ON RADEMACHER COMPLEXITY-BASED GENERALIZA TION BOUNDS FOR DEEP LEARNING

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

020 021 022 Paper under double-blind review

Abstract

We show that the Rademacher complexity-based approach can generate nonvacuous generalisation bounds on Convolutional Neural Networks (CNNs) for classifying a small number of classes of images. The development of new contraction lemmas for high-dimensional mappings between vector spaces for general Lipschitz activation functions is a key technical contribution. These lemmas extend and improve the Talagrand contraction lemma in a variety of cases. Our generalisation bounds are based on the infinity norm of the weight matrices, distinguishing them from previous works that relied on different norms. Furthermore, while prior works that use the Rademacher complexity-based approach primarily focus on ReLU DNNs, our results extend to a broader class of activation functions.

1 INTRODUCTION

024 Deep models are typically heavily over-parametrized, while they still achieve good generalization 025 performance. Despite the widespread use of neural networks in biotechnology, finance, health sci-026 ence, and business, just to name a selected few, the problem of understanding deep learning theo-027 retically remains relatively under-explored. In 2002, Koltchinskii and Panchenko (Koltchinskii & Panchenko, 2002) proposed new probabilistic upper bounds on generalization error of the combi-029 nation of many complex classifiers such as deep neural networks. These bounds were developed based on the general results of the theory of Gaussian, Rademacher, and empirical processes in 031 terms of general functions of the margins, satisfying a Lipschitz condition. However, bounding Rademacher complexity for deep learning remains a challenging task. In this work, we present new upper bounds on the Rademacher complexity in deep learning, which differ from previous studies 033 in how they depend on the norms of the weight matrices. Furthermore, we demonstrate that our 034 bounds are non-vacuous for CNNs with a wide range of activation functions. 035

037 1.1 RELATED PAPERS

The complexity-based generalization bounds were established by traditional learning theory aiming to provide general theoretical guarantees for deep learning. (Goldberg & Jerrum, 1993), (Bartlett & Williamson, 1996), (Bartlett et al., 1998b) proposed upper bounds based on the VC dimension for DNNs. (Neyshabur et al., 2015) used Rademacher complexity to prove the bound with explicit exponential dependence on the network depth for ReLU networks. (Neyshabur et al., 2018) and (Bartlett et al., 2017) uses the PAC-Bayesian analysis and the covering number to obtain bounds with explicit polynomial dependence on the network depth, respectively. (Golowich et al., 2018) provided bounds with explicit square-root dependence on the depth for DNNs with positive-homogeneous activations such as ReLU.

The standard approach to develop generalization bounds on deep learning (and machine learning)
was developed in seminar papers by (Vapnik, 1998), and it is based on bounding the difference
between the generalization error and the training error. These bounds are expressed in terms of the
so called VC-dimension of the class. However, these bounds are very loose when the VC-dimension
of the class can be very large, or even infinite. In 1998, several authors (Bartlett et al., 1998a;
Bartlett & Shawe-Taylor, 1999) suggested another class of upper bounds on generalization error
that are expressed in terms of the empirical distribution of the margin of the predictor (the classifier).
Later, Koltchinskii and Panchenko (Koltchinskii & Panchenko, 2002) proposed new probabilistic

upper bounds on the generalization error of the combination of many complex classifiers such as deep neural networks. These bounds were developed based on the general results of the theory 056 of Gaussian, Rademacher, and empirical processes in terms of general functions of the margins, 057 satisfying a Lipschitz condition. They improved previously known bounds on generalization error of 058 convex combination of classifiers. Generalization bounds for deep learning and kernel learning with Markov dataset based on Rademacher and Gaussian complexity functions have recently analysed in (Truong, 2022a). Analysis of machine learning algorithms for Markov and Hidden Markov datasets 060 already appeared in research literature (Duchi et al., 2011; Wang et al., 2019; Truong, 2022c). 061

062 In the context of supervised classification, PAC-Bayesian bounds have been used to explain the gen-063 eralisation capability of learning algorithms (Langford & Shawe-Taylor, 2003; McAllester, 2004; 064 A. Ambroladze & ShaweTaylor, 2007). Several recent works have focused on gradient descent based PAC-Bayesian algorithms, aiming to minimise a generalisation bound for stochastic classi-065 fiers (Dziugaite & Roy., 2017; W. Zhou & Orbanz., 2019; Biggs & Guedj, 2021). Most of these 066 studies use a surrogate loss to avoid dealing with the zero-gradient of the misclassification loss. Sev-067 eral authors used other methods to estimate of the misclassification error with a non-zero gradient 068 by proposing new training algorithms to evaluate the optimal output distribution in PAC-Bayesian 069 bounds analytically (McAllester, 1998; Clerico et al., 2021b;a). Recently, (Nagarajan & Kolter, 2019) showed that uniform convergence might be unable to explain generalisation in deep learning 071 by creating some examples where the test error is bounded by δ but the (two-sided) uniform conver-072 gence on this set of classifiers will yield only a vacuous generalisation guarantee larger than $1-\delta$ for 073 some $\delta \in (0, 1)$. There have been some interesting works which use information-theoretic approach 074 to find PAC-bounds on generalization errors for machine learning (Xu & Raginsky, 2017; Esposito 075 et al., 2021) and deep learning (Jakubovitz et al., 2018).

077 **1.2 CONTRIBUTIONS**

076

078

079 080

081

082

084

085

087

089

090 091

092

093 094

096 097

098

106 107

More specifically, our contributions are as follows:

- We develop new contraction lemmas for high-dimensional mappings between vector spaces which extend and improve the Talagrand contraction lemma for many cases.
- We apply our new contraction lemmas to each layer of a CNN.
- We validate our new theoretical results experimentally on CNNs for MNIST image classifications, and our bounds are non-vacuous when the number of classes is small.

As far as we know, this is the first result which shows that the Rademacher complexity-based approach can lead to non-vacuous generalisation bounds on CNNs. 880

1.3 OTHER NOTATIONS

Vectors and matrices are in boldface. For any vector $\mathbf{x} = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n$ where \mathbb{R} is the field of real numbers, its induced- L^p norm is defined as

$$\|\mathbf{x}\|_{p} = \left(\sum_{k=1}^{n} |x_{k}|^{p}\right)^{1/p}.$$
(1)

The *j*-th component of the vector **x** is denoted as $[\mathbf{x}]_j$ for all $j \in [n]$.

For $\mathbf{A} \in \mathbb{R}^{m \times n}$ where

$$\mathbf{A} = \begin{bmatrix} a_{11}, & a_{12}, & \cdots, & a_{1n} \\ a_{21}, & a_{22}, & \cdots, & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}, & a_{m2}, & \cdots, & a_{mn} \end{bmatrix}$$
(2)

we defined the induced-norm of matrix A as 105

$$\|\mathbf{A}\|_{p,q} = \sup_{\mathbf{x}\neq\mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_{q}}{\|\mathbf{x}\|_{p}}.$$
(3)

For abbreviation, we also use the following notation

First, we recall the Talagrand's contraction lemma.

$$||A||_p := ||A||_{p,p}.$$
(4)

It is known that

$$\|\mathbf{A}\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{ij}|,$$
(5)

$$\|\mathbf{A}\|_{2} = \sqrt{\lambda_{\max}(\mathbf{A}\mathbf{A}^{T})},\tag{6}$$

$$\|\mathbf{A}\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|, \tag{7}$$

where $\lambda_{\max}(\mathbf{A}\mathbf{A}^T)$ is defined as the maximum eigenvalue of the matrix $\mathbf{A}\mathbf{A}^T$ (or the square of the maximum singular value of \mathbf{A}).

2 CONTRACTION LEMMAS IN HIGH DIMENSIONAL VECTOR SPACES

Lemma 1 (Ledoux & Talagrand, 1991, Theorem 4.12) Let \mathcal{H} be a hypothesis set of functions mapping from some set \mathcal{X} to \mathbb{R} and ψ be a μ -Lipschitz function from $\mathbb{R} \to \mathbb{R}$ for some $\mu > 0$. Then, for any sample S of n points $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n \in \mathcal{X}$, the following inequality holds:

$$\mathbb{E}_{\boldsymbol{\varepsilon}}\left[\sup_{h\in\mathcal{H}}\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}(\psi\circ h)(\mathbf{x}_{i})\right|\right] \leq 2\mu\mathbb{E}_{\boldsymbol{\varepsilon}}\left[\sup_{h\in\mathcal{H}}\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}h(\mathbf{x}_{i})\right|\right],\tag{8}$$

where $\varepsilon = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)$, and $\{\varepsilon_i\}_{i=1}^n$ is a sequence of i.i.d. Rademacher random variables (taking values +1 and -1 with probability 1/2 each), independent of $\{\mathbf{x}_i\}$.

In Theorem 2 below, we present a new version of Talagrand's contraction lemma for the highdimensional mapping ψ between vector spaces. The proof of the this theorem is provided in Appendix A.1 (Supplementary Material).

Theorem 2 Let \mathcal{H} be a set of functions mapping from some set \mathcal{X} to \mathbb{R}^m for some $m \in \mathbb{Z}_+$ and

$$\mathcal{L} = \left\{ \psi_{\alpha} : \psi_{\alpha}(x) = ReLU(x) - \alpha ReLU(-x) \ \forall x \in \mathbb{R}, \alpha \in [0, 1] \right\}$$
(9)

144 where $ReLU(x) = \max(x, 0)$.

145 For any $\mu > 0$, let $\psi : \mathbb{R} \to \mathbb{R}$ be a μ -Lipschitz function. Define

$$\mathcal{H}_{+} = \begin{cases} \mathcal{H} \cup \{-h : h \in \mathcal{H}\}, & \text{if } \psi - \psi(0) \text{ is odd} \\ \mathcal{H} \cup \{-h : h \in \mathcal{H}\} \cup \{|h| : h \in \mathcal{H}\}, & \text{if } \psi - \psi(0) \text{ others} \end{cases}$$
(10)

Then, it holds that

$$\mathbb{E}_{\varepsilon} \left[\sup_{h \in \mathcal{H}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \psi(h(\mathbf{x}_{i})) \right\|_{\infty} \right] \\
\leq \gamma(\mu) \mathbb{E}_{\varepsilon} \left[\sup_{h \in \mathcal{H}_{+}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} h(\mathbf{x}_{i}) \right\|_{\infty} \right] + \frac{1}{\sqrt{n}} |\psi(0)|,$$
(11)

156 where

158
159
160
161

$$\gamma(\mu) = \begin{cases} \mu, & \text{if } \psi - \psi(0) \text{ is odd or belongs to } \mathcal{L} \\ 2\mu, & \text{if } \psi - \psi(0) \text{ is even} \\ 3\mu, & \text{if } \psi - \psi(0) \text{ others} \end{cases}$$
(12)

Here, we define $\psi(\mathbf{x}) := (\psi(x_1), \psi(x_2), \cdots, \psi(x_m))^T$ for any $\mathbf{x} = (x_1, x_2, \cdots, x_m)^T \in \mathbb{R}^m$.

162 163	Remark 3 Some remarks are in order.						
164	• Identity RoLU Looky RoLU Parametric rectified linear unit (PRoLU) belong to the class						
165	• identity, ReLO, Leaky ReLO, Farametric recipied linear unit (FRELO) belong to the class of functions L.						
166							
167	• If ψ is odd or belongs to \mathcal{L} , then $\psi(0) = 0$. Therefore, Theorem 2 improves Lemma 1 in						
168	the special case where $m = 1$. This enhancement is achieved by leveraging the unique						
169	properties of certain function classes.						
170	• Our results are based on a novel approach, which shows that tighter contraction lemmas						
171	can be obtained when both the class of functions \mathcal{H} and the activation functions possess						
172	certain special properties. More specifically, in this work, we extend the class of functions						
173	\mathcal{H} by adding more functions, resulting in a new class \mathcal{H}_+ , which possesses certain special						
174	properties. Additionally, we restrict the class of activation functions to $\mathcal{L} \cup \{\psi : \mathbb{R} \to \mathbb{R} :$						
175	$\psi(x) - \psi(0) = -(\psi(-x) - \psi(0)), \forall x \in \mathbb{R}\}.$						
176 177	Now, the following result can be easily proved (See Appendix A.6 in Supplementary Material).						
178	Theorem 4 Let G be a class of functions from $\mathbb{R}^r \to \mathbb{R}^q$ and V be a class of matrices W on $\mathbb{R}^{p \times q}$						
179	such that $\sup_{\mathbf{W}\in\mathcal{V}} \ \mathbf{W}\ _{\infty} \leq \nu$. Then, it holds that						
180							
181	$\mathbb{E}_{\boldsymbol{\varepsilon}} \left\ \sup_{\mathbf{x}_{i} \in \mathcal{S}} \sup_{\mathbf{x}_{i} \in \mathcal{S}} \left\ \frac{1}{n} \sum_{i} \varepsilon_{i} \mathbf{W} f(\mathbf{x}_{i}) \right\ = \left\ \leq \nu \mathbb{E}_{\boldsymbol{\varepsilon}} \right\ \sup_{\mathbf{x}_{i} \in \mathcal{S}} \left\ \frac{1}{n} \sum_{i} \varepsilon_{i} f(\mathbf{x}_{i}) \right\ = \left\ . \right\ $ (13)						
182	$\lfloor \mathbf{W} \in \mathcal{V} f \in \mathcal{G} \parallel n \prod_{i=1} \qquad \qquad \parallel \infty \rfloor \qquad \qquad \lfloor f \in \mathcal{G} \parallel n \prod_{i=1} \qquad \qquad \parallel \infty \rfloor$						
183							
184	3 RADEMACHER COMPLEXITY BOUNDS FOR CONVOLUTIONAL NEURAL						
185	NETWORKS (CNNS)						
186							
107	3.1 CONVOLUTIONAL NEURAL NETWORK MODELS						
189	Let $d_0, d_1, \dots, d_r, d_{r+1}$ be a sequence of positive integer numbers such that $d_0 = d$ for some fixed						
190	$d \in \mathbb{Z}_+$. We define a class of function \mathcal{F} as follows:						
191 192	$\mathcal{F} := \left\{ f = f_L \circ f_{L-1} \circ \dots \circ f_1 \circ f_0 : f_i \in \mathcal{G}_i \subset \{ g_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d_{i+1}} \}, \forall i \in \{1, 2, \dots, L\} \right\},$						
193	(14)						
194 195	where $f_0: [0,1]^d \to \mathbb{R}^{d_1}$ is a fixed function and $d_{i+1} = M$ for some $M \in \mathbb{Z}_+$. A Convolutional Neural Network (CNN) with network-depth L is defined as a composition map $f \in \mathcal{F}$ where						
196	$f(\mathbf{x}) = \sigma(\mathbf{W}, \mathbf{x}) \forall \mathbf{x} \in \mathbb{D}^{d_i} $ (15)						
197	$J_i(\mathbf{x}) = O_i(\mathbf{W}_i \mathbf{x}), \forall \mathbf{x} \in \mathbb{R} . \tag{13}$						
198 199	Here, $\mathbf{W}_i \in \mathcal{W}_i$ where \mathcal{W}_i is a set of matrices in $\mathbb{R}^{d_{i+1} \times d_i}$, and σ_i is a mapping from $\mathbb{R}^{d_{i+1}} \to \mathbb{R}^{d_{i+1}}$.						
200	Civen a function $f \in \mathcal{T}$ a function $a \in \mathbb{D}^M \times [M]$ predicts a label $a \in [M]$ for an example $u \in \mathbb{D}^d$						
201	orven a runction $j \in J$, a runction $g \in \mathbb{R}^{n} \times [m]$ predicts a facer $y \in [m]$ for an example $\mathbf{x} \in \mathbb{R}^{n}$ if and only if						
202							
203	$g(f(\mathbf{x}), y) > \max_{u' \neq u} g(f(\mathbf{x}), y') $ (16)						
204	$T = \frac{f(r_{1})}{r_{1}} = \frac{T}{r_{1}} \frac{f(r_{2})}{r_{1}} = \frac{f(r_{2})}{$						
205	where $g(f(\mathbf{x}), y) = \mathbf{w}_y f(\mathbf{x})$ with $\mathbf{w}_y = (0, 0, \cdots, 0, 1, 0, \cdots, 0)$.						
206	$\mathbf{v}_{y}(y) = 1$						
207	For a training set $\{\mathbf{x}_i\}_{i=1}^n$, the ∞ -norm <i>Rademacher complexity</i> for the class function \mathcal{F} is defined						
208	as $(-i_j)_{j=1}$, we so norm reaction complexity for the class function j is defined						
209							
210	$R_n(\mathcal{F}) := \mathbb{E}_{\varepsilon} \left \sup \left\ \frac{1}{-} \sum \varepsilon_i f(\mathbf{x}_i) \right\ \right\ . $ (17)						
211	$\lfloor f \in \mathcal{F} \parallel n \underset{i=1}{{\underset{i=1}{\underset{i=1}{{\underset{i=1}{{\underset{i=1}{{\underset{i=1}{{\underset{i=1}{{\underset{i=1}{{i=1}{\underset{i=1}{{\underset{i=1}{{\underset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\underset{i=1}{i=1}{\overset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\atopi}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi}{\atopi}{i=1}{\atopi}{i=1}{\atopi}{\underset{i=1}{\atopi}{\atopi}{i=1}{\atopi}{i=1}{\atopi}{i=1}{\atopi}{i=1}{\atopi}{\atopi}{i=1}{\atopi}{i=1}{\atopi}{i=1}{i}{i}{i}{i}{i}{i}{i}{i}{i}{i}{i}{i}{i}$						
212							
213	3.2 Some Contraction Lemmas for CNNs						
214							

Based on Theorem 2 and Theorem 4, the following versions of Talagrand's contraction lemma for different layers of CNN are derived.

Definition 5 (Convolutional Layer with Average Pooling) Let \mathcal{G} be a class of μ -Lipschitz func-217 tion σ from $\mathbb{R} \to \mathbb{R}$ such that $\sigma(0)$ is fixed. Let $C, Q \in \mathbb{Z}_+$, $\{r_l, \tau_l\}_{l \in [Q]}$ be two tuples of positive 218 integer numbers, and $\{W_{l,c} \in \mathbb{R}^{r_l \times r_l}, c \in [C], l \in [Q]\}$ be a set of kernel matrices. A convolutional 219 layer with average pooling, C input channels, and Q output channels is defined as a set of $Q \times C$ 220 mappings $\Psi = \{\psi_{l,c}, l \in [Q], c \in [C]\}$ from $\mathbb{R}^{d \times d}$ to $\mathbb{R}^{\lceil (d-r_l+1)/\tau_l \rceil \times \lceil (d-r_l+1)/\tau_l \rceil}$ such that

$$\psi_{l,c}(\mathbf{x}) = \sigma_{\text{avg}} \circ \sigma_{l,c}(\mathbf{x}), \tag{18}$$

223 where

$$\sigma_{\text{avg}}(\mathbf{x}) = \frac{1}{\tau_l^2} \bigg(\sum_{k=1}^{\tau_l^2} x_k, \cdots, \sum_{k=(j-1)\tau_l^2+1}^{j\tau_l^2} x_k, \cdots, \sum_{k=\lceil (d-r_l+1)^2/\tau_l^2 \rceil - r_l^2 + 1}^{\lceil (d-r_l+1)^2/\tau_l^2 \rceil \tau_l^2} x_k \bigg),$$

$$\forall \mathbf{x} \in \mathbb{R}^{\lceil (d-r_l+1)^2/\tau_l^2 \rceil \tau_l^2}, \tag{19}$$

and for all $\mathbf{x} \in \mathbb{R}^{d \times d \times C}$,

$$\sigma_{l,c}(\mathbf{x}) = \{\hat{x}_c(a,b)\}_{a,b=1}^{d-r_l+1},\tag{20}$$

$$\hat{x}_c(a,b) = \sigma \bigg(\sum_{u=0}^{r_l-1} \sum_{v=0}^{r_l-1} x(a+u,b+v,c) W_{l,c}(u+1,v+1) \bigg).$$
(21)

Lemma 6 (Convolutional Layer with Average Pooling) Let \mathcal{F} be a set of functions mapping from some set \mathcal{X} to \mathbb{R}^m for some $m \in \mathbb{Z}_+$. Consider a convolutional layer with average pooling defined in Definition 5. Recall the definition of \mathcal{L} in (9). Then, it hold that

$$\mathbb{E}_{\boldsymbol{\varepsilon}} \left[\sup_{c \in [C]} \sup_{l \in [Q]} \sup_{\psi_{l} \in \Psi} \sup_{f \in \mathcal{F}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \psi_{l,c} \circ f(\mathbf{x}_{i}) \right\|_{\infty} \right] \\
\leq \left[\gamma(\mu) \sup_{c \in [C]} \sup_{l \in [Q]} \left(\sum_{u=0}^{r_{l}-1} \sum_{v=0}^{r_{l}-1} \left| W_{l,c}(u+1,v+1) \right| \right) \right] \mathbb{E} \left[\sup_{f \in \mathcal{F}_{+}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f(\mathbf{x}_{i}) \right\|_{\infty} \right] + \frac{|\sigma(0)|}{\sqrt{n}}, \tag{22}$$

where

$$\gamma(\mu) = \begin{cases} \mu, & \text{if } \sigma - \sigma(0) \text{ is odd or belongs to } \mathcal{L} \\ 2\mu, & \text{if } \sigma - \sigma(0) \text{ is even} \\ 3\mu, & \text{if } \sigma - \sigma(0) \text{ others} \end{cases}$$
(23)

Here,

$$\mathcal{F}_{+} = \begin{cases} \mathcal{F} \cup \{-f : f \in \mathcal{F}\}, & \text{if } \sigma - \sigma(0) \text{ is odd} \\ \mathcal{F} \cup \{-f : f \in \mathcal{F}\} \cup \{|f| : f \in \mathcal{F}\}, & \text{if } \sigma - \sigma(0) \text{ others} \end{cases}$$
(24)

For Dropout layer, the following holds:

Lemma 7 (Dropout Layers) Let $\psi(\mathbf{x})$ is the output of the \mathbf{x} via the Dropout layer. Then, it holds that

$$\mathbb{E}_{\varepsilon} \left[\sup_{f \in \mathcal{H}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \psi \circ f(\mathbf{x}_{i}) \right\|_{\infty} \right] \leq \mathbb{E} \left[\sup_{f \in \mathcal{H}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f(\mathbf{x}_{i}) \right\|_{\infty} \right].$$
(25)

²⁶⁵ The following Rademacher complexity bounds for Dense Layers.

Lemma 8 (Dense Layers) Recall the definition of \mathcal{L} in (9). Let \mathcal{G} be a class of μ -Lipschitz function, *i.e.*,

$$\sigma(x) - \sigma(y) \Big| \le \mu |x - y|, \qquad \forall x, y \in \mathbb{R},$$
(26)

such that $\sigma(0)$ is fixed. Let \mathcal{V} be a class of matrices \mathbf{W} on $\mathbb{R}^{d \times d'}$ such that $\sup_{\mathbf{W} \in \mathcal{V}} \|\mathbf{W}\|_{\infty} \leq \beta$. For any vector $\mathbf{x} = (x_1, x_2, \cdots, x_{d'})$, we denote by $\sigma(\mathbf{x}) := (\sigma(x_1), \sigma(x_2), \cdots, \sigma(x_{d'}))^T$. Then, it holds that

$$\mathbb{E}_{\boldsymbol{\varepsilon}} \left[\sup_{\mathbf{W}\in\mathcal{V}} \sup_{f\in\mathcal{G}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \sigma(\mathbf{W}f(\mathbf{x}_{i})) \right\|_{\infty} \right] \\ \leq \gamma(\mu) \beta \mathbb{E}_{\boldsymbol{\varepsilon}} \left[\sup_{f\in\mathcal{G}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}f(\mathbf{x}_{i}) \right\|_{\infty} \right] + \frac{|\sigma(0)|}{\sqrt{n}},$$
(27)

where

 $\gamma(\mu) = \begin{cases} \mu, & \text{if } \sigma - \sigma(0) \text{ is odd or belongs to } \mathcal{L} \\ 2\mu, & \text{if } \sigma - \sigma(0) \text{ is even} \\ 3\mu, & \text{if } \sigma - \sigma(0) \text{ others} \end{cases}.$ (28)

Remark 9 The convolutional layer with average pooling, dropout layers, and dense layers can be viewed as compositions of linear mappings and pointwise activation functions. Therefore, Lemmas 6, 7, and 8 are derived by applying Theorem 2 to the pointwise mappings and Theorem 4 to the linear mappings.

3.3 RADEMACHER COMPLEXITY BOUNDS FOR CNNs

In this section, we show the following result.

Theorem 10 Let

$$\mathcal{L} = \left\{ \psi_{\alpha} : \psi_{\alpha}(x) = ReLU(x) - \alpha ReLU(-x) \ \forall x \in \mathbb{R}, \alpha \in [0, 1] \right\}.$$
(29)

Consider the CNN defined in Section 3.1 where

$$[f_i(\mathbf{x})]_j = \sigma_i \left(\mathbf{w}_{j,i}^T f_{i-1}(\mathbf{x}) \right) \ \forall j \in [d_{i+1}]$$

and σ_i is μ_i -Lipschitz. In addition, $f_0(\mathbf{x}) = [\mathbf{x}^T, 1]^T$, $\forall \mathbf{x} \in \mathbb{R}^d$ and \mathbf{x} is normalised such that $\|\mathbf{x}\|_{\infty} \leq 1$. Let

$$\mathcal{K} = \{i \in [L] : layer \ i \ is \ a \ convolutional \ layer \ with \ average \ pooling\},$$
(30)
$$\mathcal{D} = \{i \in [L] : layer \ i \ is \ a \ dropout \ layer\}.$$
(31)

We assume that there are Q_i kernel matrices $W_i^{(l)}$'s of size $r_i^{(l)} \times r_i^{(l)}$ for the *i*-th convolutional layer. For all the (dense) layers that are not convolutional, we define \mathbf{W}_i as their coefficient matrices. In addition, define

$$\gamma_{\rm cvl,i} = \gamma(\mu_i) \sup_{l \in [Q_i]} \sum_{u=1}^{r_{i,l}} \sum_{v=1}^{r_{i,l}} |W_i^{(l)}(u,v)|,$$
(32)

$$\gamma_{\rm dl,i} = \gamma(\mu_i) \left\| \mathbf{W}_i \right\|_{\infty} \qquad i \notin \mathcal{K}.$$
(33)

where

$$\gamma(\mu_i) = \begin{cases} \mu_i, & \text{if } \sigma_i - \sigma_i(0) \text{ is odd or belongs to } \mathcal{L} \\ 2\mu, & \text{if } \sigma_i - \sigma_i(0) \text{ is even} \\ 3\mu, & \text{if } \sigma_i - \sigma_i(0) \text{ others} \end{cases}$$
(34)

Then, the Rademacher complexity, $\mathcal{R}_n(\mathcal{F})$, satisfies

$$\mathcal{R}_{n}(\mathcal{F}) := \mathbb{E}_{\varepsilon} \left[\sup_{f \in \mathcal{F}_{+}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f(\mathbf{x}_{i}) \right\|_{\infty} \right]$$
$$\leq F_{L}, \tag{35}$$

where F_L is estimated by the following recursive expression:

$$F_{i} = \begin{cases} F_{i-1}\gamma_{\text{cvl},i} + \frac{|\sigma_{i}(0)|}{\sqrt{n}}, & i \in \mathcal{K} \\ F_{i-1}\gamma_{\text{dl},i} + \frac{|\sigma_{i}(0)|}{\sqrt{n}}, & i \notin (\mathcal{K} \cup \mathcal{D}) \\ F_{i-1}, & i \in \mathcal{D} \end{cases}$$
(36)

and $F_0 = \sqrt{\frac{d+1}{n}}$.

30/

Proof This is a direct application of Lemmas 6, 7, and 8. By the modelling of CNNs in Section 3.1, it holds that $\mathcal{F}_k := \left\{ f = f_k \circ f_{k-1} \circ \dots \circ f_1 \circ f_0 : f_i \in \mathcal{G}_i \subset \{g_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d_{i+1}}\}, \quad \forall i \in \{1, 2, \dots, k\} \right\}$ (37) and $\mathcal{F} := \mathcal{F}_L$. For CNNs, $f_l(\mathbf{x}) = \sigma_l(W_l \mathbf{x})$ for all $l \in [L]$ where $W_l \in W_l$ (a set of matrices) and $\sigma_l \in \Psi_l$ where $\Psi_l = \{ \sigma_l : |\sigma_l(x) - \sigma_l(y)| \le \mu_l |x - y|, \quad \forall x, y \in \mathbb{R} \}.$ (38)Then, since $|\sigma_l|, -\sigma_l \in \Psi_l$, it is easy to see that $\mathcal{F}_{l,+} \subset \Psi_l(\mathcal{W}_l \mathcal{F}_{l-1,+}), \qquad \forall l \in [L],$ (39) where $\mathcal{F}_{l,+}$ is a supplement of \mathcal{F}_l defined in (24). Therefore, by peeling layer by layer we finally have $\mathbb{E}_{\varepsilon}\left[\sup_{f\in\mathcal{F}}\left\|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}f(\mathbf{x}_{i})\right\|_{\infty}\right]\leq F_{L},$ (40)where for each $i \in [L]$ $F_{i} = \begin{cases} F_{i-1}\gamma_{\text{cvl},i} + \frac{|\sigma_{i}(0)|}{\sqrt{n}}, & i \in \mathcal{K} \\ F_{i-1}\gamma_{\text{dl},i} + \frac{|\sigma_{i}(0)|}{\sqrt{n}}, & i \notin (\mathcal{K} \cup \mathcal{D}) \\ F_{i-1}, & i \in \mathcal{D} \end{cases}$ (41)and $F_0 = \mathbb{E}_{\varepsilon} \bigg[\sup_{f \in \mathcal{H}_+} \bigg\| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(\mathbf{x}_i) \bigg\|_{\infty} \bigg].$ (42)Here, \mathcal{H}_+ is the extended set of inputs to the CNN, i.e.,

$$\mathcal{H}_{+} = \begin{cases} f_0 \cup \{-f_0\}, & \text{if } \sigma_1 - \sigma_1(0) \text{ is odd} \\ f_0 \cup \{-f_0\} \cup \{|f_0|\}, & \text{if } \sigma_1 - \sigma_1(0) \text{ others} \end{cases}$$
(43)

Now, for the case $\sigma_1 - \sigma_1(0)$ is odd, it is easy to see that

$$\sup_{f \in \mathcal{H}_{+}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f(\mathbf{x}_{i}) \right\|_{\infty} = \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{0}(\mathbf{x}_{i}) \right\|_{\infty}$$
(44)

$$\leq \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f_0(\mathbf{x}_i) \right\|_2.$$
(45)

On the other hand, for the case $\sigma_1 - \sigma_1(0)$ is general, we have

$$\sup_{f \in \mathcal{H}_{+}} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f(\mathbf{x}_{i}) \right\|_{\infty} \leq \max\left\{ \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{0}(\mathbf{x}_{i}) \right\|_{\infty}, \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \left| f_{0}(\mathbf{x}_{i}) \right| \right\|_{\infty} \right\}.$$
(46)

On the other hand, we have

$$\mathbb{E}_{\varepsilon} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{0}(\mathbf{x}_{i}) \right\|_{2} \right] \\ \leq \frac{1}{n} \sqrt{\mathbb{E}_{\varepsilon} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{0}(\mathbf{x}_{i}) \right\|_{2}^{2} \right]}$$
(47)

$$\leq \frac{1}{n} \sqrt{\sum_{j=1}^{d+1} \sum_{i=1}^{n} [f_0(\mathbf{x}_i)]_j^2}$$
(48)

$$\leq \frac{1}{n}\sqrt{(d+1)n}$$

$$\leq \frac{1}{n}\sqrt{(d+1)n}$$

$$(49)$$

$$=\sqrt{\frac{d+1}{n}},\tag{50}$$

where (49) follows from $|[f_0(\mathbf{x}_i)]_j| \leq 1$ for all $i \in [n], j \in [d_1]$ when the data is normalised by using the standard method.

 $\mathbb{E}_{\varepsilon}\left[\left\|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}|f_{0}(\mathbf{x}_{i})|\right\|_{2}\right] \leq \sqrt{\frac{d+1}{n}}.$

Similarly, we also have

4 GENERALIZATION BOUNDS FOR CNNS

4.1 GENERALIZATION BOUNDS FOR DEEP LEARNING

Definition 11 Recall the CNN model in Section 3.1. The margin of a labelled example (x, y) is defined as

$$m_f(\mathbf{x}, y) := g(f(\mathbf{x}), y) - \max_{y' \neq y} g(f(\mathbf{x}), y'), \tag{52}$$

(51)

so f mis-classifies the labelled example (\mathbf{x}, y) if and only if $m_f(\mathbf{x}, y) \leq 0$. The generalisation error is defined as $\mathbb{P}(m_f(\mathbf{x}, y) \leq 0)$. It is easy to see that $\mathbb{P}(m_f(\mathbf{x}, y) \leq 0) = \mathbb{P}(\mathbf{w}_y^T f(\mathbf{x}) \leq \max_{y' \in \mathcal{Y}} \mathbf{w}_{y'}^T f(\mathbf{x}))$.

Remark 12 Some remarks:

- Since $g(f(\mathbf{x}), y) > \max_{y' \neq y} g(f(\mathbf{x}), y')$, it holds that $\tilde{g}(f_k(\mathbf{x}, y)) > \max_{y' \neq y} \tilde{g}(f_k(\mathbf{x}, y'))$ for some $k \in [L]$ where \tilde{g} is an arbitrary function. Hence, $\mathbb{P}(m_f(\mathbf{x}, y) \leq 0) \leq \mathbb{P}(\tilde{g}(f_k(\mathbf{x}, y)) > \max_{y' \neq y} \tilde{g}(f_k(\mathbf{x}, y')))$, so we can bound the generalisation error by using only a part of CNN networks (from layer 0 to layer k). However, we need to know \tilde{g} . If the last layers of CNN are softmax, we can easily know this function.
- When testing on CNNs, it usually happens that the generalisation error bound becomes smaller when we use almost all layers.

Now, we prove the following lemma.

Lemma 13 Let \mathcal{F} be a class of function from \mathcal{X} to \mathbb{R}^m . For CNNs for classification, it holds that

$$\mathbb{E}_{\boldsymbol{\varepsilon}}\left[\sup_{f\in\mathcal{F}}\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}m_{f}(\mathbf{x}_{i},y_{i})\right|\right] \leq \beta(M)\mathbb{E}_{\boldsymbol{\varepsilon}}\left[\sup_{f\in\mathcal{F}}\left\|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}m_{f}(\mathbf{x}_{i})\right\|_{\infty}\right],\tag{53}$$

where

$$\beta(M) = \begin{cases} M(2M-1), & M > 2\\ 2M, & M = 2 \end{cases}.$$
(54)

For M > 2, (53) is a result of (Koltchinskii & Panchenko, 2002, Proof of Theorem 11). We improve this constant for M = 2. Based on the above Rademacher complexity bounds and a justified application of McDiarmid's inequality, we obtains the following generalization for deep learning with i.i.d. datasets.

Theorem 14 Let $\gamma > 0$ and define the following function (the γ -margin cost):

$$\zeta(x) := \begin{cases} 0, & \gamma \le x \\ 1 - x/\gamma, & 0 \le x \le \gamma \\ 1, & x \le 0 \end{cases}$$
(55)

425 Recall the definition of the average Rademacher complexity $\mathcal{R}_n(\mathcal{F})$ in (35) and the definition of 426 $\beta(M)$ in (54). Let $\{(\mathbf{x}_i, y_i)\}_{i=1}^n \sim P_{\mathbf{x}y}$ for some joint distribution $P_{\mathbf{x}y}$ on $\mathcal{X} \times \mathcal{Y}$. Then, for any 427 t > 0, the following holds:

428
429
430
$$\mathbb{P}\left\{\exists f \in \mathcal{F} : \mathbb{P}\left(m_f(\mathbf{x}, y) \le 0\right) > \inf_{\gamma \in (0,1]} \left[\frac{1}{n} \sum_{i=1}^n \zeta(m_f(\mathbf{x}_i, y_i))\right]\right\}$$

$$+ \frac{2\beta(M)}{\gamma} \mathcal{R}_n(\mathcal{F}) + \frac{2t + \sqrt{\log\log_2(2\gamma^{-1})}}{\sqrt{n}} \bigg] \bigg\} \le 2\exp(-2t^2).$$
(56)

Corollary 15 (*PAC-bound*) Recall the definition of the average Rademacher complexity $\mathcal{R}_n(\mathcal{F})$ in (35) and the definition of $\beta(M)$ in (54). Let $\{(\mathbf{x}_i, y_i)\}_{i=1}^n \sim P_{\mathbf{x}y}$ for some joint distribution $P_{\mathbf{x}y}$ on $\mathcal{X} \times \mathcal{Y}$. Then, for any $\delta \in (0, 1]$, with probability at least $1 - \delta$, it holds that

$$\mathbb{P}\left(m_{f}(\mathbf{x}, y) \leq 0\right) \leq \inf_{\gamma \in (0,1]} \left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left\{m_{f}(\mathbf{x}_{i}, y_{i}) \leq \gamma\right\} + \frac{2\beta(M)}{\gamma} \mathcal{R}_{n}(\mathcal{F}) + \sqrt{\frac{\log \log_{2}(2\gamma^{-1})}{n}} + \sqrt{\frac{2}{n} \log \frac{3}{\delta}}\right], \quad \forall f \in \mathcal{F}.$$
(57)

Proof This result is obtain from Theorem 14 by choosing t > 0 such that $3 \exp(-2t^2) = \delta$.

5 NUMERICAL RESULTS

In this experiment, we use a CNN (cf. Fig. 1) for classifying MNIST images (class 0 and class 1), i.e., M = 2, which consists of n = 12665 training examples.

For this model, the sigmoid activation σ satisfies $\sigma(x) - \sigma(0) = \frac{1}{2} \tanh\left(\frac{x}{2}\right)$ which is odd and has the Lipschitz constant 1/4. In addition, for the dense layer, the sigmoid activation satisfies

$$\left|\sigma(x) - \sigma(y)\right| \le \frac{1}{4} |x - y|, \qquad \forall x, y \in \mathbb{R}.$$
(58)

Hence, by Theorem 10 it holds that $\mathcal{R}_n(\mathcal{F}) \leq F_3$, where

$$F_3 \le \underbrace{\frac{1}{4} \|\mathbf{W}\|_{\infty} F_2 + \frac{1}{2\sqrt{n}}}_{(59)},$$

Dense layer

$$F_2 \le \underbrace{\left(\frac{1}{4} \sup_{l \in [64]} \sum_{u=1}^3 \sum_{v=1}^3 |W_2^{(l)}(u,v)|\right)}_{l = 1} F_1 + \frac{1}{2\sqrt{n}},\tag{60}$$

The second convolutional layer

$$F_1 \le \underbrace{\left(\frac{1}{4} \sup_{l \in [32]} \sum_{u=1}^3 \sum_{v=1}^3 |W_1^{(l)}(u,v)|\right)}_{l = 0} F_0 + \frac{1}{2\sqrt{n}},\tag{61}$$

The first convolutional layer

$$F_0 = \sqrt{\frac{d+1}{n}}.$$
(62)

Numerical estimation of F_3 gives $\mathcal{R}_n(\mathcal{F}) \leq 0.00859$.

473 By Corollary 15 with probability at least $1 - \delta$, it holds that

$$\mathbb{P}\left(m_f(\mathbf{x}, y) \le 0\right) \le \inf_{\gamma \in (0,1]} \left[\frac{1}{n} \sum_{i=1}^n \zeta\left(m_f(\mathbf{x}_i, y_i)\right) \frac{\sqrt{\log\log_2(2\gamma^{-1})}}{\sqrt{\log_2(2\gamma^{-1})}} \sqrt{2\gamma^{-3}}\right]$$

$$+\frac{4M}{\gamma}\mathcal{R}_n(\mathcal{F}) + \sqrt{\frac{\log\log_2(2\gamma^{-1})}{n}} + \sqrt{\frac{2}{n}\log\frac{3}{\delta}}\right]$$
(63)

By setting $\delta = 5\%$, $\gamma = 0.5$, the generalisation error can be upper bounded by

$$\mathbb{P}\big(m_f(\mathbf{x}, y) \le 0\big) \le 0.189492. \tag{64}$$

For this model, the reported test error is 0.0028368.

Two extra experiments are given in Supplementary Materials.

Figure 1: CNN model with sigmoid activations

6 COMPARISION WITH GOLOWICH ET AL.'S BOUND (GOLOWICH ET AL., 2018)

In (Golowich et al., 2018, Section 4), the authors present an upper bound on Rademacher complexity for DNNs with ReLU activation functions as follows:

$$\mathcal{R}_{n}(\mathcal{F}) = O\left(\prod_{j=1}^{L} \|\mathbf{W}_{j}\|_{F} \max\left\{1, \log\left(\prod_{j=1}^{L} \frac{\|\mathbf{W}_{j}\|_{F}}{\|\mathbf{W}_{j}\|_{2}}\right)\right\} \min\left\{\frac{\max\{1, \log n\}^{3/4}}{n^{1/4}}, \sqrt{\frac{L}{n}}\right\}\right)$$
(65)

where $\mathbf{W}_1, \mathbf{W}_2, \cdots, \mathbf{W}_L$ are the parameter matrices of the *L* layers. Now, let Γ be the term inside the bracket in (65), and define

$$\beta = \min_{j} \frac{\|\mathbf{W}_{j}\|_{F}}{\|\mathbf{W}_{j}\|_{2}} \ge 1.$$
(66)

Then, from (65) we have

$$\Gamma \ge \prod_{j=1}^{L} \|\mathbf{W}_{j}\|_{F} \min\left\{\frac{\max\{1, \log n\}^{3/4} \sqrt{\max\{1, L \log \beta\}}}{n^{1/4}}, \sqrt{\frac{L}{n}}\right\}.$$
(67)

517 For the general case, it holds that $\beta > 1$. Hence, from (67) we have

$$\mathcal{R}_n(\mathcal{F}) = O\left(\sqrt{\frac{L}{n}} \prod_{j=1}^L \|\mathbf{W}_j\|_F\right).$$
(68)

As analysed in (Golowich et al., 2018), this bound improves many previous bounds, including Neyshabur et al.'s bound Neyshabur et al. (2015), Neyshabur et al. (2018) which are known to be vacuous for certain ReLU DNNs (Nagarajan & Kolter, 2019).

By using Theorem 10 and Lemma 8, we can show that

$$\mathcal{R}_n(\mathcal{F}) = O\left(\sqrt{\frac{1}{n}} \prod_{j=1}^L \mu_j \|\mathbf{W}_j\|_{\infty}\right)$$
(69)

for DNNs with some special classes of activation functions, including ReLU family and classes of old activation functions, where μ_j is the Lipschitz constant of the *j*-layer activation function.

In general, the Frobenius norm $\|\mathbf{W}_j\|_F$ of \mathbf{W}_j can be either larger or smaller than its infinity norm $\|\mathbf{W}_j\|_{\infty}$, depending on the specific case. For example, suppose that \mathbf{W}_j is a sparse matrix with only one non-zero element a_k in the k-row, for all $k \in [d_{j+1}]$. Then, we have $\|\mathbf{W}_j\|_F = \sqrt{\sum_{k=1}^{d_{j+1}} |a_k|^2} \ge \max_{1\le k\le d_{j+1}} |a_k| = \|\mathbf{W}_j\|_{\infty}$. Hence, (69) provides a new way to characterize the generalisation error in ReLU DNNs, which differ from previous studies in how they depend on the norms of the weight matrices. Additionally, our bound in (69) is applicable to a broad range of activation functions. While ReLU

539 DNNs are primarily considered in the works of (Golowich et al., 2018), Neyshabur et al. (2015), and Neyshabur et al. (2018), our approach extends to many other activation functions as well.

540 REFERENCES

546

552

580

581

582 583

585

586

542	E. Parrado-Hern'	'andez A.	Ambroladze and J	. ShaweTaylor.	Tighter PAC-Baye	es bounds.	In NIPS,
543	2007.						

- Peter Bartlett and John Shawe-Taylor. *Generalization Performance of Support Vector Machines and Other Pattern Classifiers*, pp. 4354. MIT Press, 1999.
- Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E. Schapire. Boosting the margin: a new explanation for the effectiveness of voting methods. *The Annals of Statistics*, 26(5):1651 1686, 1998a.
- Peter L. Bartlett and Robert C. Williamson. The vc dimension and pseudodimension of two-layer
 neural networks with discrete inputs. *Neural Computation*, 8:625–628, 1996.
- Peter L. Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear vc-dimension bounds for piecewise
 polynomial networks. *Neural Computation*, 10:2159–2173, 1998b.
- Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural networks. In *NIPS*, 2017.
- F. Biggs and B. Guedj. Differentiable PAC-Bayes objectives with partially aggregated neural networks. *Entropy*, 23, 2021.
- Eugenio Clerico, George Deligiannidis, and Arnaud Doucet. Conditional Gaussian PAC-Bayes.
 Arxiv: 2110.1188, 2021a.
- Eugenio Clerico, George Deligiannidis, and Arnaud Doucet. Wide stochastic networks: Gaussian limit and PACBayesian training. *Arxiv: 2106.09798*, 2021b.
- John C. Duchi, Alekh Agarwal, Mikael Johansson, and Michael I. Jordan. Ergodic mirror descent.
 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
 pp. 701–706, 2011.
- G. K. Dziugaite and D. M. Roy. Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data. In *Uncertainty in Artificial Intelligence (UAI)*, 2017.
- Amedeo Roberto Esposito, Michael Gastpar, and Ibrahim Issa. Generalization error bounds via
 Rényi-f-divergences and maximal leakage. *IEEE Transactions on Information Theory*, 67(8):
 4986–5004, 2021.
- Paul W. Goldberg and Mark Jerrum. Bounding the vapnik-chervonenkis dimension of concept classes parameterized by real numbers. *Machine Learning*, 18:131–148, 1993.
- 578 Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neural networks. In *COLT*, 2018.
 - D. Jakubovitz, R. Giryes, and M. R. D. Rodrigues. Generalization Error in Deep Learning. *Arxiv:* 1808.01174, 30, 2018.
- V. Koltchinskii and D. Panchenko. Empirical Margin Distributions and Bounding the Generalization
 Error of Combined Classifiers. *The Annals of Statistics*, 30(1):1 50, 2002.
 - J. Langford and J. Shawe-Taylor. PAC-Bayes and Margins. In Advances of Neural Information Processing Systems (NIPS), 2003.
- 588 M. Ledoux and M. Talagrand. *Probability in Banach Spaces*. Springer, New York., 1991.
- A. McAllester. Some PAC-Bayesian theorems. In *Conference on Learning Theory (COLT)*, 1998.
- 591 D. A. McAllester. PAC-Bayesian stochastic model selection. *Machine Learning*, 51, 2004.
- 593 V. Nagarajan and Z. Kolter. Uniform convergence may be unable to explain generalization in deep learning. In Advances of Neural Information Processing Systems (NeurIPS), 2019.

- Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural networks. In *COLT*, 2015.
- Behnam Neyshabur, Srinadh Bhojanapalli, David A. McAllester, and Nathan Srebro. A PAC bayesian approach to spectrally-normalized margin bounds for neural networks. ArXiv, abs/1707.09564, 2018.
- M. Raginsky and I. Sason. Concentration of measure inequalities in information theory, communications and coding, volume 10 of Foundations and Trends in Communications and Information Theory. Now Publishers Inc, 2013.
- H. Royden and P. Fitzpatrick. *Real Analysis*. Pearson, 4th edition, 2010.
 - Lan V. Truong. Generalization Bounds on Multi-Kernel Learning with Mixed Datasets. *ArXiv*, 2205.07313, 2022a.
- Lan V. Truong. Generalization Error Bounds on Deep Learning with Markov Datasets. In Advances of Neural Information Processing Systems (NeurIPS), 2022b.
- Lan V. Truong. On linear model with markov signal priors. In *AISTATS*, 2022c.
- 612 V. N. Vapnik. *Statistical Learning Theory*. Wiley, New York, 1998.

- M. Austern R. P. Adams W. Zhou, V. Veitch and P. Orbanz. Non-vacuous generalization bounds at the imagenet scale: a PAC-Bayesian compression approach. In *The International Conference on Learning Representations (ICLR)*, 2019.
- Gang Wang, Bingcong Li, and Georgios B. Giannakis. A multistep lyapunov approach for finite-time analysis of biased stochastic approximation. *ArXiv*, abs/1909.04299, 2019.
 - A. Xu and M. Raginsky. Information-theoretic analysis of generalization capability of learning algorithms. In *Advances of Neural Information Processing Systems (NIPS)*, 2017.