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Abstract
Preferential Bayesian optimization (PBO) is a
framework for optimization of a decision-maker’s
(DM’s) latent preferences. Existing work in PBO
assumes these preferences can be encoded by a
single latent utility function, which is then es-
timated from ordinal preference feedback over
design variables. In practice, however, it is of-
ten challenging for DMs to provide such feed-
back reliably, leading to poor performance. This
is especially true when multiple conflicting la-
tent attributes govern the DM’s preferences. For
example, in exoskeleton personalization, users’
preferences over gait designs are influenced by
stability and walking speed, which can conflict
with each other. We posit this is a primary reason
why inconsistent preferences are often observed
in practice. To address this challenge, we pro-
pose a framework for preferential multi-attribute
Bayesian optimization, where the goal is to help
DMs efficiently explore the Pareto front of their
preferences over attributes.Within this framework,
we propose a Thompson sampling-based strategy
to select new queries and show it performs well
across three test problems, including a simulated
exoskeleton gait personalization task.

1. Introduction
Bayesian optimization (BO) is a framework for optimizing
objective functions with expensive or time-consuming eval-
uations. It has been successful in real-world applications
such as cellular agriculture (Cosenza et al., 2022), chemical
design (Griffiths & Hernández-Lobato, 2020), and hyper-
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Figure 1: In scenarios where high-quality designs are spread
across competing goodness measures (attributes), overall
preference feedback can be challenging for DMs to provide.
In contrast, it is easier for DMs to directly give feedback
on their preferences over attributes and for the algorithm
to identify then designs on the Pareto front of preferences
over attributes. For example, in the illustration, it is easier
for the DM to provide preference feedback regarding the
stability and speed of designs A vs. B rather than providing
an overall preference between the two designs.

parameter tuning (Wu et al., 2019). Preferential Bayesian
optimization (PBO), a subframework within BO, focuses on
settings where the objective function is only measured indi-
rectly through ordinal preference feedback (often in the form
of pairwise comparisons) expressed by a decision-maker
(DM). This arises, for example, in exoskeleton personaliza-
tion, where a user assisted by an exoskeleton walks using
different gait designs and indicates the one that resulted in
more comfortable walking (Tucker et al., 2020a;b).

Prior work on PBO operates under the assumption that the
DM’s preferences can be encoded by a single latent utility
function, which is then estimated from ordinal preference
feedback. In practice, however, it is often challenging for
DMs to provide such feedback reliably, leading to poor
performance. This is particularly true in situations where
the DM considers several underlying conflicting attributes
when expressing preferences. In such cases, the standard
PBO approach expects the DM to be able to aggregate their
preferences across attributes to express overall preferences,
which can be challenging.
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For example, in exoskeleton personalization, users’ pref-
erences over gait designs are influenced by stability and
speed, which can conflict with each other. Users often have
difficulty expressing preferences over pairs of gait designs
where one produces fast but somewhat unstable walking,
and the other produces slow but quite stable walking. How-
ever, they can easily express preferences over these two
attributes individually (Figure 1). Moreover, users often
wish to explore the trade-offs between these attributes, as
this allows them to make a more informed decision before
committing to a gait design.

Using the above as motivation, we propose a framework for
preferential multi-attribute BO, where DMs express prefer-
ences over multiple attributes of interest instead of overall
preferences. Our framework aims to help DMs efficiently
explore the Pareto front of their preferences over attributes.
Our approach has the following advantages over the stan-
dard PBO approach:

1. Preferences over attributes pose a lower cognitive load
on DMs and are more reliable than overall preferences,
thus resulting in more reliable probabilistic models to
guide the search for new queries.

2. Exploring the Pareto front of preferences over at-
tributes provides better support for decision-making,
as it allows DMs to understand the trade-offs between
competing attributes before committing to a solution.

To our knowledge, our work is the first one pursuing opti-
mization of multiple latent attributes using preference feed-
back, both in and outside the BO framework.

We illustrate our framework in three test problems, including
a simulated exoskeleton personalization task. Our results
demonstrate the ability of our approach to explore the Pareto
front of the DM’s preferences over attributes.

2. Related Work
Our work is closely related to three lines of research: prefer-
ential Bayesian optimization, multi-objective optimization,
and preference aggregation. We discuss connections of our
work to these lines of research and also mention other works
relevant to our own.

Preferential Bayesian Optimization Our work can be
seen as an extension of the PBO framework to the multi-
attribute (a.k.a. multi-objective) setting. PBO was first
considered by Brochu et al. (2010) in the context of anima-
tion design. Since then, most work in this area has focused
on applications (Nielsen et al., 2015; Tucker et al., 2020b)
and the development of more sophisticated sampling poli-
cies (González et al., 2017; Nguyen et al., 2021; Astudillo

et al., 2023). In this line of research, our work is most
closely related to works considering richer forms of pref-
erence feedback. These include the best item in a menu
(Siivola et al., 2021; Astudillo et al., 2023), full ranking of
items in a menu (Siivola et al., 2021), ranking of a subset of
items in a menu (Nguyen et al., 2021), and projective feed-
back, in which the DM indicates a direction in the design
space to explore next (Mikkola et al., 2020). To our knowl-
edge, our work is the first to consider preference feedback
over multiple attributes within PBO.

Multi-Objective Optimization Multi-objective optimiza-
tion has been widely studied both in theory and its appli-
cation to different engineering problems (Miettinen, 1999;
Marler & Arora, 2004; Deb, 2013). Among this broad
literature, work on multi-objective BO is most closely re-
lated to ours (Khan et al., 2002; Knowles, 2006; Belakaria
et al., 2019; Daulton et al., 2020). Our work draws in-
spiration from the work of Knowles (2006), which lever-
ages augmented Chebyshev scalarizations to transform a
multi-objective optimization problem into multiple single-
objective optimization problems. The incorporation of user
preferences to improve efficiency in multi-objective opti-
mization has been actively studied both in and outside the
BO framework (Branke & Deb, 2005; Wang et al., 2017;
Hakanen & Knowles, 2017; Astudillo & Frazier, 2020; Lin
et al., 2022). We note that, unlike in our work, this literature
assumes that objectives (i.e., attributes) are observable.

Preference Aggregation Preference aggregation deals
with the problem of combining multiple (potentially con-
flicting) notions of preference either across multiple criteria
(i.e., attributes) or multiple users (Young, 1974; Dyer &
Sarin, 1979; Baskin & Krishnamurthi, 2009; Baumeister &
Rothe, 2016). While, in our framework, preferences across
attributes are not aggregated to retain the ability to explore
the Pareto front, our work is related to this line of research
in that preferences over multiple attributes are considered.
We also emphasize that methods in this area have been
studied outside the BO framework, which aims for sample
efficiency, so they are not readily applicable to our setting.

Other Relevant Works While not crucial to our frame-
work, our numerical experiments use Gaussian process pri-
ors to model preferences over attributes. Using Gaussian
processes to model preferences was first proposed by Chu
& Ghahramani (2005). Approximate posterior inference is
performed via the variational inducing point approach of
Hensman et al. (2015). Our sampling policy draws inspi-
ration from the self-sparring algorithm for multi-dueling
bandits (Sui et al., 2017), which has also been extended to
preference-based reinforcement learning (where it is termed
dueling posterior sampling) (Novoseller et al., 2020) and
PBO (where it is termed batch Thompson sampling).
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3. Problem Setting
We denote the space of designs or inputs by X. We assume
there are m attributes and let fj : X → R denote the DM’s
latent utility function over attribute j for j = 1, . . . ,m.
The concatenation of these utility functions is denoted by
f = [f1, . . . , fm] : X → Rm. The goal of the DM is to
find designs such that the corresponding value of each of
the m utility functions is as large as possible. As such,
our goal is to help the DM explore the Pareto front of f .
This set is defined using the notion of Pareto-dominance.
For a pair of actions x, x′ ∈ X, x Pareto dominates x′ if
fj(x) ≥ fj(x

′) for j = 1, . . . ,m and the inequality is
strict for at least one index j. We write x ≻f x′ to denote
that x Pareto-dominates x′ with respect to f . The Pareto-
optimal set of f is X∗ := {x : ∄ x′ s.t. x′ ≻f x}. The set
Y∗ := {f(x) : x ∈ X∗} is called the Pareto front of f .

To support the DM’s goal, an algorithm collects preference
feedback interactively (Algorithm 1). Concretely, at every
iteration, an algorithm selects a query, Xn = (xn,1, xn,2) ∈
X2, where n = 1, . . . , N denotes the iteration number. The
DM then expresses their most preferred design between
xn,1 and xn,2 with respect to each attribute. This response
is encoded as a vector r(Xn) ∈ {1, 2}m, where rj(Xn),
the j-th entry of r(Xn), is 1 if the DM prefers xn,1 over
xn,2 with respect to attribute j and 2 otherwise. We shall
sometimes denote r(Xn) more compactly by rn.

For each attribute j, we model noise in the DM’s response
via a Logistic likelihood of the form

P (rj(Xn) = 1) =
exp (fj(xn,1)/λj)

exp (fj(xn,1)/λj) + exp (fj(xn,2)/λj)
,

where λj > 0 is the noise-level parameter we can estimate
along with other parameters in our model. We assume
noise is independent across attributes and interactions. As
is standard in BO, we place a prior distribution over f . We
denote this prior distribution by p0. Let D0 denote the
initial data set and Dn−1 = D0∪{(Xk, rk)}n−1

k=1 denote the
preference information collected before the n-th interaction
with the DM. The posterior distribution on f given Dn−1 is
denoted by pn. In our experiments, we model each attribute
independently using a Gaussian process prior. However,
more sophisticated priors can be used.

Since our goal is to help DMs explore the Pareto front
of their preferences over attributes, we quantify the per-
formance of an algorithm using the hypervolume indica-
tor. Previous work has shown that maximizing hypervol-
ume results in Pareto fronts with good coverage (Zitzler
et al., 2003). If Ŷ∗ = {yℓ}Lℓ=1 is a finite approxima-
tion of the Pareto front of f , its hypervolume is given by
HV(Ŷ∗, r) = λm

(⋃L
ℓ=1 [r, yℓ]

)
, where r ∈ Rm is a refer-

ence point, λm denotes the m-dimensional Lebesgue mea-
sure, and [r, yℓ] denotes the hyper-rectangle bounded by

Algorithm 1 Preferential Multi-Attribute BO Loop

Input Initial dataset: D0, and prior distribution over f : p0.
for n = 1, · · · , N do

Compute pn, the posterior on f given Dn−1.
Sample θ̃n uniformly at random over Θ.
Draw samples f̃n,1, f̃n,2

iid∼ pn.
Find xn,i ∈ argmaxx∈X c(x | θ̃n, f̃n,i) i = 1, 2.
Set Xn = (xn,1, xn,2) and observe feedback, rn.
Update data set Dn = Dn−1 ∪ {(Xn, rn)}.

end for

the vertices r and yℓ. In our experiments, we report perfor-
mance by taking Ŷ∗ as the set of Pareto optimal attribute
vectors corresponding to designs shown to the DM so far.

4. Sampling Policy
Our sampling policy combines two key ideas. First, we
leverage the ability of augmented Chebyshev scalarizations
to transform a multi-objective optimization problem into
multiple single-objective optimization problems, as we de-
scribe below. At every iteration, we then randomly select
one of the single-objective problems obtained by fixing an
augmented Chebyshev scalarization and sample a pair of
designs independently according to the posterior probabil-
ity of being a solution to this problem. The second step
draws inspiration from the self-sparring sampling policy for
multi-dueling bandits (Sui et al., 2017) and its extension
to PBO (Siivola et al., 2021). We call our sampling policy
scalarized dueling Thompson sampling.

Augmented Chebyshev Scalarizations For a given ob-
jective function, f , and a set of parameters, θ ∈ Θ =
{θ ∈ Rm :

∑m
j=1 θj = 1 and θj ≥ 0, j = 1, . . . ,m}, a

Chebyshev scalarization function is defined by

c(x | θ, f) = min
j=1,...,m

{θjfj(x)}+ ρ

m∑
j=1

θjfj(x),

where ρ is a small positive constant. It can be shown that
any solution of the problem maxx∈X c(x | θ, f) lies in the
Pareto-optimal set of f . Conversely, if ρ is small enough,
every point in the Pareto-optimal set of f is a solution of
maxx∈X c(x | θ, f) for some θ ∈ Θ (Miettinen, 1999). This
is often used as a mechanism to transform a multi-objective
optimization problem into multiple single-objective opti-
mization problems obtained by drawing many scalarization
parameters uniformly at random over Θ. In Bayesian opti-
mization, in particular, this is the approach pursued by the
seminal work of Knowles (2006). We also leverage this to
derive a sound sampling policy in our setting.
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Scalarized Dueling Thompson Sampling Formally, our
sampling policy is defined as follows. At each iteration
n, we draw a sample from the scalarization parameters
uniformly at random over Θ, denoted by θ̃n. We also draw
two independent samples, denoted by f̃n,1 and f̃n,2, from
the posterior distribution on f given Dn. The next query is
then given by Xn = (xn,1, xn,2), where

xn,i ∈ argmax
x∈X

c(x | θ̃n, f̃n,i), i = 1, 2.

Intuitively, our sampling policy works as follows. First, θ̃n
determines a subset of the Pareto-optimal set of f , namely,
X∗

θ̃n
= argmaxx∈X c(x | θ̃n, f̃n,i). Then, each xn,i is sam-

pled according to the probability induced by the posterior
distribution on f that xn,i ∈ X∗

θ̃n
, in the same vein as stan-

dard dueling posterior sampling. The DM’s responses allow
us to learn about the relative order of xn,1 vs. xn,2 for each
of the attributes, which in turn allow us to learn about X∗

θ̃n
.

Finally, since θ̃n is being drawn independently at each itera-
tion, we are able to learn for a diverse collection of subsets
X∗

θ̃n
within X∗.

5. Numerical Experiments
We compare the performance of our sampling policy (SDTS)
against random sampling (Random), which samples each
query uniformly at random over the design space. We also
include the performance of a standard PBO approach fed
with inconsistent overall preference feedback (PBO-DTS-
IF), which we describe in detail below. The posterior distri-
butions for both SDTS and PBO-DTS-IF are approximated
via the variational inducing point approach of Hensman et al.
(2015) using the implementation provided by Astudillo et al.
(2023). Approximate samples from the posterior distribu-
tion used by both SDTS and I-PBO-DTS are obtained via
1000 random Fourier features (Rahimi & Recht, 2007).

We report performance across two synthetic test problems
(DTLZ1 and Car Side Impact) and a simulated exoskeleton
gait design task (Exoskeleton). Details for these test prob-
lems are provided below. In all problems, an initial data set
is obtained using 2(d+ 1) queries chosen uniformly at ran-
dom over X2, where d is the input dimension of the problem.
After this initial stage, each algorithm was used to select 100
additional queries sequentially. Figure 2 shows the mean of
the hypervolume of the designs included in queries thus far,
plus and minus 1.96 times the standard deviation divided by
the square root of the number of replications. Each experi-
ment was replicated 30 times using different initial data sets.
In all problems, the DM’s responses are corrupted by low
levels of Gumbel noise (which is consistent with the use of
a Logistic likelihood).

PBO with Inconsistent Overall Preference Feedback
As a baseline, we also include a standard PBO approach us-
ing inconsistent overall preference feedback. Such feedback
is produced as follows. At each iteration n, a set of scalar-
ization parameters θ̃n, is drawn uniformly at random over
Θ. We assume the DM then provides a noisy response to the
query “Is c(x1; θ̃n, f) > c(x2; θ̃n, f)?”. These responses
are used to fit a (single-output) Gaussian process with a Lo-
gistic likelihood. New queries are generated following the
standard dueling Thompson sampling (a.k.a. dueling poste-
rior sampling) strategy under this probabilistic model. We
argue this baseline mimics a practical scenario where stan-
dard PBO is used under inconsistent preference feedback.
Inconsistency arises from sampling different scalarization
parameters at every iteration, imitating the DM’s need to ex-
plore the Pareto front before committing to a solution. The
performance of this method is expected to be poor when the
Pareto-optimal set is large, i.e., when the trade-offs between
attributes are significant.

DTLZ1 and Car Side Impact These test functions are
standard benchmarks from the multi-objective optimization
literature. DTLZ1 has m = 2 attributes and d = 6 de-
sign variables. We refer the reader to Deb et al. (2005)
for more details. The car side impact test function is de-
signed to emulate various metrics of interest in the context
of crashworthiness vehicle design. This problem has m = 4
attributes and d = 7 design variables. We refer the reader
to Tanabe & Ishibuchi (2020) for further details. Results
for these two experiments can be found in Figures 2b and
2c. Our approach outperforms PBO with inconsistent pref-
erence feedback and random sampling consistently.

Atalante Exoskeleton Simulation We evaluate our al-
gorithm on a surrogate preference landscape model of the
lower-body exoskeleton Atalante over a gait design space.
The surrogate model was built by fitting an independent
(regular) Gaussian process to each attribute using the results
of 500 simulations over gait designs drawn uniformly at
random over the design space.

We parameterize the gait design space through the following
five constraints used in the gait generation process: step
length, minimum center of mass position with respect to
stance foot in sagittal and coronal plane, minimum foot
clearance, and percentage of the gait at which the minimum
foot clearance is enforced. For each set of constraints, a non-
linear optimization problem is solved using FROST toolbox
(Hereid & Ames, 2017) to generate the gait. This gait is then
simulated in Mujoco to obtain the corresponding attributes.
In our experiment, we assume that user preference can be
described by the following four attributes: average speed
(faster speed is preferred), maximum pelvis acceleration (as
an approximation of trajectory smoothness), the center of
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Figure 2: Our framework was demonstrated on three test problems: DTLZ1 (left); Car Side Impact (center); and Exoskeleton
(right). As illustrated, our proposed method (SDTS) achieves larger hypervolume values in fewer samples compared to
random sampling (Random) and standard PBO with inconsistent preference feedback (PBO-DTS-IF).

Figure 3: Example of two exoskeleton gaits with different attributes. The top gait illustrates a gait with a high stability and
low speed, while the bottom gait illustrates a gait with low stability but high speed.

mass tracking error (as an approximation of stability), and
center of pressure tracking error (as another approximation
of stability). Example gait tiles can be found in Figure 3.

The results of this experiment are illustrated in Figure 2c.
As in the previous examples, our proposed approach ac-
celerated the rate of Pareto front exploration (evaluated by
hypervolume) compared to benchmark methods.

6. Conclusion and Future Work
In this work, we proposed a framework for preferential
multi-attribute BO, where the goal is to help decision-
makers explore the Pareto front of their preferences over
attributes of interest. To our knowledge, our work is the first
one to consider optimization of multiple latent attributes us-
ing preference feedback, both in and outside the BO frame-
work. We argued and provided empirical evidence that this
approach has multiple advantages over the standard PBO
approach. Within our proposed framework, we developed
a Thompson sampling-based strategy to select queries. We
showed this strategy provides a better exploration of the

Pareto front than random sampling and a standard preferen-
tial Bayesian optimization approach fed with inconsistent
preference feedback across three test problems, including a
simulated exoskeleton gait customization task.

There are many exciting directions for future work. Our
framework is currently limited to the use of preferences
over individual attributes. However, in some situations, the
decision-maker may be able to articulate overall preferences
over a pair of designs. A framework able to combine such
sporadically available overall preferences with preferences
over individual attributes could help focus the search of
new queries in regions of the Pareto front that are more
relevant to the decision-maker, thus increasing sampling
efficiency (Astudillo & Frazier, 2020; Lin et al., 2022). We
are also interested in developing more principled sampling
policies within our framework. For example, the recent
work of Astudillo et al. (2023) provided an efficient scheme
to approximately compute the one-step optimal policy in
the standard PBO setting and showed it outperforms several
popular baseline methods. It would be interesting to study
if such an approach could be extended to our setting.
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