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ABSTRACT

Weakly supervised video anomaly detection (WSVAD) aims to locate frame-level
anomalies with only video-level annotations provided. However, existing WS-
VAD methods struggle to adapt to real-world scenarios, where unseen anomalies
are continuously introduced, thereby making the training of WSVAD essentially
a process of continual learning. In this paper, we pioneer to explore the continual
learning for weakly supervised video anomaly detection (CL-WSVAD), seeking to
mitigate the catastrophic forgetting when the detection model learns new anoma-
lies. We propose normality representation pre-training prior to continual learn-
ing, utilizing potential anomaly texts to guide the model in learning robust nor-
mality representations, which improves discrimination from potential incremental
anomalies. Additionally, we introduce a mixed-up cross-modal alignment method
to assist in adapting the pretrained model on CL-WSVAD. Subsequently, we pro-
pose a continual learning framework based on sequentially retaining the learnable
text prompts for each type of anomaly, which effectively mitigates catastrophic
forgetting. Experiments on our established CL-WSVAD benchmarks demonstrate
the superiority of proposed method.

1 INTRODUCTION

Video anomaly detection (VAD), which aims to identify uncommon events or behaviors in video
sequences that deviate from usual patterns, is widely applied in public security, intelligent surveil-
lance, and evidence investigation (Benezeth et al., 2009). VAD methods are typically designed to
automatically predict frame-level anomaly scores over the timeline of the video. Due to the rarity of
abnormal samples and the expensive frame-level annotations, mainstream paradigms are unsuper-
vised video anomaly detection (UVAD) (Liu et al., 2018; Lee et al., 2019; Lv et al., 2021; Zhang
et al., 2024) and weakly supervised video anomaly detection (WSVAD) (Sultani et al., 2018; Wu
et al., 2020; Tian et al., 2021; Wu et al., 2024b).

UVAD methods learn normal patterns from only normal data and identify the videos deviating from
this distribution as anomalies. Due to the exclusion of anomalies during training, the UVAD meth-
ods exhibit insufficient generalization performance in complex scenarios (Yang et al., 2024). Sub-
sequently, WSVAD introduces anomalous videos and video-level labels to guide the model to learn
the discrimination between normal and abnormal instances. WSVAD leverages Multiple Instance
Learning (MIL) by constructing positive bags, each containing at least one anomalous frame, to train
the model to infer which specific segments are anomalous within positive bags, without relying on
frame-level annotations (Sultani et al., 2018; Wu et al., 2020).

While the performance of WSVAD has been continuously improved, an inherent flaw of WSVAD
has been consistently ignored. In real-world VAD scenarios, not all anomalies are necessarily pro-
vided for training all at once. Conversely, anomalous data indeed are continuously supplemented as
training data for updating the model. Apparently, the WSVAD model, which is trained once on the
limited dataset, lacks the ability for continual learning (CL). Consequently, WSVAD methods tend
to overfit to known anomalies and exhibit limited generalization to unknown anomalies. Therefore,
WSVAD training in real-world scenarios is more appropriately a anomaly-incremental continual
learning process. However, when an unseen abnormal category is captured, continuously mixing
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this upcoming abnormal data with the original training set for retraining is an inefficient training
approach. More importantly, due to the privacy concerns associated with anomalies captured in
specific scenarios, previously acquired anomalies are not necessarily accessible for data security is-
sues. However, solely applying the new abnormal data to fine-tune the model results in the original
knowledge of the model being overwritten, leading to catastrophic forgetting (McCloskey & Cohen,
1989). Fortunately, continual learning (Li & Hoiem, 2017; Wang et al., 2023) presents a potential
solution to this issue. Doshi & Yilmaz (2020; 2022) address CL for UVAD and achieve the expected
performance, but CL for WSVAD with anomaly-incremental process remains unexplored.

Nevertheless, directly applying existing CL methods to WSVAD raises two issues. Firstly, CL meth-
ods are typically applied to class-unbiased incremental tasks (Thengane et al., 2022; Wang et al.,
2023). However, normal instances, which are basically used as the golden standard to define the
anomalies, require special considerations in learning their representations especially in the contin-
ual setting, where the anomalies are streaming and diverse in categories. Therefore, learning a robust
normality representation is crucial for the continual learning in WSVAD. Secondly, the classical CL
methods, relying on either data replay or parameter isolation, suffer from increasing memory units
(Isele & Cosgun, 2018; Rolnick et al., 2019; Shin et al., 2017) or model size (Aljundi et al., 2017;
Mallya & Lazebnik, 2018; Serra et al., 2018).

In this work, we pioneer to explore continual learning for WSVAD, aiming to address the afore-
mentioned two issues. In the CL-WSVAD paradigm, normal videos and one type of anomalous
video are provided in the initialization task, and each subsequent task sequentially introduces a new
anomalous type. For the initialization task, we further decompose it into stages of normality repre-
sentation pre-training and weakly supervised adaption. On the normality representation pre-training
stage, we leverage the strong vision-language alignment in CLIP with readily available yet rich texts
describing anomalies as a complementary for anomalous videos in model pre-training, preparing the
enhanced normality representations for the adaption stage. To facilitate the model to extract mean-
ingful representations for both normalities and abnormalities, we in the weakly supervised adaption
stage propose the mixed-up cross-modal alignment method, which aligns visual features and tex-
tual embeddings on the normality-abnormality mixed image-text pairs. In the anomaly continual
learning stage, we design a novel continual learning framework by introducing a set of learnable
text prompts while fixing the other model parameters to mitigate catastrophic forgetting. Particu-
larly, we maintain these text prompts exclusively for each subsequent task, avoiding the large-scale
memory and model expansion. Compared to UVAD, CL-WSVAD introduces anomalous data to
handle complex scenarios. In contrast to WSVAD trained on fixed datasets, CL-WSVAD enhances
the scalability of WSVAD to adapt to continuously introduced anomalies, addressing the challenge
of exhaustively collecting anomalies. Additionally, CL-WSVAD, as an improved paradigm based on
WSVAD, incurs no additional costs for data collection and annotations compared to WSVAD, yet it
learns new anomalies without relying on previous ones, ensuring data privacy. Furthermore, our pro-
posed method offers better efficiency as it only requires updating prompts with minimal parameters
on newly introduced data.

Our contributions are summarized as follows:

• We pioneer to explore the method for addressing with streaming anomalies in the real
world, proposing the new paradigm: continual learning for weakly supervised video
anomaly detection (CL-WSVAD).

• We specifically propose a normality representation pre-training method for CL-WSVAD,
which guides the detection model to first learn a general normality representation to en-
hance the discrimination between normal and potential incremental anomalies. Addition-
ally, a mixed-up cross-modal alignment method is proposed to guide the pre-trained model
in achieving effective adaptation on CL-WSVAD.

• We design a novel CLIP-based continual learning framework, which sequentially maintains
the learnable text prompt corresponding to each task, mitigating the catastrophic forgetting
in CL-WSVAD.

• We compared our method with existing continual learning methods and achieve superior
performance on mainstream datasets. Extensive experiments validate the effectiveness of
our method in continual learning.
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2 RELATED WORK

Weakly Supervised Video Anomaly Detection. In the weakly supervised video anomaly detection
paradigm, a pre-trained video backbone is utilized to extract features from video segments, followed
by training a temporal anomaly detector to predict anomaly scores for the video segments. Sultani
et al. (2018) introduce a large-scale real-world surveillance video dataset, UCF-Crime, and propose
a MIL based ranking loss to enhance the discrimination between abnormal segments and normal
segments. Wu et al. (2020) introduce graph convolutional networks to extract the dependencies be-
tween video segments in both feature context and temporal distance, and fuse video-audio informa-
tion to enhance the performance of anomaly detection. RTFM (Tian et al., 2021) and MGFN (Chen
et al., 2023) explore the correlation between feature magnitude and abnormal segments, leveraging
this correlation to enhance the discrimination between abnormal and normal features. With vision-
language models achieving superior results in visual tasks, VadCLIP (Wu et al., 2024b) transfers the
pre-trained CLIP to WSVAD, where pre-trained language-visual knowledge effectively enhances
detection performance. Yang et al. (2024) transfer the language-visual knowledge of CLIP model
for aligning the video text descriptions and corresponding video frames to generate more accurate
pseudo labels, which guide the model to achieve better self-supervised model training. Tao et al.
(2024) propose a novel multi-prompt learning strategy, where the textual abnormal event prompts
extracted from generated video descriptions are utilized to implicitly guide the model in learning
the definition of anomalies. Lv & Sun (2024) adapt Video-LLaMA to the WSVAD task, achieving
not only threshold-free anomaly detection but also providing explanations for anomaly alerts. Jain
et al. (2025)presents a practical cross-domain learning framework for WSVAD and employs unla-
beled external videos to enhance the cross-domain generalization of the model. However, existing
WSVAD methods are typically based on the once training setting, failing to address the fact that real-
world anomalies are streamly introduced for model updates. In this paper, we pioneer to explore the
continual learning for WSVAD, aiming to mitigate the catastrophic forgetting when continuously
introducing previously unseen anomalies.

Continual Learning. Continual learning, which is a learning paradigm designed for an infinite
stream of data, strives to incrementally expand acquired knowledge for future learning (De Lange
et al., 2021). The existing continual learning methods can be mainly categorized into three cate-
gories: replay methods (Isele & Cosgun, 2018; Rolnick et al., 2019; Buzzega et al., 2020), parameter
isolation methods (Serra et al., 2018; Xu & Zhu, 2018), and regularization-based methods (Aljundi
et al., 2018; Li & Hoiem, 2017; Dhar et al., 2019) . Replay methods employ stored samples when
learning new tasks to mitigate catastrophic forgetting. Parameter isolation methods design separate
sub-models for each task to mitigate catastrophic forgetting of previous tasks. However, the contin-
uously increasing stored samples and the expanding model size severely limit the extensibility for
continual learning, making them evidently unsuitable for WSVAD. Regularization-based methods
add explicit regularization terms on weights or data to guide the model in consolidating previous
knowledge while learning new tasks. Nonetheless, these regularization-based approaches constrain
the performance of the model on new tasks. Recently, CLIP based methods, such as Continual-CLIP
(Thengane et al., 2022) and AttriCLIP (Thengane et al., 2022; Wang et al., 2023), achieve promis-
ing results in CL without sample storage and extensive model expansion. Unfortunately, anomalies
in WSVAD are complex and diverse, these methods challenge in adapting to WSVAD and achiev-
ing expected performance. Based on the characteristics of VAD, we propose a continual learning
method that emphasizes on learning general normality representation, achieved by differentiating
normal videos from abnormal texts. To facilitate CLIP adaption to WSVAD which involves captur-
ing various degrees of anomalies, we propose a cross-modal alignment based on mixed-up anomalies
with various mix-up factors. Unlike AttriCLIP which updates prompts throughout the training, we
develop a novel continual prompt learning framework, which sequentially retains the learnable text
prompts for each task, effectively mitigating catastrophic forgetting.

3 APPROACH

3.1 PRELIMINARIES

In the WSVAD paradigm, untrimmed training videos {vn}Nn=1 and corresponding video-level labels
{yn}Nn=1 are provided in the training stage. Here, the video which entirely lacks abnormal frames
is labeled as normal video with yn = 0, while the video containing at least one abnormal frame
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Figure 1: Overall framework of our method. In Task 1, normality representation pre-training
guides the detection model to learn a robust normality representation. Then mixed-up cross-modal
alignment assists the pre-trained model in adapting to CL-WSVAD. In Task i (i > 1), anomalies
are streamingly introduced, and the learnable text prompts corresponding to each task are trained
and retained sequentially to mitigate catastrophic forgetting. Note that the modules marked with
snowflakes are frozen, while those marked with flames are trained. In Task i, the parts with solid
lines indicate previous and ongoing tasks, while the parts with dashed lines represent subsequent
tasks.

is labeled as abnormal video with yn = 1. Generally, video vn is firstly divided into Tn non-
overlapping segments, i.e., vn = {vn,t}Tn

t=1, and each video segment vn,t is fed into the pretrained
feature extractor to extract video features. Then, a temporal anomaly detector is weakly supervised
trained to predict frame-level anomaly scores.

3.2 CL-WSVAD FORMULATION

Since anomalies in the real world emerge continuously, WSVAD is more inclined towards an
abnormal-class-incremental learning task. In this paper, we pioneer to propose the new paradigm:
continual learning for weakly supervised video anomaly detection. Specifically, given a sequence
of tasks, Task={Task 1, Task 2, ..., Task I}, with corresponding datasets D={D1, D2, ..., DI}, the
datasets are sequently and non-overlappingly fed into the continuous tasks. Due to privacy and
security concerns, in the ith task, the anomalies in previous dataset, {D1, D2, ..., Di−1}, are un-
available. Meanwhile, following the WSVAD paradigm, Task 1 provides normal videos and one
type of anomaly video. In subsequent continuous tasks, each task introduces one type of anomaly
video. The goal of continual learning for WSVAD is to mitigate the forgetting of knowledge from
{D1, D2, ..., Di−1} while learning new anomaly on {Di}.

3.3 CONTINUAL LEARNING FRAMEWORK

CLIP has been proven to be an efficient continual learner across multiple visual tasks (Thengane
et al., 2022), and we adapt CLIP to CL-WSVAD, constructing a continual learning framework.
CLIP consists of an image encoder fθ and a text encoder gϕ, and these two encoders respectively
output image embedding z and text embedding w. In the training stage, a contrastive loss is applied
to align image embeddings with text embeddings. The prediction probability for the ith class can be
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expressed as follows:

pi =
exp(sim(z,wi)/τ)∑I
i=1 exp(sim(z,wi)/τ)

, (1)

where sim(·, ·) denotes cosine similarity and τ is a temperature hyper-parameter for scaling.

To adapt CLIP to CL-WSVAD task, a GCN (Graph Convolutional Network) based temporal adapter,
fa, is introduced after the image encoder, constructing visual branch of the anomaly detection model.
In this branch, the videos are non-overlappingly segmented and fed into the image encoder and the
temporal adapter sequentially. In CL-WSVAD task, the prediction probability can be expressed as
follows:

Pi =
exp(sim(fa(Z),wi)/τ)∑I
i=1 exp(sim(fa(Z),wi)/τ)

, (2)

where Z={z1, ..., zTn
} represents the set of segment-level visual embeddings, and

Pi={p1i , p2i , ..., p
Tn,
i } denotes the set of segment-level predictions for the ith class.

Inspired by CoOp (Zhou et al., 2022), we introduce the adaptation strategy that fine-tunes the learn-
able text prompts, designing our continual learning framework. In Task i, the learnable prompt
integrated input of text encoder is expressed as follows:

tip={V i
1 , ..., V

i
M , T okenizer(Labeli), V i

M+1, ..., V
i
2M}, (3)

where {V i
1 , V

i
2 , ..., V

i
2M} are the learnable prompt containing 2M context tokens, and the

Tokenizer is the CLIP tokenizer. In initialization task, fa learns the dependencies among video
segments and has acquired the ability to distinguish between normal and anomalous videos. Based
on this observation, in subsequent continuous tasks, fa is frozen, and an independent learnable text
prompt is provided for each task for vision-language alignment training. In Task i (i > 1), the text
learnable prompt tip, which has been adapted by vision-language alignment, has already learned the
current anomaly on Task i. Then, tip is frozen and is not trained in subsequent tasks. In this stage,
a textual semantic contrastive loss Ltsc is introduced to enhance the discrimination between normal
and anomalous text embeddings. Ltsc is represented as follows:

Ltsc =
∑
i

max(0,
(wn)Twa

i

∥wn∥2 · ∥wa
i ∥2

), (4)

where wn and wa
i represent the text embeddings for normal and ith anomaly, respectively. In this

training strategy, each task retains independent tip, and the text learnable prompts are independently
trained without influencing other prompts. Therefore, this continual learning framework retains
the streaming anomaly information and mitigates catastrophic forgetting. In the testing stage, the
anomaly scores for video segments can be obtained by calculating the similarity between the normal
/ anomalous text embeddings and the visual features.

3.4 INITIALIZATION LEARNING

In our approach, Task 1 is designed as the initialization learning process of CL-WSVAD, which
comprises two stages: the normality representation pre-training and the weakly supervised adapta-
tion.

Normality Representation Pre-training. Different from traditional continual learning, we intro-
duce normality representation pre-training (NRP) to obtain a robust normality representation. Al-
though anomalous videos are scarce in the real world, fortunately, there is the perfect semantic
alignment of vision and text features in CLIP. This semantic alignment allows easily accessible
anomalous text to simulate real visual anomalies to guide the detector to distinguish between nor-
mal instances and potential incremental anomalies. Here, ChatGPT is utilized to generate potential
anomalous texts, these generated texts are expected to cover a variety of potential anomalies. Specif-
ically, ChatGPT is prompted with, “Please list possible abnormal events that may occur in videos”,
resulting in 2,000 potential abnormal texts. Then, a set of learnable text prompts are initialized
with these anomalous texts to obtain the anomalous text embeddings. Then, a general normality
representation is learned by contrastive learning on the actual normal visual features and potential
anomalous text embeddings. The pre-training loss function Lnrp can be expressed as :

Lnrp = Lnce + αLtsc = CE(ynor, p
v
i ) + αLtsc, (5)
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where Lnce represents the cross-entropy loss between the predictions and the ground truth. ynor
is the ground truth for normal videos, and α is a hyperparameter. Note that we first get segment-
level predictions based on Eq. 2, and then employ the Top-K mean operation to obtain video-level
predictions pvi . NRP guides the model to learn a generalized representation from extensive simulated
visual anomalies, effectively distinguishing between normal and incremental anomalous events. In
the Appendix A.1, we provide a theoretical proof of the effectiveness of NRP.

Weakly Supervised Adaptation. With a type of anomaly video is introduced, we adapt the pre-
trained model to the CL-WSVAD paradigm. To enable the model to learning meaningful representa-
tions for both normalities and anomalies, we introduce the mixed-up cross-modal alignment method
to assist in adaptation to CL-WSVAD.

Inspired by Wang et al. (2021); Mushtaq et al. (2024), the mixed features can incorporate the seman-
tics of both components, based on which, mixed-up cross-modal alignment (MCMA) is proposed.
Specifically, the normal embeddings, zn and wn, and the anomalous embeddings, za and wa,
which are respectively produced by the CLIP image encoder and CLIP text encoder, are mixed in
the same proportion:

zm = βza + (1− β)zn, wm = βwa + (1− β)wn. (6)

Here, zm and wm respectively represent the mixed visual and mixed text embeddings, and β is the
random mixing ratio factor. Then, the mixed visual embeddings are fed into the temporal adapter
fa, and the obtained visual features are expected to remain aligned with the mixed text embeddings
in terms of anomaly semantics. To guide the temporal adapter in learning the anomaly semantics of
the mixed visual features, a cross-modal alignment loss Lcma is introduced to guide the temporal
adapter training. Lcmais expressed as follows:

Lcma = m− (sim(
1

k

∑k

i=1
topk(fa(z

m)),wm)), (7)

where m is a constant representing the margin, and Top-K mean operation transforms segment-level
mixup visual features into video-level features. By constructing numerous samples with varying
degrees of anomalies using the mix-up technique, MCMA guides fa and the corresponding learnable
text prompts to extract more meaningful normal and anomaly semantic information from the mixed
features. Meanwhile, MCMA enhances the model’s ability to effectively differentiate anomalies
with varying levels of abnormality. In addition, this mix-up-based approach effectively augments
the text and visual embeddings utilized for training, particularly enhancing the generalization of
both normal and anomaly representations.

For the weakly supervised adaptation stage, with the introduction of a real abnormal type, the NRP
is still applied to fine-tune the normality representation. The loss function Lwsa for this stage can
be expressed as follows:

Lwsa = λLcma + Lnce + αLtsc, (8)

where λ and α are hyperparameters.

3.5 ANOMALY CONTINUAL LEARNING

In each subsequent task, a previously unseen category of anomalous videos is introduced for training.
The parameters of the visual branch are frozen, and a dedicated learnable text prompt for current
task is initialized and trained. Based on Eq. 2 and Top-K mean operation, video-level predictions
can be obtained, and Lnce is utilized for optimization of the learnable text prompt.

Normality Coreset Memory. As we known, normal videos are widely available and easily accessi-
ble, without concerns regarding safety and privacy. To further improve the performance of proposed
method, some representative normal features are saved as memory in Task 1 for subsequent tasks.
Considering the substantial memory consumption of video features and the training efficiency, we
propose the normality coreset memory (NCM). Specifically, the output features from the temporal
adapter are first obtained. By comparing their cosine similarity with normal text embedding, the
Top-K representative normal segment-level features are selected, and these features are then down-
sampled to video-level normal features by mean operation. Subsequently, Greedy Coreset Subsam-
pling (Roth et al., 2022) is employed to select coreset of normal video-level features, constructing
the NCM in Task 1. With the introduction of NCM, the learnable text prompt corresponding to
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Table 1: CL-WSVAD benchmark on UCF-Crime in AUC (%). The AUC of Task i ∈ {1, 2, ..., 13},
reports the AUC tested over all the previous tasks and the ongoing tasks (i.e., Tasks 1, 2, . . . , i). ∗
denotes the reimplemented replay-based continual learning methods.

Method Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task10 Task11 Task12 Task13 Average

LWF 99.8 95.4 95.0 89.4 87.6 82.7 82.7 80.3 79.3 78.8 74.4 75.1 73.9 84.2
DER∗ 99.7 93.0 93.7 89.6 87.4 82.6 82.5 81.8 81.7 79.9 79.2 80.0 80.1 85.5

DER++∗ 99.7 93.0 93.6 89.7 87.5 82.9 82.6 82.7 83.3 80.5 79.1 81.4 81.1 85.9
Continual-CLIP 99.8 97.3 96.5 93.1 90.6 86.3 86.1 85.3 84.6 83.0 81.1 81.4 81.4 88.2

AttriCLIP 99.9 98.1 95.6 93.3 90.1 86.8 87.6 81.2 81.9 81.2 76.5 73.0 78.9 86.5
SGCL 99.6 97.6 96.6 93.2 90.4 86.2 86.1 85.2 84.2 82.6 80.6 80.9 81.1 88.0

VadCLIP+LWF 99.8 90.5 93.5 91.3 89.8 85.2 84.4 83.8 83.0 80.3 79.8 80.3 80.6 86.3
Continual-CLIP+LWF 99.5 96.4 95.6 91.0 89.2 84.5 84.6 83.8 83.2 81.4 79.1 80.2 80.1 86.8

AttriCLIP+LWF 99.9 97.6 95.2 91.9 89.8 85.3 85.0 83.9 82.6 81.2 80.4 80.5 80.3 87.2

Ours 99.9 98.1 97.5 95.3 92.7 88.7 88.6 87.6 86.7 84.5 83.2 83.2 83.1 89.9

Table 2: CL-WSVAD benchmark on XD-Violence in AUC (%) / AP (%). The AUC / AP of Task
i ∈ {1, 2, ..., 6}, reports the AUC / AP tested over all the previous tasks and the ongoing tasks (i.e.,
Tasks 1, 2, . . . , i). ∗ denotes the reimplemented replay-based continual learning methods.

Method Task1 Task2 Task3 Task4 Task5 Task6 Average

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

LWF 98.6 83.7 97.1 78.0 89.8 67.1 89.3 66.3 87.6 64.2 86.1 62.2 91.4 70.2
DER∗ 98.3 82.3 96.7 75.3 90.8 68.3 90.4 67.9 91.0 71.3 90.4 72.1 92.9 72.9

DER++∗ 98.3 82.3 96.7 75.2 90.8 68.4 90.5 68.0 91.2 71.8 90.6 72.6 93.0 73.0
Continual-CLIP 98.4 83.5 96.8 77.6 91.7 71.1 91.9 73.4 89.0 68.3 85.7 61.4 92.3 72.5

AttriCLIP 98.1 80.9 95.9 64.2 88.2 60.3 86.7 58.9 80.6 50.8 80.5 44.2 88.3 59.9
SGCL 98.4 83.5 96.8 77.7 91.2 70.6 91.1 71.1 88.1 66.6 86.3 62.6 92.0 72.0

VadCLIP+LWF 98.4 81.9 96.9 77.9 90.0 67.8 92.1 72.2 88.9 66.5 88.8 66.0 92.5 72.1
Continual-CLIP+LW 98.4 83.6 97.1 78.6 90.2 69.1 89.1 67.1 87.5 65.5 86.6 64.3 91.5 71.4

AttriCLIP+LWF 97.9 75.1 95.5 74.7 86.0 62.7 86.1 63.0 84.8 61.7 80.0 55.8 88.4 65.5

Ours 98.3 82.2 96.9 77.5 96.5 88.3 96.4 87.8 94.7 85.0 92.9 80.8 96.0 83.6

normal category is also fine-tuned in each subsequent task. The cross-entropy based alignment loss
Lm = CE(ynor, pm), where pm represents the video-level prediction derived from the saved video-
level features, is utilizing for prompt fine-tuning. The loss function in each subsequent task can be
expressed as:

LTi
= Lnce + Lm + αLtsc, (i > 1). (9)

In addition, NCM is maintained to store core normal features, which serve as representative char-
acteristics distinctly different from anomalies. Meanwhile, learnable prompts are also updated to
integrate new anomalies and normal features based on the NCM and newly encountered anoma-
lies. These approaches ensure effective differentiation between normal samples and anomalies that
closely resemble normal events in subsequent tasks.

Update Strategy of Learnable Text Prompt. As shown in Fig. 1, in Task i (i > 1), the learn-
able text prompt tip for the current anomaly can be updated, while the prompts associated with
previously seen anomalies remain frozen to ensure that these seen anomalies are unaffected. In the
anomaly continual learning process, only the corresponding learnable text prompt is updated, and
the prompts learned in each task are not overwritten. Therefore, this update strategy effectively
mitigates catastrophic forgetting. Meanwhile, only a learnable text prompt is updated in one task,
effectively reducing computational overhead.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Datasets. UCF-Crime (Sultani et al., 2018) is a large-scale real-world video dataset for WSVAD
task. This dataset involves 13 types of anomalies in surveillance videos, e.g., arson, fighting, rob-
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bery, road accident, etc. In the continual learning experiments, normal training data are assigned to
the initialization task, and the 13 types of abnormal training videos are respectively assigned into
initialization task and the remaining 12 tasks. Following existing CL works (Tang et al., 2023; Liu
et al., 2024), each anomaly class is assigned to the corresponding task in alphabetical order. In
the testing stage, the model trained for each task is evaluated on the testing set using both normal
instances and known anomalous videos. XD-Violence (Wu et al., 2020), which is a large-scale
and multi-scene dataset, possess 4,754 untrimmed videos containing audio signals and video-level
labels. XD-Violence, of which source includes movies, cartoons, captured by CCTV cameras, hand-
held cameras, car driving recorders, etc, contains a total duration of 217 hours. This dataset contains
3,954 training videos and 800 testing videos. XD-Violence provides 6 types of anomalies, and the
experimental setup on XD-Violence is consistent with that on UCF-Crime.

Evaluation Metrics. Given that WSVAD typically evaluates model detection performance utilizing
area under the curve (AUC) or average precision (AP), we develop a benchmark based on AUC or
AP to assess the continual learning performance. Following existing CL method (Wang et al., 2023),
in Task i, we employ the AUC / AP tested over all the previous tasks and the ongoing tasks (i.e.,
Task 1, 2, ..., i), as the metric.

Implementation Details. In our framework, the frozen image and text encoders are based on the
pre-trained CLIP (ViT-B/16). Then, we employ a temporal GCN structure (Wu et al., 2020), con-
sisting of two GCN modules with two layers each and one FC layer, to construct the fa. For hy-
perparameters, M is set to 10 in the learnable text prompts. In Eq. 2, τ is set to 0.07, and in Eq.
7, m is set to 1. For NCM, the memory size is set to 100 × 512 on UCF-Crime and 50 × 512 on
XD-Violence. Additionally, on UCF-Crime, λ = 1, α = 10−1, and on XD-Violence, λ = 10−3,
α = 10−4. Moreover, in the Top-K mean operation, K = Tn/16 + 1. In the training stage, we train
the model on NVIDIA RTX 3080 GPU by PyTorch, and AdamW (Loshchilov & Hutter, 2017) is
utilized as the optimizer. On UCF-Crime, the learning rate is 1 × 10−5, with training epochs set to
3 for NRP, 3 for weakly supervised adaptation training, and 10 for the remaining tasks, respectively.
On XD-Violence, the learning rate is 2× 10−5, with training epochs set to 1 for NRP, 3 for weakly
supervised adaptation training, and 10 for the remaining tasks, respectively.

4.2 MAIN RESULTS

In this subsection, we establish the first benchmark for CL-WSVAD on the UCF-Crime and XD-
Violence, as detailed in Tab. 1 and Tab. 2. We present the AUC / AP achieved for each task along
with their average values, AvgAUC / AvgAP. Note that the AUC / AP illustrates the performance
of the current model on seen testing videos, highlighting the model’s ability to mitigate catastrophic
forgetting, particularly the AUC / AP of the final task. Here, the seen test videos refers to the
type of videos in the test set that the model has already encountered in previous or current tasks.
Meanwhile, increased AUC / AP values suggest improved performance of the model in mitigating
catastrophic forgetting. We employ CoOp as the backbone framework and reimplement continual
learning methods, including LWF (Li & Hoiem, 2017), DER (Buzzega et al., 2020), and DER++
(Buzzega et al., 2020) method, for CL-WSVAD. Here, the GCN-based temporal adapter is imple-
mented to the adaptation of CoOp for CL-WSVAD. Meanwhile, we introduce CLIP based continual
learning method, including Continual-CLIP (Thengane et al., 2022), AttriCLIP (Wang et al., 2023),
SGCL (Yu et al., 2024) for CL-WSVAD. Subsequently, we combine LWF with VadCLIP (Wu et al.,
2024b), Continual-CLIP, and AttriCLIP to further evaluate their performance on CL-WSVAD.

It can be observed that LWF, as a regularization-based CL method, exhibits limited performance on
CL-WSVAD task. DER and DER++, as replay-based CIL methods, outperform LWF primarily due
to the introduction of a minimal number of prior anomalies into subsequent tasks. Although these
two methods improve mitigating-forgetting performance, they incur substantial memory, especially
in video tasks. Although Continual-CLIP achieves favorable results on UCF-Crime, it performs in-
adequately in terms of APs on XD-Violence. Then, due to the significant diversity among anomalies,
AttriCLIP, which relies on common attribute learning, demonstrates inferior performance, particu-
larly on XD-Violence. SGCL relies on the semantic relationships between previous and subsequent
task labels, but the limited text labels and weak correlations among them, resulting in SGCL failing
to achieve the anticipated results.
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Table 3: Performance comparison across different VAD paradigms on UCF-Crime and XD-
Violence.

Paradigm Method UCF-Crime XD-Violence

AUC AUC AP

Conv-AE (Hasan et al., 2016) 50.60 - -
UVAD BODS (Wang & Cherian, 2019) 68.26 57.32 -

GODS (Wang & Cherian, 2019) 70.46 61.56 -
LANP-UVAD (Shi et al., 2024) 80.02 - -

GCNAD (Zhong et al., 2019) 82.12 - -
CLAWS (Zaheer et al., 2020) 83.03 - -

MIST (Feng et al., 2021) 82.30 - -
WSVAD RTFM (Tian et al., 2021) 84.03 - 77.81

MSL (Li et al., 2022) 85.30 - 78.28
BN-SVP (Sapkota & Yu, 2022) 83.39 - -

MGFN (Chen et al., 2023) 86.98 - 79.19
VadCLIP (Wu et al., 2024b) 88.02 - 84.51
PE-MIL (Chen et al., 2024) 86.83 - 88.05

STPrompt (Wu et al., 2024a) 88.08 - -

ZS CLIP (Radford et al., 2021) 53.16 38.21 17.83
Zero-Shot ZS Imagebind (Image) (Girdhar et al., 2023) 53.65 58.81 27.25

ZS Imagebind (Video) (Girdhar et al., 2023) 55.78 55.06 25.36

CL-WSVAD Ours (w/o NCM) 82.80 91.27 76.06
Ours (w/ NCM) 83.10 92.93 80.78

Without mitigating-forgetting strategies, CLIP based methods tends to overfit to specific sub-tasks
in CL-WSVAD. Subsequently, we apply LWF to the current state-of-the-art WSVAD method, Vad-
CLIP, and find that VadCLIP’s performance is comparable to that of DER. Next, integrating LWF
into Continual-CLIP does not improve performance and, as observed on UCF-Crime, actually re-
stricts Continual-CLIP’s effectiveness in new tasks. In contrast, LWF assists AttriCLIP in achieving
better performance on UCF-Crime. Finally, our approach achieves the best performance across
both datasets, especially on the challenging XD-Violence, without requiring regularization or prior
anomaly data.

4.3 COMPARISONS WITH VAD PARADIGMS

Here, the CL-WSVAD paradigm is compared with the existing VAD paradigm. As shown in the
Tab. 3, we report the anomaly detection performance of the CL-WSVAD model at the final task of
continual learning on the entire dataset. Since abnormal videos are not included, the performance
of UVAD methods is limited in complex anomaly scenarios. With the introduction of anomalous
data, the performance of WSVAD methods is significantly improved. However, given that real-
world anomalies are difficult to collect exhaustively and are continuously introduced, the scalability
of WSVAD which trained on fixed dataset is limited for streaming anomalies. Upon introducing
new anomalies, the WSVAD method requires recalling the previous data and retraining the entire
model. Next, the zero-shot (ZS) VAD methods clearly struggle with addressing intricate VAD task.
Finally, our CL-WSVAD, which is more aligned with real-world scenarios compared to existing
WSVAD paradigms, achieves competitive performance and even surpasses some of the current WS-
VAD methods. Our method not only enhances the scalability of WSVAD but also improves training
efficiency by requiring only minimal parameter updates to the prompts for newly introduced data.
Additionally, we integrate the SOTA WSVAD method, VadCLIP, with LWF adapted to the CL-
WSVAD task. As shown in the Tab. 1 and Tab. 2, our approach achieves superior results. The
results of the zero-short methods are reported by Zanella et al. (2024).

4.4 ABLATION STUDY

In this subsection, we conduct an ablation study to evaluate our proposed method. As shown in
Tab. 4, we report the AUC / AP achieved in the final task and the AvgAUC / AvgAP. First, we
note that the proposed continual learning framework achieves AvgAUC of 86.21% on UCF-Crime,
and our framework outperforms LWF and DER in AvgAUC. Additionally, our continual learning
framework achieves 73.88% in AvgAP on XD-Violence, surpassing all other methods in AvgAP.
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Table 4: Ablation study on UCF-Crime and XD-Violence.

NRP MCMA NCM UCF-Crime XD-Violence

AUC AvgAUC AUC AvgAUC AP AvgAP

78.54 86.21 87.85 93.23 66.27 73.88
✓ 80.90 86.58 90.69 94.20 73.86 77.97
✓ ✓ 82.80 89.69 91.27 94.93 76.06 80.19

✓ ✓ 78.78 85.16 91.42 95.01 73.66 78.53
✓ ✓ 81.37 88.83 92.80 95.82 77.02 80.51
✓ ✓ ✓ 83.10 89.94 92.93 95.96 80.78 83.61

Table 5: Ablation study for the size of NCM on UCF-Crime.
Memory Size 0 50×512 100×512 200×512 400×512

AUC 82.80 82.79 83.10 83.14 83.17
AvgAUC 89.69 89.71 89.94 89.95 89.99

This result effectively validates the continual learning performance of our proposed framework.
Then, the introduction of NRP leads to the 2.36% improvement in AUC on UCF-Crime and the
7.59% improvement in AP on XD-Violence. This improvement is primarily due to the learned robust
normal representations, which provide the foundation for subsequent anomaly learning. Thereafter,
MCMA further enhances performance by 3.11% in AvgAUC on UCF-Crime and 2.22% in AvgAP
on XD-Violence. This enhancement primarily results from MCMA guiding the temporal adapter
and learnable text prompts to develop more generalized representations of normal and anomalous
instances, thereby effectively assisting the pre-trained model in adapting to CL-WSVAD. When NRP
or MCMA is removed, the performance of our method declines, particularly in AUC on UCF-Crime
and AP on XD-Violence, demonstrating the necessity of NRP and MCMA. Furthermore, the normal
video features provided by NCM assist our method in achieving the best performance.

Additionally, we perform ablation experiments to evaluate the impact of the memory size of NCM
on UCF-Crime. As shown in Tab. 5, we report the AUC achieved in the final task and AvgAUC.
Here, we observe that a memory size of 50×512 is insufficient to enhance model performance.
Subsequently, we expand the memory size to 100×512, which results in a 0.3% improvement in AUC
and a 0.25% improvement in AvgAUC. Then, the memory is expanded to 200×512 and 400×512,
but no significant improvement is observed. Therefore, we set the memory size to 100×512 on
UCF-Crime.

5 CONCLUSION

In this work, we emphasize that anomalies are streaming in real-world VAD scenarios and pioneer
to propose the CL-WSVAD paradigm. Then, we propose a continual learning method to mitigate
catastrophic forgetting for WSVAD paradigm. We leverage easily accessible textual anomalies for
pre-training, allowing the model to learn a robust normality representation that enhances discrimi-
nation between the normality and the increasingly emerging potential anomalies. Next, we propose
MCMA method that guides the pre-trained model to effectively adapt to CL-WSVAD. Meanwhile,
we propose a continual learning framework which based on retaining the learnable text prompts for
each type of anomaly, mitigating catastrophic forgetting. The effectiveness of our method has been
demonstrated on the constructed benchmark.
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A APPENDIX

A.1 PROOF OF THE EFFECTIVENESS OF NORMALITY REPRESENTATION PRE-TRAINING

Inspired by Khosla et al. (2020); Oord et al. (2018); Chen et al. (2020); Saunshi et al. (2019), we
theoretically demonstrate the effectiveness of NRP in improving the normality visual representation.
To evaluate the relevance of video representation to textual semantics feature, mutual information is
introduced and defined as follows:

I(x,w) =
∑
x,w

p(x,w) log
p(x|w)

p(x)
, (10)

where x = fa(z), and w represents the textual embedding. Here, an increasing value of I(x,w)
signifies a stronger correlation between the x and w achieved.

Given the challenges in directly estimating p(x|w) and p(x), following Oord et al. (2018), we
introduce a density ratio, fI(x,w) ∝ p(x|w)

p(x) , which preserves the mutual information between x

and w. Referring to Eq. 2, fI is defined as fI = exp(sim(x,w)/τ) to facilitate the proof process.

In CL-WSVAD, video features set X can be divided into normal video feature set Xnor, and abnor-
mal video feature set Xab. According to Eq. 5, Top-K mean operation is used to obtain the pvi for
calculating Lnce, the Xnor consists of the normal video features corresponding to the Top-K video
segments. In the NRP process, a normal text embedding w0, along with a set of text embeddings
Wab = {w1,w2, ...,wNt−1}, which obtained by Nt−1 anomalous texts generated by ChatGPT, are
applied for pre-training. Combining fI = exp(sim(x,w)/τ) with Eq. 2, the Lnce can be expressed
as follows:

Lnce = − E
xi∈Xnor

log p(xi|w)
p(xi)

p(xi|w)
p(xi)

+
∑

xj∈Xab

p(xj |w)
p(xj)

 (11)

Since there are no abnormal videos in the NRP process, the term
∑

xj∈Xab

p(xj |w)
p(xj)

does not

exist. Based on the perfect semantic alignment of vision and text features in CLIP, we apply the
generated anomaly text embeddings Wab to simulate abnormal video features Xab, and Lnce

can be approximated as:

Lnce ≈ − E
xi∈Xnor

log p(xi|w)
p(xi)

p(xi|w)
p(xi)

+
∑

wj∈Wab

p(wj |w)
p(wj)

 (12)

= E
xi∈Xnor

log

1 + p(xi)

p(xi|w)

∑
wj∈Wab

p(wj |w)

p(wj)

 (13)

≈ E
xi∈Xnor

log

[
1 +

p(xi)

p(xi|w)
(Nt − 1)E

wj

p(wj |w)

p(wj)

]
(14)

= E
xi∈Xnor

log

[
1 +

p(xi)

p(xi|w)
(Nt − 1)

]
(15)

≥ E
xi∈Xnor

log

[
p(xi)

p(xi|w)
Nt

]
(16)

= −I(x,w) + log(Nt). (17)

As we known, I(x,w), where x ∈ Xnor, represents the mutual information between the normal
video representation and text embeddings. Next, the following inequality relationship is obtained:

I(x,w) ≥ log(Nt)− Lnce, (18)
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Table 6: Experiments in different continual learning configurations on UCF-Crime in AUC (%).
Configuration Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task10 Task11 Task12 Task13

Config.1 99.9 98.1 97.5 95.3 92.7 88.7 88.6 87.6 86.7 84.5 83.2 83.2 83.1
Config.2 99.9 97.9 97.5 94.7 93.0 88.6 88.4 87.5 87.7 85.5 84.1 83.7 83.5

Table 7: Experiments in different continual learning configurations on XD-Violence in AUC (%) /
AP (%).

Configuration Task1 Task2 Task3 Task4 Task5 Task6

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

Config.1 98.3 82.2 96.9 77.5 96.5 88.3 96.4 87.8 94.7 85.0 92.9 80.8
Config.2 90.6 63.4 90.8 62.7 92.7 84.1 95.0 86.9 92.4 83.2 90.5 80.0

where the lower bound of the I(x,w) can be derived. In the NRP process, as Lnce decreases, the
lower bound of I(x,w) increases continuously. Moreover, the introduction of abnormal textual
information generated by ChatGPT increases the overall sample size Nt, which simultaneously
raises the lower bound of I(x,w). As the lower bound of I(x,w) is increased, it indicates that the
normal video representation and the normal text embedding have achieved a stronger correlation,
thereby validating the effectiveness of our method in enhancing the normal video representation. In
fact, in the experiment in Appendix A.4, we also experimentally validate that with the increasing
introduction of abnormal texts, our method achieves better performance.

A.2 EXPERIMENTS IN ANOTHER CONTINUAL LEARNING CONFIGURATION

For the experimental configuration outlined in the main text, designated as Config.1, normal videos
are provided all at once in the Task 1, with only new anomalies introduced in each subsequent
continual learning task. Considering the hardship of collecting all normal videos during the initial
learning stage, there is another experimental configuration: to guide the model in simultaneously
learning normal and anomalous patterns, a comparable number of normal and anomalous samples
are introduced concurrently in each continual learning task. This configuration is designated as
Config.2. Here, we implement our method under Config.2. In the testing stage, both configurations
utilize the same test data, which includes all normal videos and known abnormal videos, and same
metrics for each continual learning task, with the results on the two datasets presented in Tab. 6 and
Tab. 7.

It can be observed that under different configurations, our method achieves comparable performance
in the final task. This validates that our approach can sufficiently leverage normal videos to effec-
tively achieve the expected results of the CL-WSVAD task in both configurations. Moreover, in
Config.1, the initialization task introduces all normal data, leading to better results in the earlier con-
tinual learning tasks, with this observation being particularly evident in the XD-Violence dataset. It
is essential to note that in the testing stage of each continual learning task, all normal videos from the
testing set are utilized. Consequently, the Config.1, which employs more normal data for training in
Task 1, outperforms Config.2 in the earlier tasks. In addition, compared to the normal videos pri-
marily sourced from simple surveillance scenes on UCF-Crime, the normal videos in XD-Violence,
derived from movies and YouTube, exhibit greater diversity. As a result, the performance differences
across different configurations are more pronounced on XD-Violence.

A.3 CONTINUAL LEARNING EXPERIMENTS WITH MULTI-CLASS INCREMENTAL
CONFIGURATION

In Tab. 1 and Tab. 2, the experiments focus on the continual learning task containing only one
anomaly type. Additionally, we evaluate a multi-class incremental configuration, where multiple
anomaly types (2, 4, or 6 types) are sequentially introduced. The results, as shown in Tab. 8, demon-
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Table 8: Continual learning experiments with multi-class incremental configuration on UCF-Crime
in AUC (%). Num represents the number of anomaly types introduced in each task.

Num Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task10 Task11 Task12 Task13

1 99.9 98.1 97.5 95.3 92.7 88.7 88.6 87.6 86.7 84.5 83.2 83.2 83.1
2 - 97.7 - 95.6 - 89.4 - 88.1 - 84.7 - 83.6 83.6
4 - - - 96.4 - - - 89.7 - - - 84.9 84.8
6 - - - - - 91.2 - - - - - 86.3 86.1

strate improved performance as more classes are introduced at once, highlighting the generalization
capability of our approach for both single- and multi-class continual learning.

A.4 ANALYSIS OF ANOMALOUS TEXTS IN NRP

To further validate the effectiveness of NRP, we have separately analyzed the impact of the number
of and content of the anomalous texts on performance.

Table 9: Analysis of the number of anomaly texts in the NRP on UCF-Crime.
Num 0 100 500 1000 2000 4000

AUC 78.78 80.94 82.73 82.78 83.10 82.79
AvgAUC 85.16 87.55 89.53 89.50 89.94 89.55

We conduct ablation study on the number of potential anomaly texts used in NRP. As shown in
Tab. 9, we report the AUC achieved in the final task and AvgAUC, and the results show progressively
improved performance with an increasing number of anomaly texts. Even learning with only 100
anomaly texts yields a significant improvement (+2% in AUC), with 2,000 texts resulting in the best
performance. However, due to limitations in ChatGPT’s generation capabilities, some irrelevant
anomalies are present among the excessive samples, which limit further improvement when applying
4,000 potential anomaly texts.

Table 10: Analysis of the content of anomalous texts in the NRP.
UCF-Crime XD-Violence

AUC AvgAUC AUC AvgAUC AP AvgAP

w/o Relevant Anomalous Texts 82.97 89.64 93.28 96.10 80.46 82.92
w Relevant Anomalous Texts 83.10 89.94 92.93 95.96 80.78 83.61

To avoid information leakage, we do not leverage any information related to video/image or anomaly
categories when guiding ChatGPT to generate anomaly texts. These generated anomaly items are
dataset-agnostic, meaning we could use the same set of anomaly items for both UCF-Crime and
XD-Violence. To gain a deeper insight into how these anomaly texts affect detection, we remove the
anomaly items related to the specific anomaly categories in both datasets, approximately 240 items
out of the 2,000. As shown in Tab. 10, we report the AUC achieved in the final task and AvgAUC,
and the results show that these removed items have a negligible impact on performance.

A.5 PERFORMANCE VALIDATION IN ADDITIONAL METRICS

Here, we separately evaluate AUC scores on the current task in CAUC and previous tasks in PAUC to
validate the model’s ability to mitigate catastrophic forgetting. The PAUC of Task i ∈ {1, 2, ..., 13},
reports the AUC tested over all the previous tasks (i.e., Tasks 1, 2, . . . , i− 1), while the CAUC of
Task i ∈ {1, 2, ..., 13}, reports the AUC tested on the current tasks (Tasks i). Results on UCF-Crime
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Table 11: Performance validation in additional metrics on UCF-Crime in PAUC (%) and CAUC
(%).

Method Task1 Task2 Task3 Task4 Task5 Task6 Task7

PAUC CAUC PAUC CAUC PAUC CAUC PAUC CAUC PAUC CAUC PAUC CAUC PAUC CAUC

DER++∗ - 99.7 99.7 93.0 92.3 97.0 93.8 87.3 89.3 91.1 87.6 79.9 82.6 94.4
SGCL - 99.6 99.9 97.7 97.1 98.2 96.6 91.9 92.8 93.4 90.3 86.8 86.2 96.6

VadCLIP+LWF - 99.8 99.2 90.5 91.3 97.6 94.7 91.2 91.9 94.1 89.4 82.9 84.8 91.4
Continual-CLIP+LWF - 99.5 98.3 96.4 96.6 96.8 95.4 87.8 91.1 92.7 89.0 77.5 84.4 96.5

Ours - 99.9 99.9 98.3 98.2 98.6 97.6 94.4 95.1 94.4 92.7 90.7 88.6 98.5

Method Task8 Task9 Task10 Task11 Task12 Task13 Average

PAUC CAUC PAUC CAUC PAUC CAUC PAUC CAUC PAUC CAUC PAUC CAUC PAUC CAUC

DER++∗ 83.4 90.4 84.3 82.0 82.2 92.0 80.7 83.9 81.0 98.9 81.2 95.3 86.5 91.2
SGCL 85.9 88.7 85.3 82.3 84.0 93.1 82.4 79.3 80.6 98.0 81.2 91.5 88.5 92.1

VadCLIP+LWF 84.6 95.2 83.9 86.2 82.7 90.1 80.7 84.2 79.7 98.5 80.9 95.7 87.0 92.1
Continual-CLIP+LWF 84.4 86.3 83.9 85.5 83.1 92.1 81.3 75.5 79.5 99.0 80.3 87.4 87.3 90.2

Ours 88.5 93.6 87.7 77.9 86.5 93.4 84.4 88.1 83.0 99.0 83.2 97.0 90.5 94.1

Table 12: Analysis of the hyperparameters of the loss function.
UCF-Crime XD-Violence

λ 0.1 1 10 λ 0.01 0.001 0.0001

AUC 82.76 83.10 81.49 AP 78.15 80.78 78.08
AvgAUC 89.81 89.94 88.61 AvgAP 82.07 83.61 81.12

α 1 0.1 0.01 α 10−3 10−4 10−5

AUC 81.43 83.10 79.75 AP 80.43 80.78 80.40
AvgAUC 87.74 89.94 87.13 AvgAP 83.54 83.61 83.39

in Tab. 11 demonstrate our superiority in both PAUC and CAUC, indicating that our method effec-
tively learns newly introduced anomalies while maintains the ability to detect previously observed
anomalies. Meanwhile, the performance trends of PAUC and CAUC are nearly consistent with those
provided in Tab. 1, indicating that the evaluation metric in the main text is sufficient to validate the
performance of our method.

A.6 ANALYSIS OF THE HYPERPARAMETERS OF THE LOSS FUNCTION

Due to the distinct data domains—XD-Violence consists of movies and YouTube videos, while
UCF-Crime features surveillance footage—both normal and abnormal videos from these datasets
exhibit varying levels of diversity, leading to different optimal values for hyperparameters across
datasets. Here, we additionally provide ablation studies for α and λ on UCF-Crime and XD-
Violence. As shown in Tab. 12, where we report the AUC achieved in the final task and AvgAUC,
the hyperparameter values we apply achieve the best results.

A.7 PERFORMANCE VALIDATION ON CROSS-DATASET EXPERIMENTS

Table 13: Performance validation on cross-dataset experiments in AUC (%).

Method UCF-Crime XD-Violence

Task13 Task14 Task15 Task16 Task17 Task18 Task19

VadCLIP+LWF 80.62 72.24 71.53 75.38 75.36 74.26 73.42
SGCL 81.07 82.32 82.38 85.68 85.66 84.32 82.58

Continual-CLIP+LWF 80.13 82.75 83.12 84.79 84.93 83.82 82.86
Ours 83.10 82.79 83.18 88.52 88.45 87.10 85.78

To further validate the scalability of our method, we construct a larger-scale benchmark by combin-
ing UCF-Crime and XD-Violence. Specifically, each anomaly type from XD-Violence is sequen-
tially appended to UCF-Crime in an incremental process. As shown in the Tab. 13, our method ef-
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(a) v=KUeUxbsBO6s #1 (b)
God.Bless.America.2011 #00-12-40 00-13-12

(c) v=UzxuX79xq4s #1

(d) Yellow.Sea.2010 #01-58-30 01-59-27 (e) Fast.Furious.2009 #01-18-00 01-19-00 (f) v=3ZVcLOjwOMk #1

Figure 2: Qualitative results on XD-Violence. The horizontal axis represents the frame number in
the temporal sequence, while the vertical axis represents the anomaly scores. The plum-colored
columns correspond to the ground-truth abnormal regions.

fectively addresses the cross-dataset setting and generalizes well to an increasing number of anomaly
types.

A.8 ANALYSIS FOR THE TASK ORDER

Table 14: Analysis for the task order on UCF-Crime.
Sequence ID S1 S2 S3 S4 S5 Average

AUC (%) 82.84 83.45 82.61 83.50 83.66 83.21

Here, we further analyze the impact of task order on the results of continual learning. Specifically,
we randomly shuffle the original order of introduced anomaly types and randomly select 5 different
shuffled task sequences. As shown in the Tab. 14, we list the AUC achieved on the final task on
UCF-Crime in each sequence.

The results obtained on the randomly shuffled sequences are close to the result we achieved on the
original task order, where AUC=83.10% on UCF-Crime. It can be observed that the task order does
not significantly impact our experimental results, as our method achieves favorable performance
across multiple randomly shuffled sequences.

A.9 QUALITATIVE ANALYSES

Here, we analyze the effectiveness of our proposed method based on visualization results. As shown
in Fig. 2, we visualize the predictions of the videos in their corresponding tasks. Since the anoma-
lous videos in Task 6 are not introduced in the previous tasks, we do not apply them to demonstrate
the effectiveness. Clearly, the predictions between each subsequent task are comparable, effectively
validating the performance of our method in mitigating catastrophic forgetting. Additionally, while
our method demonstrates promising performance, it causes false alarms for some hard cases, such
as the rapid scene transitions in Fig. 2 (d) and the person holding a gun in Fig. 2 (e).
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A.10 LIMITATION OF OUR METHOD

In the CL-WSVAD paradigm, anomalies are not directly visible to one another, which may limit
the overall performance of anomaly detection. Incorporating more comprehensive and diverse prior
knowledge about anomalies into the model could be a promising direction for further improving
detection performance.

A.11 MORE IMPLEMENTATION DETAILS FOR THE COMPARED METHODS

In this section, we provide more re-implemented details for comparison methods.

LWF. Since CoOp (Zhou et al., 2022) employs learnable text prompts for training, which is sim-
ilar with our continual learning framework, we apply CoOp as the backbone for this experiment.
Here, CoOp uses the same number of learnable parameters as our method, and a GCN-based tem-
poral adapter is employed to adapt CoOp to the CL-WSVAD task. Following the LWF approach,
the knowledge distillation loss, which is effective in encouraging the outputs of one network to ap-
proximate those of another, is introduced as the training loss. This loss fuction can be expressed
as:

Lold(yo, ŷo) = −
l∑

i=1

y
′(i)
o logŷ

′(i)
o , (19)

where l is the number of labels, and y
′(i)
o , ŷ

′(i)
o are the modified versions of recorded and current

probabilities. They can be represented as:

y
′(i)
o =

(y
(i)
o )

1/T

∑
j (y

(j)
o )

1/T
, ŷ

′(i)
o =

(ŷ
(i)
o )

1/T

∑
j (ŷ

(j)
o )

1/T
, (20)

where the T is set to 2 on both UCF-Crime and XD-Violence. The overall loss in the training process
can be expressed as:

LLWF = γ1Lold + Lnce + αLtsc, (21)
where Ltsc is the textual semantic contrastive loss, and Lnce is the cross-entropy loss for the current
task. Additionally, the setting of the hyperparameter α is consistent with that of our method. More-
over, the hyperparameter γ1 is set to 0.01 on the UCF-Crime dataset and 1 on the XD-Violence.
On both UCF-Crime and XD-Violence, we employ the same optimizer, training epoch, and learning
rate as other methods.

DER. DER (Buzzega et al., 2020) is an effective replay-based continual learning method. Here,
we apply CoOp as the backbone and employ a GCN-based temporal adapter to adapt CoOp to the
CL-WSVAD task. The replay loss for DER can be represented as follows:

Ld1 = ∥Pr − fa(Zr)∥2, (22)

where Zr represents the stored inputs from previous tasks, Pr denotes the corresponding output of
fa obtained by Zr on previous tasks. Note that fa is the trained adapter on the current task. The
overall loss in the training process can be expressed as:

LDER = γ2Ld1 + Lnce + αLtsc, (23)

where the hyperparameter γ2 is set to 0.01 on both the UCF-Crime dataset and XD-Violence. In the
first task, we save a mini-batch of training data for replay. For each subsequent task, we retain 10%
of the training data for each type of anomaly for replay. During the training process, the optimizer
and learning rate remain consistent with other methods.

DER++. DER++ (Buzzega et al., 2020) is an improved version of DER, achieving better perfor-
mance in mitigating forgetting. We also apply CoOp with the same settings as the backbone and
employ a GCN-based temporal adapter to adapt CoOp to the CL-WSVAD task. DER++ retains
ground truth labels for replay, and the additional loss can be formulated as follows:

Ld2 = BCE(yr, Sa), (24)
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where Sa denotes the anomaly score obtained from the stored inputs Zr by the current model, and
yr represents the ground truth label corresponding to Zr. The overall loss in the training process can
be expressed as:

LDER++ = γ2Ld1 + γ3Ld2 + Lnce + αLtsc, (25)
where the hyperparameter γ3 is set to 0.1 on the UCF-Crime dataset and 0.01 on the XD-Violence.
The other training settings for DER++ remain consistent with those of DER.

Continual-CLIP. Here, we append a GCN-based temporal adapter after the image encoder of
Continual-CLIP (Thengane et al., 2022) to adapt it to the CL-WSVAD task. The Lnce is utilized as
the loss function for training. Meanwhile, we employ the same optimizer and learning rate as other
methods.

AttriCLIP. Then, we utilize the GCN-based temporal adapter to guide AttriCLIP (Wang et al.,
2023) in adapting to the CL-WSVAD task. We utilize the same prompt length, number of attributes
in the bank, and top-C settings as AttriCLIP. The matching loss adopted to optimize the keys can be
expressed as:

Lk =

C∑
i=1

sim(zj ,kji), (26)

where zj is the image embedding from the CLIP image encoder, and kji denotes on of the top-C
keys selected from keys specifically for the j− th image. Note that sim(·, ·) is the cosine similarity.
Then, the loss to orthogonalize the embeddings of different prompts to increase the diversity of the
prompts can be expressed as:

Lp =
1

Nc(Nc − 1)

Nc∑
i=1

Nc∑
j=i+1

sim(wi,wj), (27)

where Nc represents the total number of all classes, and wi is the text embedding. The loss function
in the training process can be expressed as follows:

LAC = γ4Lk + Lp + Lnce + αLtsc, (28)

where γ4 is 0.01 on both UCF-Crime and XD-Violence. For the training settings, we employ the
same optimizer, training epochs, and learning rate as other methods.

VadCLIP+LWF. VadCLIP (Wu et al., 2024b) is the state-of-the-art method for WSVAD, and we
introduce LWF into VadCLIP as a continual learning method for comparison. Specifically, we main-
tain the model architecture, parameter settings, and loss function of the VadCLIP method, and the
loss function for the WSVAD task can be expressed as Lws. Therefore, The loss function on training
process can be expressed as follows:

LV adC = Lws + γ5Lold, (29)

where γ5 is set to 1 on UCF-Crime and 0.1 on XD-Violence. Here, we still maintain the same
training settings as other methods.

Continual-CLIP+LWF. Then, we introduce LWF into the continual learning method, Continual-
CLIP, in an attempt to achieve better performance as a comparative method for our approach. The
loss function in the training process can be expressed as:

LCCL = LCC + γ6Lold, (30)

where γ6 is set to 1 both on UCF-Crime and XD-Violence. We maintain the same model architecture
and parameter settings as Continual-CLIP, and in the training stage, we keep the same optimizer and
learning rate as that of LWF.

AttriCLIP+LWF. Since AttriCLIP does not achieve the desired performance on CL-WSVAD, we
introduce LWF into AttriCLIP in an attempt to improve its performance on CL-WSVAD as a com-
parative method for our approach. We maintain the model architecture and parameter settings of
AttriCLIP, and the loss function in the training process can be expressed as:

LACL = LAC + γ7Lold, (31)

where γ7 is set to 1 on UCF-Crime and 10 on XD-Violence. Here, we still set the optimizer, learning
rate, and number of training epochs consistent with those used in other methods.
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SGCL. SGCL (Yu et al., 2024) proposes that the semantic knowledge contained in the label infor-
mation provides important semantic cues, which can be linked to previously acquired knowledge of
semantic classes. Based on the CLIP model, SGCL introduces this semantic knowledge into contin-
ual learning and designs a continual learning method based on the CLIP model. To adapt SGCL to
the CL-WSVAD task, we introduce the GCN-based temporal adapter after the CLIP image encoder.
The loss function in the training stage can be formulated as follows:

LSGCL = Lnce + γ8LSG−RL + γ9LSG−KD, (32)

where LSG−RL and LSG−KD represent the loss functions for intra-task semantically-guided rep-
resentation learning and inter-task semantically-guided knowledge distillation, respectively. Here,
γ8 is set to 0.5 for UCF-Crime and 0.1 for XD-Violence, and γ9 is set to 0.1 for both datasets. In
addition, the same optimizer and training parameter settings as other methods are used. To ensure
a fair comparison with other CLIP-based continual learning methods, such as Continual-CLIP and
AttriCLIP, we do not adopt the rehearsal strategy of SGCL.
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