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ABSTRACT

Developing fair automated machine learning algorithms is critical in making safe
and trustworthy decisions. Many causality-based fairness notions have been pro-
posed to address the above issues by quantifying the causal connections between
sensitive attributes and decisions, and when the true causal graph is fully known,
certain algorithms that achieve counterfactual fairness have been proposed. How-
ever, when the true causal graph is unknown, it is still challenging to effectively and
well exploit partially directed acyclic graphs (PDAGs) to achieve counterfactual
fairness. To tackle the above issue, a recent work suggests using non-descendants
of sensitive attribute for fair prediction. Interestingly, in this paper, we show it is
actually possible to achieve counterfactual fairness even using the descendants of
the sensitive attribute for prediction, by carefully control the possible counterfac-
tual effects of the sensitive attribute. We propose a general min-max optimization
framework that can effectively achieve counterfactual fairness with promising pre-
diction accuracy, and can be extended to maximally oriented PDAGs (MPDAGs)
with added background knowledge. Specifically, we first estimate all possible
counterfactual treatment effects of sensitive attribute on a given prediction model
from all possible adjustment sets of sensitive attributes. Next, we propose to alterna-
tively update the prediction model and the corresponding possible estimated causal
effects, where the prediction model is trained via a min-max loss to control the
worst-case fairness violations. Extensive experiments on synthetic and real-world
datasets verifying the effectiveness of our methods.

1 INTRODUCTION

Making automated machine learning algorithms fair is critical to producing safe and trustworthy deci-
sions for subgroups or individuals with different sensitive attributes (e.g., gender and race) (Brennan
et al., 2009; Dieterich et al., 2016; Hoffman et al., 2018; Chouldechova et al., 2018). To achieve
fair predictions, association-based and causality-based fairness notions have been proposed. Specifi-
cally, association-based fairness investigates the statistical independence between sensitive attributes
and predicted outcomes (Chouldechova, 2017; Dwork et al., 2012; Hardt et al., 2016), whereas
causality-based subgroup fairness constrains the causal effect of sensitive attributes on predicted
outcomes (Zhang and Bareinboim, 2018; Zhang et al., 2017a;b; 2018a;b).

Among the above fairness notions, counterfactual fairness (Kusner et al., 2017; Chiappa, 2019; Nabi
and Shpitser, 2018; Wu et al., 2019b) considers causal effects within particular individuals or groups,
requiring that the predicted outcomes be the same across the real-world without intervention and the
counterfactual world with intervention on sensitive attributes. Despite many algorithms have been
developed to achieve counterfactual fairness, most of them require the true causal directed acyclic
graph (DAG) is fully known. Nevertheless, true causal DAGs and structural equations are usually not
directly available in practice. Moreover, without strong assumptions, e.g., linearity (Shimizu et al.,
2006) and additive noise (Hoyer et al., 2008; Peters et al., 2014), the true causal DAG may not be
recoverable from only the observed data, which raises a great challenge to achieve counterfactual
fairness based on partially directed acyclic graphs (PDAGs).

To tackle the above problem, a recent work (Zuo et al., 2022) proposes to use observed data to
first classify variables into three categories: definite non-descendants, possible descendants, and
definite descendants of the sensitive attributes. Next, by noting that a prediction model would
be counterfactually fair if the prediction model is a function of the non-descendants of sensitive
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Table 1: Comparison of methods to achieve coun-
terfactual fairness from PDAGs. Both FAIR and
FAIRRELAX employ a two-stage approach: they
first learn a CPDAG from observed data, and then
make prediction with the definite non-descendants
(and possible descendants) of the sensitive attribute.
Our method alternatively updates the predictions
using all variables and possible counterfactual
treatment effects via a min-max optimization.

Variable types FAIR FAIRRELAX OURS

Definite non-descendants ✓ ✓ ✓
Possible descendants × ✓ ✓
Definite descendants × × ✓

(a) A sample true DAG. (b) CPDAG of (a).

Figure 1: A toy example for illustration: FAIR
has no available variables for prediction;
FAIRRELAX uses {X1, X2} without further
fairness constraint; OURS uses {A,X1, X2}
with a min-max constraint bounding all possi-
ble counterfactual treatment effect.

attributes (Kusner et al., 2017), two algorithms are proposed to achieve counterfactual fairness as
shown in Table 1: FAIR, which makes predictions using definite non-descendants, and FAIRRELAX,
which further incorporates possible descendants to make predictions.

Despite being theoretically sound, as shown in Table 1, both FAIR and FAIRRELAX forbid all definite
descendants during the prediction model training, which results in very few attributes available for
making prediction, which may significantly decreasing the accuracy. Especially, the sensitive attribute
is usually an inherent nature of data hence many attributes are its descendants (Wu et al., 2019a).

We proceed with a toy example for illustration: Figure 1(a) shows a sampled DAG as the ground-truth,
and given the observed data, FAIR and FAIRRELAX algorithms first learn a Markov equivalence
class of DAGs that encode the same set of conditional independencies from the data, also known as a
completely partially directed acyclic graph (CPDAG), as shown in Figure 1(b). One on hand, the
definite non-descendants of sensitive attribute A is a empty set, thus FAIR is unable to give valid
predictions. On the other hand, the possible descendants of the sensitive attribute A are {X1, X2},
thus FAIRRELAX uses both X1 and X2 to predict Y by minimizing the empirical risk without
imposing any further fairness constraint. However, such relaxation would lead to a serious violation
of counterfactual fairness, due to the nodes used (X1 and X2 in this example) for outcome regression
might be descendants of the sensitive attribute A in the true DAG, as in Figure 1(a).

In this paper, we propose a general min-max optimization framework to achieve counterfactual
fairness. Different from the previous variable selection-based methods, we exploit all variables to
ensure relatively high prediction accuracy as in Table 1. Specifically, we first estimate all possible
counterfactual treatment effects of sensitive attribute on predictions for a given prediction model.
To estimate all possible causal effects, instead of enumerating all possible DAGs in the learned
Markov equivalence class, inspired by the IDA framework (Maathuis et al., 2009), we propose a
local algorithm to obtain possible adjustment sets of the sensitive attributes. Next, we propose to
alternatively update the prediction model and the corresponding estimation of the possible causal
effects, where the prediction model is trained via a min-max loss to control the worst-case fairness
violations. Meanwhile, we show the proposed framework can be extended to maximally oriented
PDAGs (MPDAGs) with added background knowledge.
The main contributions of this paper are:

• We propose a general min-max optimization framework to achieve counterfactual fairness,
which enables to use all variables to achieve relatively high prediction accuracy, and can be
extended to MPDAGs with added background knowledge.

• Based on the proposed framework, we provide an efficient algorithm to estimate all possible
causal effects of sensitive attribute on predictions for MPDAGs.

• We further provide a joint learning approach that alternatively updates the prediction model
and the corresponding estimation of the possible causal effects, where the prediction model
is trained via a min-max loss to control the worst-case fairness violations.

• We conduct extensive experiments on synthetic and real-world datasets to demonstrate the
effectiveness of our methods in achieving counterfactual fairness with promising accuracy.
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2 PRELIMINARIES

2.1 DAGS, PDAGS, CPDAGS, AND MPDAGS

In a graph G = (V,E), where V and E represent the node set and edge set in G, we say G is directed,
undirected, or partially directed if all edges in the graph are directed, undirected, or a mixture
of directed and undirected edges, respectively. The skeleton of G is an undirected graph obtained
by removing all arrowheads from G. Given a graph G, an Xi is called a parent of Xj and Xj is
called a child of Xi if Xi → Xj in G. Also, Xi is a sibling of Xj if Xi −Xj in G. If Xi and Xj

are connected by an edge, they are adjacent. The notation pa(Xi,G), ch(Xi,G), sib(Xi,G), and
adj(Xi,G) respectively represent sets of parents, children, siblings, and adjacent vertices of Xi in
G. A graph is termed complete if all distinct vertices are adjacent. A path is a sequence of distinct
vertices (Xk1 , · · · , Xkj ) where any two consecutive vertices are adjacent. If all distinct vertices in a
graph are connected by a path, then the graph is connected. A path is called partially directed from
Xk1 to Xkj if Xki ← Xki+1 does not occur in G for any i = 1, . . . , j − 1. If all edges on the path
are directed (undirected), then the partially directed path is directed (respectively undirected).

In a directed acyclic graph (DAG), all edges are directed and there is no directed cycle. A partially
directed acyclic graph (PDAG) may contain both directed and undirected edges without directed
cycles. Two DAGs are Markov equivalent if they induce the same set of conditional independence
relations (Pearl, 1988). A Markov equivalence class, denoted by [G], contains all DAGs equivalent
to G. A Markov equivalence class can be uniquely represented by a partially directed graph called
completely partially directed acyclic graph (CPDAG) G∗, in which two vertices are adjacent if and
only if they are adjacent in G, and a directed edge occurs if and only if it appears in all DAGs in
[G] (Chickering, 2002a). Given explicit knowledge of some causal relationships between variables,
or some model restrictions, one can obtain a refinement of this class, uniquely represented by a
maximally oriented partially directed acyclic graphs (maximal PDAGs or MPDAGs).

2.2 COUNTERFACTUAL INFERENCE

We follow Pearl (2000) to define the structural causal model (SCM) as a triplet (U, V, F ) to describe
the causal relationships between variables. Specifically, V is a set of observable endogenous variables
and U is a set of latent independent background variables that cannot be caused by any variable in V .
F is a set of functions

{
f1, . . . , f|V |

}
, one for each Vi ∈ V , such that Vi = fi (pai, Ui), where

pai ⊆ V \ {Vi} and Ui ∈ U . Notably, the set of equations F induces a directed graph over the
variables, here assumed to be a DAG, where the directed causes of Vi represents its parent set in the
causal graph. Given a distribution P (U) over the background variables U , an intervention on variable
Vi is defined as the substitution of equation Vi = fi (pai, Ui) with the equation Vi = v for some v.

Based on SCM, counterfactual inference aims to answer counterfactual questions in the counterfactual
world. For example, in the context of fairness, let A, Ŷ , and X denote sensitive attributes, decision-
making on that individual, and other observable attributes, respectively. For an individual with
background variables U = u, and observable variables A = a, Ŷ = y, and X = x, the counterfactual
problem is formulated as "what would the value of Ŷ be had A taken another value a′", formally
denoted as ŶA←a(U). To solve the above counterfactual problem, counterfactual inference consists of
the following three steps: Abduction, Action, and Prediction, as explained in more details in Chapter
4 of (Pearl et al., 2016) and Chapter 7.1 of (Pearl, 2000).

2.3 COUNTERFACTUAL FAIRNESS

Counterfactual fairness is a fairness criterion based on SCMs, which can be examined by using the
aforementioned counterfactual inference. Let A, Y , and X denote sensitive attributes, outcomes
of interest, and other observable attributes, and Ŷ be a predictor produced by a machine learning
algorithm as a prediction of Y . We say Ŷ is counterfactually fair towards an individual if it is the
same in (a) the factual world and (b) a counterfactual world where the individual belonged to a
different demographic group, i.e., the counterfactual treatment effect is zero (Mitchell et al., 2021).
Definition 2.1 (Counterfactual fairness). Predictor Ŷ is counterfactually fair if under any context
X = x and A = a, we have

P
(
ŶA←a(U) = y | X = x,A = a

)
= P

(
ŶA←a′(U) = y | X = x,A = a

)
,

for all y and for any value a′ attainable by A.
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3 A GENERAL MIN-MAX OPTIMIZATION FRAMEWORK

3.1 MOTIVATION

When the true causal graph is unknown, to the best of our knowledge, Zuo et al. (2022) performed
the first work to obtain a counterfactual fairness predictor on a MPDAG, which focuses on utilizing
the properties of the causal graph (Level 1 in (Kusner et al., 2017)) – to make predictions with the
definite non-descendants (and possible descendants) of the sensitive attribute, as shown in Table
1. However, further incorporating the descendants of sensitive attribute into the predictor may also
achieve counterfactual fairness by "cancelling out" the counterfactual treatment effects, which utilizes
the observed variables more sufficiently and further improves the accuracy of the prediction.

We provide an intuition for the rationality and the advantages of using all variables by adopting the
toy example in Figure 1. Suppose the structural equations in Figure 1(a) are: A = UA, X1 = A+U1,
X2 = A+ U2, and Y = 2X1 +X2 + UY , which satisfies the faithfulness assumption (Uhler et al.,
2013). In such a case, as discussed before, the FAIR algorithm proposed in Zuo et al. (2022) prevents
all variables from predicting Y , while the FAIRRELAX algorithm uses both X1 and X2 to predict Y
without imposing any fairness constraints, and therefore cannot achieve counterfactual unfairness,
since X1 and X2 are descendants of A. To achieve more accurate predictions with counterfactual
fairness guarantees, one may notice that a function of X1 −X2 can be used to predict Y . On the
one hand, this is strictly counterfactually fair due to the fact that X1 − X2 = U1 − U2, which is
independent of the sensitive attribute A. On the other hand, this is informative for predicting Y due
to Cov(X1 −X2, Y ) = 2Var(U1)−Var(U2) ̸= 0.

However, the true DAG and the corresponding structural equations are unknown in many real-world
scenarios, which poses a great challenge to estimate the possible counterfactual treatment effects. To
address this problem, an intuitive approach is to first find a Markov equivalence class over all vertices,
which can be achieved using standard causal discovery methods, e.g., PC (Spirtes et al., 2000) and
GES (Chickering, 2002b), and then to globally enumerate all the possible DAGs in the equivalence
class and estimate their causal effects for each. However, as discussed in Section 7 of (Zuo et al.,
2022), this intuitive way to enumerate all DAGs is computationally expensive and unrealistic.

3.2 A LOCAL ALGORITHM FOR FINDING POSSIBLE ADJUSTMENT SETS AND PROPENSITIES

Instead of searching globally for all possible DAGs, we adopt a novel framework called IDA (Maathuis
et al., 2009; Fang, 2020), which can list all possible parent sets in CPDAG quickly. We further
generalized the above theoretical results to MPDAGs with background knowledge added, and
propose a local algorithm for finding possible adjustment sets and estimating corresponding possible
propensities. As we will see later in Section 3.3, these counterfactual quantities can be sufficient to
help us control for all possible counterfactual treatment effects used to assess counterfactual fairness.

Specifically, for three distinct vertices Xi, Xj and Xk, if Xi → Xj ← Xk and Xi is not adjacent
to Xk in G, then the triplet (Xi, Xj , Xk) is called a v-structure collided on Xj . Pearl (2000) have
shown that two DAGs are equivalent if and only if they have the same skeleton and the same
v-structures. Given a CPDAG G∗ contains all DAGs equivalent to G, let S(A) be a subset of
sib(A,G∗), and G∗S(A)→A denote a graph that is obtained from G∗ by changing all undirected edges
{Z − A,∀Z ∈ S(A)} into the directed edges {Z → A,∀Z ∈ S(A)} and all of other undirected
edges {Z −A,∀Z ̸∈ S(A)} into the directed edges with opposite direction {Z ← A,∀Z ̸∈ S(A)}.
We say S(A) → A is a possible parent set of the sensitive attribute A for G∗, if there is a DAG G
in the equivalence class G∗ with the same directed edges adjacent to A as G∗S(A)→A. Motivated by
IDA (Maathuis et al., 2009), we show a sufficient and necessary condition for determining whether a
set S(A) ⊂ sib(A,G∗) is a possible parent set of the sensitive attribute A in below.

Proposition 3.1. Given a CPDAG G∗, a set S(A) ⊂ sib(A,G∗) is a possible parent set of the
sensitive attribute A, if and only if there is no more v-structure in G∗S(A)→A comparing G∗.

For MPDAG, as discussed in Fang (2020), a key difference compared with CPDAG is the possible
generation of a directed triangular cycle (e.g., A → X1 → X2 → A), when incorporating the
background knowledge and using Meek’s rule for orienting undirected edges adjacent to the sensitive
attribute A. Motivated by such difference, in proposition 3.2, we generalize the above theoretical
results to MPDAGs for determining possible parent sets of the sensitive attribute A.
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Algorithm 1: A local algorithm for finding possible adjustment sets and estimating corresponding
propensity model parameters of the sensitive attribute A further using direct causal information.
Input: Sensitive attribute A, CPDAG G∗, and consistent direct causal information set Bd.

1 Construct the MPDAGH from G∗ and Bd using Meek’s rules;
2 Set SA = ∅ and m = 1;
3 for each S(m) ⊂ sib(A,G∗ orH) such that orienting S(m) → A and A→ sib(A,G∗ orH)
\S(m) does not introduce any v-structure collided on A or any directed triangle containing A
do

4 for number of steps for training the possible propensity model on S(m) do
5 Sample a batch of units {(amk

, xmk
|S(m))}Kk=1;

6 Update ϕ̂(m) by descending along the gradient∇ϕ̂(m)ℓ(ϕ̂(m);S(m));
7 end
8 SA ← SA ∪ S(m) and m← m+ 1;
9 end

Output: A set SA of possible adjustment sets S(m) and propensity model parameters ϕ̂(m).

Proposition 3.2. Given an MPDAGH, a set S(A) ⊂ sib(A,H) is a possible parent set of A, if and
only if there is no more direct triangle and v-structure inHS(A)→A comparingH.

Empirically, propositions 3.1 and 3.2 can be implemented in a local manner as follows. For any
vertex set V ′ ⊆ V , we define the induced subgraph of G = (V,E) over V ′ by restricting the edges E
on the set of vertices V ′. Therefore, the edge set E′ of the induced subgraph G′ = (V ′, E′) is defined
as the subset of E containing all edges with both endpoints in V ′. Then proposition 3.1 is equivalent
to check whether the induced subgraph of G∗ over S(A) is complete, whereas proposition 3.2 is
equivalent to checking whether the induced subgraph ofH over S(A) is complete, as well as there
does not exist S ∈ S(A) and C ∈ adj(A,H)\ (S(A) ∪ pa(A,H)) such that C → S. This provides
a computationally convenient way to locally find the possible parent sets of the sensitive attribute A.

Next, to estimate the counterfactual quantity ŶA←a, i.e., the counterfactual outcome of the predictor
Ŷ when setting the value of the sensitive attribute A to a. We propose to first estimate P (A | pa(A)),
called propensity, for each possible DAG in the Markov equivalence class. Specifically, for each
possible parent set S(m) ∈ SA for m = 1, . . . , |SA|, we regress the sensitive attribute A using the
observed variables X restricted on S(m), denoted as X|S(m) . We train the corresponding propensity
model g(X|S(m) ; ϕ̂(m)) for estimating P (A | S(m)) by minimizing the cross-entropy loss

ℓ(ϕ̂(m);S(m)) = − 1

N

N∑
i=1

[
Ai log g(xi|S(m) ; ϕ̂(m)) + (1−Ai) log

(
1− g(xi|S(m) ; ϕ̂(m))

)]
,

where ϕ̂(m) is the learned parameter of the propensity model, and ê(m)
i = g(xi|S(m) ; ϕ̂(m)) is the

estimated propensity of unit i corresponding to the possible parent set S(m) for i = 1, . . . , N and
m = 1, . . . , |SA|. We summarized the proposed local algorithm in Alg. 1, where the text in blue
color represents the extra steps in implementation on MPDAG compared with CPDAG.

3.3 QUANTIFYING AND BOUNDING COUNTERFACTUAL FAIRNESS

We then aim to estimate and bound all possible counterfactual treatment effects of sensitive attribute
A on the predictor Ŷ , begin with the counterfactual independence theorem in Pearl et al. (2016).

Lemma 3.3 (Counterfactual independence theorem, in Section 4.3.2 of Pearl et al. (2016)). Given an
ordered pair of variables (A, Ŷ ) in a DAG G, suppose a set of variables Z satisfies the condition that
no node in Z is a descendant of A and that Z blocks every path between A and Y that contains an
arrow into A. Then, for all a, the counterfactual ŶA←a is conditionally independent of A given Z

P
(
ŶA←a | A,Z

)
= P

(
ŶA←a | Z

)
.
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Algorithm 2: A min-max optimization approach alternatively updating possible counterfactual
treatment effect models and prediction model controlling the worse-case fairness violations.
Input: Sensitive attribute A, outcome of interest Y , and other observable attributes X , possible

adjustment sets S(m) and propensity model parameters ϕ̂(m) from Alg. 1.
1 while stopping criteria is not satisfied do
2 for m = 1, . . . , |SA| do
3 for number of steps for training the possible counterfactual treatment effect model do
4 Sample a batch of units {(amk

, xmk
, ymk

)}Kk=1;
5 Update ψ̂(m) by descending along the gradient∇ψ̂(m)ℓ(ψ̂(m); θ);
6 end
7 Compute possible counterfactual treatment effects τ̂ (m)

i = h(xi|S(m) ; ψ̂(m));
8 end
9 for number of steps for training the prediction model do

10 Sample a batch of units {(al, xl, yl)}Ll=1;
11 Update θ by descending along the gradient of min-max loss∇θℓ(θ; ψ̂(1), . . . , ψ̂(|SA|));
12 end
13 end

In order to identify and estimate the counterfactual outcomes of the predictor Ŷ , we consider Ŷ as a
new node in the causal graph. Despite the true graph is unknown, a key observation is that Ŷ cannot
be a parent node of the sensitive attribute A, i.e., Ŷ /∈ pa(A,G), since the sensitive attribute cannot
be affected by the predictor. Notably, the parent set pa(A,G) satisfies the above conditions in lemma
3.3, i.e., no node in pa(A,G) is a descendant of A, as implied by the definition of pa(A,G), and
pa(A,G) blocks every path between A and Ŷ that contains an arrow into A, since pa(A,G) contains
all nodes directed to A. This illustrates the sufficiency of adjusting the parent sets of the sensitive
attribute A for identifying the counterfactual treatment effect of A on Ŷ , with a high-level conclusion
that under the parental Markov condition, i.e., every variable is independent of all its non-descendants
conditional on its parents. We formally state the identifiability result in the following.

Proposition 3.4. Under the parental Markov condition and the consistency assumption that ŶA←a is
the same as Ŷ under A = a, for any predictor Ŷ /∈ pa(A,G), we have

P (ŶA←a = y|pa(A) = z) = P (ŶA←a = y|pa(A) = z,A = a) = P (Ŷ = y|pa(A) = z,A = a).

Then the counterfactual outcome of the sensitive attribute on the predictor is equivalent to

P (ŶA←a = y) =
∑
z

P (Ŷ = y,A = a|pa(A) = z)

P (A = a|pa(A) = z)
P (pa(A) = z) ,

where the conclusion follows from the proposition 3.4 and the total probability formula. Given
ê
(m)
i = g(xi|S(m) ; ϕ̂(m)) as the estimates of the propensity P (A = a|pa(A) = z) in Section

3.2, we build a counterfactual treatment effect model for each possible parent set S(m) for m =

1, . . . , |SA|, and train the counterfactual treatment effect model h(xi|S(m) ; ψ̂(m)) = τ̂
(m)
i to estimate

P (ŶA←1(U) = yi | X = xi, A = ai)− P (ŶA←0(U) = yi | X = xi, A = ai)
1 by minimizing

ℓ(ψ̂(m); θ) =

N∑
i=1

(
AifA←1(xi; θ)

ê
(m)
i

− (1−Ai)fA←0(xi; θ)

1− ê(m)
i

− h(xi|S(m) ; ψ̂(m))

)2

,

where fA←1(xi; θ) represents the predicted outcome of unit i using the outcome predictor f(xi; θ) =
Ŷi had the sensitive attribute taken the value of Ai = 1 (and other variables had taken the value of
XAi←1). Remarkably, h(xi|S(m) ; ψ̂(m)) = τ̂

(m)
i aims to evaluate the counterfactual fairness of the

predictor Ŷ , thus strictly depends on the form of the predictor Ŷ = f(x; θ).
1This parameter of interest would be unidentifiable when any node in X lies on the causal path from A to Ŷ .

Therefore, for each possible DAG, we first adopt IDA framework (Maathuis et al., 2009) to locally determine the
parent nodes of A, then only use these nodes as input to train the corresponding treatment effect model.
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Table 2: Average RMSE and unfairness for synthetic datasets on the held-out test set.
Noise = 1.5 NODE = 10, EDGE = 20 NODE = 20, EDGE = 40 NODE = 30, EDGE = 60 NODE = 40, EDGE = 80

Method RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓
Oracle 0.757 ± 0.349 0.000 ± 0.000 0.579 ± 0.245 0.000 ± 0.000 0.571 ± 0.194 0.000 ± 0.000 0.578 ± 0.200 0.000 ± 0.000

Full 0.576 ± 0.218 0.195 ± 0.232 0.494 ± 0.133 0.095 ± 0.128 0.542 ± 0.196 0.063 ± 0.083 0.538 ± 0.183 0.067 ± 0.113
Unaware 0.587 ± 0.219 0.150 ± 0.208 0.498 ± 0.134 0.058 ± 0.095 0.544 ± 0.196 0.050 ± 0.076 0.540 ± 0.183 0.043 ± 0.066
FairRelax 0.653 ± 0.256 0.142 ± 0.201 0.586 ± 0.217 0.055 ± 0.092 0.603 ± 0.241 0.045 ± 0.068 0.611 ± 0.254 0.041 ± 0.068
Fair 0.747 ± 0.293 0.128 ± 0.200 0.627 ± 0.223 0.050 ± 0.074 0.661 ± 0.263 0.043 ± 0.067 0.630 ± 0.292 0.038 ± 0.059

Ours 0.623 ± 0.210 0.119 ± 0.175 0.561 ± 0.126 0.049 ± 0.073 0.597 ± 0.185 0.037 ± 0.054 0.606 ± 0.178 0.036 ± 0.054

Noise = 2.5 NODE = 10, EDGE = 20 NODE = 20, EDGE = 40 NODE = 30, EDGE = 60 NODE = 40, EDGE = 80

Method RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓ RMSE ↓ Unfairness ↓
Oracle 0.729 ± 0.344 0.000 ± 0.000 0.874 ± 0.625 0.000 ± 0.000 0.801 ± 0.497 0.000 ± 0.000 0.820 ± 0.472 0.000 ± 0.000

Full 0.667 ± 0.274 0.185 ± 0.189 0.761 ± 0.440 0.150 ± 0.425 0.736 ± 0.417 0.075 ± 0.087 0.729 ± 0.334 0.110 ± 0.183
Unaware 0.674 ± 0.276 0.065 ± 0.094 0.772 ± 0.457 0.062 ± 0.126 0.737 ± 0.417 0.032 ± 0.043 0.733 ± 0.336 0.041 ± 0.079
FairRelax 0.738 ± 0.283 0.059 ± 0.077 0.898 ± 0.600 0.050 ± 0.119 0.831 ± 0.487 0.030 ± 0.040 0.791 ± 0.410 0.040 ± 0.079
Fair 0.774 ± 0.274 0.052 ± 0.067 0.937 ± 0.642 0.046 ± 0.118 0.891 ± 0.550 0.029 ± 0.039 0.816 ± 0.411 0.039 ± 0.079

Ours 0.719 ± 0.280 0.049 ± 0.073 0.857 ± 0.466 0.045 ± 0.090 0.823 ± 0.413 0.023 ± 0.031 0.788 ± 0.334 0.038 ± 0.070

3.4 MIN-MAX JOINT LEARNING APPROACH

We now aim to train a predictor to satisfy counterfactual fairness. In contrast to previous variable
selection methods based on causal discovery (Zuo et al., 2022), the proposed learning approach can
effectively exploit all variables to make predictions, which improves the prediction accuracy.

Since the parent set of the sensitive attribute in the true DAG is unknown, we propose a min-max
learning approach to control for the worst-case counterfactual fairness violations of the predictor.
Specifically, given all possible individual causal effects τ̂ (m)

i of the sensitive attribute A on the
predictor Ŷ in Section 3.3, the prediction model Ŷ = f(x; θ) is trained by minimizing the average
prediction error with the worst-case violations of counterfactual fairness as a penalty term

min
θ
ℓ(θ; ψ̂(1), . . . , ψ̂(|SA|)) =

N∑
i=1

(Yi − f(xi; θ))2 + γ ·max
m

N∑
i=1

ξ
(m)
i ,

s.t. τ̂ (m)
i ≤ C + ξ

(m)
i , i = 1, . . . , N, m = 1, . . . , |SA|,

τ̂
(m)
i ≥ −C − ξ(m)

i , i = 1, . . . , N, m = 1, . . . , |SA|,

ξ
(m)
i ≥ 0, i = 1, . . . , N, m = 1, . . . , |SA|,

which is a convex optimization problem when τ̂ (m)
i = h(xi; ψ̂

(m)) is linear. It is equivalent to

min
θ
ℓ̃(θ) =

N∑
i=1

(Yi − f(xi; θ))2 + λ ·max
m

N∑
i=1

[
(−C − τ̂ (m)

i )+ + (τ̂
(m)
i − C)+

]
,

where γ and λ are hyper-parameters for trade-off between prediction accuracy and counterfactual
fairness. Since achieving strict counterfactual fairness for all individuals, i.e., having zero individual
causal effects of sensitive attribute on the predictor, is usually unrealistic and would come at the cost of
much prediction accuracy, we introduce a slack variable ξ(m)

i for each individual and a pre-specified
threshold C, which penalizes the loss when the estimated individual causal effect |τ̂ (m)

i | > C.

Note that when implementing the proposed min-max optimization approach, the possible counter-
factual treatment effect models in Section 3.3 and the prediction model controlling for worse-case
fairness violations in Section 3.4 should be updated alternatively, which can be viewed as an it-
erative process of counterfactual evaluation and policy improvement of the prediction model. We
summarized the whole min-max optimization algorithm in Alg. 2.

4 EXPERIMENTS

In this section, both synthetic and real-world experiments are conducted to evaluate the prediction
accuracy and fairness of our approach. The root mean squared error (RMSE) between Y and Ŷ is
used to measure the prediction performance, and the RMSE between ŶA←a and ŶA←a′ is used to
measure the violation of the counterfactual fairness, named "unfairness".
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Figure 2: Performance under varying hyper-parameters C and λ on RMSE and unfairness.
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Figure 3: RMSE and unfairness performance under varying background knowledge ratio.

Baselines. We consider five baseline prediction models: (1) Full uses all attributes, (2) Unaware
uses all attributes except the sensitive attribute, (3) Oracle uses all attributes that are non-descendants
of the sensitive attribute given the ground-truth DAG, (4) FairRelax uses all definite non-descendants
and possible descendants of the sensitive attribute in a CPDAG (or an MPDAG), and (5) Fair uses all
definite non-descendants of the sensitive attribute in a CPDAG (or an MPDAG).

Table 3: Average precision and recall for finding the adjustment sets in MPDAG.

Background Knowledge 0% 10% 20% 30% 40% 50%

Precision ↑ 0.438 ± 0.489 0.438 ± 0.489 0.466 ± 0.492 0.580 ± 0.486 0.642 ± 0.471 0.742 ± 0.437
Recall ↑ 0.265 ± 0.353 0.265 ± 0.353 0.274 ± 0.350 0.329 ± 0.355 0.353 ± 0.347 0.400 ± 0.346

Synthetic Study. Synthetic data are generated from a linear structural equation model based on a
ground-truth DAG. Specifically, we first randomly generate a DAG with d nodes and 2d directed edges
according to the Erdős-Rényi (ER) model with d ∈ {10, 20, 30, 40} in our experiment. Following
the previous study (Zuo et al., 2022), the path coefficients βjk of directed edges Xj → Xk are
sampled from a Uniform([−2,−0.5] ∪ [0.5, 2]) distribution. The data are generated using Xk =∑
Xj∈pa(Xk)

βjkXj + ϵi, i = 1, . . . , n, where pa (Xk) represents the parent nodes of Xk, noise
ϵi ∼ N(0, γ) with γ ∈ {1.5, 2.5}, and n is the sample size, which is set to 1,000 in our experiment.
We next use the PC algorithm in the causal-learn package to learn a CPDAG. Then we randomly
select two nodes as the outcome Y and the sensitive attribute A, respectively. We sample A from
a Binomial([0,1]) distribution with probability σ(

∑
Xj∈pa(A) βjAXj + ϵi), where σ(·) denotes the

sigmoid function. The proportion of training data and test data are set to 0.8 and 0.2, respectively.

Performance Comparison. Table 2 shows the results of baselines and our approach. First, Full
and Unaware perform better on RMSE, while Fair, FairRelax, and our approach have a significant
advantage on unfairness. Remarkably, our approach outperforms Fair and FairRelax in all scenarios
on both RMSE and unfairness metrics, because the proposed method makes predictions with all
attributes and controls unfairness by the adjustment sets, whereas Fair and FairRelax can hardly find
the true descendants of the sensitive attribute when the learned CPDAG is not accurate. In addition,
Figure 2 shows the change in RMSE and unfairness as C and λ increase. When C is increasing,
RMSE is decreasing significantly, while unfairness is increasing. Because the larger C is, the looser
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Table 4: Real-world experiment results.

Full Unaware FairRelax Fair Ours

RMSE 0.502 ± 0.041 0.502 ± 0.042 0.503 ± 0.041 0.503 ± 0.041 0.491 ± 0.040
Unfairness 0.088 ± 0.024 0.031 ± 0.058 0.029 ± 0.023 0.029 ± 0.023 0.024 ± 0.018
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Figure 4: Density plot of the predicted ŶA←a(x) and ŶA←a′ (x) in real-world data.

the control of causal effects, which is beneficial for prediction performance but hurts fairness. Similar
arguments hold for λ, where a larger λ will increase the cost of fairness violations in the optimization
problem, thus benefiting fairness but hurting prediction performance.

MPDAG with Background Knowledge. After obtaining a CPDAG, we randomly select a certain
percentage of the directed edges in the true DAG as background knowledge and impose it on the
already learned CPDAG. For example, if A→ B is selected from the true DAG, we add this directed
edge to the learned CPDAG regardless of the original relationship between A and B in the CPDAG
to obtain an MPDAG, and then adjust the MPDAG according to the Meek’s rule. Figure 3 shows
the effect of background knowledge on performance. As the background knowledge increases, the
RMSE of Fair and FairRelax increases and the unfairness decreases significantly, because more
background knowledge force Fair and FairRelax to have fewer nodes to make predictions. For our
approach, both prediction and unfairness performance become slightly better, which is attributed to
the more accurate identification of the possible adjustment sets. Our approach is less sensitive to
the increase in background knowledge compared with Fair and FairRelax, since we do not directly
exploit the graph information and select the nodes for prediction. In addition, Table 3 reports the
change of precision and recall for finding adjustment sets with increasing background knowledge.

Case Study. The Open University Learning Analytics Dataset (OULAD) dataset (Kuzilek et al.,
2017) is used for the real-world experiment. The data attributes includes demographic information
about the students such as gender, age, education level, disability and other attributes as well as
their final grades. This dataset contains 32,593 students and 11 attributes. We treat disability as the
sensitive attribute and binarize the final grades as the outcome of interest. First, we learn a CPDAG
from the raw data using the PC algorithm in the causal-learn package and obtain an MPDAG with the
background knowledge that sex can not be caused by other attributes. Second, we randomly generate
a DAG as the ground-truth from the learned MPDAG. We then divide the data into 100 random
batches, and for each batch, a new MPDAG is obtained from a similar way. The path coefficients are
determined based on linear regression and treat the residual of the regression as noise. The subsequent
steps are the same as in the synthetic study. The experiment results are shown in Table 4, with density
plots in Figure 4, and our approach outperform baselines in both prediction performance and fairness.

5 CONCLUSION

This paper aims to achieve counterfactual fairness from observational data when the causal graph is
unknown or partially known. Interestingly, we show it is actually possible to achieve counterfactual
fairness even using the descendants of the sensitive attribute for prediction, by carefully control the
possible counterfactual effects of the sensitive attribute. We propose a general min-max optimization
framework to achieve counterfactual fairness that is easy applicable to CPDAGs and maximally
oriented PDAGs (MPDAGs) with the added background knowledge. Similar to previous studies,
one limitation of our approach is due to the proposed approach relying on a CPDAG given by the
causal discovery algorithm and estimations of the propensities, which may lead to mild violations
of counterfactual fairness by the algorithm when the CPDAG or estimates are inaccurate. Another
possible limitation, which also serves as a future research direction, is to achieve counterfactual
fairness in the presence of hidden variables with partially known DAGs.
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