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ABSTRACT

Existing methods for generating long scroll images, often fail to maintain global
structural and stylistic consistency, resulting in artifacts like content repetition. To
address this, we propose the Dual-Resolution Scroll Generation with Preference
Optimization (DRSPO) framework. Our approach decouples global composition
from local refinement by first generating a low-resolution (LR) blueprint to estab-
lish a coherent overall structure. This LR blueprint then guides a high-resolution
(HR) feature to render fine-grained details. We further enhance generation qual-
ity by incorporating Direct Preference Optimization (DPO) at both stages, and
we introduce a novel theoretical adaptation to apply preference tuning directly to
the region-based generation process. Experimental results demonstrate that our
method produces high-quality long scroll images with reasonable global structure
and fine-grained details.

1 INTRODUCTION

The generation of long scroll images presents a challenging task within the field of image generation.
Currently, mainstream image generation models primarily focus on producing images with an aspect
ratio of 1:1. Directly applying these models like SDXL (Podell et al., 2023) or Flux (Labs, 2024) to
generate high aspect ratio images encounters the Out-of-Distribution (OOD) problem, leading to a
significant degradation in generation quality.

A prevalent strategy for high-resolution long scroll generation involves region-based methods, epit-
omized by MultiDiffusion (Bar-Tal et al., 2023). This approach is particularly effective at rendering
high-fidelity local details by processing the image in smaller, manageable regions. Building on
this foundation, subsequent works have introduced targeted improvements: Merge-Attend-Diffuse
(MAD) operator (Quattrini et al., 2024) enhances semantic coherence by merging features across
different window views, SyncDiffusion (Lee et al., 2023) focuses on improving stylistic consistency
between these windows, and ElasticDiffusion (Haji-Ali et al., 2024) further refines overall local co-
herence. Conversely, an alternative paradigm involves the direct end-to-end application of powerful
base models like SDXL (Podell et al., 2023) and Flux (Labs, 2024). This approach demonstrates a
distinct advantage in establishing global coherence and stylistic consistency across the entire scroll.

Despite these advancements, both paradigms suffer from some limitations. The core deficiency of
region-based methods is the absence of a holistic global plan. This frequently manifests as severe
artifacts, most notably the unnatural repetition of objects, as illustrated in Fig. 1. While the direct
application of base models provides more robust global control, their ability to render fine-grained
details does not match the fidelity achieved by region-based techniques. Consequently, existing
works present a fundamental tradeoff between global structural coherence and fine-grained local
refinement.

To address these challenges, we propose the Dual-Resolution Scroll Generation with Preference
Optimization (DRSPO) framework. Our framework is comprised of two core components. The first
is a Dual-Resolution Generation Pipeline (detailed in Sec.3.1), which utilizes a low-resolution (LR)
model to generate a blueprint that establishes the global compositional structure. This LR blueprint
subsequently provides robust guidance for the high-resolution (HR) generation stage. The second
component is a novel Direct Preference Optimization (DPO) method tailored for the MultiDiffusion
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(a) Merge-Attend-Diffuse (MAD)

(b) MultiDiffusion

(c) SyncDiffusion

(d) DRSPO(Ours)

Figure 1: Scrolls(1024×4096) generated using prompts:“Paint a scene of a canal-laced city, like
Venice or Amsterdam. Gondolas or boats glide through the waterways, passing under arched bridges
and alongside colorful, historic houses that seem to rise directly from the water.” As can be observed,
the images generated by our method exhibit more reasonable and coherent layouts. In contrast,
other methods, which lack guidance from global information, produce images with severe object
repetition.

process(detailed in Sec.3.2). It directly fine-tunes the base generator to enhance the fine-grained
details within each local region. The efficacy of our framework is demonstrated by state-of-the-
art performance on metrics such as HPS v2 and ImageReward. Visually, Fig. 1 confirms that our
method excels at synthesizing coherent global structures with high-fidelity local details.

Our work introduces a Dual-Resolution Scroll Generation Method that enables controlled generation
of the global structure, ensuring the final long scroll possesses both a coherent global composition
and consistent style. Furthermore, we adapt the DPO method for application within the MultiDiffu-
sion scenario, specifically to optimize the generation of long scroll images. The effectiveness of this
combined approach is demonstrated by our experimental results, which show our method’s ability to
generate high-quality outputs and achieve leading scores on key metrics for human preference and
semantic fidelity.
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2 PRELIMINARY

2.1 MULTIDIFFUSION

MultiDiffusion (Bar-Tal et al., 2023) is a training-free method that adapts a pre-trained diffusion
model for long scroll generation using a sliding window approach. It is built upon a base model Φ
whose standard denoising step is formulated as:

Φ : I × Y → I, I ∈ RH×W×C (1)
where Φ maps a noisy latent from the image space I to a denoised one under conditions from Y ,
such that It−1 = Φ(It|y). To generate a long scroll image J ∈ RH′×W ′×C , MultiDiffusion defines
a new process Ψ:

Ψ : J × Z → J (2)
The new diffusion step, Jt−1 = Ψ(Jt|y), is constrained by the base model Φ. This link is established
via a mapping Fi that extracts the i-th window and its inverse F−1

i that maps it back. The objective
is to align this new process with the pre-trained model by solving the following optimization at each
step:

Ψ(Jt|y) = arg min
J∈J

n∑
i=1

∥Fi(J)− Φ(Fi(Jt), yi)∥ (3)

In practice, this optimization is implemented by denoising each window individually and then com-
posing the complete long scroll Jt−1 via a weighted average of the results:

Jt−1 =

∑
i F

−1
i (WiΦ(Fi(Jt), yi))∑

i F
−1
i (Wi)

(4)

2.1.1 DPO-DIFFUSION

Direct Preference Optimization (DPO) (Rafailov et al., 2023; Wallace et al., 2024) is a method that
fine-tunes a model to align with preferences by directly optimizing a policy against a reward function
implicitly defined by a preference dataset. In the context of diffusion models, DPO-Diffusion defines
this reward over the entire denoising trajectory:

r(c, x0) = Epθ(x1:T |x0,c)[R(c, x0:T )] (5)
The reinforcement learning (RL) objective, using the KL divergence as a constraint, is formulated
as:

max
pθ

Ec∼Dc,x0:T∼pθ(x0:T |c)[r(c, x0)]− βDKL[pθ(x0:T |c) || pref(x0:T |c)] (6)

By substituting the difference in rewards for preferred (xw
0 ) and dispreferred (xl

0) samples from a
preference dataset D, the final DPO-Diffusion loss function is derived as:

LDPO-Diffusion = −E(c,xw
0 ,xl

0)∼D log σ
(
βExw

1:T∼pθ(·|xw
0 ,c),xl

1:T∼pθ(·|xl
0,c)[

log
pθ(x

w
0:T |c)

pref(xw
0:T |c)

− log
pθ(x

l
0:T |c)

pref(xl
0:T |c)

]) (7)

3 METHOD

Existing high-resolution long scroll generation methods face challenges with global structure and
content repetition. Approaches like MultiDiffusion (Bar-Tal et al., 2023), which rely on “divide
and conquer” strategy of independently denoising and then aggregating image regions, inherently
lack the global context necessary for structural coherence. While the end-to-end methods lack local
refinement. These limitations highlight the need for an external control mechanism to impose global
structural consistency while maintaining the local details.

To address these issues, we propose the Dual-Resolution Scroll Generation with Preference Opti-
mization (DRSPO) framework. Our method first uses a Low-Resolution (LR) generator to establish
a coherent global blueprint, which then guides a High-Resolution (HR) generator to render fine-
grained details. We further enhance this pipeline by integrating DPO (Wallace et al., 2024) at both
stages, fine-tuning the models on preference data to improve generation quality, resulting in scrolls
that are both globally coherent and locally detailed.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 GENERATION PIPELINE

Our framework is implemented as a two-stage generation pipeline: the Low-Resolution blueprint
generation stage and the subsequent High-Resolution detail rendering stage. The framework of our
generation pipeline is shown in Fig. 2.

3.Diffusion
Generation with
HR Network

F! 𝐽" → Reg#

𝐽"$% =(𝐹#$%(Φ(F#(𝐽"), F#(𝐼&'(())))	
#*%

𝐼&'(()

LR Image
HR Image

2.3 Generate 
Canny Image

Reg%

Φ(F#(𝐽"), F#(𝐼&'(()))

Reg+ Reg#

J,$%J,

1.LR Image
Generation

ControlNet

...... J-

2.1Encode Image
2.2Add Noise

J.

Denoise each region：
Aggregating the denoised regions and 
Averaging their overlapping areas.

Figure 2: Detailed schematic of our Dual-Resolution Generation Pipeline. The process begins with
the generation of a Low-Resolution (LR) image (Step 1), which serves as a global ’blueprint’ for
HR generation (Step 2.1-2.3). The lower panel provides an in-depth view of a single denoising step
within the HR generator (Step 3).

3.1.1 LOW-RESOLUTION IMAGE GENERATION

The primary objective of this stage is to establish the global structure and style for the final long
scroll. To circumvent the content repetition and structural control issues inherent in direct high-
resolution synthesis, we first employ a pre-trained base model to generate the complete long scroll
at a lower resolution. This process can be formalized as:

ΦLR : I × Y → I, I ∈ RH1×W1×C , ILR = ΦLR(z, c) (8)

where ILR ∈ RH1×W1×c is the generated LR image, and ΦLR is the pre-trained model.

To further enhance the quality and consistency of the LR image, we fine-tune the model ΦLR using
DPO (Wallace et al., 2024). We construct a preference dataset by evaluating a corpus of long scroll
images with an Aesthetic Score (Schuhmann et al., 2022), from which we form preference pairs.
The detailed methodology for dataset construction is described in Sec. 5.1.1. The DPO fine-tuning
process is guided by the following loss function:

L(θ) = −Et,Jw
t ∼q(Jt|J

w
0 ),Jl

t∼q(Jt|Jl
0)
log σ

(
(−βTω(λt))(

(∥ϵwt − ϵwθ ∥ − ∥ϵwt − ϵwref∥)− (∥ϵlt − ϵlθ∥ − ∥ϵlt − ϵlref∥))
) (9)

3.1.2 HIGH-RESOLUTION SCROLL GENERATION

The High-Resolution generation stage employs a modified MultiDiffusion framework, where the
Low-Resolution (ILR) image from the preceding stage serves as a multi-source guidance signal.
This approach ensures the final long scroll is rich in detail while strictly adhering to the established
global structure.

Rather than using standard Gaussian noise, we initialize the process with the latent features of the
LR image, obtained via an image encoder E:

zinit = E(ILR), J = Ψ(zinit, c) (10)
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In this formulation, J ∈ RH2×W2×c is the final generated high-resolution long scroll. To ensure
structural alignment, we maintain an identical aspect ratio k for both HR and LR images, such that
W1

H1
= W2

H2
= k.

ControlNet To impose structural control, the LR image is first converted into a line art represen-
tation, which guides the HR generation. Within the MultiDiffusion process, where each window is
generated independently, ControlNet (Zhang et al., 2023) provides localized control for each corre-
sponding region, as denoted by the mapping function Fi, i ∈ {1, . . . , n}.

Icanny = Canny(ILR)

Iit−1 = Φ(Fi(Jt), Fi(Icanny), c)
(11)

3.2 APPLYING DPO TO MULTIDIFFUSION

In MultiDiffusion (Bar-Tal et al., 2023), each denoising step involves local denoising followed by
inter-region fusion. Consequently, deriving the noisy latent Jt at an arbitrary timestep t from the
scroll J0 is non-trivial. To align with the DPO-Diffusion (Wallace et al., 2024) derivation, we ap-
proximate the forward process q(Jt|J0) by applying noise directly to the entire image (Ho et al.,
2020; Song et al., 2020):

q(Jt|J0) = N (Jt;
√
αtJ0, (1− αt)I) (12)

We then define the reward function on the complete long scroll image:

r(c, J0) = Epθ(J1:T |J0,c)[R(c, J0:T )] (13)

Maximizing this reward while constraining the policy via KL divergence gives:

max
pθ

Ec∼Dc,J0:T∼pθ(J0:T |c)[r(c, J0)]− βDKL[pθ(J0:T |c) || pref(J0:T |c)] (14)

Solving for the reward function yields:

R(c, J0:T ) = β log
p∗θ(J0:T |c)
pref(J0:T |c)

+ β logZ(c)

r(c, J0) = βEpθ(J1:T |J0,c)

[
log

p∗θ(J0:T |c)
pref(J0:T |c)

]
+ β logZ(c)

(15)

The DPO loss function for long scroll generation is thus:

LDPO-MultiDiffusion = −E(c,Jw
0 ,Jl

0)∼D log σ(
βEJw

1:T∼pθ(J1:T |Jw
0 ,c),Jl

1:T∼pθ(J1:T |Jl
0,c)

[
log

pθ(J
w
0:T |c)

pref(Jw
0:T |c)

− log
pθ(J

l
0:T |c)

pref(J l
0:T |c)

]) (16)

Since the reverse trajectory pθ(x1:T |x0) is intractable, we follow the approach in DPO and substitute
it with the forward process q(x1:T |x0), using the simplified noising process defined in Equation. 12.
By applying Jensen’s inequality, we can derive the following upper bound:

LDPO-MultiDiffusion ≤ −Et,Jw
t ∼q(Jt|Jw

0 ),Jl
t∼q(Jt|Jl

0)
log σ

(
− βT

(
+ DKL

(
q(Jw

t−1|Jw
0 , Jw

t ) || pθ(Jw
t−1|Jw

t , c)
)

− DKL
(
q(Jw

t−1|Jw
0 , Jw

t ) || pref(J
w
t−1|Jw

t , c)
)

− DKL
(
q(J l

t−1|J l
0, J

l
t) || pθ(J l

t−1|J l
t , c)

)
+ DKL

(
q(J l

t−1|J l
0, J

l
t) || pref(J

l
t−1|J l

t , c)
)))

(17)

In the MultiDiffusion framework, the mean of the denoised scroll is an aggregation of the means
from each local window:

p(Jt−1|Jt, c) ≈ N

(
Jt−1;

1

n

n∑
i=1

F−1
i (µθ,i(Jt, t, c)),Σt

)
(18)
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where µθ,i(Jt, t, c) is the mean predicted by the local denoiser Φ for window i. The loss can be
expressed in terms of the predicted noise ϵ yields:

L(θ) = −Et,Jw
t ∼q(Jt|J

w
0 ),Jl

t∼q(Jt|Jl
0)
log σ

(
(−βTω(λt))(

∥ϵw −
n∑

i=1

F−1
i (ϵθ(x

w
t , t))∥ − ∥ϵw −

n∑
i=1

F−1
i (ϵref(x

w
t , t))∥

−(∥ϵl −
n∑

i=1

F−1
i (ϵθ(x

l
t, t))∥ − ∥ϵl −

n∑
i=1

F−1
i (ϵref(x

l
t, t))∥))

) (19)

where xw
t = Fi(J

w
t ) and xl

t = Fi(J
l
t) are the noisy latents for the respective windows.

3.3 DISCUSSION

3.3.1 VARIANCE CONSIDERATIONS

In the derivation of Equation. 18, our analysis simplified the process by disregarding the effect of
local window aggregation on the variance of the complete long scroll. However, as discussed in (Sun
et al., 2025), the window stitching in MultiDiffusion has a non-trivial impact on variance. Assuming
N windows overlap in a given region, the mean and variance of the denoised latent xt−1 in that
region are:

xt−1 ∼ N

(∑N
i µt,i

N
,
σ2
t

N

)
(20)

We now re-examine the derivation from Equation. 17 under this condition. The original derivation
was based on the KL divergence between two Gaussian distributions with identical covariance Σ =
σ2I:

DKL(N (µ1,Σ)||N (µ2,Σ))

=
1

2

(
tr(Σ−1Σ) + (µ2 − µ1)

TΣ−1(µ2 − µ1)− d+ log
detΣ

detΣ

)
=

1

2σ2
||µ1 − µ2||22

(21)

In the MultiDiffusion context, however, the effective variance is scaled by 1/N . The KL divergence
between two Gaussians (Hershey & Olsen, 2007) with differing variances (σ2

1 and σ2
2) is therefore

more appropriate:

DKL(P1||P2) =
1

2

[
2d log

σ2

σ1
− d+ d

σ2
1

σ2
2

+
1

σ2
2

||µ1 − µ2||22
]

=
1

2σ2
2

||µ1 − µ2||22 +
1

2

(
2d log

σ2

σ1
− d+

dσ2
1

σ2
2

) (22)

Crucially, since the ratio of the variances σ2

σ1
is a constant in the MultiDiffusion scenario, this more

accurate KL divergence formulation differs from the original only by an additive constant term. A
term that is independent of the model parameters θ does not affect the location of the optima. There-
fore, this variance consideration does not alter the DPO optimization process, and our previously
derived loss function remains valid.

3.3.2 LIMITATIONS

To apply the DPO framework to the MultiDiffusion process, we made a simplifying assumption
about the forward noising process (Equation. 12), which may not perfectly align with the true dy-
namics of MultiDiffusion’s region-based aggregation.

Furthermore, our data selection strategy, which constructs preference pairs by comparing the holistic
quality of entire long scrolls, could be refined. The overall quality of a long scroll does not always
correlate with the quality of its constituent regions; for example, a globally dispreferred image may
still contain locally high-quality regions. A promising direction for future work would be to adopt a
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hybrid training strategy that simultaneously applies DPO at both the global long scroll level and the
separate region level. This could be implemented via a composite loss function:

L = L1(θ) + λL2(θ) (23)

where L1(θ) is the long scroll DPO loss from Equation. 19, and L2(θ) is a DPO loss function trained
on individual image regions. The λ would balance two objectives.

4 RELATED WORK

4.1 HIGH-ASPECT-RATIO IMAGE GENERATION

Standard text-to-image diffusion models, primarily trained on square images, struggle to generate
high-aspect-ratio content, often producing repetitive or incoherent structures when tasked with out-
of-distribution sizes. To overcome this, region-based, sliding-window approaches have become the
dominant paradigm. MultiDiffusion (Bar-Tal et al., 2023)pioneered this area by denoising overlap-
ping regions on a large canvas and blending them to ensure local coherence.

Building on this foundation, subsequent research has aimed to mitigate the artifacts inherent in this
local-to-global process. For instance, Merge-Attend-Diffuse (MAD) operator (Quattrini et al., 2024)
enhances long-range semantic consistency by sharing features across non-adjacent windows, while
SyncDiffusion (Lee et al., 2023) and ElasticDiffusion (Haji-Ali et al., 2024) focus on improving
stylistic uniformity and transitional smoothness. More recent methods like TwinDiffusion (Zhou
& Tang, 2024) and SpotDiffusion (Frolov et al., 2024) have sought to further refine quality and
optimize the efficiency of this region-based pipeline. However, despite these incremental improve-
ments, all such methods lack a dedicated mechanism for high-level compositional planning. This
fundamental gap often leads to images that are locally seamless but globally repetitive or structurally
flawed. Our work directly addresses this by introducing a global planning stage via a dual-resolution
framework.

4.2 PREFERENCE OPTIMIZATION IN GENERATIVE MODELS

Aligning generative models with human preferences, such as aesthetic quality and prompt fidelity, is
a critical challenge. Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022)
was a foundational approach, where a separate reward model is trained on human preference data
to guide the generator. However, RLHF is often complex and unstable to train. A more direct and
stable alternative, DPO (Rafailov et al., 2023), has recently gained prominence. DPO bypasses the
need for an explicit reward model by reframing the objective as a simple classification loss on pre-
ferred and dispreferred samples, fine-tuning the policy directly. This technique has been successfully
adapted for diffusion models in works like Diffusion-DPO (Wallace et al., 2024), proving effective
at enhancing image quality and alignment. In our framework, we apply DPO not only to enhance
global structural control during the planning stage but also extend the method itself to optimize the
region-based MultiDiffusion process.

5 EXPRIMENTS

5.1 SETTINGS

5.1.1 PREFERENCE DATASET CONSTRUCTION

To facilitate Direct Preference Optimization (DPO) (Wallace et al., 2024), we constructed a large-
scale preference dataset for long scroll images. The foundation of this dataset is a curated set of
4,936 high-quality prompts, which were derived from the corpus of (Zhang et al., 2024a). We use
Coze to build a LLM-based workflow that filtered for outdoor scenes and textually augmented the
content. Following the methodology of (Zhang et al., 2024b) to ensure sample diversity, we gener-
ated a comparison group of six distinct images for each prompt using three models (MultiDiffusion
(Bar-Tal et al., 2023), Stable Diffusion XL (Podell et al., 2023), and MAD (Quattrini et al., 2024))
with two random seeds. Subsequently, every generated image was evaluated using aesthetic score
(Schuhmann et al., 2022). By ranking the images within each comparison group based on these
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scores, we systematically established preference hierarchies, allowing us to extract the “preferred”
and “dispreferred” sample pairs essential for aligning our models with desired aesthetic and struc-
tural qualities through DPO training.

5.1.2 HYPERPARAMETERS

For DPO training, we use Adafactor to save memory. We train our model on single NVIDIA H800
GPU using batch size of 1 pair. We train at resolution 1024×4096 for both stages. And for HR
model, we use stride=32 and window size=128, corresponding to the resolution 1024×4096. For
both stage, we use Low rank adaptation(LoRA) to save memory and the rank is set to 64. We use
learning rate=1e-6 with 1000 warm up steps. Following DPO, we use β = 5000 during training.

5.1.3 EVALUATION

For our evaluation, we constructed a test set from two sources: 220 new prompts for outdoor scenes
generated by Google Gemini, and a hold-out set of 200 prompts from our training distribution that
were not used during training. We then employed several long scroll generation methods to produce
images for each prompt, benchmarking our approach against prominent baseline methods including
MultiDiffusion (Bar-Tal et al., 2023), SDXL (Podell et al., 2023), MAD (Quattrini et al., 2024),
ElasticDiffusion (Haji-Ali et al., 2024), SyncDiffusion (Lee et al., 2023), and the FLUX.1-dev (Labs,
2024) version. The resulting images were assessed using a suite of quantitative metrics. To evaluate
overall image quality and aesthetic appeal, we utilized three established scoring models: Aesthetic
Score (Schuhmann et al., 2022), HPS v2 (Wu et al., 2023),ImageReward (Kirstain et al., 2023) and
PickScore (Kirstain et al., 2023). We used the CLIP score (Hessel et al., 2021) to measure the
semantic consistency between the generated images and their corresponding prompts.

5.2 QUANTITATIVE RESULTS

Table 1: Quantitative results of scrolls generated by different models. PickScore and ImageReward
are relative metrics that score images within a group. The average score calculated across all test
images is reported. The 1st, 2nd and 3rd best values are highlighted.

Model Aesthetic Score ↑ HPS v2 ↑ PickScore ↑ ImageReward ↑ CLIP Score ↑
MultiDiffusion 5.616 0.226 0.116 0.224 0.317
SdXL 5.921 0.190 0.105 -0.318 0.310
FLUX 4.994 0.175 0.037 -1.084 0.270
MAD 6.032 0.195 0.145 0.100 0.317
SyncDiffusion 5.744 0.197 0.096 -0.087 0.310
ElasticDiffusion 5.422 0.186 0.034 -1.351 0.273
DRSPR(Ours) 5.726 0.228 0.134 0.275 0.321

The quantitative results clearly demonstrate the superiority of our proposed method. Our model
significantly outperforms competing approaches on the metrics most aligned with image quality
preference and semantic fidelity, achieving the highest scores in HPS v2, ImageReward, and CLIP
Score, along with second-place in PickScore. This robust performance validates the effectiveness of
our DPO-based pipeline in producing visually appealing, compositionally sound, and semantically
coherent images. Notably, while our method does not achieve the top rank on the Aesthetic Score,
we attribute this to the metric’s well-documented bias towards favoring high-frequency local textures
and details over global structural coherence.

5.3 QUALITATIVE RESULTS

We provide more comparisons with other baselines as shown in Fig. 3. Baseline methods frequently
suffer from object repetition. For instance, in the first row, other approaches generate multiple roads,
disrupting the scene’s logical coherence. Our method successfully eliminates the repetitive artifacts
that plague competing approaches, achieving better global structural coherence and fine-grained
details.

8
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Merge-Attend-Diffuse (MAD) MultiDiffusion SyncDiffusion StableDiffusion XL DRSPO(Ours)

Figure 3: Further qualitative comparisons between our method and other baselines.

5.4 ABLATION STUDY

We conduct an ablation study to validate the contributions of our key components: Low-Resolution
blueprint guidance and DPO training for high-resolution generation. The results in Table. 2 reveal
their distinct roles. The removal of either component leads to a notable degradation in the final out-
put. Specifically, omitting DPO training primarily harms human preference scores, whereas omitting
the LR guidance causes a sharp HPS v2 score decline. This confirms their complementary roles.
While the results of removing control blocks and DPO blocks both score higher on the Aesthetic
Score, we attribute this to the metric’s known bias towards local textures, which fails to penalize its
global incoherence. Furthermore, integrating an additional control mechanism (IP-Adapter) proves
detrimental, degrading performance across all metrics.

Table 2: Ablation study on our key components, evaluating the impact of the low-resolution struc-
tural guidance, the DPO fine-tuning of the high-resolution model, and the integration of an IP-
Adapter.

Aesthetic Score ↑ HPS v2 ↑ PickScore ↑ ImageReward ↑ CLIP Score ↑
DRSPO(Ours) 5.726 0.228 0.134 0.275 0.321
w/o control 6.009 0.136 0.166 0.171 0.320
w/o DPO 5.734 0.220 0.129 0.247 0.320
w IP-Adapter 5.564 0.216 0.086 -0.058 0.313

6 CONCLUSION

In this work, we propose the Dual-Resolution Scroll Generation with Preference Optimization (DR-
SPO) framework. Our method decouples global composition from local refinement by using a low-
resolution blueprint to guide a region-based high-resolution model. A key contribution is our novel
adaptation of Direct Preference Optimization (DPO) to the MultiDiffusion process, which we apply
at both stages to align the output with human quality preferences. Experimental results validate
our approach, demonstrating a state-of-the-art balance of global structural integrity and fine-grained
details. Future work in long-scroll generation will continue to focus on the central challenge of si-
multaneously achieving coherent global structures and rendering fine-grained, high-fidelity details.

7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

For the preparation of this manuscript, we utilized Large Language Model (LLM) based tools to
assist with improving the language, clarity, and readability of the prose. We wish to clarify that
the application of these tools was strictly confined to stylistic and grammatical refinement. The
core scientific contributions, including the conceptual framework, methodology, and experimental
analysis, were developed entirely by the authors.

9
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A APPENDIX

A.1 INTRODUCTION ON DIRECT PREFERENCE OPTIMIZATION

DPO The RLHF (Reinforcement Learning from Human Feedback) pipeline comprises three pri-
mary stages:

1. Supervised Fine-tuning (SFT): Adapts a pre-trained large language model to downstream tasks.

2. Preference Sampling and Reward Learning: - Generates data pairs using the SFT model:
(y1, y2) = πSFT (y | x) - Human evaluation yields preference relations yw ≻ yl | x. - A theo-
retically optimal reward model is denoted r∗(x, y). - Utilizing the Bradley-Terry (BT) model, the
user preference distribution is:

p∗(y1 ≻ y2|x) =
exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))
= σ(r∗(x, y1)− r∗(x, y2)) (24)

- Given a dataset D = {x(i), y
(i)
w , y

(i)
l }Ni=1 sampled from p∗, the reward model rϕ is optimized via

maximum likelihood estimation:

LR(rϕ,D) = −E(x,yw,yl)∼D[log σ(rϕ(x, yw)− rϕ(x, yl))] (25)

3. RL Optimization: Fine-tunes the policy using the learned reward model:

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x, y)]− βDKL[πθ(y | x) || πref(y | x)] (26)

Or equivalently in a diffusion context:

max
pθ

Ec∼Dc,x0:T∼pθ(x0:T |c)[r(c, x0)]− βDKL[pθ(x0|c) || pref(x0|c)] (27)

DPO optimizes RLHF by analytically deriving the reward model expression, simplifying training.
The optimal policy under the reward r is:

πr(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
(28)

where Z(x) =
∑

y πref(y | x) exp
(

1
β r(x, y)

)
is the partition function. This represents a valid

probability distribution. Solving for the reward function yields:

r(x, y) = β log
πr(y | x)
πref(y | x)

+ β logZ(x) (29)

Substituting this into the BT model preference probability gives:

p∗(y1 ≻ y2|x) =
1

1 + exp
(
β log πr(y2|x)

πref(y2|x) − β log πr(y1|x)
πref(y1|x)

) (30)

The DPO loss function is the negative log-likelihood of this probability:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β

(
log

πθ(yw | x)
πref(yw | x)

− log
πθ(yl | x)
πref(yl | x)

))]
(31)

A.2 OTHER CONTROL METHOD FOR HIGH-RESOLUTION SCROLL GENERATION

In Sec. 3.1.2, we introduce the process of High-Resolution Scroll Generation. We also tried other
method to control the global structure using low-resolution blueprint.

IP-Adapter We inject the ILR image as an image prompt into the MultiDiffusion process. A pre-
trained image encoder E is used to encode ILR:

F(ILR) = E(ILR) (32)

12
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Subsequently, a lightweight adapter network projects these features to obtain the image conditioning
vector, cimage = P(F(ILR)). The final U-Net conditioning is a concatenation of text and image
prompts: c = [ctext, cimage]. This design is highly parameter-efficient and enables flexible, multi-
modal control. Equation 11 is thus modified to:

Iit−1 = Φ(Fi(Jt), Fi(Icanny), [ctext, cimage]) (33)

We ablate this block in our ablation study detailed in Sec. 5.1.1, where the results show that incor-
porating the Ip-Adapter block into our method degrades performance. We also find that this block
introduces a blurring effect, which adversely impacts the overall image quality. Moreover, an exces-
sive number of control modules can cause the generated image to adhere too rigidly to the control
blueprint, thereby preventing the achievement of our desired creative outcome.

A.3 DPO FOR MULTIDIFFUSION

In this section, we will introduce the details of our proposed MultiDiffusion-DPO method. The
base loss function, presented in Equation. 16, is difficult to optimize directly because the reverse
process trajectory pθ(x1:T |x0) is intractable. To overcome this, we adopt an approximation strategy
similar to that used in the original DPO paper. We substitute the intractable reverse process with
the tractable forward noising process, q(x1:T |x0). This substitution, followed by the application of
Jensen’s inequality, allows us to derive a final, optimizable loss function.

LDPO-MultiDiffusion = − log σ
(
βEJw

1:T∼q(J1:T |Jw
0 ,c),Jl

1:T∼q(J1:T |Jl
0,c)[

log
pθ(J

w
0:T |c)

pref(Jw
0:T |c)

− log
pθ(J

l
0:T |c)

pref(J l
0:T |c)

])
= − log σ

(
βEJw

1:T∼q(J1:T |Jw
0 ),Jl

1:T∼q(J1:T |Jl
0)[

T∑
i=1

log
pθ(J

w
t−1|Jw

t )

pref(Jw
t−1|Jw

t )
− log

pθ(J
l
t−1|J l

t)

pref(J l
t−1|J l

t)

])
= − log σ

(
βEJw

1:T∼q(J1:T |Jw
0 ),Jl

1:T∼q(J1:T |Jl
0)
TEt[

log
pθ(J

w
t−1|Jw

t )

pref(Jw
t−1|Jw

t )
− log

pθ(J
l
t−1|J l

t)

pref(J l
t−1|J l

t)

])
= − log σ

(
βTEtEJw

t−1,t∼q(Jt−1,t|Jw
0 ),Jl

t−1,t∼q(Jt−1,t|Jl
0)[

log
pθ(J

w
t−1|Jw

t )

pref(Jw
t−1|Jw

t )
− log

pθ(J
l
t−1|J l

t)

pref(J l
t−1|J l

t)

])
= − log σ

(
βTEt,Jw

t ∼q(Jt|Jw
0 ),Jl

t∼q(Jt|Jl
0)

EJw
t−1∼q(Jt−1|Jw

0 ),Jl
t−1∼q(Jt−1|Jl

0)

[
log

pθ(J
w
t−1|Jw

t )

pref(Jw
t−1|Jw

t )
− log

pθ(J
l
t−1|J l

t)

pref(J l
t−1|J l

t)

])

(34)
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By Jenson’s inequality, it can be applied:

LDPO-MultiDiffusion ≤

−Et,Jw
t ∼q(Jt|Jw

0 ),Jl
t∼q(Jt|Jl

0)
log σ

(
− βTEJw

t−1∼q(Jt−1|Jw
0 ,Jw

t ),Jl
t−1∼q(Jt−1|Jl

0,J
l
t)[

log
pθ(J

w
t−1|Jw

t , c)

pref(Jw
t−1|Jw

t , c)
− log

pθ(J
l
t−1|J l

t , c)

pref(J l
t−1|J l

t , c)

])

= −Et,Jw
t ∼q(Jt|Jw

0 ),Jl
t∼q(Jt|Jl

0)
log σ

(
− βT

(
+ DKL

(
q(Jw

t−1|Jw
0 , Jw

t ) || pθ(Jw
t−1|Jw

t , c)
)

− DKL
(
q(Jw

t−1|Jw
0 , Jw

t ) || pref(J
w
t−1|Jw

t , c)
)

− DKL
(
q(J l

t−1|J l
0, J

l
t) || pθ(J l

t−1|J l
t , c)

)
+ DKL

(
q(J l

t−1|J l
0, J

l
t) || pref(J

l
t−1|J l

t , c)
)))

(35)

Thus, the objective function becomes:

L(θ) ≈ −Et,Jw
t ∼q(Jt|J

w
0 ),Jl

t∼q(Jt|Jl
0)
log σ

(
− βT (

∥µw
t − µw

θ ∥ − ∥µw
t − µw

ref∥ − (∥µl
t − µl

θ∥ − ∥µl
t − µl

ref∥))
)

= −Et,Jw
t ∼q(Jt|J

w
0 ),Jl

t∼q(Jt|Jl
0)
log σ

(
− βT (

∥µw
t −

n∑
i=1

F−1
i (µw

θ,i)∥ − ∥µw
t −

n∑
i=1

F−1
i (µw

ref,i)∥

−(∥µl
t −

n∑
i=1

F−1
i (µl

θ,i)∥ − ∥µl
t −

n∑
i=1

F−1
i (µl

ref,i)∥))
)

(36)

L(θ) = −Et,Jw
t ∼q(Jt|J

w
0 ),Jl

t∼q(Jt|Jl
0)
log σ

(
(−βTω(λt))(

∥ϵw −
n∑

i=1

F−1
i (ϵθ(x

w
t , t))∥ − ∥ϵw −

n∑
i=1

F−1
i (ϵref(x

w
t , t))∥

−(∥ϵl −
n∑

i=1

F−1
i (ϵθ(x

l
t, t))∥ − ∥ϵl −

n∑
i=1

F−1
i (ϵref(x

l
t, t))∥))

) (37)

A.4 MORE RESULTS

This section presents further qualitative comparisons against baseline methods. These visual results
highlight our method’s superior ability to maintain global structural coherence while simultaneously
rendering finer and more intricate local details. Furthermore, to elucidate the distinct contributions
of each component, we present qualitative results from our ablation study in Fig. 7.Beyond this
component-level analysis, we also present a diverse portfolio of generated scrolls (Fig. figs. 8 and 9)
to underscore the model’s stylistic flexibility and its capacity for creative generalization.

A.5 FAILURE CASES

In this section, we analyze several failure cases (Fig.10) to provide a transparent account of our
method’s limitations. First, our method can struggle with generating complex semantic concepts,
such as the human faces shown in Fig.10a. This is a well-documented challenge in text-to-image
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(a) Merge-Attend-Diffuse (MAD)

(b) MultiDiffusion

(c) SyncDiffusion

(d) SDXL

(e) DRSPO(Ours)

Figure 4: Scrolls(1024×4096) generated using prompts:“Illustrate an old, abandoned quarry. The
sheer, tiered rock walls descend to a deep pool of startlingly turquoise water at the bottom. Rusted
machinery lies half-submerged, a sign of the industry that once thrived here.”

synthesis and highlights that our framework’s performance is fundamentally dependent on the ca-
pabilities of the underlying base model. Furthermore, while our approach significantly mitigates
object repetition, it does not entirely eliminate this artifact, as instances can still occur during the
generation of very long scrolls (Figs. figs. 10b and 10c). However, we note that the frequency of
such repetitions is substantially reduced compared to baseline methods. Finally, Fig.10d illustrates
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(a) Merge-Attend-Diffuse (MAD)

(b) MultiDiffusion

(c) SyncDiffusion

(d) SDXL

(e) DRSPO(Ours)

Figure 5: Scrolls(1024×4096) generated using prompts:“Write about a small, hidden beach where
the sand is made of smooth, colorful sea glass. The tiny, worn fragments of glass in green, blue, and
brown sparkle in the sun like jewels with every wave that washes ashore.”

a semantic error where, despite a globally coherent structure, the model conflates the concepts of a
”beach” and ”water” from the prompt. This suggests that there is still room for improvement in the
model’s text-to-image alignment and its ability to interpret complex spatial relationships.
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(a) Merge-Attend-Diffuse (MAD)

(b) MultiDiffusion

(c) SyncDiffusion

(d) SDXL

(e) DRSPO(Ours)

Figure 6: Scrolls(1024×4096) generated using prompts:“Paint a picture of a massive radio telescope
dish in a remote, quiet valley. The enormous white dish is pointed towards the sky, silently listening
for signals from the depths of the universe, a symbol of human curiosity.”

A.6 SOCIAL IMPACT

The primary impact of our work is to advance the technical capabilities within the field of image gen-
eration, specifically for high-aspect-ratio content. Our DRSPO framework addresses the critical and
persistent challenge of maintaining global coherence in long-scroll synthesis, enabling the reliable
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DRSPO(Ours)

Ours w/o DPO

Ours w/o Control

Ours w IP-Adapter

Figure 7: The visual results of our ablation study clearly elucidate the distinct role of each compo-
nent. Given that the foundational structure is already established by the low-resolution blueprint, the
DPO applied in the HR stage is primarily responsible for refining fine-grained details and enhanc-
ing local textures. Conversely, the blueprint itself governs the global composition; consequently, its
removal leads to a catastrophic collapse of structural integrity, fundamentally altering the entire im-
age. Finally, we observe that integrating an additional IP-Adapter is detrimental, introducing severe
visual artifacts such as blurring and the complete omission of objects.

creation of large-scale panoramic and narrative images without common artifacts like object repe-
tition. By providing a method that successfully balances global structure with fine-grained detail,
we offer a more practical and effective tool for artists and designers, potentially enhancing creative
workflows in digital art, virtual environment design, and sequential media. Furthermore, our ap-
plication of preference optimization to this task contributes a valuable technique for better aligning
generative outputs with human intent, improving the usability and quality of these powerful creative
tools.

A.7 REPRODUCIBILITY STATEMENT

We present a detailed derivation of our method for applying DPO to the MultiDiffusion framework
in Sec.3.2, with an extended analysis provided in AppendixA.3. The hyperparameters and settings
for our training process are outlined in Sec.5.1.2. Furthermore, Sec.5.1.1 describes our dataset
construction pipeline, which includes prompt selection using the Coze platform and the subsequent
generation of preference pairs from various base models. Our implementation will be made publicly
available on GitHub.
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(a) “A lone cyborg ronin standing in a narrow, rain-slicked alley of Neo-Kyoto, steam rising from a
ramen stall, the neon glow from flickering holographic advertisements reflecting in the puddles of
acid rain, cinematic lighting, volumetric fog, hyperrealistic detail, octane render.”

(b) “A sleek, black aerodyne vehicle hovers silently outside the panoramic window of a megacorpo-
ration’s penthouse, overlooking a sprawling, light-saturated metropolis at night, the interior of the
vehicle is dark, hinting at a powerful figure within, wide-angle concept art, style of Syd Mead and
Blade Runner 2049.”

(c) “A bustling, multi-level bazaar in a grimy undercity, crowded with humans, androids, and aliens
bartering for black market cybernetics and glowing bio-enhancements, tangled wires and pipes hang
overhead, vibrant chaos, dynamic composition, detailed character design, cinematic atmosphere.”

(d) “An elite netrunner slumped in a customized console chair, wires jacked directly into their neural
port, surrounded by a chaotic web of holographic screens displaying cascading lines of cryptic code
and abstract data-fortress schematics, the only light source is the glow from the monitors, dark and
moody, cyberpunk aesthetic.”

Figure 8: Scrolls generated by our method using cyberpunk style prompts.
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(a) “An ancient, colossal tree whose branches hold an entire elven city, with crystalline bridges
connecting glowing lantern-lit homes, waterfalls cascading from the highest limbs into a misty abyss
below, fantasy concept art, highly detailed, epic scale, style of Studio Ghibli and Ori and the Blind
Forest.”

(b) “A lone knight clad in ornate, sun-bleached armor kneels before a dragon’s colossal skeleton in
a vast, desolate wasteland of black sand, a glowing magical sword plunged into the ground beside
him, twin moons illuminating the scene, cinematic, somber atmosphere, hyperrealistic.”

(c) “A bustling underground dwarven forge deep within a mountain, where rivers of molten gold
flow in carved channels and master artisans hammer runes of power onto massive war axes, the air
thick with sparks and the heat of the earth’s core, dramatic lighting, dynamic composition, fantasy
art.”

(d) “The grand hall of a forgotten king, now sunken beneath the ocean, with massive coral-encrusted
thrones and pillars, schools of bioluminescent fish swim through the ethereal, sun-dappled water,
a graceful mermaid queen watches from the shadows, underwater photography, magical realism,
highly detailed.”

Figure 9: Scrolls generated by our method using fantasy style prompts.
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(a) “Write about a crowded open-air market in a foreign city. The air is thick with the smells of
spices, street food, and incense, and the sound is a cacophony of vendors shouting, music playing,
and people haggling.”

(b) “Describe a vast, multi-level highway interchange, a complex knot of concrete ramps and fly-
overs. Cars, trucks, and buses flow in a constant, mesmerizing, and intricate dance of organized
chaos.”

(c) “Illustrate a vast field of poppies, a sea of brilliant red under a clear blue sky. The delicate petals
tremble in a gentle breeze, creating a beautiful and poignant scene that is often associated with
remembrance.”

(d) “Depict a vast, empty beach at low tide, stretching for miles. The wet sand reflects the sky like a
mirror, and the receding water has left intricate patterns and shallow tidal pools behind.”

Figure 10: we present and analyze several failure cases to provide a transparent account of our
method’s current limitations.
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