 | 0.86 +£0.00 | 0.89 £0.00 | 1.00 000 | 1.00 £000 | 0.92 +0.09

500 diagonal (D) 64 D 0.90 +0.01 | 0.65 +000 | 0.86 +001 | 0.96 +002 | 0.90 +0.01 | 0.87 +001 | 0.81 +000 | 0.83 +001 | 0.99 001 | 1.00 000 | 0.88 +0.10
128D 0.82 £o0.01 | 0.60 £000 | 0.76 £0.00 | 0.90 £0.02 | 0.83 001 | 0.78 £002 | 0.74 £0.00 | 0.74 001 | 0.97 o001 | 1.00 £000 | 0.81 £o0.12

256 D 0.59 £0.02 | 0.51 +000 | 0.56 +001 | 0.81 £0.02 | 0.70 £0.02 | 0.55 001 | 0.57 £0.01 | 0.54 001 | 0.91 001 | 1.00 +001 | 0.67 +£0.17

16 F 0.94 +0.00 | 0.67 +000 | 0.88 +000 | 1.00 £0.00 | 0.98 000 | 0.90 +000 | 0.82 +000 | 0.83 £0.00 | 1.00 000 | 1.00 +000 | 0.90 +0.10

32F 0.88 £0.00 | 0.61 000 | 0.81 £000 | 0.97 £0.01 | 0.94 000 | 0.84 £000 | 0.75 £0.00 | 0.77 £0.00 | 0.99 000 | 0.99 £0.00 | 0.86 +0.12

500 full (F) 64 F 0.80 £0.00 | 0.55 +000 | 0.72 +000 | 0.86 £000 | 0.82 + 001 | 0.76 +000 | 0.67 £0.00 | 0.70 £0.00 | 0.94 000 | 0.99 +0.00 | 0.78 +£0.13
128 F 0.64 +£0.00 | 0.46 000 | 0.60 £000 | 0.74 +000 | 0.65 +0.00 | 0.63 £0.00 | 0.56 +000 | 0.58 £0.00 | 0.85£0.00 | 0.96 £000 | 0.67 +0.14

256 F 0.43 £000 | 0.35 000 | 0.44 £000 | 0.55 000 | 0.49 000 | 0.45 +000 | 0.40 £0.00 | 0.42 £0.00 | 0.67 000 | 0.84 £000 | 0.50 +0.14

Table 11. Reconstruction error In-Distribution for various tasks and methods

Model Type ‘ Method Type ‘ Tasks
‘ ‘ task036 | task200 | task220 | task279 | task281 | task392 | task520 | task957 | task1195 | task1664

Base 11.11 21.02 26.81 8.59 48.08 12.78 15.06 46.42 61.35 43.01
Lora 87.37 94.00 99.00 94.33 80.25 94.00 99.00 47.94 97.86 100.00

16 14.49 27.85 82.15 62.23 53.49 63.31 43.66 48.73 69.81 54.85

10 32 14.64 46.41 95.83 69.89 53.63 72.66 74.86 48.12 71.25 57.27
64 19.63 67.00 98.16 71.66 55.32 80.51 79.60 48.13 76.02 63.92

16 16.09 82.00 97.16 70.14 55.26 76.01 83.74 47.71 77.92 61.46

50 32 44.28 83.00 99.00 72.66 56.68 86.55 86.29 47.74 79.44 68.21
64 57.76 88.00 99.00 74.00 56.86 92.33 88.05 47.75 84.29 71.29

16 22.18 84.00 98.00 71.66 55.49 82.38 88.12 48.27 78.71 66.81

100 32 48.45 86.00 99.00 73.66 56.85 88.32 88.05 48.02 81.81 67.19
64 60.60 90.00 99.00 74.00 59.63 92.33 90.00 48.18 84.92 71.52

16 60.99 86.00 99.00 73.00 56.58 90.66 91.00 47.20 85.16 71.21

500 32 64.09 90.00 99.00 73.66 59.58 92.00 91.00 47.37 86.84 75.23
64 66.29 89.00 100.00 71.33 59.79 93.00 92.00 47.56 88.29 74.98

Table 12. Compression new unseen LoRAs. ROUGE-L scores for various tasks and methods

23

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Model Type ‘ Method Type ‘ Tasks Average
‘ ‘ task039 | task190 | task280 | task290 | task391 | task442 | task620 | task1342 | task1391 | task1598
base 24.44 1.60 19.13 39.22 10.27 35.46 7.85 6.22 17.82 38.87 20.09
lora 95.00 86.00 99.00 93.67 94.33 74.88 74.40 26.68 95.00 50.32 78.93
32F 97.00 90.00 99.00 93.33 94.67 74.09 72.13 27.83 94.00 50.71 79.28
10 full (F) 64 F 95.00 89.00 99.00 93.67 94.67 74.29 74.80 26.63 96.00 51.04 79.41
32F 96.00 88.00 99.00 93.67 92.33 72.30 75.97 29.89 94.00 45.68 78.68
50 full (F) 64 F 98.00 89.00 99.00 93.67 93.33 72.74 76.50 29.33 96.00 45.71 79.33
32F 92.10 83.00 99.00 93.67 92.00 71.09 63.29 27.87 88.00 42.36 75.24
100 full (F) 64 F 97.00 87.00 99.00 93.67 92.33 72.23 74.69 29.98 95.00 4471 78.56
32F 68.92 43.00 87.00 91.67 90.67 70.08 51.16 14.40 83.00 41.97 64.19
500 full (F) 64 F 93.50 78.00 91.00 92.33 90.33 72.55 57.49 15.44 85.00 42.31 71.80

Table 13. Performance with convergence In-Distribution Rouge-L

Table 14. Agreement Comparison. 100 LoRAs

Configuration Agreement (%)

Base Model 83.015

Uncompressed LoRAs 100.000

Joint Compression

Diagonal Rank 8 87.032
Rank 16 88.908
Rank 32 91.545
Rank 64 94.659

Full Rank 8 87.686
Rank 16 90.163
Rank 32 94.018
Rank 64 96.918

Table 15. Performance Comparison. 100 LoRAs

Configuration Average Performance

Base Model 32.28

Uncompressed LoRAs 48.32

Join Compression

Diagonal Rank 8 41.90
Rank 16 45.44
Rank 32 46.89
Rank 64 47.43

Full Rank 8 43.88
Rank 16 45.79
Rank 32 46.83
Rank 64 47.66

24

Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead

Table 16. Task-Based Performance Evaluation Across Different Models and Ranks

Task Base Model LoRA Diagonal R§ Diagonal R16 Diagonal R32 Diagonal R64
Causal Judgement 57.47 64.37 55.17 58.62 58.62 58.62
Date Understanding 15.33 23.33 20.67 22.00 21.33 22.67
Formal Fallacies 51.33 56.00 52.67 52.67 53.33 54.67
Hyperbaton 6.67 68.00 57.33 63.33 67.33 68.00
Logical Deduction (5 Objects) 21.33 37.33 32.00 36.67 37.33 37.33
Logical Deduction (7 Objects) 12.67 44.00 31.33 42.67 44.67 45.33
Movie Recommendation 62.67 67.33 62.00 64.67 66.67 67.33
Object Counting 34.67 38.00 35.33 36.67 36.67 38.00
Snarks 50.00 61.54 53.85 56.41 58.97 57.69
Temporal Sequences 16.67 23.33 18.67 20.67 24.00 24.67
Average 32.88 48.32 41.90 45.44 46.89 47.43

Table 17. Task-Based Performance Evaluation Across Different Models and Ranks

Task Base Model LoRA FullR8 FullR16 FullR32 Full R64
Causal Judgement 57.47 64.37 56.32 57.47 58.62 60.92
Date Understanding 15.33 23.33 19.33 22.00 22.67 22.67
Formal Fallacies 51.33 56.00 51.33 52.67 53.33 56.00
Hyperbaton 6.67 68.00 63.33 66.00 69.33 68.00
Logical Deduction (5 Objects) 21.33 37.33 35.33 36.00 35.33 37.33
Logical Deduction (7 Objects) 12.67 44.00 40.00 44.67 44.67 44.67
Movie Recommendation 62.67 67.33 63.33 65.33 67.33 67.33
Object Counting 34.67 38.00 35.33 36.67 37.33 37.33
Snarks 50.00 61.54 53.85 55.13 57.69 58.97
Temporal Sequences 16.67 23.33 20.67 22.00 22.00 23.33
Average 32.88 48.32 43.88 45.79 46.83 47.66

25

