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ABSTRACT

Whole-slide histology images (WSIs) can exceed 100k x 100k pixels, making di-
rect pixel-level segmentation infeasible and requiring patch-level classification as
a practical alternative. However, most approaches either treat patches indepen-
dently, ignoring spatial and biological context, or rely on deep graph models that
oversmooth, leading to loss of critical tissue details.

We present WSI-GT (Pseudo-Label Guided Graph Transformer), a simple yet
effective architecture that addresses these challenges. WSI-GT combines a
lightweight local graph convolution block for neighborhood feature aggregation
with a pseudo-label guided attention mechanism that preserves intra-class vari-
ability and mitigates oversmoothing. To cope with sparse annotations, we intro-
duce an area-weighted sampling strategy that balances class representation while
maintaining tissue topology.

WSI-GT achieves a Macro F1 of 0.95 on PATH-DT-MSU WSS2v2, improving by
up to 3 percentage points over tile-based CNNs and by about 2 points over strong
graph baselines. It further generalizes well to the Placenta benchmark and stan-
dard graph node classification datasets, highlighting both clinical relevance and
broader applicability. These results position WSI-GT as a practical and scalable
solution for graph-based learning on extremely large images.

1 INTRODUCTION

Modern digital pathology has revolutionized histopathological analysis by enabling extremely high-
resolution acquisition of whole-slide images (WSIs), which provide comprehensive visualization of
tissue specimens at 40x magnification (Hu et al., 2023b; [Rodriguez et al., [2022). Although deep
learning methods with Convolutional Neural Networks (CNNs) models have demonstrated remark-
able success in processing these structurally complex images (Wulczyn et al., 20205 [Khvostikov
et al., 2023; [Sun et al.l [2024)), they often struggle to effectively model spatial relationships. There-
fore, Graph neural networks (GNN5s) are increasingly being used in histological image analysis due
to their ability to model spatial relationships.

Current GNN applications in WSI analysis focus primarily on graph-level predictions (Pati et al.,
2022; |Wu et al.| 2024) (e.g., single disease labels per slide) rather than fragment-level classifica-
tion (Bazargani et al., 2024). |Adnan et al.| (2020) proposed a two-stage framework for whole-
slide image (WSI) representation learning, which involves sampling fragments using a color-based
method and employing GNNs to learn the relationships among the sampled fragments. This repre-
sentation can be used for downstream classification tasks. |Chan et al.| (2023) formulated the WSI
as a heterogeneous graph and introduced a new heterogeneous-graph edge attribute transformer
(HEAT) to leverage edge and node heterogeneity during message aggregation. [Zheng et al.| (2022)
utilized a Graph-Transformer that combines a graph-based representation of a WSI with features
from a vision transformer to predict disease grade, achieving high accuracy across various datasets.
SlideGraph+ (Lu et al., |2022) extracts representative features from image fragments and constructs
a WSI-level graph representation to predict HER2 status in breast cancer.

Additionally, patch-based classification of WSIs is a crucial task for histological image diagnosis.
Throughout this work, we refer to patches as small square image regions extracted from WSIs. This
patch classification task can be transformed into segmentation of different structures and tissues
through spatial aggregation, which is the key step for automatic analysis of whole slide images. An
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example of a whole-slide image with partial polygonal annotations is shown in Fig. [[l CNNs have
achieved great success in this task (Wulczyn et all, [2020; [Khvostikov et all}[2023}; [Sun et al.} 2024}
[2016). However, these approaches handle patches individually, with little consideration
of their topological or biological relationships. It is evident that patches from adjacent areas should
often have the same labels, and the best way to model such positional information is by using a
graph structure. Therefore, our objective is to build a Graph Neural Network (GNN) to improve the
fragment classification accuracy of WSIs.

To the best of our knowledge, few studies have applied GNNs to this problem. The closest is
Graph V-Net 2023), which introduces a hierarchical GNN with semi-supervised patch
pre-training. However, its graph is built from large sliding windows, where most patches share the
same label and many are unannotated, limiting the use of spatial context. Moreover, the hierarchical
node-reduction/expansion design is heavily parameterized, making training and deployment difficult
in practice.

In view of these limitations, we propose WSI-GT, a simple Graph Transformer with Pseudo-Label
Attention for precise tissue fragment classification in WSIs. Our method uses lightweight graph
convolution layers to aggregate neighborhood information and a novel sampling strategy that draws
patches from multiple annotated regions rather than a single area. To counter over-globalizing and
overfitting in deep GNNs 2023), we employ two Graph Convolution Blocks and two
Pseudo-Label Attention Blocks. Unlike works that rely on METIS clustering 2024),
we define clusters directly from pseudo-labels predicted by a pretrained patch encoder, and apply
self-attention within clusters before fusing the resulting features with those from graph convolution.

We evaluate WSI-GT on the PATH-DT-MSU WSS2v2 dataset for patch-level tis-
sue classification, comparing against state-of-the-art patch- and graph-based networks. Our method
achieves a Macro F1 of 0.95, improving by up to 3 points over patch baselines and by about 2
points over strong graph baselines. We further validate WSI-GT on the Placenta benchmark

2022)) and on universal graph node classification datasets (PubMed (Yang et all [2016)), Actor,

Deezer 2021)), demonstrating its generality. Finally, we propose a sampling strategy
that enables rough WSI segmentation.
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Figure 1: Example of a whole slide histological image from the PATH-DT-MSU WSS2v2 dataset
with partial polygonal annotation of 5 tissue classes including background made by expert patholo-
gists. The annotated areas are colored.

2  METHOD

2.1 SAMPLING GRAPH FROM ANNOTATED WSI

Due to GPU memory limitations, it is infeasible to load the full WSI graph into memory, so we sam-
ple subgraphs. Prior studies (Li et al., 2023} [Zheng et al.| 2022} [Liang et al.} [2023)) usually construct
graphs from fixed square regions using sliding windows, which has two drawbacks. First, not all
patches in such regions are annotated; for example, Graph V-Net treated unannotated areas as an
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additional class normal, which may introduce label noise since unannotated regions are not nec-
essarily normal tissue. Second, graphs restricted to a single region often fail to capture meaningful
spatial relationships: if tissue types change across boundaries, there is no exchange of information
between regions, leading to misclassification.

To address these issues, we sample patches directly from annotated regions across the whole slide.
To account for varying region sizes, we adopt the Area-Weighted Random Sampling method (Sun
et al., 2024)), where the probability of selecting region ¢ is proportional to its annotated area. This
balances representation across classes while preserving tissue topology. Formally, the sampling
probability is

pzZﬁi/Z;vlﬁjy
-1
N+<ZA}S’S_1 %)'C, CE[—LO], (1)
(b %) e celo,

where p; is the probability of sampling region ¢, IV is the number of annotated regions for the class,
S; is its area, and c is a balancing coefficient. Setting ¢ = 0 yields uniform sampling; ¢ = 1
samples strictly in proportion to area. We use ¢ = 0.5 as a compromise, reflecting region size while
maintaining diversity. To handle class imbalance, each tissue class is chosen with equal probability
when sampling regions, ensuring balanced exposure despite frequency differences across classes.
The sampled patches are then used to construct the graph, avoiding both class and area imbalance
and improving the use of topological context.

P =

Each subgraph (N=64 nodes) is processed independently, with no edges across subgraphs. At
inference, logits from patches appearing in multiple subgraphs are averaged, and slide-level metrics
are derived from all patch predictions.

2.2  GRAPH CONSTRUCTION FROM PATCHES

The concept of utilizing patch-level features as nodes involves splitting a WSI into smaller patches
and extracting features from each patch to serve as nodes. This approach is commonly used in graph-
based WSI learning (Gao et al., 2021; |Adnan et al., 2020; L1 et al., 2018). This popularity can be
attributed to two primary reasons: firstly, splitting a WSI into smaller regions aligns with traditional
computer vision methods; secondly, the segmented patches can be directly used to extract features
using a pre-trained model without requiring additional preprocessing. We initially divide the WSI
into tissue patches of 224 x 224 pixels. Following previous works (Liang et al.| 2023} [Zheng et al.,
2022), we employ the ResNet50 model (He et al., 2015) to encode each patch into a d-dimensional
vector {h; € R% i = 1,2,..., N}, where N represents the number of nodes in a single graph.
What sets our approach apart is that while previous works typically use ResNet50 pre-trained on
ImageNet, we further fine-tune it on target dataset PATH-DT-MSU WSS2v2 to better capture the
relevant features. Each feature vector is considered as a node in the WSI graph, and we compile
these feature vectors into a feature node matrix {X € RV*4},

While the node feature matrix captures the characteristics of individual patches, the interactions
between patches are equally important. In histological images, cells and tissues exhibit inherent
spatial and biological relationships, such as substance exchange and bioelectrical signaling. To
model these interactions and quantify their biological relevance, we construct edges between nodes
according to their Euclidean distance. The core assumption is that spatially closer nodes interact
more strongly. To define the edges, we utilize the K-nearest neighbors (KNN) algorithm (Bai et al.,
2022;Su et al., 2021} [Zhou et al., [2019; [Hu et al., [2023a):

A= 1, ifj € KNNg(¢) and d(%, j) < dmax,
“J 10, otherwise.

2)

Here, k is the number of nearest neighbors in KNN (%), and dp,ax is the maximum Euclidean dis-
tance threshold (Xiang & Wul [2021}; Martin-Gonzalez et all, 2021). The edge .A;; = 1 indicates a
connection between node ¢ and node j and 4;; = 0 when the Euclidean distance between nodes
exceeds this threshold or is not close enough. This allows us to model the tumor micro-environment
because biological interactions between cells and tissue regions are inherently distance-dependent.
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To better demonstrate the difference in graph construction with previous patch-level classification
work Graph V-Net, a comparison with our constructed graph is illustrated in Fig. [2}
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(a) Constructed graph for PATH-DT-MSU WSS2v2
using KNN (k = 5) and N = 64 with our method. (b) Graph construction method from Graph V-Net.

Figure 2: Comparison of graph construction strategies.

2.3 WSI-GT ARCHITECTURE

Let X € RV*4 be the matrix of patch features, pl € {1,...,C}" the vector of pseudo-labels, and
P € RN* the positional embeddings obtained from patch coordinates. We define X = X + P.
Given adjacency N, the outputs of WSI-GT for a sampled subgraph are

Hppa = PLA(X,pl), Hgc = GC(X,N),
Z = 1=\ Hppa +AHge, Y =MLP(2),

3

where A € [0, 1] is a mixing hyper-parameter (set to 0.8 in our experiments, following (Wu et al.
). Hpra, Hoe € RY*4 are the updated node representations produced by the Pseudo-Label
Attention and Graph Convolution blocks, respectively. For node u, Z,, and Y,, denote the corre-
sponding rows of Z and Y, giving its mixed embedding and final prediction. The overall training
pipeline is illustrated in Figure[3] In our experiments we use d = 2048.
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Figure 3: Overall training pipeline of WSI-GT.
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2.3.1 GRAPH CONVOLUTION BLOCK

We employ a lightweight graph convolution block as the local module to aggregate information from
neighboring nodes. For a node u, the output is

GO(%o M) ( 3 awwfcv) ‘%, @
vEN,

where o(-) denotes the ReLU activation. Here X,, = X,, + p,, combines the patch feature X,, (from
the encoder) with its positional embedding p,,, generated from patch coordinates via a single linear
layer; this leverages spatial priors (e.g., background patches often appear near WSI borders). The
addition of X, implements a residual connection to stabilize training.

The attention weights v, follow the standard GAT formulation:
B exp(euy)
Zke/\/u exp(€uyk) .

Here || denotes concatenation, W € R4*4 is a learnable projection, and a € R?? maps the concate-
nated vector to a scalar logit e,,,,. Note that «,,,, (edge attention) is unrelated to the mixing parameter
A

ewy = LeakyReLLU (a—r [WXu I WXU]) , Qyp 5)

2.3.2 PSEUDO-LABEL ATTENTION BLOCK

To mitigate over-globalizing, we restrict self-attention to nodes sharing the same pseudo-label.
Given node features X € RV*4 we use multi-head masked self-attention with H = 8 heads.
For head h € {1,..., H} we compute

QW =xw’, K™ =xwl v®=xwl,
500 = @RENT M, P = Softmae(S™), 6)
H®M = phy ()

where Wéh), W;(h), W‘(,h) € R4¥dk_ The mask M € RV* enforces intra-class attention:

M, = {O, ply, = ]?lva
—o00, otherwise.

Outputs from all heads are concatenated and projected back to the model dimension,

Hyn = [H(l) -l H(H)]Wo, We € R(Hdk)xd7 7
and a position-wise feed-forward layer yields the final output
Hppa = FFN(Han)- ®)

In our experiments we use H=8, d=2048, and d;;=2048.

2.4 INFERENCE FOR UNANNOTATED WSIs

Unlike dense graph sampling methods that use all regions, our random sampling approach based
on annotated areas cannot be directly applied during whole-slide image (WSI) inference, as most
regions are unannotated. To address this, we designed an Adaptive Coverage Sampler that efficiently
and unbiasedly constructs graphs from unannotated WSIs by iteratively selecting batches of patches
based on pixel-level coverage statistics. Each selected batch of patches forms a graph following
the method described in Section [2.2] which is then passed to the network for prediction. After the
network processes each batch, the algorithm checks whether every pixel in the WSI has been covered
at least 7 times — meaning each pixel has received predictions from 7 overlapping patches. Once this
n-coverage criterion is satisfied (in this work we use 1 = 2), the accumulated probability vectors at
each pixel are aggregated to produce the final segmentation.

In summary, the Adaptive Coverage Sampler offers a robust, efficient, and unbiased sampling strat-
egy suitable for WSIs with both annotated and unannotated areas. This ensures accurate predictions
across the entire slide, leading to more reliable and comprehensive diagnostic outcomes.
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Figure 4: Preview of inference pipeline of WSI-GT.

3 DATASET AND EXPERIMENTS SETTING

3.1 DATASETS AND ANNOTATIONS

For patch-level classification, we use the PATH-DT-MSU WSS2v2 dataset (Sun et al.,[2024), which
provides polygonal annotations of gastric tissue types. It consists of 10 gastric cancer WSIs scanned
at 40x magnification (average resolution ~110kx90k pixels). Each slide is partially annotated by
pathologists, with regions covering five tissue classes: adenocarcinoma (TUM), lamina propria
(LP), muscularis mucosae (MM), submucosa/muscle/subserosa (AT), and background (BG). Fig-
ure[I]shows an example WSI with annotations.

We do not use the datasets from Graph V-Net (Li et al.| [2023)) for three reasons: (i) they combine
the public BACH (Aresta et al.l 2019) dataset with an unpublished set, limiting reproducibility; (ii)
the modified BACH annotations are coarse and the test set lacks the “benign” class; (iii) BACH
slides typically contain only one or two categories, making graph construction less meaningful. In
contrast, PATH-DT-MSU WSS2v2 slides contain 4-5 categories with fine polygonal annotations,
enabling richer evaluation. All competing methods were trained on the same annotated subset and
identical train/validation/test splits as WSI-GT to ensure fairness.

To further validate generalizability, we evaluate WSI-GT on the Placenta cell-graph bench-
mark (Vanea et al.,|2022) and on standard node classification datasets PubMed (Yang et al.,|2016),
Actor, and Deezer (Lim et al., |[2021)).

This diverse evaluation assesses both patch- and cell-level performance as well as applicability to
generic graph benchmarks (results in Section ).

3.2 IMPLEMENTATION DETAILS

We implemented our models in Python 3 with PyTorch and trained on a single NVIDIA A6000
(48GB). For patch-level classification, we used the PATH-DT-MSU WSS2v2 dataset with the sam-
pling strategy from Section 2.1] applied consistently to training, validation, and test sets. Whole-
slide segmentation followed the protocol in Section 2:4]

All experiments shared the same data augmentation, learning-rate schedules, and subgraph con-
struction; only the architecture varied, ensuring that differences in performance reflect architectural
design. Ablation studies, presented in the appendix, quantify the contribution of each component.

For cell-level classiﬁcatiorﬂ and general node classification benchmarksﬂ we adopted the original
evaluation pipelines, integrating our method to ensure comparability with prior results.

"https://github.com/Nellaker-group/placenta
*https://github.com/qitianwu/SGFormer
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3.3 COMPARISON METHODS AND EVALUATION METRICS

In the context of patch-level classification tasks, we used the F1 score and Macro F1 score to
compare the proposed WSI-GT model with several widely used CNN architectures, including
ResNet (He et al.l 2015), DenseNet (Huang et al.l 2017), EfficientNet (Tan & Le, 2021}, and
MobileNet (Howard et al.| 2017). Additionally, the performance of WSI-GT was benchmarked
against the previous best patch-based model SR+CLS (Sun et al.||2024)). Furthermore, comparisons
were made with several state-of-the-art graph neural networks, such as SAGEConv (Hamilton et al.}
2017), Graph V-Net (L1 et al.| 2023)), EdgeConv2d (Wang et al.,|2019), MRConv2d (L1 et al.,|2019),
and SGFormer (Wu et al.| |2023). For cell-level classification tasks, the comparison was made with
the original model results demonstrated in Placenta (Vanea et al., [2022). In the case of universal
graph model classification, the results were directly taken from SGFormer (Wu et al., 2023).

4 EXPERIMENTS AND RESULTS

4.1 COMPARISON ON PATH-DT-MSU WSS2Vv2 DATASET

To validate the effectiveness of our proposed method, we conducted comprehensive comparisons
with both patch-based and graph-based models. All models were evaluated under identical condi-
tions: patch-based models were fine-tuned on the PATH-DT-MSU WSS2v2 dataset, while graph-
based models employed the same graph sampling strategy. We selected optimal checkpoints based
on validation performance and reported final results on the test set.

Table 1: Performance comparison of tissue type classification on the PATH-DT-MSU WSS2v2
dataset across different architectures.

Method Architecture AT BFGI-S[CMEI? y Tl?\iSM TOM Macro F1
ResNet50 (He et al.[[2015)) Patch-based 090 | 1.00 | 0.89 | 094 | 0.84 0.91
DenseNet121 (Huang et al.[[2017) Patch-based || 0.93 | 1.00 | 0.82 | 0.94 | 0.83 0.90
EfficientNet (Tan & Le|[2021) Patch-based 091 1.00 | 0.82 | 0.94 | 0.81 0.90
MobileNet (Howard et al.l[2017) Patch-based 0.88 | 1.00 | 0.80 | 0.91 | 0.79 0.88
SR+CLS (Sun et al.[[2024) Patch-based 091 | 1.00 | 0.88 | 0.94 | 0.85 0.92
Graph V-Net (Li et al.;[2023) Graph-based || 095 | 1.00 | 0.90 | 091 | 0.89 0.93
GraphSAGE (Hamilton et al;,2017) | Graph-based || 0.93 | 1.00 | 0.91 | 0.95 | 0.87 0.93
EdgeConv2d (Wang et al.[[2019) Graph-based || 0.94 | 1.00 | 0.88 | 0.96 | 0.88 0.93
MRConv2d (Li et al.[2019) Graph-based 0.94 1.00 | 0.87 | 0.96 | 0.86 0.92
SGFormer (Wu et al,[2023) Graph-based [[ 0.92 | 1.00 | 0.91 | 0.96 | 0.86 0.93
WSI-GT (Ours) Graph-based 096 | 1.00 | 0.92 | 0.96 | 0.90 0.95

As shown in Table [, WSI-GT achieves a Macro F1 of 0.95, representing a +3.0-point improve-
ment over the best patch baseline (SR+CLS, 0.92) and +2.0 points over the best graph baseline
(SGFormer, 0.93). This performance demonstrates the effectiveness of WSI-GT’s architecture in
combining local patch features with global spatial context. Figure [5]illustrates how WSI-GT lever-
ages neighborhood information for correct classification, whereas patch-based models, which treat
patches independently, often yield misclassifications. These errors are subsequently amplified in the
overall coarse segmentation Figure [6]

4.2 CLINICAL APPLICATION EVALUATION

The ultimate goal of patch-level classification is to enable semantic segmentation of entire whole-
slide images (WSIs) for clinical analysis. Figure [§] compares our model’s segmentation results with
ResNet50 predictions, highlighting WSI-GT’s superior performance.

To address the lack of ground truth in unannotated regions of WSIs, expert histopathological evalu-
ation was performed by the medical co-authors. This evaluation confirmed several key findings:

* Tumor regions (TUM, blue) were accurately identified across tissue layers, capturing dif-
fuse infiltration patterns,
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Ground Truth ResNet50 WSI-GT (ours)
Figure 5: Qualitative results demonstrating WSI-GT’s effective utilization of spatial context for

accurate patch classification compared to CNN method (ResNet50). The points are the predictions
made by networks and the colored regions are annotated regions with labels.
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source with GT annotations prediction with ResNet50 prediction with WSI-GT (ours)

Figure 6: Comparative visualization of semantic segmentation results on PATH-DT-MSU WSS2v2
test_01 image. The ground-truth polygonal annotations were made by expert pathologists.

* lamina propria (LP, green) and muscularis mucosae (MM, red) showed precise segmenta-
tion despite tumor-induced morphological changes,

* Minor TUM-LP overlaps were clinically justified by shared mucus characteristics,

» Adipose tissue (AT, orange) was consistently correctly classified.

This clinical validation confirms that WSI-GT produces histologically plausible results, demonstrat-
ing its potential for real-world diagnostic applications.

4.3 COMPARISON ON CELL-LEVEL AND UNIVERSAL GRAPH NODE CLASSIFICATION
BENCHMARKS

To validate the generalizability of WSI-GT beyond histological patch classification, we evaluated
its performance on both specialized cell-level graphs and standard graph benchmarks. As shown
in Table 2] WSI-GT achieves state-of-the-art performance on the Placenta cell-graph dataset with
64.98% accuracy, outperforming competitive baselines. WSI-GT maintains superior performance in
the primary accuracy metric and demonstrates balanced results across all evaluation criteria.

The universal graph benchmarks in Table [3|reveal WSI-GT’s consistent competitiveness across di-
verse domains. On the PubMed citation benchmark, our model achieves 80.6% accuracy, surpassing
SGFormer by 0.3%. For the challenging Actor social network dataset, WSI-GT’s 38.2% accuracy
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Table 2: Cell-graph classification performance on the Placenta benchmark (Vanea et al., [2022).

Model Accuracy (%) ROC AUC
WSI-GT (Ours) 64.98 0.888
GraphSAGE-mean (Hamilton et al., 2017) 64.88 0.883
SIGN (Rossi et al., 2020) 64.77 0.886
ClusterGCN (Chiang et al.,|2019) 64.24 0.882
GraphSAINT-rw (Zeng et al.;[2019) 63.94 0.895
ShaDow (Zeng et al.[|2021) 63.04 0.863
ClusterGAT (Velickovic et al.,[2017) 58.07 0.851
ClusterGATV2 (Brody et al.,|2021) 57.07 0.854
MLP Baseline 47.98 0.750

Table 3: Node classification accuracy (%) on standard benchmarks. “# Nodes” and “# Edges” refer
to the canonical dataset graphs.

Model PubMed Actor Deezer
WSI-GT (Ours) 80.6 38.2 66.9
CobFormer (Xing et al.,|2024) 80.5 374 66.9
SGFormer (Wu et al.|[2023) 80.3 37.9 67.1
APPNP (Klicpera, 2019) 80.1 31.3 66.1
SIGN (Rosst et al., [2020) 79.5 36.5 66.3
ClusterGAT (Velickovic et al.,[2017) 79.0 29.8 61.7
GCN (Kipf & Welling;[2017) 78.8 30.1 62.7
# Nodes 19,717 7,600 28,281
# Edges 44,324 29,926 92,752

represents a 0.8% improvement over SIGN, the previous best-performing method. The Deezer re-
sults show near-parity between WSI-GT and CobFormer (Xing et al.l [2024). These results collec-
tively demonstrate that WSI-GT’s architecture, particularly its pseudo-label attention mechanism,
maintains strong performance across fundamentally different graph types - from biological cell-
graphs to social networks and recommendation systems.

5 CONCLUSION

In this study, we proposed WSI-GT, a novel graph transformer architecture with pseudo-label at-
tention and a histological graph sampling strategy to enhance fragment classification in histologi-
cal whole-slide images (WSIs). Our method effectively integrates local structural information and
global intra-class dependencies, addressing key challenges such as over-smoothing in deep graph
neural networks and limited annotated data.

Extensive experiments on multiple datasets, including PATH-DT-MSU WSS2v2, Placenta, and stan-
dard graph node classification benchmarks, demonstrated the superior performance of WSI-GT.
Expert evaluation by histopathologists within gastric WSIs confirmed that WSI-GT produces his-
tologically plausible results, accurately identifying tumor regions across tissue layers and precisely
segmenting challenging structures such as lamina propria and muscularis mucosae, despite mor-
phology alterations induced by the disease. Additionally, WSI-GT showed strong performance on
diverse benchmarks, further validating its effectiveness and generalizability.

In summary, WSI-GT offers a robust and effective solution for fragment classification in histological
WSIs with potential applications in digital pathology. Moreover, due to its design, the method
offers a promising solution not only for histology but also for a wide range of high-resolution image
analysis tasks where exhaustive full annotation is prohibitively labor-intensive.
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REPRODUCIBILITY STATEMENT

All datasets used in this work are publicly available: PATH-DT-MSU WSS2v2 (Sun et al} [2024),
Placenta (Vanea et al., [2022)), PubMed (Yang et al, [2016)), Actor and Deezer (Lim et al., [2021])).
For PATH-DT-MSU WSS2v2, we strictly follow the official dataset split and annotations provided
by the dataset authors. Our implementation is based on Python 3 and PyTorch, and all experiments
were conducted on a single NVIDIA A6000 GPU (48GB). Hyperparameters, training schedules, and
data augmentation strategies are detailed in Appendix A.4, while ablation studies of graph sampling
and architectural depth are presented in Appendix A.2. To facilitate reproducibility, we provide an
anonymous repository containing code and training scripts at https://anonymous.4open.
science/r/wsi-gt-E7FB. The full repository will be made public upon acceptance.
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A APPENDIX

This appendix provides additional details and experimental results to complement the main
manuscript on graph neural networks (GNNs) for the classification of histological image fragments.
All optimal parameters reported were identified through extensive experimentation on the PATH-
DT-MSU WSS2v2 dataset of whole slide images (WSIs) with partial polygonal annotations. We
present an in-depth analysis of two key components: (1) graph sampling strategies, comparing our
Graph Sampling Strategy with Single-Region Sampling (Dense), demonstrating that Area-Weighted
Random Sampling achieves superior performance (Macro F1: 0.95 vs. 0.91) by better capturing
tissue heterogeneity; and (2) architecture depth, evaluating the impact of varying numbers of Graph
Convolution (GC) and Pseudo-Label Attention (PLA) blocks. Our experiments reveal that a bal-
anced configuration of 2 GC and 2 PLA blocks yields optimal performance (Macro F1: 0.95) on the
used WSI dataset, while deeper architectures suffer from diminishing returns. These findings high-
light the importance of sampling strategies and model depth in GNN-based histopathology analysis,
offering practical insights for improving classification accuracy while mitigating over-globalization
and computational inefficiencies. We also demonstrate our training hyperparameters and additional
semantic segmentation visualizations for all WSIs in the test set.

A.1 ADDITIONAL RELATED WORK

This section extends the literature review presented in our main paper, providing a more compre-
hensive overview of research applying GNNSs to histological classification tasks. Given the diverse
nature of these tasks, we categorize the related works into two main types: graph-level and patch-
level classification, expanding upon the foundational studies discussed in the main text.

A.1.1 GRAPH NEURAL NETWORKS FOR HISTOLOGICAL IMAGE ANALYSIS IN
GRAPH-LEVEL CLASSIFICATION

In histological image analysis, graph-level classification using GNNs has attracted considerable at-
tention because of its capability to capture the global structure and topological information within
WSIs (Brussee et al., [2025). This approach is particularly advantageous for tasks such as cancer
grading, survival prediction, and region-of-interest (ROI) classification, where the overall tissue
structure and spatial relationships between different regions are crucial for accurate diagnosis. For
instance, |[Zhou et al.| (2019) proposed the CGC-Net, which uses a cell graph convolutional network
to grade colorectal cancer histology images. This method leverages the spatial relationships between
cells to provide a more accurate grading compared to traditional CNN-based approaches. Similarly,
Wang et al. Wang et al.| (2021) introduced a hierarchical graph pathomic network that integrates
appearance, microenvironment, and topology for progression-free survival prediction. In addition,
hierarchical GNNs have shown promise in graph-level classification tasks. For example, [Pati et al.
(2020) introduced HACT-Net, a hierarchical cell-to-tissue graph neural network that models the re-
lationships between cells and tissues to improve classification accuracy. This hierarchical structure
allows the model to capture multi-scale information, which is essential for tasks that require both
fine-grained and global context. Overall, GNNs have proven to be effective in graph-level classifi-
cation tasks in histological image analysis by leveraging the topological structure of WSIs. These
models can capture complex spatial dependencies and provide more accurate predictions compared
to traditional deep learning methods.

While graph-level classification using GNNs has demonstrated promising results, patch-level clas-
sification in histopathology introduces distinct challenges and opportunities. Key issues include
processing whole-slide images (WSIs) at extremely high resolutions, mitigating patch-level mis-
classification, and preserving fine-grained spatial details. Despite these needs, graph-based methods
for accurate patch-type classification in WSIs remain underexplored, representing a critical gap in
computational pathology research.

A.1.2 GRAPH NEURAL NETWORKS FOR HISTOLOGICAL IMAGE ANALYSIS IN
PATCH-LEVEL CLASSIFICATION

Patch-level classification in histopathology involves predicting labels for individual patches within
a WSI. This is crucial for tasks such as tissue semantic segmentation. Due to the large resolution of
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Table 4: Effect of different graph construction strategies on macro F1, recall and accuracy, where
”KNN” means using our strategy with different target and k, and ”Dense” means constructing graph
from large square moving windows.

Graph sampling strategy Macro F1 =~ Recall  Accuracy

KNN by features (k = 3) 0.93 0.93 0.93
KNN by features (k = 5) 0.93 0.94 0.93
KNN by distance (k = 3) 0.94 0.94 0.93
KNN by distance (k = 5) 0.95 0.95 0.95
KNN by distance (kK = 7) 0.94 0.95 0.95
Dense (Li et al.}[2023) 0.92 0.91 0.92

WSIs, it is challenging to process the entire image directly and get a pixel-level mask prediction us-
ing CNNs. As a result, most existing methods apply CNNs to individual image patches (Khvostikov
et al., 2021} |Shen et al. 2022). Although Graph Neural Networks (GNNs) have been extensively
employed for graph-level predictions, their utilization in patch-level classification is still relatively
limited. SegGini (Anklin et al., [2021)) is a notable example that constructs a tissue-graph repre-
sentation from graph nodes and performs weakly-supervised segmentation via node classification
using inexact image-level labels. Another relevant work is Graph V-Net (Li et al [2023)), which
applies a hierarchical GNN with semi-supervised pre-training for histological image breast cancer
classification.

However, these methods often use large sliding windows to build graphs, which may not fully utilize
the spatial and contextual information within the patches. Moreover, deep and hierarchical GNNs
can lead to additional computational costs and over-globalizing problems (Xing et al., [2024).

Despite these advances, key challenges persist: (1) limited exploitation of spatial-contextual depen-
dencies between patches, (2) high computational overhead from complex GNN architectures, and
(3) over-globalization degrading local discriminative power. Our proposed WSI-GT addresses these
gaps by introducing a spatially aware graph construction strategy and a lightweight GNN design, ef-
fectively balancing local patch-level precision with global context. This approach not only reduces
computational costs, but also mitigates over-globalization, offering a scalable solution for digital
pathology tasks where patch-level accuracy is paramount.

A.2 ABLATION STUDIES
A.2.1 ANALYSIS OF GRAPH SAMPLING STRATEGIES

We compare two graph sampling strategies: (1) our proposed Area-Weighted Random Sampling
method, which samples patches from annotated regions depending on their area, and (2) a Single-
Region Dense Sampling baseline, which constructs graphs from sliding square windows and has
been widely used in previous works (Li et al.| |2023; Zheng et al.} 2022} Liang et al.| [2023).

For our method, we further investigate two key parameters in graph construction: the type of K-
nearest neighbors (KNN) used to define edges (based on either feature similarity or spatial distance),
and the number of neighbors k. The corresponding results are summarized in Table 4]

We observe that building graphs based on spatial distance (KNN by distance) yields better results
compared to using feature similarity (KNN by features) or a fully connected approach. Specifically,
KNN by distance with k& = 5 achieves the best performance across all metrics. This suggests that
incorporating spatial information during graph construction allows the model to better capture the
contextual relationships between neighboring patches inside the whole slide image.

In contrast, using feature similarity for KNN results in slightly lower performance. This might be
because relying solely on feature similarity might not accurately represent the spatial dependencies
between patches, especially in complex tissue structures.

Finally, the Dense graph sampling method, often employed in existing works, exhibits the lowest
performance. This highlights the potential drawbacks of connecting all patches indiscriminately, as
it can introduce noise and irrelevant connections that hinder the GNN’s ability to learn meaningful
relationships.

15



Under review as a conference paper at ICLR 2026

Table 5: Effect of different numbers of Graph Convolution (GC) and Pseudo-Label Attention (PLA)
blocks on macro F1, recall, and accuracy for the PATH-DT-MSU WSS2v2 dataset.

GCblocks PLA blocks MacroF1  Recall Accuracy

0 0 0.91 0.89 0.90
2 0 0.92 0.92 0.92
2 1 0.95 0.94 0.94
2 2 0.95 0.95 0.95
3 3 0.94 0.94 0.95
4 4 0.92 0.93 0.93
5 5 0.91 0.90 0.90
7 7 0.90 0.89 0.90

These insights further validate our Graph Sampling method as an effective approach for construct-
ing graphs in a way that optimally captures the essential relationships within histological images,
thereby improving the overall model performance.

A.2.2 EFFECT OF MODEL ARCHITECTURE DEPTH

To explore the effect of different numbers of Graph Convolution (GC) blocks and Pseudo-Label At-
tention (PLA) blocks on the performance of a model designed for graph-based tasks, we conducted
an experimental study. The results presented in Table [5| demonstrate a clear relationship between
model depth and classification performance. The introduction of 2 GC blocks improves all metrics
by approximately 0.01-0.03 points, suggesting that graph convolution operations effectively capture
topological information from the input data.

Notably, the incorporation of PLA blocks leads to significant performance gains. The configuration
with 2 GC blocks and 2 PLA blocks achieves optimal results across all metrics. This finding sug-
gests that the combination of graph convolution and pseudo-label attention mechanisms creates a
synergistic effect for tissue type classification.

However, deeper architectures with more than 3 blocks per type show diminishing returns, with
performance gradually decreasing as model depth increases. The 7-block configuration even under-
performs the baseline model, likely due to overfitting or optimization difficulties in very deep graph
networks. This observation aligns with previous studies on graph neural networks (Wu et al., 2023;
Xing et al.| [2024), where excessive depth can lead to oversmoothing of node features. The results
indicate that a balanced architecture with 2-3 blocks of each type provides the best trade-off between
model capacity and generalization ability for this particular task.

A.3 DETAILS OF DATASET PATH-DT-MSU WSS2v2

This study utilizes the PATH-DT-MSU WSS2v2 dataset, a publicly available collection of whole-
slide histological images with polygonal annotations of tissue types. The dataset was compiled
by expert teams from academic and medical research centers specializing in image processing and
patholog

Though the PATH-DT-MSU WSS2v2 dataset consists of only 10 whole-slide images, each was
acquired at 40x optical magnification with resolutions exceeding 110,000 x 90,000 pixels, ensur-
ing exceptionally fine-grained detail. The annotations focus exclusively on “clear” regions where
pathologists can confidently delineate tissue boundaries, resulting in high-quality labels for four tis-
sue types (AT, LP, MM, TUM) and background (BG). The areas of the annotated regions of the
training sample are 1560, 7098, 533, 895, 1303 million pixels for classes AT, BG, LP, MM, TUM
respectively at x40 magnification. The areas of the annotated regions of the test sample are 1086,
8032, 318, 743, 1199 million pixels for classes AT, BG, LP, MM, TUM respectively at x40 mag-
nification. This selective annotation strategy prioritizes precision over quantity, compensating for
the modest number of slides with unparalleled per-image information density. However, the dataset
exhibits significant class imbalance, particularly in the training set where the background (BG) class

3 Available at: [URL withheld for anonymity]
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dominates with 7098 million pixels — approximately 13.3 times larger than the smallest class (LP at
533 million pixels).

A.4 TRAINING DETAILS AND HYPERPARAMETERS
A.4.1 IMPLEMENTATION SETUP AND HARDWARE

Our WSI-GT implementation utilized Python 3 with PyTorch and trained the model on a single
NVIDIA A6000 48GB. For efficient graph processing, we constructed subgraphs each containing
64 patches as the basic processing units following previous work (Li et al.,2023;/Zheng et al.,[2022).
This patch count was empirically determined to balance computational efficiency and sufficient local
context preservation.

A.4.2 TRAINING CONFIGURATION

The training process was divided into two distinct phases, both conducted on the PATH-DT-MSU
WSS2v2 dataset.

First Phase: This initial stage focused on training the patch-based encoder to enhance its ability to
capture relevant features. We adopted a ResNet50 backbone initialized with ImageNet pre-trained
weights to benefit from transfer learning and accelerate convergence. We employed the Adam opti-
mizer with an initial learning rate of 1 x 104, The learning rate followed a cosine warm-up strategy
over 50 training epochs.

Second Phase: In this subsequent stage, we trained the WSI-GT model to effectively process the
graph structure. This phase similarly used the Adam optimizer, but with a reduced initial learning
rate of 1 x 107°. The training spanned 30 epochs with early stopping regularization to prevent
overfitting, while maintaining the cosine warm-up learning rate schedule.

For training on Cell-Level and Universal Graph Node Classification Benchmarks, we follow all the
instructions with original repositories (Vanea et al., [2022; 'Wu et al., [2023)) for fair comparison.

A.4.3 DATA AUGMENTATION

We employed comprehensive data augmentation techniques to enhance model generalization when
training on the histological PATH-DT-MSU WSS2v2 dataset. All augmentations were applied at the
patch level and included:

* Geometric transformations: random horizontal and vertical flipping, and rotation (+15°)
* Photometric adjustments: contrast variation (scale factor 0.8—1.2)

* Color jittering: brightness adjustment (+20% of the original value)

A.4.4 NETWORK ARCHITECTURE OVERVIEW

The model architecture comprised the following key components:

Patch-based Encoder We adopted ResNet50 as our backbone network, initialized with ImageNet
pre-trained weights. This choice provided a strong foundation for feature extraction while benefiting
from transfer learning.

Graph Transformer (WSI-GT) WSI-GT integrates:

* 2 Graph Convolution (GC) blocks for local neighborhood feature aggregation,

¢ 2 Pseudo-Label Attention (PLA) blocks to capture intra-class dependencies while pre-
serving spatial awareness.

This combination enabled efficient processing of graph-structured data while preserving important
topological relationships in the histopathology images.
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g:g A.5 SEMANTIC SEGMENTATION VISUALIZATIONS
920 This section presents representative visualizations of semantic segmentation results produced by our

921 WSI-GT model on the PATH-DT-MSU WSS2v2 test set. Figures [7} [8] and [9] show comparisons
922 between WSI-GT predictions, a fine-tuned ResNet50 baseline, and expert-annotated ground truth.
923 These examples qualitatively illustrate that WSI-GT tends to produce more coherent and spatially
924 consistent segmentations, particularly near tissue boundaries, compared to the baseline model.
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967 Figure 7: Comparative visualization of semantic segmentation results on the test set of PATH-DT-
968 MSU WSS2v2 (test_01, test_02 images). The ground-truth polygonal annotations were made by
969 expert pathologists.
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Figure 8: Comparative visualization of semantic segmentation results on the test set of PATH-DT-
1079 MSU WSS2v2 (test_03, test_04 images). The ground-truth polygonal annotations were made by
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1079 Figure 9: Comparative visualization of semantic segmentation results on the test set of PATH-
DT-MSU WSS2v2 (test_05 image). The ground-truth polygonal annotations were made by expert
pathologists.
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