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ABSTRACT

Recent advancements in Large Language Models (LLMs)-based text embedding
models primarily focus on data scaling or synthesis, yet limited exploration of
training techniques and data quality, thereby constraining performance. In this
work, we propose KaLM-Embedding-V2, a series of versatile and compact
embedding models, systematically incentivizing advanced embedding capability in
LLM:s by superior training techniques and high-quality data. For model architecture,
we implement the models on a 0.5B compact size with simple mean-pooling to
produce fixed-length embeddings and remove the causal attention mask to enable
fully bidirectional representation learning. For training techniques, we propose a
progressive multi-stage training pipeline: pre-training on weakly supervised large-
scale datasets, fine-tuning with supervised high-quality datasets, and contrastive
distillation with fine-grained soft signals, integrated with focal-style reweighting
and online hard-negative mixing to emphasize difficult samples and enrich hard
negatives, respectively. For training data, we curate over 20 categories for pre-
training and 100 categories for fine-tuning and contrastive distillation, to improve
both performance and generalization, leveraging task-specific instructions, hard-
negative mining, and example-based multi-class labeling to ensure high quality.
Combining these techniques, our KaLM-Embedding-V2 series achieves state-
of-the-art performance on the Massive Text Embedding Benchmark, outperforming
models of comparable size and rivaling models 3-26x larger, setting a new standard
for versatile and compact embedding models under 1B parameters. The code, data,
and models will be publicly available to facilitate academic research.
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Figure 1: (Left) Comparison between the KaLM-Embedding series and other models on MTEB.
The red dashed line depicts the logarithmic trendline fitted to the performance data of all the baseline
models. The colors represent models with comparable parameter scales, with each group of models
sharing the same parameter scale assigned a consistent color. (Right) Radar charts show our models
achieve SOTA performance in a wide array of tasks.

1 INTRODUCTION

Text embedding encapsulates text semantics and serves as fundamental infrastructure in numerous
natural language processing (NLP) tasks (Muennighoff et al.,|2023a} [Xiao et al.,|2024), including
retrieval (Nguyen et al.| 2016)), reranking (Liu et al.,|2018b), classification (McAuley & Leskovec,
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2013), and semantic textual similarity (STS) (Agirre et al.|[2012), etc. Recently, retrieval-augmented
generation (RAG) has gained increasing attention in LLMs (Gao et al., [2023; |Huang & Huang, |2024;
/hao et al., 2024} 2025; |Rao et al., |2025; |Chen et al.| 2025a), where embedding models play a crucial
role in RAG. It enables the efficient retrieval of external information to complement LLMs’ outdated,
incomplete, or inaccurate internal knowledge. With the advancement of LLMs, embedding models
have become the primary bottleneck for improvement within the RAG framework (Setty et al., 2024),
which leads to the emergence of numerous text embedding models (Zhang et al.,[2025bj Lee et al.,
2025agbzb} 2024} [Huang et al.| 2024; Xiao et al., 2024; [Li et al., [2023}; |Vera et al., 2025)).

Although numerous text embedding models have been built on massive or synthetic data (Zhang
et al.}2025bj Lee et al.,[2025b}; [2024), they fall short in exploring superior training techniques and
high-quality data, as well as how different training techniques, architecture designs, and data curation
strategies can be systematically orchestrated to maximize the full potential of embedding capabilities
in LLMs. Furthermore, most state-of-the-art (SOTA) embedding models originate from industry,
where proprietary data, closed training code, commercial restrictions, and limited reproducibility pose
challenges for academic research. To this end, it is necessary and valuable to establish new standards
for open-source embedding models, emphasizing versatility and compactness—two crucial properties
demanded in real-world scenarios where accuracy and efficiency are paramount. By fully open-
sourcing models, code, and data with commercial use permitted, we aim to ensure transparency and
reproducibility, thereby facilitating academic research and enabling widespread practical applications.

In this work, we propose KaLM-Embedding-V2, a series of versatile and compact general-purpose
text embedding models, enhanced with the well-designed model architecture, superior training
techniques, and high-quality data curation, which aim to incentivize advanced Knowledge in large
Language Models into Embedding Models. Specifically, we make the following four innovations:

* For model architecture, our KaLM-Embedding-V2 series are implemented upon a 0.5B compact
size, with a simple yet effective mean-pooling layer to produce fixed-length embeddings. To further
improve representation learning, we remove the causal attention mask of decoder-only LLMs and
enable bidirectional attention during training as well as inference, which has been proven to be
more effective for representation learning (Lee et al.,|2025ajb; Sturua et al., 2024 L1 et al., 2023)).

* For training recipe, we implement a progressive multi-stage training pipeline, starting with the
Qwen2-0.5B (Yang et al.,|2024). Specifically, the training begins with pre-training on large-scale
weakly supervised datasets that may include noise, then fine-tuning on relatively smaller, high-
quality, supervised datasets, followed by contrastive distillation on fine-grained soft signals that
capture nuanced differences. The multi-stage training pipeline progressively incentivizes advanced
embedding capabilities in LLMs from coarse-grained to fine-grained representation learning.

* For training objective, previous works (Lee et al.,[2025a; Hu et al., 2025) equally treat each training
sample, making the optimization direction dominated by the majority of easy samples. Inspired
by (Lin et al., 2017), we introduce a focal-style reweighting mechanism to emphasize difficult
samples. However, as training progresses, offline mined hard negatives become less challenging.
To provide continual informative hard negatives, we propose synthesizing new hard ones via online
pair-wise or list-wise mixing. Unlike offline mining, our online hard negative mixing blends
features of existing hard negatives to generate new ones, significantly reducing computational cost.

* For training data, we curate over 20 categories of data for pre-training and 100 categories of data for
fine-tuning and distillation. We present a comprehensive recipe for curating high-quality training
data, including dataset-specific construction, task-specific instructions, hard-negative mining, and
example-based multi-class labeling. This allows the research community to reproduce the model
and considerably lowers the entry barrier, facilitating the development of embedding models.

Combining these innovative techniques, our KaLM-Embedding—-V2 series obtains impressive
performance on the Massive Text Embedding Benchmark (MTEB) English (eng) (Muennighoff et al.|
2023a) and Chinese (cmn) (Xiao et al., [2024), significantly outperforming models of comparable
size, as shown in Figure E} Remarkably, even at a 0.5B size, the KaLM-Embedding-V2 series
competes with 3-26x larger models. Out-of-domain (OOD) evaluation (Appendix [C), matryoshka
embedding evaluation (Appendix [D), case study (Appendix [E), visualization analysis (Appendix [F),
and multilingual evaluation (Appendix [G) are provided in Appendices due to the page limit. In a
nutshell, the proposed model exhibits strong OOD generalization, competing with the 15x larger
model in real-world retrieval scenarios; it maintains robust performance with matryoshka embeddings
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even at smaller dimensions, e.g., 256; case studies show its enhanced discriminative capacity in
distinguishing positive passages from hard negatives; visualization analysis reveals superior intra-
class compactness and inter-class separability clusters; and multilingual evaluation show that its
performance is comparable to SOTA multilingual embedding models, even though it was not trained
on large-scale multilingual corpora.

2 RELATED WORK

Text embedding models. Text embeddings (Zhang et al.||2025a), which are vectors encapsulating
text semantics, are fundamental for NLP tasks such as retrieval (Nguyen et al., 2016)), reranking (Liu
et al.} 2018b)), and classification (McAuley & Leskovec,[2013). BERT (Devlin et al., 2018)) marked a
significant milestone, using masked language modeling to pre-train deep bidirectional Transformer
encoders for powerful contextual modeling. A breakthrough for sentence similarity tasks was
Sentence-BERT (SBERT) (Reimers & Gurevych,[2019), which fine-tuned BERT-like models with
query-passage pairs to generate semantically meaningful sentence embeddings directly comparable
via similarity. Another prominent example is the Text-to-Text Transfer Transformer (T5) (Raffel et al.}
2019) which follows a fully encoder-decoder architecture and reframes all NLP tasks as text-to-text
generation. While not initially designed for text embedding, the encoder portion of TS can be used to
generate powerful sentence representations. To systematically assess the robustness, generalization,
and task-transferability of such embedding models, comprehensive benchmarks like the Massive Text
Embedding Benchmark (MTEB) (Muennighoff et al.l 2023a} [Xiao et al.,[2024) have emerged. These
benchmarks provide critical insight into how well embedding models perform in real-world, diverse
scenarios, driving further research in text embedding.

LLMs as embedding models. Pioneering studies explored the feasibility of leveraging LL.Ms for
representation learning by adapting generative or encoder-decoder architectures into embedding
models. ES (Wang et al.| 2022) unified retrieval, classification, and NLI tasks under a multi-task
contrastive framework. GTR (Ni et al., [2022) fine-tuned TS5 models for dual-encoder retrieval
tasks. INSTRUCTOR (Su et al., |2023) introduced instruction tuning for embeddings, enabling
task-specific representation via natural language prompts. Recently, LLMs, characterized by their
massive scale and remarkable capacity, have become a prevailing paradigm in generating high-quality
text embeddings. Many embedding models using LLMs as the backbone, e.g., BGE (Li et al.,
2025), NV-Emb (Lee et al.,[2025a), E5-Mistral (Wang et al.,[2024a)), GTE (Li et al., [2023} [Zhang
et al.| [2025b), Jina (Sturua et al., 2024), as well as (Hu et al., 2025)), mainly initialized from the
Mistral or Qwen, etc, have achieved substantial improvements over earlier encoder-based models
such as BERT and T5. Adapting LLMs into embedding models requires sophisticated training
strategies, e.g., contrastive pre-training to draw semantically similar inputs together (Gao et al.| [2021]),
instruction tuning to tailor embeddings for downstream tasks (Su et al.,[2023)), contrastive distillation
for compression (Rao et al.| 2023)), and hard-negative mining to enforce fine-grained distinctions.
Although studied for ages, systematic research of superior training techniques and high-quality data
curation is still underexplored.

3 METHOD

In this section, we present comprehensive technical details of the KaLM-Embedding-V2 series,
including model architecture designs, training objectives, training recipes, and data curation strategies.

3.1 MODEL ARCHITECTURE

The KaLM-Embedding-V?2 series is initialized from Qwen2-0.5B (Yang et al., 2024)) and further
tuned, which enables our embedding models to leverage the vast knowledge already encoded in its
parameters. While causal attention masks are commonly used in LLMs for language modeling, they
are not well-suited for representation learning, thereby hindering embedding capacity (Lee et al.,
2025ab; [Sturua et al., [2024; |Li et al., [2023). To address this, we remove the causal attention mask and
enable fully bidirectional attention. For text embedding, an input sequence 7 of length L is processed
by KaLM-Embedding-V2, denoted as K(-), to produce token embeddings Tepy, € RE*4 A
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Figure 2: The overall training workflow of the KaLM-Embedding-V2 series. The left illustrates
the workflow of contrastive learning, while the right shows that of contrastive distillation.

pooling layer P(-) is then applied to obtain a single embedding E € R? representing the entire input:
Temp = ’C(T), E= P(Temb)a (D
where d is the hidden dimension. Following prior works (Lee et al., 2025azb; Hu et al.l 2025), we set

P(+) as the simple yet effective mean pooling. The input 7 consists of the task instruction (optional)
and the query/passage, as described in §3.4] The overall training workflow is illustrated in Figure 2]

3.2 TRAINING OBJECTIVE

Contrastive Learning. The KaLM-Embedding-V2 series was mainly trained with the contrastive
loss, specifically InfoNCE (Gutmann & Hyvérinen, 2010), which maximizes the agreement of positive
pairs while minimizing that of negative pairs. The workflow of contrastive learning is illustrated on
the left side of Figure Generally, a training batch is organized as {1, ¢i, p;", p; 1, P; 95 ---» Pim W,
where N is the batch size. Each sample consists of a task instruction I;, a query ¢;, a positive target
pj, and (optionally) M hard negatives {p; 1P p;M}. Before loss computation, the query g;

and passages (pj and p; ) are encoded as vectors:

qi =PI ®q), pi=PE®D)) pi.=PKD), ()
where @ denotes concatenation. For most tasks, the instruction is prepended only to the query, while
for symmetric tasks, it is also prepended to the passages, as detailed in Table|l} Having established
the embedding vectors of queries, positive targets, and hard negatives, for each mini-batch of size NV,
we optimize the contrastive learning objective with in-batch negatives and in-batch hard negatives as:

N N M

. . DT

. Z; =S @iPi)/T 4 Z es(@iP)/T 4 Z Zes(q"mpj,k)/‘r, 3)
J#i j k

where s(-) measures the similarity between two embedding vectors, which is set as the cosine

similarity function; 7 is the temperature coefficient; the three terms in the denominator Z; represent
(1) the positive target, (2) in-batch negatives, and (3) in-batch hard negatives, respectively.

esaipl)/7

L= E
€N Zz

—log

Focal-style Reweighting Mechanism. While effective, the above training objective treats each
sample equally, making the optimization direction dominated by the majority of easy samples.
Inspired by (Lin et al.| 2017), we re-weight each sample according to its difficulty, where the more
difficult the sample, the larger the weight, thereby focusing on learning difficult samples. The loss
weight and the optimized training objective are defined as follows:

+
es(qi»pi )/T

Z;

+
es(@ip; )/

i = (1—
w; = ( Z

Y — A
)y, ﬁ—EN[ w; log : 4)

where v € [0, 4+00) is a focusing parameter controlling the skewness of the weighting scheme. When
~v = 0, the objective reduces to the standard form with uniform weighting. As -y increases, the loss
pays more attention to the difficult samples than the easy ones.

Online Hard Negative Mixing Strategy. As training progresses, offline mined hard negatives
become less difficult after several training iterations. To provide continual informative hard negatives
throughout the training, previous works typically re-mines hard negatives after every fixed number
of steps (e.g., 1000), which largely reduces training efficiency. To this end, we propose an online
hard negative mixing strategy that synthesizes new informative hard negatives via pair-wise/list-wise
mixing, in favor of effectiveness and efficiency. The pair-wise/list-wise mixing can be formulated as:

i = i B =R+ (AR Ak ke 10 5)

i 112
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Figure 3: Multi-stage training pipeline of the KaLM-Embedding-V2 series.

. M
_ S;
SR = Z mPims SL Y Am =1, (6)
m=1
where h;” and s; denote pair-wise and list-wise synthetic hard negatives, respectively; || - || is the
l3-norm; p; ; and p, . are randomly drawn from the hard negative set {p; 1r-vs p;M} without

replacement; A ~ Beta(a = 2,8 = 2), A € (0,1); and \,,, = es(q“pzm)/zy e*(4Pi;)  The
mixing incurs negligible overhead. After synthesis, h;” and s;  are incorporated into the denominator
Z; as additional hard negatives for query g;:

es(@ipi)/7

N N
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where multiple synthetic negatives can be applied, though only one is illustrated here for clarity.

Contrastive Distillation. Unlike previous works trained solely with coarse-grained hard signals,
we further perform contrastive distillation by distilling fine-grained soft signals, i.e., the normalized
distribution of temperature-scaled cosine similarity scores from a stronger teacher model (Qwen3-
Embedding-8B (Zhang et al., [2025b)). This encourages the embedding model to capture nuanced
differences between the positive and negative. Specifically, the training objective minimizes the
discrepancy between the teacher’s and the student’s distributions. Formally, following (Hinton et al.|
2015)), we employ the Kullback—Leibler (KL) divergence as the contrastive distillation objective:

P ) ezt /T ) e7s /T
Lxr = Drr(P|Ps) Z-Pt ti;’ Pt(Z)ZW, PS(Z):W (3)
J J

where P, and P; represent the teacher’s and student’s distribution of similarity scores, respectively;
P,(i) and Ps (i) denote the i-th entry; z, ; represents the i-th similarity score. We find that continual
training with contrastive distillation yields substantial improvements over further fine-tuning with
contrastive learning. It is worth mentioning that the proposed contrastive distillation is model-agnostic
and can be applied to any embedding models. The working flow of contrastive distillation is shown
on the right of Figure[2]

Matryoshka Representation Learning (MRL). We incorporate MRL (Kusupati et al.| [2022) into
both the contrastive (Equation[7)) and KL loss (Equation|g)) to enable flexible-dimensional embeddings,
which leads to the best overall performance with matryoshka embeddings as shown in Appendix

3.3 TRAINING RECIPE

To progressively incentivize embedding capabilities in LLMs, we introduce a multi-stage training
pipeline that smoothly transitions from coarse-grained to fine-grained representation learning: (1)
Pre-training, (2) Fine-tuning, and (3) Contrastive distillation, as described below.

Pre-training. The KaLM-Embedding-V?2 series is first pre-trained on large-scale, weakly super-
vised datasets spanning over 20 categories (refer to Table [16|for details) to learn general-purpose
representations. This stage employs the training objective in Equation[3] using only in-batch negatives.
The comprehensive pre-training endows the model with strong generalization.

Fine-tuning. Next, the model is fine-tuned on over 100 categories of high-quality supervised datasets
covering both retrieval and non-retrieval tasks, such as STS and classification (referring to Table|17).
This stage uses the training objective in Equation [7] with a relatively small batch size to alleviate
in-batch false negatives, further improving the overall model performance.
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Table 1: The task instruction of query for training and evaluation.

Task Type Instruction  Example
Instruct: Given a query, retrieve documents
that answer the query. \n Query: {query}

Retrieval, Reranking General

Asymmetric Instruct: Categorizing the gi title \
Classification, Clustering  Specific nstruct: Lategorizing the given news title \n

Query: {query}
Symmetric STS., Pair Classification General Instruct: Retrieve semantically similar text

Query: {query}

Contrastive Distillation. Finally, instead of further fine-tuning only with coarse-grained hard signals,
the model distills fine-grained soft knowledge from a stronger teacher model, using supervised high-
quality data. The student is trained to align its normalized temperature-scaled cosine similarity
distribution with that of the teacher. This stage employs the training objectives in Equation [§ and
Equation [7)to further improve the model capacity that captures nuanced semantic differences.

The overall workflow of the multi-stage training pipeline is illustrated in Figure[3] The model obtained
after pre-training followed by fine-tuning is denoted KaLM-Embedding-V?2, and further applying
contrastive distillation produces KaLM-Embedding-V2.5.

3.4 TRAINING DATA

We curate around 470M samples over 20 categories of large-scale weakly supervised data for pre-
training, and about 6M samples over 100 categories of high-quality supervised data for fine-tuning as
well as contrastive distillation, with detailed statistics presented in Table@]and Table Our training
datasets cover both retrieval and non-retrieval tasks, including reranking, classification, clustering,
STS, and pair classification. To ensure embeddings with specific task instruction-following abilities,
we prepend specific task instructions to the queries. The instructed query is formulated as follows:

Qinst = Instruct: {task instruction} Query: q. ©)]

Instructions for different task types are summarized in Table[I] and a detailed task instruction list is
provided in Table[I8] For symmetric tasks (e.g., STS and Pair Classification), task instructions are
also prepended to the passages, whereas for asymmetric tasks, passages remain unchanged.

3.4.1 RETRIEVAL DATASETS

We collect diverse and comprehensive retrieval datasets for both pre-training and fine-tuning (see
Table[T6]and Table[T7), and further enrich them via hard negative mining and persona-based synthesis.

Hard Negative Mining. As mentioned in the training objective is to maximize the similarity
between a query and its positive while minimizing similarity to negatives, especially hard negatives.
However, most retrieval datasets only provide query—positive pairs. To address this, we mine hard
negatives manually. Specifically, a previously trained model is used to retrieve candidate passages,
from which we sample 7 negatives ranked between positions 50 and 100.

Persona-based Synthetic Data. Following (Wang et al.,[2024a), we generate 550k synthetic samples
using Qwen2-72B-Instruct, spanning six task types with 40k unique instructions. To further enhance
diversity, we incorporate randomly sampled personas from Persona Hub (Chan et al., 2024) as
system prompts during instruction generation, thereby enriching domain coverage while avoiding
role conflicts in subsequent data generation (Tan et al., [2024)).

3.4.2 NON-RETRIEVAL DATASETS

In addition to retrieval datasets, we also collect large-scale non-retrieval datasets covering four
task types: (1) classification, (2) clustering, (3) semantic textual similarity (STS), and (4) pair
classification (see Table [16] and Table [T7). To ensure compatibility with contrastive learning, all
datasets are reformulated into a unified retrieval-style format: query ¢, positive target p*, and hard
negatives {p; ,p, ,...,p,,}. To accommodate the different formats of these tasks, we process STS
and pair classification symmetrically, and clustering/classification asymmetrically, as detailed below.

Symmetric Data Processing. To construct training samples for STS and pair classification datasets,
we collect any pair of texts with the corresponding relevance score, i.e., (t,t ,score), where
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Table 2: Evaluation results on MTEB Chinese (cmn) and English (eng). The best results are
boldfaced and the second-best ones are underlined (only considering models with < 1B parameters).
The KaLM-Embedding-V2 series achieves SOTA performance among competitive embedding
models with <1B parameters, serving as an economical choice for building online applications, e.g.,
RAG systems. ‘M’ and ‘B’ denote million and billion, respectively. MTK refers to Mean (Task),
MTY to Mean (Type). Results are mainly sourced from MTEB leaderboard (accessed Sep 10, 2025).

MTEB (cmn, vl) MTEB (eng, v1) Avg

Model Size. Dim 'yt MTY MTK MITY MTK MTY
Commercial embedding API services
text-embedding-3-large (2024) - 3072 - - 64.52  62.33 - -
Cohere-embed-multilingual-v3.0 (2023) - 1024 - - 64.01 62.09 - -
Open-Source Embedding Models > 1B parameters
GRITLM 8X7B (13B active) (2024) 13B 4096| - - 65.50  63.01 - -
bge-multilingual-gemma? (2024) 9B 3584 |67.64 68.52 69.88 66.11 68.76 67.32
NV-Embed-v2 (2025a) 7B 4096 | - - 7231  67.97 - -
Qwen3-Embedding-8B (2025b) 8B 4096|73.84  75.00 - - - -
eS-mistral-7b-instruct (2022) 7B 4096|59.92 60.51 6646 6422 63.19 62.37
Qwen3-Embedding-4B (2025b) 4B 2560|7226  73.50 - - - -
gte-Qwen2-1.5B-instruct (2023) 1.5B 1536|67.12 6783 67.19 6444 67.16 66.14
Open-Source Embedding Models < 1B parameters
Qwen3-Embedding-0.6B (2025b) 596M 1024 66.33 6744  66.76 63.62 66.55 65.53
jina-embeddings-v3 (Multi-LoRA) (2024) 572M 1024 |61.82 61.61  65.51 62.76 63.67 62.19
multilingual-e5-large (2024b) 560M 1024 |58.08 58.24 60.89 59.48 59.49 58.86
bge-m3 (Dense) (2024) 560M 1024 60.34 61.23 59.84 5898 60.09 60.11
paraphrase-ML-mpnet-base-v2 (2019) 278M 768 |42.89 4836  54.64 5546 48.77 5191
gte-multilingual-base (Dense) (2024) 305M 768 [62.94 6392 6140 60.10 62.17 62.01
KaLM Embedding series
KaLM-Embedding-V1 494M 896 [63.78 6456 6494 6149 6436 63.03
KaLM-Embedding-V2 494M 896 | 68.15 69.28 6747 64.14 67.81 66.71
KaLM-Embedding-V2.5 494M 896 [7093 72.46 69.33 65.83 70.13 69.16

we create two positive pairs (¢ = t/,p* = t”) and (¢ = t”,pT = t') if score > 4. Besides,
for the dataset with binary labels (0 or 1), we create two positive pairs (¢ = t',p™ = ") and
(g=1t",pT =t')if score = 1. Hard negatives are mined from the candidate pool of other texts using
the method proposed in §3.4.1] Task instructions are prepended to both queries, positive targets, as
well as hard negatives, because STS and pair classification are symmetric tasks, as shown in Table[I}

Asymmetric Data Processing. For clustering and classification datasets, training samples are con-
structed from text-label pairs (¢, label) as (¢ = t,p* = label). Hard negatives are first drawn from
other labels within the dataset; if fewer than M, additional negatives are sampled from labels across all
clustering or classification datasets, mitigating the issue of having too few label categories in certain
individual datasets. Task instructions are prepended to queries only in this situation. Inspired by (Lee
et al.| 2025a), we further apply example-based multi-class labeling: positives are randomly sampled
examples from the same cluster/class, while negatives are sampled from other clusters/classes. In this
symmetric setting, task instructions are prepended to both the queries, positives, and hard negatives.

4 EXPERIMENT

Experimental details, including implementation details, comparison baselines, and evaluation, are
provided in Appendix [B] The full MTEB results for all tasks, and the statistics of datasets as well as
the detailed task instructions, are provided in Appendix [H/and Appendix [I respectively.

4.1 MAIN RESULTS

Table 2] presents the overall comparison of 20 models, reporting the average MTEB scores across all
tasks and task types. From the results, we have several key observations: (1) Large-scale open-source
models (> 1B parameters) such as Qwen-Embedding-8B, NV-Embed-v2 and bge-multilingual-
gemma?2 achieve strong results but at a high computational cost. (2) Among models with < 1B
parameters, KaLM-Embedding-V?2 achieves notable improvements over competitive baselines (e.g.,
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Table 3: Detailed model performance on MTEB (cmn, v1) derived from C-MTEB (Xiao et al.| [2024).

Model Size MTEB (cmn, v1)

MTK MTY | Class. Clust. PairCl. Reran. Retri. STS
bge-multilingual-gemma?2 9B |67.64 68.52| 7531 5930 7930 68.28 73.73 55.19
Qwen3-Embedding-8B 8B | 73.84 75.00|76.97 80.08 84.23 66.99 78.21 63.53
e5-mistral-7b-instruct 7B 159.92 60.51| 7296 5230 6631 61.38 61.75 48.34
Qwen3-Embedding-4B 4B | 7226 73.50| 7546 77.89 8334 66.05 77.03 61.26
gte-Qwen2-1.5B-instruct 1.5B | 67.12 67.83 | 72.53 54.61 79.50 6821 71.86 60.25
Qwen3-Embedding-0.6B 596M | 66.33 67.44 | 71.40 68.74 7642 62.58 71.03 54.52
jina-embeddings-v3 (Multi-LoRA) 572M | 61.82 61.61 | 70.47 50.22 67.22 60.72 68.54 52.46
multilingual-e5-large 560M | 58.08 58.24 | 69.80 48.23 64.52 5745 63.65 45.81
bge-m3 (Dense) 560M | 60.34 61.23 | 70.52 4575 7398 62.88 65.43 48.79
paraphrase-ML-mpnet-base-v2 278M | 42.89 48.36| 65.88 39.67 80.90 4491 2292 35.85
gte-multilingual-base (Dense) 305M | 62.94 63.92 | 66.84 4748 78.34 68.17 7195 50.75
KalLM-Embedding-V1 494M | 63.78 64.56 | 73.89 57.54 7294 6448 70.12 4841
KalLLM-Embedding-V?2 494M | 68.15 69.28 | 75.14 69.76 7791 65.16 72.15 55.58
KalLM-Embedding-V2.5 494M | 7093 72.46 | 77.48 73.09 84.09 66.90 73.42 59.80

Table 4: Detailed embedding model performance on MTEB (eng, v1) (Muennighoff et al., [2023a).
Performance on MTEB (eng, v2) (Enevoldsen et al.,|2025)) is provided in Table @

Model Size MTEB (eng, v1)

MTK MTY |Class. Clust. PairCl. Reran. Retri. STS Summ.
text-embedding-3-large - 164.52 62.33|75.12 49.01 85.81 59.16 55.43 81.73 30.05
Cohere-embed-multilingual-v3.0 - |64.01 62.09]76.01 46.60 86.15 57.86 53.84 83.15 30.99
GRITLM 8Xx7B 13B [65.50 63.01|77.69 50.14 85.23 59.80 55.13 83.26 29.82
bge-multilingual-gemma2 9B [69.88 66.11|88.08 54.65 8597 59.72 59.24 83.88 31.20
NV-Embed-v2 7B |72.31 67.97|90.37 58.46 88.67 60.65 62.65 84.31 30.7
e5-mistral-7b-instruct 7B |66.46 64.22|77.37 50.26 88.42 60.21 57.07 84.65 31.53
gte-Qwen2-1.5B-instruct 1.5B [67.19 64.44|82.53 48.75 87.52 59.98 58.29 82.81 31.17
Qwen3-Embedding-0.6B 596M|66.76 63.62|82.61 49.87 84.29 57.96 54.32 86.97 29.23
jina-embeddings-v3 (Multi-LoRA) 572M|65.51 62.76|82.58 45.21 84.01 58.13 53.88 85.81 29.71
multilingual-e5-large 560M|60.89 59.48|71.77 41.23 84.75 55.96 51.40 81.62 29.64
bge-m3 (Dense) 560M|59.84 58.98|74.08 37.27 84.50 55.28 48.82 81.37 31.55
paraphrase-ML-mpnet-base-v2 278M|54.64 55.46|67.46 38.50 80.81 53.80 35.34 80.77 31.57
gte-multilingual-base (Dense) 305M|61.40 60.10|70.89 44.31 84.23 57.47 51.08 82.11 30.58
KaLM-Embedding-V1 494M|64.94 61.49|84.74 47.82 83.26 5541 51.65 82.24 2523
KaLM-Embedding-V2 494M|67.47 64.14|87.19 56.05 86.18 56.74 51.67 82.61 28.51
KalLM-Embedding-V2.5 494M | 69.33 65.83|88.34 56.59 86.60 57.84 55.00 85.27 31.18

Qwen3-Embedding-0.6B and jina-embeddings-v3), improving over V1 by +4.37 MTK (cmn) and
+2.53 MTK (eng). (3) KaLM-Embedding-V2.5 further advances SOTA among models with < 1B
parameters, with average scores of 70.13 MTK (avg) and 69.16 MTY (avg), competing with billion-
scale models while maintaining efficiency. Overall, these results manifest both effectiveness and
compactness of the KaLM-Embedding-V2 series, making it an economical choice for deploying
online applications.

Table|3|and Table E] report detailed task results, where Class., Clust., PairCL., Reran., Retri., STS, and
Summ. denote Classification, Clustering, Pair Classification, Reranking, Retrieval, Semantic Textual
Similarity, and Summarization. Among models with < 1B parameters, KaLM-Embedding-V2.5
achieves best or second-best results in 6/6 cases on MTEB (cmn, v1) and 4/7 cases on MTEB (eng,
v1). Compared to models with > 1B parameters, KaLM-Embedding-V2.5 achieves competitive
performance across all tasks on both MTEB (cmn, v1) and MTEB (eng, v1), substantially advancing
the development of downstream applications. These results manifest the versatility and compactness
of the KaLM-Embedding-V2 series again. Notably, the KaLM-Embedding-V2 series is fine-
tuned and distilled on just 2-4 GPUs with about 6M samples, compared to Qwen3-Embedding-0.6B’s
19M samples, indicating the effectiveness of our superior training techniques and data engineering.
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Figure 4: Ablation study on focal-style reweighting, hard negative mixing, and bidirectional attention.

Table 5: Detailed ablation study results on several key components, including focal-style reweighting,
hard negative mixing, and bidirectional attention.

MTEB (eng, v1)

Row Setting MTK MTY |Class. Clust. PairCl. Reran. Retri. STS Summ.
1 KalLM-Embedding-V2.5 69.33 65.83| 88.34 56.59 86.60 57.84 55.00 8527 31.18
2 w/o Focal-style Reweighting | 68.70 65.19 | 87.68 55.40 86.62 57.66 54.82 84.31 29.86
3 w/o Hard Negative Mixing | 68.91 65.39| 87.88 55.81 86.67 57.46 5491 84.64 30.38
4 w/o Bidirectional Attention | 68.94 65.05| 88.51 56.10 85.40 57.65 54.70 84.55 28.43

MTEB (cmn, v1)

KaLM-Embedding-V2.5 7093 7246|7748 73.09 84.09 6690 73.42 59.80 -
w/o Focal-style Reweighting | 69.41 70.51| 76.31 70.07 79.66 65.58 71.73 59.71 -
w/o Hard Negative Mixing | 70.54 72.08|76.71 72.02 84.28 66.50 73.26 59.70 -
w/o Bidirectional Attention |70.50 71.95|77.41 72.71 82.87 66.40 73.01 59.27 -

FSGROS I Ny

4.2 IN-DEPTH ANALYSIS

We next investigate how different key settings influence model performance, including (1) focal-
style reweighting, (2) online hard negative mixing, (3) bidirectional attention, (4) example-based
multi-class labeling, (5) contrastive distillation, and (6) the temperature coefficient.

Ablation Study on Training Techniques. Table [3] presents the ablation results on both MTEB
(eng, vl) and MTEB (cmn, v1). We observe that removing focal-style reweighting leads to the
largest performance drop, with MTK dropping from 69.33 to 68.70 on eng and from 70.93 to 69.41
on cmn, indicating that it plays a key role in improving general performance. On the other hand,
eliminating hard negative mixing or bidirectional attention yields smaller but consistent declines,
demonstrating that hard negative mixing supplements informative hard negatives throughout training,
while embeddings generated with bidirectional attention are more effective than those generated
with causal attention. Overall, these results confirm that the proposed training techniques are
complementary and jointly contribute to the performance of the KaLM-Embedding-V2 series.

Example-based v.s. Label-based Labeling. Ta-

ble 6] presents the comparison results between us- Table 6: Effect of example-based labeling.
ing class/clust and sampled examples as positives . MTEB (cmn, vl) MTEB (eng, v1)
and negatives. Note that, in the setting of ‘Exam- Setting -~ —Cust.  Class.  Clust.
ple’, both example-based and label-based labeling Example | 7748  73.09 8834 56.59
data are used for training. The results demonstrate Label 76.90 6471  87.03 52.71
that example-based labeling leads to considerable
improvements, especially on the clustering task, demonstrating the effect of supplementing the class.
and clust. data with example-based labeling.

Effectiveness of Contrastive Distillation. Dur- Table 7: Effect of contrastive distillation.
ing the contrastive distillation stage, the KaLM- MTEB (cmn, vl) MTEB (eng, v1)
Embedding-V2 is further optimized using the  Setting omre——Fmv— TR~ MTY
training objectives in Equation [§](denoted as ‘KL") CL+KL 7093 7246 6933 6553
and Equationm (denoted as ‘CL’). Implementation only KL |70.72 7248 68.63 6529
details can be seen in Appendix [B] To assess the only CL | 68.31 69.88  67.67 64.37
contribution of each objective, we conduct an ab-
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lation study, as shown in Table[/] The results show that combining CL and KL achieves the best
performance. Using only CL leads to the largest drop, while using only KL yields smaller but consis-
tent declines, especially in MTEB (eng, v1). This means that KL serves as the primary learning signal,
while CL provides the auxiliary learning one, and their combination yields the best performance.

Sensitivity of Temperature Coefficient. KI.-
divergence is sensitive to the temperature coef-
ficient (coef) (Hlnt'on et al.| 2015.). Table [§] shows Setting MTK ~ MTY MTK  MTY
the performance in terms of different 7 under

. , . Low 68.06 69.54 67.85 64.80
the ‘only KL setting, where 7 = 0.01 (Low), Mid 7072 7248  68.63 65.29
7 = 0.05 (Mid), and 7 = 0.1 (High). We can  High |67.10 6828 66.60 63.72
observe that Mid leads to the best performance,
since setting 7 to a too small value (e.g., 0.01) makes the teacher distribution overly skewed, while a
too large 7 (such as 0.1) oversmooths it, both reducing the informativeness of the learning signals.

Table 8: Sensitivity of temperature coef 7.
MTEB (cmn, vl) MTEB (eng, vl)

5 CONCLUSION

In this work, we propose KaLM-Embedding-V2, a series of versatile and compact embedding
models that achieve SOTA performance on MTEB (cmn, v1) and MTEB (eng, v1) among competitive
embedding models < 1B parameters. The strong performance stems from several systematized
innovative designs. For model architecture, we remove the causal attention mask to enable more
effective representation learning. For training techniques, we introduce a multi-stage training pipeline
that progressively incentivizes advanced embedding capabilities in LLMs. For training objectives, we
introduce a focal-style reweighting mechanism to emphasize difficult samples, and an online hard-
negative mixing strategy to enrich hard negatives. For training data, we collect over 20 categories of
data for pre-training and 100 categories of data for fine-tuning as well as distillation, leveraging task-
specific instructions, hard-negative mining, example-based multi-class labeling, etc, to carefully curate
data. By combining superior training techniques and high-quality data, KaLM-Embedding-V2
significantly outperforms others of comparable size and even competes with 3x to 26x larger models.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work and to facilitate a clearer understanding of our contributions,
we provide extensive supporting materials. In the main text, we describe our proposed method in §3|
and present the detailed benchmark results in §4] In the Appendix [BJand Appendix[I, we provide
further detailed information, including implementation details, training details, and evaluation details,
statistics of datasets, and task instructions used in evaluations, to ensure our results are reproducible.
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A THE USE OF LARGE LANGUAGE MODELS

In this work, we utilized LLMs solely for the purpose of polishing writing. The LLMs were not used
for content generation, and all research, analysis, and conclusions presented are the result of our own
work and independent thought.

B EXPERIMENTAL DETAILS

Implementation Details. We adopt InfoNCE loss (Gutmann & Hyvirinen,|2010) and KL-divergence
loss (Hinton et al., [2015)) as training objectives, with temperature coefficients 7 set to 0.01 and
0.05, respectively. Qwen2-0.5 (Yang et al., [2024)) serves as the base decoder-only LLM backbone,
combined with a simple yet effective mean pooling. To enable fully bidirectional modeling, we
remove the causal attention mask from the decoder-only LLM. The embedding dimension is 8§96, with
a maximum input length of 512 tokens. The model is fully fine-tuned with all parameters updated,
using mixed precision with Bfloat16. Matryoshka Representation Learning (MRL) (Kusupati et al.|
2022) is applied to both InfoNCE and KL-divergence losses with embedding dimensions of 896, 512,
256, 128, and 64, weighted by 1.0, 0.3, 0.2, 0.1, and 0.1, respectively. The model is optimized by the
Adam optimizer (Kingma & Ba, [2015).

Based on the above common configurations, we detail the settings for each training stage. (1) Pre-
training: We exclusively use in-batch negatives for training efficiency. Pre-training is conducted on
6 nodes (8 GPUs each) for 1 epoch, corresponding to approximately 19k steps, with a per-GPU batch
size of 512 and a learning rate of 1e-4. (2) Fine-tuning: We incorporate hard negatives by sampling
M = T examples from ranks 50 to 100 within the candidate pool. Training is conducted for 1 epoch,
approximately 12k steps, with a per-GPU batch size of 120 and a learning rate of 2e-5. The focusing
parameter + in Equation[d]is set to 0.5. For each sample, a pair-wise and a list-wise hard negative is
mined. Fine-tuning is performed on 4 GPUs, requiring approximately 220 GPU hours for 1 epoch.
(3) Contrastive distillation: The model is jointly optimized with contrastive and KL-divergence
losses, weighted at 0.3 and 0.7, respectively. Qwen3-Embedding-8B (Zhang et al., [2025b) is used as
the teacher model, where teacher embeddings for all training samples are pre-computed and cached
to accelerate training. Training is run for 1 epoch, approximately 24k steps, with a per-GPU batch
size of 120 and a learning rate of le-5. Distillation is performed on just 2 GPUs, requiring about
280 GPU hours for 1 epoch. The detailed hyperparameter settings adopted in the experiments are
presented in Table[9]

Table 9: Hyperparameters used in the experiments. For batch size, training steps, learning rate, and so
on, the three values correspond to pre-training, fine-tuning, and contrastive distillation, respectively.

Parameter Value
Batch size (per GPU) 512/120/120
GPU used 48/4/2
Training Steps 19k/12k/24k
Training Data Size 470M/6M/6M
Warm-up steps 10% /200 / 200

Learning Rate le-4/2e-5/1e-5

Epochs 1 (all stages)
Base model Qwen2-0.5 (bidirectional)
Pooling strategy Mean pooling
Embedding dimension 896
Maximum Input Length 512
MRL Dimensions 896, 512, 256, 128, 64
MRL Weights 1.0,0.3,0.2,0.1,0.1

Focusing Parameter
Hard negatives
Optimizer
Precision

0.5
M = 7, ranks 50-100
Adam
Bfloat16

Contrastive Learning - 0.01
Contrastive Distillation - 0.05
Qwen3-Embedding-8B

Temperature Coefficients

Teacher model
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Baselines. @~ We compare the KalM-Embedding-V2 series with the following compet-
itive general-purpose and multilingual open-source text embedding models and commer-
cial embedding API services. The open-source models include: paraphrase-multilingual
(ML)-mpnet-base-v2 (Reimers & Gurevych, 2019), jina-embeddings-v3 (Sturua et al.l
2024), Qwen3-Embedding-8B/Qwen3-Embedding-4B/Qwen3-Embedding-0.6B/gte-multilingual-
base/gte-Qwen2-7B-instruct/gte-Qwen2-1.5B-instruct (Zhang et al.,|2025b; L1 et al., [2023; Zhang
et al., 2024), bge-m3/bge-multilingual-gemma?2/bge-large-en-v1.5 (Chen et al.| 2024} Xiao et al.|
2024), EmbeddingGemma-300M (Vera et al.,|2025)), multilingual-e5-large(-instruct)/e5-mistral-7b-
instruct (Wang et al., 2024bj2022), GRITLM 8x7B (Muennighoff et al.,[2024) (a sparse mixture-of-
experts embedding model with 13B active parameters during inference), NV-Embed-v2 (Lee et al.|
2025a)), and KaLM-Embedding-V1 (Hu et al., [2025)). The commercial embedding services include
text-embedding-3-large (OpenAl, 2024) from OpenAl and Cohere-embed-multilingual-v3.0 (Coherel
2023)).

Evaluation. We evaluate the KaLM-Embedding-V2 series and the competitive baseline embedding
models on MTEB (Muennighoff et al., [2023a} Xiao et al., 2024) for both Chinese (cmn) and English
(eng). For Chinese, we use MTEB (cmn v1), derived from C-MTEB (Xiao et al.| [2024), which
comprises 35 tasks across 6 task types. For English, we adopt MTEB (eng v1) (Muennighoff
et al 2023a), covering 56 tasks across 7 task types, providing a broader evaluation scope than
v2, which contains only 41 tasks across the same number of task types. Following the MTEB
(cmn, v1) leaderboard, we exclude AmazonReviewsClassification, MassivelntentClassification, and
MassiveScenarioClassification from the classification task, as well as STS22 from the STS task,
resulting in 31 tasks. This setup slightly differs from the original C-MTEB (Xiao et al.,|2024). For
evaluation, we evaluate our KaLM-Embedding-v2 series using a maximum length of 512 tokens
to ensure fair comparison with previous works. For models without officially reported results on the
MTEB leaderboards, we evaluate them using the task instructions summarized in Table [I§]to ensure
fair comparison.

Table 10: OOD Evaluation on real-world industrial scenarios. Recall@K measures whether the
positive item appears in the top-K retrieved items. MRR @K denotes mean reciprocal rank and further
measures the ranking quality. It reciprocally discounts the position.

Customer Service FAQ Retrieval

Model Size |[MRR@1 MRR@5 MRR@10|Recall@1 Recall@5 Recall@10
Qwen3-Embedding-8B 7.57B| 44.49 57.79 58.91 44.49 78.44 86.69
Qwen3-Embedding-0.6B 596M | 40.36 53.60 54.61 40.36 75.22 82.56
bge-m3 (Dense) 560M | 34.40 46.68 48.19 34.40 68.80 79.81

gte-multilingual-base (Dense) 305M | 39.90 50.44 51.47 39.90 67.43 75.68
KaLM-Embedding-V2.5 494M | 45.87 56.96 58.05 45.87 77.06 85.32
Game Documentation Search

Qwen3-Embedding-8B 7.57B| 23.61 35.64 37.52 23.61 56.55 70.45
Qwen3-Embedding-0.6B 596M | 20.70 31.40 33.14 20.70 50.23 63.28
bge-m3 (Dense) 560M | 20.02 30.62 32.47 20.02 49.04 62.70

gte-multilingual-base (Dense) 305M | 18.10 27.50 29.02 18.10 43.86 55.14
KaLM-Embedding-V2.5 494M | 23.82 36.36 38.24 23.82 58.23 72.22

C OUT-OF-DOMAIN GENERATION

To comprehensively assess robustness and generalization in real-world industrial applications, we
conducted out-of-domain (OOD) evaluations in two Chinese retrieval scenarios, with sizes ranging
from thousands to tens of thousands. The first involves customer service FAQ retrieval, where all
queries originate from real user interactions, with relevance labels manually annotated by human
experts. The second targets game documentation search in a vertical domain, utilizing real user-
generated queries; relevant documents were filtered and selected based on user click-through data.
None of the models has been trained on these datasets, ensuring genuine OOD evaluation. We
choose embedding models widely used in industries from GTE and BGE as baselines. From the
results shown in Table[I0} KaLM-Embedding-V2.5 achieves SOTA performance compared to models
of comparable size. Furthermore, despite being 15 times smaller in size than Qwen3-Embedding-
8B, KaLM-Embedding-V2.5 still outperforms it in 8/12 cases. These results demonstrate that our
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Table 11: Matryoshka embedding performance, where ‘Full’ denotes the maximum dimension,
specifically 896 for the KaLM-Embedding series.

MTEB (eng, v1)
Model Dim MTK MTY |Class. Clust. PairCl. Reran. Retri. STS Summ.
Full {69.33 65.83]88.34 56.59 86.60 57.84 55.00 85.27 31.18
512 169.13 (-0.288%) 65.65|88.35 56.52 86.53 57.76 54.44 85.32 30.65
KalLM-Embedding-V2.5 256 |68.80 (-0.764%) 65.43|88.29 56.37 86.35 57.45 53.47 85.12 30.95
128 [68.05 (-1.846%) 64.95|88.14 56.29 85.83 56.64 51.25 84.95 31.57
64 [66.44 (-4.168%) 63.63|87.87 56.06 84.96 56.04 46.63 84.13 29.71
Full |69.36 65.86| 88.55 56.18 86.86 57.86 55.14 85.36 31.07
512 169.02 (-0.490%) 65.71|88.71 56.66 86.92 58.13 53.67 84.77 31.11
256 [68.40 (-1.384%) 65.34|88.69 56.63 86.58 57.64 52.10 83.93 31.80
128 |67.36 (-2.884%) 64.40| 88.61 56.45 85.59 56.61 49.40 83.29 30.84
64 [65.36 (-5.767%) 63.01|88.36 56.00 84.39 55.84 43.76 82.05 30.68
Full |67.47 64.14| 87.19 56.05 86.18 56.74 51.67 82.61 28.51
512 167.23 (-0.356%) 63.98|87.14 56.04 86.11 56.49 50.90 82.62 28.57
KalLM-Embedding-V2 256 |66.76 (-1.052%) 63.76|87.18 56.03 85.83 56.09 49.55 82.19 29.43
128 |65.65 (-2.687%) 62.83|86.98 55.80 84.94 55.09 46.39 81.92 28.67
64 163.73 (-5.543%) 61.56|86.72 55.53 83.63 54.21 40.83 80.79 29.19
Full |64.94 61.49|84.74 47.82 83.26 55.41 51.65 82.24 25.23
512 164.48 (-0.708%) 61.14|84.60 47.49 8292 5472 50.74 81.90 25.61
KaLM-Embedding-V1 256 [63.85 (-1.678%) 60.85|84.29 47.21 82.74 53.94 49.01 81.90 26.89
128 |62.13 (-4.327%) 59.35|83.71 46.44 81.09 52.05 44.83 81.40 25.96
64 159.69 (-8.115%) 57.71|82.68 4549 78.54 50.41 38.61 80.60 27.64
MTEB (cmn, v1)
Full |70.93 7246|7748 73.09 84.09 6690 73.42 59.80 -
512 170.80 (-0.183%) 72.36|77.48 73.07 84.05 66.83 72.96 59.79 -
KaLM-Embedding-V2.5 256 |70.43 (-0.705%) 72.09|77.38 73.06 84.21 66.20 71.94 59.73 -
128 [69.76 (-1.607%) 71.62|77.38 73.37 84.05 65.68 69.60 59.61 -
64 168.10 (-3.990%) 70.32|76.98 73.17 8395 63.60 65.06 59.13 -
Full |70.91 7246|7744 72.80 84.53 66.74 73.45 59.79 -
512 170.45 (-0.649%) 71.84|77.73 72.26 82.38 66.59 72.96 59.12 -
256 169.89 (-1.438%) 71.38|77.67 7225 8221 65.80 71.65 58.67 -
128 |68.75 (-3.046%) 70.36|77.50 72.03 81.25 64.30 68.98 58.08 -
64 [66.89 (-5.669%) 6891|77.17 71.83 80.48 63.01 63.80 57.14 -
Full {68.15 69.28|75.14 69.76 7791 65.16 72.15 55.58 -
512 |167.85 (-0.440%) 69.01]75.04 69.35 77.64 65.09 71.46 55.50 -
KalLM-Embedding-V2 256 |67.37 (-1.145%) 68.64|74.96 69.32 77.77 64.80 69.65 55.31 -
128 [66.38 (-2.597%) 67.88|74.85 69.41 7693 64.15 66.92 55.02 -
64 [64.13 (-5.899%) 66.14|74.62 69.35 76.33 61.99 60.43 54.12 -
Full |63.78 64.56|73.89 57.54 7294 64.48 70.12 48.41 -
512 163.39 (-0.611%) 64.18|73.58 57.26 72.54 63.98 69.39 48.35 -
KaLM-Embedding-V1 256 |62.82 (-1.505%) 63.77|73.71 57.20 72.56 63.50 67.50 48.17 -
128 |61.59 (-3.434%) 62.75|73.51 57.52 71.62 62.08 63.97 47.82 -
64 |58.98 (-7.526%) 60.74|72.85 56.58 7127 60.22 56.72 46.82 -

KalLM-Embedding-V2.5
(w/o MKL)

KaLM-Embedding-V2.5
(w/o MKL)

KaLM-Embedding models not only achieve state-of-the-art performance on MTEB, but also exhibit
strong generalization and robustness in real-world industrial applications.

D MATRYOSHKA EMBEDDING

To enable flexible-dimensional embeddings, we incorporate MRL into both contrastive and KL
loss. Unlike previous works, we also optimize matryoshka embeddings using the matryoshka KL
objective, referred to as MKL. To verify the effectiveness of matryoshka embeddings and MKL,
we conduct dimensionality reduction experiments along with MKL ablation studies, as shown in
Table[T1] From the results, we mainly have the following observations. Firstly, for tasks such as
Class., Clust., PairCl., STS, and Summ., performance degrades only slightly when using matryoshka
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(c) Qwen3-Embedding-0.6B.

Figure 5: Comparison of discriminative capacity between positive and hard negatives. Cases are
randomly sampled from the HotpotQA dataset, where the task instruction is “Instruct: Given a query,
retrieve documents that answer the query Query: {query }”.

embeddings of smaller sizes, whereas tasks like Reran. and Retri. exhibit more substantial drops.
This indicates that semantic matching tasks (e.g., Class., Clust., and PairCl.) can be effectively
handled even with low-dimensional matryoshka embeddings, whereas retrieval and reranking tasks
demand higher-dimensional embeddings to preserve performance. Secondly, compared with KaLM-
Embedding-V2.5 (w/o MKL), V2, and V1, KaLM-Embedding-V2.5 demonstrates consistently
smaller performance degradation as embedding dimensionality decreases. For example, on MTEB
(cmn, v1), the performance drop from full dimension to 64 dimensions is only -3.99% for KaLM-
Embedding-V2.5, compared to -5.67% for its counterpart without MKL. We find that the superior
robustness of KaLM-Embedding-V2.5 using matryoshka embeddings of smaller sizes mainly stems
from its smaller performance degradation on Reran. and Retri. tasks compared to others. These
results show that MKL makes KaLM-Embedding-V2.5 more robust, with smaller drops under small
embedding dimensions. Thirdly, retrieval tasks exhibit the largest performance drops as embedding
dimensions decrease, showing they rely heavily on high-dimensional embedding. This also explains
why small, low-dimensional embedding models lag behind larger, high-dimensional ones on retrieval
tasks, as illustrated in Table[d Overall, these results indicate that matryoshka embeddings provide
flexible, compact representations that maintain strong performance on semantic matching tasks, while
retrieval and reranking tasks benefit from higher-dimensional embeddings.

E CASE STUDY

To provide a more intuitive and qualitative understanding of our model’s discriminative capacity,
we conduct a case study on randomly sampled examples from the HotpotQA, a representative
retrieval dataset. For each case, we compute similarity scores between a query, its ground-truth
positive, and 7 hard negatives. To visualize the results, the score between the query and the positive
is plotted as a single point, i.e., the red star. The seven scores between the query and the hard
negatives are used to generate a box plot. An ideal embedding model should assign a significantly
higher score to the positive compared to all hard negatives, placing the red star well above the
corresponding box plot. This visualization provides a clear comparison of how effectively each model
can distinguish the positive passages from hard negative ones. From the results shown in Figure 5}
we observe that KaLM-Embedding-V2.5 demonstrates the superior discriminative capacity in all
cases, while KaLM-Embedding-V1 and Qwen3-Embedding-0.6B perform poorly in the 1st and 3rd
cases. Besides, the distance between the red star and the median (the green line) of the box plot
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Table 12: Detailed embedding model performance on MTEB (eng, v2) (Enevoldsen et al., 2025)).
MTEB (eng, v1)

Model Size N ITR MTY[Class. Clust. PairCL. Reran, Refri, STS Summ.
Qwen3-Embedding-SB 8B [75.22 68.70|90.43 5857 87.52 51.56 69.44 88.58 34.83
NV-Embed-v2 7B [69.81 65.00|87.19 47.66 88.69 49.61 62.84 83.82 3521
Qwen3-Embedding-4B 4B |74.60 68.09(89.84 57.51 87.01 50.76 68.46 88.72 34.39

gte-Qwen2-1.5B-instruct 1.5B |67.20 63.26|85.84 53.54 87.52 49.25 50.25 82.51 33.94
Qwen3-Embedding-0.6B 596M|70.70 64.88|85.76 54.05 84.37 48.18 61.83 86.57 33.43
multilingual-e5-large-instruct 560M | 65.53 61.21 | 75.54 49.89 86.24 48.74 53.47 84.72 29.89
bge-large-en-v1.5 335M|65.89 61.87|78.34 48.01 87.13 48.26 55.44 82.79 33.13
EmbeddingGemma-300M 307M|69.67 65.11|87.55 56.55 87.29 47.43 55.69 83.61 37.64
KalLM-Embedding-V2.5 494M | 71.29 65.31|90.50 58.12 86.63 47.42 58.45 84.82 31.21

Table 13: Detailed AIR-Bench QA results (NDCG@ 10 scores) on AIR benchmark 24.05. across
seven languages.

AIR-Bench QA

Model Size MTK | en zh es fr ja de ru

bge-multilingual-gemma2 9B | 51.77 | 46.25 49.34 60.76 49.69 60.02 49.77 54.97
gte-Qwen2-7B-instruct 7B | 49.33 | 51.87 47.12 55.18 43.04 5476 4491 52.65
gte-Qwen?2-1.5B-instruct 1.5B | 45.72 | 48.03 43.13 50.26 40.37 50.04 41.25 50.73
jina-embeddings-v3 (Multi-LoRA) 572M | 45.97 | 45.07 44.76 52.19 39.94 50.11 43.62 51.70
multilingual-e5-large 560M | 44.54 | 4391 43.60 50.84 3594 52.84 41.93 50.44
bge-m3 (Dense) 560M | 49.30 | 48.78 47.45 53.73 44.66 54.23 46.71 54.55
KaLM-Embedding-V2.5 494M | 49.02 | 49.86 48.69 54.43 43.05 52.80 46.00 52.43

for KaLM-Embedding-V2.5 is consistently larger than the corresponding distance for both KalLM-
Embedding-V1 and Qwen3-Embedding-0.6B in most cases. This indicates that the distribution of
their hard negative scores is too close to the positive, meaning their limited ability to distinguish
subtle yet critical differences. The large and consistent margin maintained by KalLM-Embedding-
V2.5 demonstrates the effectiveness of its improved training techniques, especially the Focal-style
Reweighting Mechanism, which focuses on learning hard samples and leads to the large margin
observed in the visualization. In conclusion, the qualitative results provide intuitive evidence that
aligns with high quantitative benchmark performance, solidifying the model’s effectiveness.

F VISUALIZATION ANALYSIS

To better understand the relationship between embedding quality and downstream task performance,
we conduct a visualization analysis of different models on clustering and classification datasets,
covering intent recognition, category identification, and topic classification, with both English and
Chinese data included. As shown in Figure[6] we project embeddings into 2D by UMAP (Uniform
Manifold Approximation and Projection), with colors indicating the corresponding labels of the
data points. From the results, the embeddings produced by KaLM-Embedding-V2.5 exhibit more
compact and separated clusters compared to KaLM-Embedding-V1 and Qwen3-Embedding-0.6B.
In the RedditClustering and CLSClusteringP2P, semantically similar samples are tightly grouped
under V2.5, while inter-class boundaries become more distinct, aligning with its superior clustering
performance. In contrast, Qwen3-Embedding-0.6B displays overlapping regions between categories,
suggesting a weaker capability in modeling fine-grained semantic distinctions. The results of the
Banking77Classification further confirm this conclusion. KaLM-Embedding-V2.5 forms separated
clusters, whereas V1 and Qwen3-Embedding-0.6B embeddings remain entangled. Overall, the
improved intra-class compactness and inter-class separability of KaLM-Embedding-V2.5 provide
strong support for its superior results on these tasks.

G MULTILINGUAL EVALUATION

To evaluate multilingual and OOD generalization, we adopt AIR-Bench QA (Chen et al., [2025b)
(version of 24.05), which provides a more comprehensive test than static benchmarks. AIR-Bench is
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automatically generated to avoid data leakage, spans diverse tasks, domains, and languages. Table [I3]
shows the evaluation results on AIR-Bench QA, including seven languages:en (English), zh (Chinese),
es (Spanish), fr (French), ja (Japanese), de (German), and ru (Russian). KaLM-Embedding-V2.5
is evaluated using a general retrieval instruction: “Given a query, retrieve documents that answer
the query.” Despite not being trained on large-scale multilingual corpora, KaLM-Embedding-V2.5
demonstrates competitive performance across all seven languages. It performs on par with or close to
substantially larger 7B—9B models. For example, its average score (49.02) is nearly identical to that of
the much larger gte-Qwen2-7B-instruct model (49.33). In lower-resource languages, its performance
is comparable to strong multilingual embedding baselines, such as bge-m3. These results demonstrate
that KaLM-Embedding-V2.5 generalizes well beyond its primary English—Chinese training focus,
exhibiting robust retrieval performance across a wide range of multilingual and low-resource language
settings.

H FuLL MTEB RESULTS

Table [[4] and Table [T3] show the full METB results for each dataset.

I DATASETS AND INSTRUCTIONS

Table[I6)and Table[I7]show the detailed dataset list used for pre-training, and fine-tuning as well as
distillation, respectively. Table[T8] presents the task instructions used in the MTEB evaluation.
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(c) Banking77Classification, where the task instruction is “Instruct: Given a online banking query, find the
corresponding intents Query: {query}”.

Figure 6: Embedding distribution comparisons between KaLM-Embedding-V1, KaLM-Embedding-
V2.5, and Qwen3-Embedding-0.6B.
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Table 14: Results for each dataset on MTEB (eng, v1). ‘Emb’ is the abbreviation of ‘Embedding’

Dataset KaLM-Emb-V1 KaLM-Emb-V2 KaLM-Emb-V2.5
AmazonCounterfactualClassification 91.73 95.25 94.75
AmazonPolarityClassification 96.56 96.67 97.03
AmazonReviewsClassification 61.42 57.89 64.15
Banking77Classification 84.54 89.48 90.31
EmotionClassification 86.90 92.50 83.80
Classification ImdbClassification 94.93 95.16 95.91
MassivelntentClassification 72.52 77.80 83.24
MassiveScenarioClassification 79.32 86.00 89.35
MTOPDomainClassification 97.54 98.86 98.69
MTOPIntentClassification 85.76 88.77 91.10
ToxicConversationsClassification 89.28 89.34 91.70
TweetSentimentExtractionClassification 76.35 78.60 80.08
ArxivClusteringP2P 49.68 51.16 52.11
ArxivClusteringS2S 42.21 43.70 45.10
BiorxivClusteringP2P 43.84 47.69 48.51
BiorxivClusteringS2S 37.31 41.93 42.75
MedrxivClusteringP2P 39.91 43.72 43.09
Clustering MedrxivClusteringS2S 36.79 40.56 40.43
RedditClustering 55.47 76.52 76.89
RedditClusteringP2P 65.96 73.05 72.84
StackExchangeClustering 66.38 78.40 80.22
StackExchangeClusteringP2P 39.19 45.41 47.26
TwentyNewsgroupsClustering 49.33 74.44 73.26
Pair SprintDuplicateQuestions 92.65 95.88 96.00
Classification TwitterSemEval2015 71.44 76.72 77.15
TwittertURLCorpus 85.69 85.95 86.66
AskUbuntuDupQuestions 60.35 62.13 62.39
Reranking MipdSmallRerankin g 31.92 32.04 32.45
SciDocsRR 80.99 82.25 84.68
StackOverflowDupQuestions 48.38 50.54 51.82
ArguAna 58.63 57.42 60.15
ClimateFEVER 25.85 25.07 34.50
CQADupstack 41.83 44.19 47.20
DBPedia 38.94 40.26 42.62
FEVER 86.54 83.00 87.89
FiQA2018 44,74 45.23 47.10
HotpotQA 67.58 70.14 71.76
Retrieval MSMARCO 34.59 36.20 40.62
NFCorpus 35.33 35.17 37.11
NQ 47.50 48.10 58.61
QuoraRetrieval 87.47 89.81 89.57
SCIDOCS 19.97 20.81 21.62
SciFact 72.89 71.98 74.38
TRECCOVID 83.72 79.27 82.98
Touche2020 29.15 28.43 28.93
BIOSSES 86.14 84.16 84.02
SICK-R 79.73 79.85 83.20
STS12 80.17 82.27 81.90
STS13 83.86 85.96 89.52
STS STS14 80.57 83.50 85.99
STS15 87.34 86.44 90.33
STS16 84.83 85.70 87.74
STS17 86.43 86.16 92.34
STS22 69.21 66.95 68.76
STSBenchmark 84.12 85.07 88.88
Summarization SummEval 25.23 28.51 31.18
Mean (Task) 64.94 67.47 69.33
Mean (Type) 61.49 64.14 65.83
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Table 15: Results for each dataset on MTEB (cmn, v1).

Dataset KaLM-Emb-V1 KaLM-Emb-V2 KaLM-Emb-V2.5
IFlyTek 48.54 51.01 56.59
JDReview 83.02 86.87 88.82
Classification Mul_tilingualSentiment 78.25 79.16 81.26
OnlineShopping 93.08 94.40 95.02
TNews 51.59 50.75 53.27
Waimai 88.85 88.67 89.91
CLSClusteringP2P 46.92 62.95 66.25
Clustering CLSClusteringS2S 44.67 59.44 62.73
ThuNewsClusteringP2P 72.87 80.79 84.64
ThuNewsClusteringS2S 65.68 75.87 78.75
. . . Cmnli 76.67 78.08 86.07
Pair Classification ¢ ; 69.22 77.73 82.12
CMedQAv1-reranking 82.34 83.65 84.58
Reranking CMedQAv2-reranking 83.12 84.25 85.78
MMarcoReranking 25.75 26.04 29.64
T2Reranking 66.73 66.69 67.60
CmedqaRetrieval 42.12 4481 45.87
CovidRetrieval 82.40 83.30 83.57
DuRetrieval 82.19 83.17 86.14
Retrieval EcorpRetrie\{al 62.56 65.10 66.68
MedicalRetrieval 56.89 59.81 60.46
MMarcoRetrieval 78.96 80.59 82.23
T2Retrieval 84.06 84.88 85.97
VideoRetrieval 71.82 75.51 76.44
AFQMC 38.02 44,18 48.78
ATEC 46.19 49.75 52.45
BQ 54.48 61.22 69.74
STS LCQMC 70.81 73.83 77.50
PAWSX 16.32 43.38 47.90
QBQTC 35.28 37.61 39.83
STSB 77.80 79.10 82.38
Mean (Task) 63.78 68.15 70.93
Mean (Type) 64.56 69.28 72.46
Table 16: Pre-training data list.
Source Language Pairs
Amazon-Reviews (Hou et al., [2024) multilingual 23M
CC-News (Hamborg et al.,2017) multilingual 100M
NLLB (Costa-jussa et al.,|2022; [Heffernan et al., [2022; |Schwenk et al.|[2021})) multilingual 2M
Wikipedia (Foundation, [2024) multilingual 100M
xP3 (Muennighoft et al.,|2023b) multilingual 19M
XL-Sum! (Hasan et al.,|2021) multilingual 1M
SWIM-IR (Monolingual) (Thakur et al.| {2024 multilingual 3M
SWIM-IR (Cross-lingual) (Thakur et al., 2024) multilingual 15M
CSL| (L1 et al.|[2022) zh 0.4M
‘Wudao (Yuan et al.,[2021) zh 44M
THUCNews| (Sun et al.,[2016) zh 0.8M
Zhihu-KOL zh 0.8M
CodeSearchNet (Husain et al.,|2019) en M
PAQ| (Lewis et al.,|2021) en M
Reddit en 100M
StackExchange en 14M
S20RC en 41M
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Table 17: Fine-tuning data list.

Source Type Categ. Language Pairs Pairs(filtered)
. M Retrieval s2p en 50000 49090
Retrieval s2p en 100000 76408
ExpertQA (Malaviya et al. Retrieval s2p en 1261 1252
w Retrieval s2p en 50000 49833
mm_{qg ‘ Retrieval s2p en 100000 71790
Retrieval s2p en 40000 38623
Retrieval s2p en 50000 49849
Retrieval s2p en 80000 79954
Retrieval s2p en 10000 9988
Retrieval s2p en 23397 17927
Retrieval s2p en 30000 28246
Retrieval s2p en 50000 48517
Retrieval s2p en 100000 96792
Lgmm 0 Retrieval s2p en 30000 26043
FEVER (Thorne et al.} m Retrieval s2p en 87855 87216
FiQA ( mug Retrieval s2p en 5490 4689
L@m:,][m 2018 Retrieval s2p en 184057 150153
Chen et al.|2024] Retrieval s2p en 41434 31097
Retrieval s2p en 175133 174190
Retrieval s2p en 277144 258617
Retrieval s2p en 10824 10471
Retrieval s2p en 9590 9272
Retrieval s2p en 809 794
Retrieval s2p en 130217 125816
Retrieval s2p en 52886 44442
' Retrieval s2p en 19242 18924
om' Retrieval s2p en 58622 56377
A Retrieval s2p en 30000 21724
(Hoogeveen ct al.} Retrieval s2p en 24045 7356
mk STS s2s en 3195 628
MultiNLI(Williams et al | STS s2s en 64674 63701
N \m| STS 28 en 36000 26504
.12017) STS s2s en 92674 89558
m; ﬂlﬂ STS 25 en 50000 47686
STS 52 en 252397 217099
STS s2s en 24686 16480
Classfication s2s, p2s en 15000 14529
Classfication 525, p2s en 6862 6787
Classfication s2s, p2s en 2012 1999
Classfication s2s en 128000 25600
Classfication p2s en 12704958 42480
Classfication s2s en 1014826 50530
Classfication p2s en 25333327 48800
g11995] Classfication s2s en 11314 6233
' m Classfication s2s en 10000 9007
\K]_l_l Classfication s2s en 10000 8575
m[ Classfication 25 en 10000 9937
EmotionClassification (Saravia et al | Classfication s2s en 10000 10000
Classfication s2s en 10000 10000
oxicConversations Classfication s2s en 7916 7800
Retrieval s2p zh 20000 17526
Retrieval s2p zh 4952 4824
Retrieval s2p zh 20000 18608
W\w Retrieval s2p zh 10000 9753
zuu Retrieval s2p zh 5000 4714
Retrieval s2p zh 20000 19535
Retrieval s2p zh 2058 1991
Retrieval s2p zh 287881 234587
Retrieval s2p zh 49401 19289
Retrieval s2p zh 50000 49896
Retrieval s2p zh 199412 188606
Retrieval s2p zh 20000 19288
Retrieval s2p zh 2647 2537
Retrieval s2p zh 1605 1602
Retrieval s2p zh 5000 4727
Retrieval s2p zh 223851 88109
!mﬂl Retrieval s2p zh 20000 19945
DuReader (He et al. 12 Retrieval s2p zh 80416 79229
im Retrieval s2p zh 99992 97764
Taw-gpt (Liu et al.] gm Retrieval $2p zh 500 500
Retrieval s2p zh 8000 6784
mMARCO (zh) (Bonifacio et al. Retrieval s2p zh 400000 379870
Retrieval s2p h 32768 32551
Retrieval s2p zh 5000 4988
s2s zh 4041 3876
STS s2s zh 62477 11387
STS s2s zh 100000 10000
STS s2s zh 5102 648
STS s2s zh 5000 2883
STS s2s zh 2500 2497
STS s2s zh 125356 119029
STS s2s zh 218887 185787
STS s2s zh 13464 11937
STS s2s zh 51620 47223
STS s2s zh 344038 290699
STS s2s zh 80000 74252
Classfication s2s, p2s zh 15000 12249
Classfication s2s zh 10000 9690
Classfication s2s zh 10000 6762
Classfication s2s zh 1232 1232
Classfication s2s zh 10000 8221
Classfication s2s zh 7852 7600
1 i s2s zh 7384 7376
Retrieval s2p multilingual 30000 26292
Retrieval s2p multilingual 40151 39946
Retrieval s2p multilingual 48729 46997
STS s2s multilingual 128435 128398
m Classfication s2s multilingual 10000 7721
'mmm Classfication $2s multilingual 10000 8323
[‘M Classfication 25 multilingual 10000 9804
112023 Classfication s$2s multilingual 10000 7832
asslve cenario I_W m Classfication s2s multilingual 10000 7078
mu.mm‘\m Classfication s2s multilingual 10000 9610
MTOPIntent (L1 et al. Classfication s2s multilingual 10000 7952
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https://huggingface.co/datasets/wangrongsheng/cMedQA-V2.0
https://huggingface.co/datasets/neuclir/csl
https://huggingface.co/datasets/sentence-transformers/dureader
https://huggingface.co/datasets/luozhouyang/dureader
https://huggingface.co/datasets/sentence-transformers/law-gpt
https://www.heywhale.com/mw/dataset/5e953ca8e7ec38002d02fca7/content
https://huggingface.co/datasets/unicamp-dl/mmarco
https://huggingface.co/datasets/infgrad/retrieval_data_llm
https://huggingface.co/datasets/suolyer/webqa
https://huggingface.co/datasets/C-MTEB/AFQMC
https://huggingface.co/datasets/C-MTEB/ATEC
https://huggingface.co/datasets/C-MTEB/BQ
https://github.com/china-ai-law-challenge/CAIL2019/tree/master/scm
https://www.luge.ai/#/luge/dataDetail?id=39
https://github.com/IAdmireu/ChineseSTS
https://huggingface.co/datasets/fenffef/cmnli
https://huggingface.co/datasets/shibing624/nli_zh
https://huggingface.co/datasets/Fred666/ocnli
https://github.com/CLUEbenchmark/QBQTC/tree/main
https://github.com/CLUEbenchmark/SimCLUE
https://huggingface.co/datasets/xnli
https://huggingface.co/datasets/neuclir/csl
https://huggingface.co/datasets/SirlyDreamer/THUCNews
https://huggingface.co/datasets/fenffef/tnews
https://huggingface.co/datasets/C-MTEB/JDReview-classification
https://huggingface.co/datasets/fenffef/iflytek
https://huggingface.co/datasets/C-MTEB/OnlineShopping-classification
https://huggingface.co/datasets/C-MTEB/waimai-classification
https://huggingface.co/datasets/CohereForAI/aya_dataset
https://huggingface.co/datasets/sentence-transformers/miracl
https://huggingface.co/datasets/castorini/mr-tydi
https://huggingface.co/datasets/maximedb/paws-x-all
https://huggingface.co/datasets/mteb/amazon_reviews_multi
https://huggingface.co/datasets/mteb/amazon_counterfactual
https://huggingface.co/datasets/mteb/multilingual-sentiment-classification
https://huggingface.co/datasets/mteb/amazon_massive_intent
https://huggingface.co/datasets/mteb/amazon_massive_scenario
https://huggingface.co/datasets/mteb/mtop_domain
https://huggingface.co/datasets/mteb/mtop_intent
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Table 18: Detailed task instruction list for MTEB evaluation. Pair Classification*, Reranking®,
Retrieval*, and STS* indicate we use the same instructions for all the respective remaining tasks.

Task Name Instruction
Classification
AmazonCounterfactualClassification Instruct: Given an Amazon review, judge whether it is counterfactual. \n Query: {query}
AmazonPolarityClassification Instruct: Classifying Amazon reviews into positive or negative sentiment \n Query: {query}
AmazonReviewsClassification Instruct: Classifying the given Amazon review into its appropriate rating category \n Query: {query}
Banking77Classification Instruct: Given a online banking query, find the corresponding intents \n Query: {query}
EmotionClassification Instruct: Classifying the emotion expressed in the given Twitter message into one of the six emotions: anger, fear,
joy, love, sadness, and surprise \n Query: {query}
ImdbClassification Instruct: Classifying the sentiment expressed in the given movie review text from the IMDB dataset \n Query:
{query}
MassivelntentClassification Instruct: Given a user utterance as query, find the user intents \n Query: {query}

MassiveScenarioClassification

Instruct:

Given a user utterance as query, find the user scenarios \n Query: {query}

MTOPDomainClassification

Instruct:

Classifying the intent domain of the given utterance in task-oriented conversation \n Query: {query}

MTOPIntentClassification

Instruct:

Classifying the intent of the given utterance in task-oriented conversation \n Query: {query}

ToxicConversationsClassification

Instruct:

Classifying the given comments as either toxic or not toxic \n Query: {query}

TweetSentimentExtractionClassification

Instruct:

Classifying the sentiment of a given tweet as either positive, negative, or neutral \n Query: {query}

TNews

Instruct:

Categorizing the given news title \n Query: {query}

IFlyTek

Instruct:

Given an App description text, find the appropriate fine-grained category \n Query: {query}

MultilingualSentiment

Instruct:

Classifying sentiment of the customer review into positive, neutral, or negative \n Query: {query}

JDReview Instruct: Classifying sentiment of the customer review for iPhone into positive or negative \n Query: {query}

OnlineShopping Instruct: Classifying sentiment of the customer review into positive or negative \n Query: {query}

‘Waimai Instruct: Classify the customer review from a food takeaway platform into positive or negative \n Query: {query}
Clustering

ArxivClusteringP2P Instruct: Identify the main and secondary category of Arxiv papers based on the titles and abstracts \n Query: {query}

ArxivClusteringS2S Instruct: Identify the main and secondary category of Arxiv papers based on the titles \n Query: {query}

BiorxivClusteringP2P Instruct: Identify the main category of Biorxiv papers based on the titles and abstracts \n Query: {query}

BiorxivClusteringS2S Instruct: Identify the main category of Biorxiv papers based on the titles \n Query: {query}

MedrxivClusteringP2P Instruct: Identify the main category of Medrxiv papers based on the titles and abstracts \n Query: {query}

MedrxivClusteringS2S

Instruct:

Identify the main category of Medrxiv papers based on the titles \n Query: {query}

RedditClustering

Instruct:

Identify the topic or theme of Reddit posts based on the titles \n Query: {query}

RedditClusteringP2P

Instruct:

Identify the topic or theme of Reddit posts based on the titles and posts \n Query: {query}

StackExchangeClustering

Instruct:

Identify the topic or theme of StackExchange posts based on the titles \n Query: {query}

StackExchangeClusteringP2P

Instruct:

Identify the topic or theme of StackExchange posts based on the given paragraphs \n Query: {query}

TwentyNewsgroupsClustering

Instruct:

Identify the topic or theme of the given news articles \n Query: {query}

CLSClusteringS2S Instruct: Identify the main category of scholar papers based on the titles \n Query: {query}

CLSClusteringP2P Instruct: Identify the main category of scholar papers based on the titles and abstracts \n Query: {query}
ThuNewsClusteringS2S Instruct: Identify the topic or theme of the given news articles based on the titles \n Query: {query}
ThuNewsClusteringP2P Instruct: Identify the topic or theme of the given news articles based on the titles and contents \n Query: {query}

Pair Classification

Pair Classification™

Instruct:

Retrieve semantically similar text \n Query: {query}

SprintDuplicateQuestions

Instruct:

Retrieve semantically similar questions \n Query: {query}

Reranking

Reranking *

Instruct:

Given a query, retrieve documents that answer the query \n Query: {query}

AskUbuntuDupQuestions

Instruct:

Retrieve semantically similar questions \n Query: {query}

StackOverflowDupQuestions

Instruct:

Retrieve semantically similar questions \n Query: {query}

SciDocsRR Instruct: Retrieve relevant paper titles \n Query: {query}
Retrieval
Retrieval Instruct: Given a query, retrieve documents that answer the query \n Query: {query}

QuoraRetrieval

Instruct:

Retrieve semantically similar questions \n Query: {query}

CQADupstack Instruct: Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given
question \n Query: {query}
STS
STS™* Instruct: Retrieve semantically similar text \n Query: {query}
Summarization
SummEval Instruct: Retrieve semantically similar summaries \n Query: {query}
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