Under review as a conference paper at ICLR 2026

TOOLRM: OUTCOME REWARD MODELS FOR
ToOL-CALLING LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) increasingly interact with external tools, re-
ward modeling for tool use has become a critical yet underexplored area. Ex-
isting reward models, trained primarily on natural language outputs, struggle to
evaluate tool-based reasoning and execution. To quantify this gap, we introduce
FC-RewardBench, the first benchmark designed to systematically evaluate reward
models in tool-calling scenarios. Our analysis shows that current reward models
often miss key signals of effective tool use, highlighting the need for domain-
specific modeling. To address this, we propose a training framework for outcome
reward models using data synthesized from permissively licensed, open-weight
LLMs. We train models ranging from 1.7B to 14B parameters and evaluate them
across seven out-of-domain benchmarks. These reward models consistently out-
perform general-purpose baselines, yielding up to a 25% average improvement in
downstream task performance, enhancing robustness to input noise, and enabling
data-efficient fine-tuning through reward-guided filtering.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (Achiam et al., 2023), Claude, and Gemini (Reid
et al., 2024) have rapidly advanced the field of artificial intelligence (AI), achieving strong perfor-
mance across a wide range of tasks, including complex question answering, code generation, and
multi-step reasoning (Li et al., [2025b)). As these models are increasingly deployed in real-world
systems, the need for them to interact with external tools has become critical. Tool calling en-
ables LLMs to invoke external functions such as APIs, databases, calculators, and search engines
(Prabhakar et al., [2025b; [Zhang et al.l [2024; |/Abdelaziz et al., 2024; |Liu et al.l 2024bj |Lin et al.,
2024)), shifting their role from standalone text generators to orchestrators of complex workflows.
This capability underpins their application in autonomous agents, virtual assistants, and multimodal
systems.

Training these LLMs effectively requires reward models, which are integrated into the learning
pipeline through reinforcement learning (RL), preference optimization (Wang et al.| 2023)), and re-
jection sampling fine-tuning (Touvron et al., [2023} [Team, 2024). Reward models provide learned
signals that estimate output quality, enabling scalable evaluation without requiring human judgment
on every example. Broadly, they fall into two categories: process reward models (PRMs) (Light-
man et al., 2023)), which score intermediate reasoning steps, and outcome reward models (ORMs)
(Cobbe et al., [2021)), which evaluate only the final answer. PRMs offer finer control over reasoning
but demand costly, fine-grained annotations. ORMs, in contrast, are easier to train and can achieve
comparable performance gains (Uesato et al., [2022).

Despite their successes, current reward models are designed primarily for natural language outputs
(Zhong et al., 2025). Reward modeling for tool calling remains an underexplored area, with two
notable gaps: (a) no dedicated benchmark exists for evaluating reward models in the function-calling
domai and (b) existing reward models fail to capture the nuances of tool-based reasoning and
execution. In order to address these gaps, we first introduce FC-RewardBench — a comprehensive
benchmark specifically designed to evaluate reward models on tool-calling tasks. Derived from the
Berkeley Function Calling Leaderboard (BFCL) Version 3 (Patil et al., [2025), the dataset contains

"Tool-use, tool-calling, and function-calling are used interchangeably throughout the paper

Under review as a conference paper at ICLR 2026

100
901 . ToolRM (Ours)
80] LLM-as-a-Judge
> 701 o Reward Model
=
© 60+ 5 o
3 2 a g o e I}) =
9] 1 5 © < ~ ~ o
g so0 A ol LB 2L 2 = PellE bl ol &1l alls!]a -
< 401 Sl a2 gt gLl sl allels(lallglalls|lall = 3
301 SHEEAbe s & Pall &z stbesalaldl sl s al]a D
ZULE QY S &[] &8 S s (|2 sl 20 2l s« 2] m | Schema
201 (o Rl D R O O O g O, 0 8 0 B 'E' _= - _E L1 .| Vvalidation
el el 8 ar & (gl & || 23S le]ls&]l &S] & & ® | Baseline
10

Figure 1: Performance of ToolRM, top reward models from RewardBench, Tool-augmented RM
(Themis), and leading LL.Ms-as-judges on FC-RewardBench. Note: Model names are abbreviated
for conciseness (e.g., L3.1-xx, SR-xx, and SC-xx correspond to Llama-3.1-xx, SkyWorks-Reward-
xX, and SkyWorks-Critics-xx, respectively). Full model names are provided in Appendix

1500 user inputs paired with correct and incorrect function calls. We benchmark several state-
of-the-art general-purpose reward models on FC-RewardBench, and our analysis (Figure [I) shows
that these models often fail to capture key aspects of successful tool use, hence failing to capture the
nuances of tool-based reasoning and execution. To this end, next, we introduce ToolRM, a collection
of specialized ORMs for tool calling. Trained on preference data synthesized from a diverse set of
open-source function-calling models, ToolRM outperforms much larger reward models and LLMs-
as-Judges on FC-RewardBench. In downstream applications, ToolRM demonstrates up to 25%
average improvement across multiple benchmarks in a Best-of-n setting. These models also enable
efficient data filtering, yielding better fine-tuned models with less data.

In summary, our contributions are:

¢ We introduce FC-RewardBench; the first benchmark to evaluate reward models on a tool
calling setting with strong correlation to downstream task performance.

* We propose a framework for training an ORM for tool-calling use-case using data generated
from permissively-licensed, open-weight LLMs.

* We train multiple reward models (ToolRM) varying in size from 1.7B to 14B in parameters,
and extensively evaluate our proposed models on seven out-of-domain benchmarks.

* We evaluated ToolRM against greedy decoding, majority voting, and rule-based schema
validation in a Best-of-n (n = 32) setting, across diverse tool-calling models of varying
sizes. They yield up to a 25% average benchmark improvement and enable efficient data
filtering for better finetuned models with less data.

2 RELATED WORK

2.1 TooL CALLING

Tool calling has extended LLMs beyond static knowledge to tasks requiring external retrieval
(Schick et al., [2023), reasoning (He-Yueya et al [2023)), orchestration (Jain et al., 2024])), and code
execution (Gao et al.| [2023). Early prompting-based approaches such as ReAct (Yao et al., [2023))
inspired refinements for efficiency (Xu et al.| [2023), performance (Shinn et al.| 2023} |Yang et al.,
2023), or balanced trade-offs (Crouse et al.l 2023). Recent models now provide built-in tool use
(Reid et al.| 2024; |CodeGemma Team et al., 2024} (CohereForAll 2024; |Al@Meta, 2024; Jiang
et al.l 2023) or are fine-tuned for this capability (Qin et all 2023} |Tang et al., [2023; [Patil et al.,
2023; |/Abdelaziz et al.| [2024). To assess and enhance these capabilities, benchmarks (Guo et al.,
2024 [Patil et al., [2023)), curated datasets (Liu et al., 2024b; |Qian et al.| 2025b), and autonomous
tool construction methods (Qian et al., 2023bja) have been proposed.

2.2 RL FOR TOOL-USE ALIGNMENT

Reinforcement Learning has become a powerful approach for aligning LLMs with effective tool use.
Search-R1 (Jin et al., [2025)) trains LLMs to iteratively refine search queries, showing RL feedback

Under review as a conference paper at ICLR 2026

balances exploration and retrieval precision. ToRL (Li et al., 2025a)) enables models to discover
tool-use strategies autonomously, with rewards driving emergent behaviors like strategic invocation
and adaptive reasoning mode switching. ReTool (Feng et al.,2025) interleaves code execution with
natural language reasoning, using outcome feedback to guide tool invocation, improving mathemat-
ical problem solving. Several works focus on reward design: ToolRL (Qian et al., [2025a)) studies
how reward type, granularity, and temporal dynamics affect alignment; StepTool (Yu et al., [2024)
uses step-level reward shaping and policy-gradient optimization for multi-step tasks; CodeTool (Lu
et al., [2025) combines RL with step-level supervision to encourage reasoning about intermediate
states; SWE-RL (Wei et al., 2025) leverages software evolution data to optimize reasoning over
action sequences, capturing temporal dependencies; and iTool (Zeng et al., [2025) mitigates perfor-
mance decay from synthetic data via iterative reinforced fine-tuning with Monte Carlo Tree Search,
enhancing robustness. Together, these works show RL’s effectiveness in aligning LL.Ms for general-
purpose tool use, though none explicitly employ an ORM that directly evaluates or optimizes the
overall quality of an entire sequence of tool interactions.

2.3 REWARD MODELING

Reward models (RMs) provide scalar preference signals that guide LLMs through preference op-
timization or RL (Wang et al., [2024). They can be broadly divided into ORMs (outcome reward
models), which only evaluate the final output, and PRMs (process reward models), which score in-
termediate reasoning steps (Zhong et al.|[2025). Early verifier-based approaches in the math domain
(Cobbe et al., [2021) laid the foundation for ORMs, while later work explicitly contrasted outcome-
and process-based supervision for math problems (Uesato et al., 2022)), and developed PRMs that
reward coherent stepwise reasoning (Lightman et al.| 2023). Despite their promise, PRMs often
face robustness and supervision challenges (Zhang et al., [2025), as highlighted by failed attempts
reported by |Guo et al.|(2025)). In contrast, ORMs have proven more scalable (Lin et al., 2025), fo-
cusing on final correctness and generalization, with recent advances such as Skywork-Reward (Liu
et al.,|2024a) demonstrating effective recipes for outcome-based training, achieving state-of-the-art
performance on RewardBench (Lambert et al.,[2024). Recently, tool-augmented reward models (L1
et al.l 2024)), which enable reward models to utilize tools to produce a more accurate preference
score, have been introduced. While prior work has studied RMs primarily in free-text reasoning and
math/code domains, to the best of our knowledge, this is the first work introducing ORM:s for tool
calling, where a sequence of tool calls defines outcomes.

3 METHODOLOGY

3.1 FC-REWARDBENCH EVALUATION DATASET

While several benchmarks evaluate RMs on tasks involving chat, reasoning, safety (Lambert et al.,
2024]); factuality, instruction following, and math (Malik et al.,2025)), there remains a notable gap in
the evaluation of RMs for function-calling tasks. To bridge this gap, we propose FC-RewardBench,
a benchmark specifically designed to evaluate RMs on function-calling tasks. This dataset comprises
1500 unique data points, each containing a user query, a tool catalog (tools available to the model to
answer the user query), and the associated correct and incorrect tool calls for a given user query.

To construct FC-RewardBench, we utilize the single-turn splits of the BFCL-v3 dataset (Patil et al.,
2025). The tool catalog, user query, and the correct tool calls in the dataset are directly sourced from
BFCL-v3. Incorrect tool calls are generated using a pool of 25 language models, spanning sizes
from 0.5B to 685B parameters. Each model is prompted to generate a tool call in response to the
user query. The outputs are compared against the ground-truth, and only the incorrect generations
are retained. From this pool, we randomly sample one incorrect call per instance to prevent over-
representation from any single user query. Finally, 1,500 such examples are randomly selected to
form the final dataset.

Table [T] presents a breakdown of error types observed in the dataset. Notably, a majority of the
incorrect calls involve subtle errors such as incorrect parameter values, missing optional parameters,
or an incorrect number of functions, which are non-trivial to detect. These characteristics require the
RM to demonstrate a deeper understanding of the function-calling task, making FC-RewardBench
a challenging and discriminative benchmark. Figure [2| shows a representative example from the

Under review as a conference paper at ICLR 2026

Find a board game with complexity rating under 2.5 and that

Table 1: Breakdown of errors in the FC- B e eretw s
RewardBench dataset. The majority of errors cebosreg et

. . . 0ard_game_searc :

in the dataset are subtle and hard to identify. "complexity": 2.5,

"player_count": 6
Correct Tool Call 3},
{"trivia_game_search": {

"duration": 60
Error Type Count -

Incorrect Parameter Value 650

{"board_game_search": {

Incorrect Function Name 403 "complexity": 2.5,
Incorrect number of functions 245 comectTootcatl 33, S
Missing Optional Parameter 78 e eee
Missing Required Parameter 45 B
Incorrect Parameter Type 43
Unexpected Parameter 21 Figure 2: Representative example from FC-
Incorrect output format 15 RewardBench the parameter player_count

is set to an incorrect value.

dataset, where the incorrect tool call sets the parameter player_count to an incorrect value.
Additional details about the benchmark are provided in Appendix [A.1]

3.2 REWARD MODELING

For pairwise preference modeling, RMs are commonly formulated using the Bradley—Terry model
(Bradley & Terry, |1952), which defines the probability that output . is preferred over y_ given an
input x as:

exp(r(z,yy))
exp(r(z,y+)) + exp(r(z,y-))

where r(x, y) is a scalar reward function, and o is the sigmoid function.

p(y+ = y-|x) = =o(r(v,yy) —r(z,y-)) (D

Training requires curating a dataset of pairwise preferences D = {(z,y4,y—) : y4+ > y—}, with
preferences obtained through either human annotations (Stiennon et al., |2020; |Ouyang et al., 2022)
or synthetic generation methods (Pace et al., |2024; Hosseini et al., |2024)). The reward function r is
parameterized by a neural network rg, typically initialized from a supervised fine-tuned model with
the final layer replaced by a linear head.

The parameters of 7y are estimated from the dataset D using maximum likelihood estimation of the
following objective:

J(T) = Hi%X]E(fI:,y_‘_,y_)ND[ZOQ(U(TG(‘rv y+) - T@(LC, y*))] 2)

In this work, we use reward centering (Eisenstein et al.| 2023) to ensure that rewards are zero-
centered. This is achieved by adding the following regularization term to the optimization objective:

JTGQ(T) = J(’I“) + nE(I,y+,y,)~D[(7A9<x7 er) + 7"9(37, y*))z] (3)

where 7 is a small positive value hyperparameter.

3.3 TOOLRM TRAINING DATA GENERATION

To train ORMs for function-calling tasks, we require data consisting of user queries, tool catalogs,
and the corresponding correct and incorrect tool calls. We construct this data by leveraging a di-
verse set of open-source, permissively licensed language models with function-calling capabilities.
Specifically, we use publicly available function-calling datasets, which provide user queries, tool
catalogs, and ground-truth tool call sequences. For each query, we prompt the models to generate
tool calls using the tools specified in the dataset.

Under review as a conference paper at ICLR 2026

The generated tool calls are then compared against the ground-truth sequences. Outputs that deviate
from the ground truth are retained as incorrect examples, while matching outputs are discarded.This
procedure enables the collection of data that reflects the natural variability and error patterns of real-
world models. It captures not only common mistakes but also subtle and complex failure modes that
are difficult to anticipate or enumerate manually.

4 EXPERIMENTAL SETUP

Training Data: To create training data for the RM, we select open-source datasets that cover
various aspects of function-calling, such as the API-Gen dataset (Liu et al.l [2024c) for single-turn
interactions, the Schema-Guided Dialogue (SGD) dataset (Rastogi et al., [2020) for multi-turn inter-
actions with tool invocations and responses, and the xlam-irrelevanc dataset for cases where the
system lacks sufficient information to respond to a user query.

Since these datasets are common training datasets and our primary focus is to elicit representative
incorrect behavior from the model, we follow Lin et al.[(2024) and obfuscate the data samples to
avoid the model regurgitating its training data. We obfuscate the samples by replacing function and
parameter names with randomly generated strings and reordering the keys in the function schema.

We then use a collection of 11 permissively-licensed, open-weight models to generate the training
data. The pool includes both general-purpose instruction-tuned models with function-calling ca-
pabilities and function-calling specific models, with parameter counts ranging from 0.5B to 32B.
Specifically, we use the Qwen2.5-Instruct (Team), |2024) and Granite 3.3-Instruct (Granite Team)
model series, along with Granite-20b-function-calling (Abdelaziz et al) [2024), SmolLM?2 (Allal
et al.} [2025)), Mistral-7b-Instruct-v0.3 and Mistral-Nemo-Instruct-2407.

After generating outputs from the model pool and keeping only the incorrect ones, we subsample one
incorrect output per input user query to prevent over-representation from a user query in the training
data. Overall, this results in 180,000 training data samples divided into 85,000 single and multi-turn
data each, and 10,000 irrelevance data. The full list of models used to generate the training data,
along with a few training data samples, is provided in Appendix [A.2]

Model architecture: We use the Qwen-2.5-Instruct models (Team), 2024; Yang et al., 2024) as the
base architecture for our RMs. Specifically, we select the 1.5B, 7B, and 14B parameter variants,
as they are Apache-2.0 licensed and offer a practical balance between size and performance. We
initialize the RMs with the instruction-tuned model weights and replace the final language modeling
head with a linear layer that maps the hidden representation to a scalar reward value.

The RMs accept the specifications of available functions, conversation history, and the generated
tool call as input and produce a scalar reward as output (refer to Appendix [A.3|for prompt template).
We train all RMs for 1 epoch with a learning rate set to le-6, a cosine learning rate schedule with
warmup set to 3% of total steps, and the reward centering coefficient set to 0.01.

Benchmarks: In addition to FC-RewardBench, we evaluate models on the following commonly
used function-calling benchmarks: Berkeley Function Calling Leaderboard (BFCL) v3 (Patil et al.,
2025)), API-Bank (Li et al., 2023), ToolAlpaca (Tang et al [2023), NexusRaven API Evaluation
and SealTools (Wu et al., 2024). For API-Bank, we evaluate on the Call (API-Bank-1) and
Retrieval+Call (API-Bank-2) splits. Table [2| summarizes their key statistics and characteristics.
We highlight that these benchmarks vary in difficulty, encompassing single and multi-turn queries,
nested tool calls, and evaluation sets collected from both real users and synthetically generated.

Baselines: To evaluate performance on FC-RewardBench, we select eight RMs from Reward-
Bench, spanning sizes from 3B to 70B parameters. We chose models that achieved high scores on
RewardBench and support tool use in their chat template, which helps mitigate performance degra-
dation due to prompt variability. In addition to these specialized RMs, we include six LLMs as
judges, ranging from 70B to 685B parameters. See Appendix [A.4]for the complete list of models.

For downstream task evaluations, we select the strongest function-calling models — the xXLAM-2
series (Prabhakar et al.l |2025a) — and the strongest generic instruction-tuned models — the Qwen3

Zhttps://huggingface.co/datasets/MadeAgents/xlam—irrelevance-7.5k
*https://huggingface.co/datasets/Nexusflow/NexusRaven API_evaluation

https://huggingface.co/datasets/MadeAgents/xlam-irrelevance-7.5k
https://huggingface.co/datasets/Nexusflow/NexusRaven_API_evaluation

Under review as a conference paper at ICLR 2026

Table 2: Statistics of the evaluation benchmarks. “MT” denotes multi-turn queries.

Dataset # Examples # Tools #MT Avg. MT Nested Avg. output Data

(avg./query) queries turns calls tool calls source
BFCL-v3 4,441 2,631 (3.3) 800 4.2 v 2.4 Real
API-Bank 473 64 (3.4) 397 34 X 1.0 Real
ToolAlpaca 100 64 (5.6) 0 - X 1.5 Synthetic
NexusRaven 318 65 (7.4) 0 - X 1.0 Synthetic
SealTools 627 3,036 (9.9) 0 - v 2.9 Synthetic

series (Yang et al.;[2025)) — from the BFCL-v3 leaderboard. Both of these model series cover a wide
range of sizes (0.6B to 70B), enabling a comprehensive assessment of ToolRM across model scales.

5 RESULTS

We evaluate our proposed RM to answer the following three research questions (RQ):

RQ1: How does ToolRM compare to existing RMs on FC-RewardBench?
RQ2: Can ToolRM improve the performance during inference through Best-of-n sampling? And,
RQ3: Can ToolRM lead to better fine-tuned models through reward-guided data filtering?

5.1 RQ1: FC-REWARDBENCH EVALUATION

We evaluate ToolRM against state-of-the-art RMs from RewardBench (Lambert et al., [2024), Tool-
Augmented RM (Themis) (Li et al., 2024), as well as leading LLMs used in an LLM-as-a-Judge
setting, on the FC-RewardBench dataset.

RMs are evaluated by comparing scores assigned to the correct tool call outputs and incorrect tool
call outputs for the same input. A prediction is counted as correct when the score for the correct tool
call exceeds that of the incorrect one. LLMs-as-Judges are evaluated with a pairwise comparison
prompt, where both candidate tool calls are presented and the model is instructed to select the correct
one. To avoid position bias, the order of candidates is randomized. Experimental details, including
the full prompt template, are provided in Appendix We show the results in Figure[T|and observe
the following:

* Specialized RMs under-perform on tool-calling tasks. Despite strong performance in non-tool-
calling domains, most specialized RMs fail to generalize effectively to the tool-calling domain.
While some individual variants achieve higher scores, their performance remains inconsistent and
generally below state-of-the-art levels. For example, the Tool-Augmented RM (Themis) attains
only 45% accuracy on FC-RewardBench, highlighting its limited effectiveness in evaluating tool-
calling behavior. Rule-based methods, such as Schema Validation, perform significantly worse
than any learned model, underscoring the subtlety of errors in tool-calling tasks and the need for
a learned reward model.

e LLMs-as-Judges achieve higher accuracy but are computationally expensive. LLMs-as-
Judges attain strong performance on FC-RewardBench (exceeding 80% across all models), but
their large parameter counts impose substantial computational costs.

* ToolRM achieves the highest accuracy on the benchmark while maintaining efficiency with
respect to model size. The ToolRM-14B and ToolRM-7B variants outperform all other generative
and sequential classifier models. Notably, even the ToolRM-1.5B variant surpasses the gpt-oss-
120B model, approaching the performance of substantially larger Llama-4 models.

Correlation with performance on downstream tasks: The primary purpose of FC-
RewardBench is to enable quick evaluation of RMs without having to do computationally expensive
downstream evaluation. It is thus imperative that performance on FC-RewardBench reflects down-
stream task performance. To assess this, we select six generator models (Qwen3-1.7B, 8B, 32B,
and xXLAM-1B, 8b, 70B), 11 RMs (eight RMs from RewardBench and three ToolRM variants), and
five benchmarks. For each generator model, RM, and dataset combination, we compute the perfor-

Under review as a conference paper at ICLR 2026

mance in a Best-of-n (n = 32) setting and compute the Pearson correlation coefficient between the
Best-of-n performance and RM performance on FC-RewardBench. Results are shown in Figure 3]

Overall, we find that FC-RewardBench scores are strongly correlated with downstream task accu-
racy, with an average correlation of 0.84 across benchmarks and generator models. Across generator
models, the average correlation ranges from 0.62 to 0.94, indicating that the alignment between FC-

Downstream tasks

RewardBench and downstream performance is robust across model families. Importantly, this cor-
relation remains stable even at scale: larger models such as Qwen3-32B and xLAM-2-70B continue
to exhibit strong agreement between FC-RewardBench accuracy and downstream results. Taken
together, these findings confirm that FC-RewardBench provides a reliable and computationally effi-
cient proxy for expensive downstream evaluations.
5.2 RQ2: BEST-OF-n SAMPLING WITH TOOLRM . H. .
API-Bank-1-SURPA 0.79 | 0.71 (F:Z3 0.57 QOAP]
In this section, we evaluate ToolRM in a Best-of-n set- . | -
ting across multiple generator models. For each input,
we sample n = 32 independent generations using tem- Nexus 08s [ROVM oo1 NN o84 | 02
perature 7' = 0.6 from the generator model and use
ToolRM to score and select the highest-ranked genera- SealTools | 077 | 0.67 061 ﬂ 061 | 077 | 074
tion as the final output. Intuitively, a stronger RM should
more reliably identify the correct tool call, thereby im- Toolalpaca 103 036 05> Rl 064 IR
proving task performance. We compare against three
baselines: Greedy Decoding, Majority Voting — where ~vo R 062 o
the most frequently occurring final answer is selected L8 p
as the output, and Schema Validation — where we com- F&ES
pare the output against the input tool schema and return © eenerator models
the generation with the highest likelihood that validates
the schema. For non-BFCL benchmarks, we report the Figure 3: Correlation heatmap be-
Full Sequence Matching metric (Basu et al} 202.5’ Wh.ICh tween FC-RewardBench performance
checks whether the predicted tool sequence — including
. and downstream accuracy across gener-
tool names and argument-value pairs — exactly matches .
. . ator models and benchmarks, showing
the gold sequence. For BFCL, we use its native evalua- .)
. . . consistently strong alignment (avg. cor-
tion metrics: AST-based scores for single-turn tasks and S
. . relation = 0.84).
state-based/response-based metrics for multi-turn cases.
Figure [reports average performance across five benchmarks (API-Bank-1, API-Bank-2, ToolAl-

paca, NexusRaven, and SealTools), while Table El presents results on the BFCL-v3 dataset. We
summarize the key insights below.

«©
75 %3 23
N o~ P
©2"™ 8 ex"™
70 © D B 8
a 3 S CRCE Rl v B o 0
N ©o H -1
I3 @ M m o 3 o o
65 ©© LHRERE ko B ©
e © Qw0 d—— D L BT
© [o | a o =~ °[DFd bo . o
= AR |- o o
60 A o

. | 56.64
56.56
57.16

55

o~
o
<
n

50 d [Majority Voting

E=J Schema Validation

| . ToolRM (1.5B)

= ke) X) | 3 ToolRM (7B)

PSS o . . o ToolRM (14B)
p—— 1l

Qwen3-8B Qwen3-14B Qwen3-32B XLAM-2-70b-fc-r

a5

o of

40

Qwen350.6l;0 xLAM-Z-;I.b-fZ-qr xLAM-2-~3b-fZ-Dr
Figure 4: Performance of the Qwen3 series and XLAM-2 series in the Best-of-n (n = 32) setting
across five benchmarks: API-Bank-1, API-Bank-2, NexusRaven, ToolAlpaca, and SealTools.

* Small Language Models (SLMs) benefit the most: Best-of-n sampling with Qwen3-0.6B and
ToolRM-14B as the ranker improves accuracy from 39.5% to 64.38% — a gain of 24.9 points on
non-BFCL benchmarks (Figure EI) This performance surpasses that of Qwen3-32B (63.8%) and
Llama-xLAM-2-70b-fc-r (63.6%) with greedy decoding. On BFCL-v3, xLAM-2-1B-fc-r with
ToolRM-14B improves overall, Non-Live AST, and Live AST accuracies by 3.2, 6.5, and 6.2

Under review as a conference paper at ICLR 2026

Table 3: Performance of the Qwen3 and xXLAM-2 series of models in the Best-of-n (n = 32) setting
on BFCL-v3.

Model RM Overall Acc Non-Live AST Live AST Multi-Turn Acc

Greedy 5574 80.23 7135 1025
Majority Voting 57.96 83.90 7424 10.12
Qwen3-1.7b Schema Validation 56,34 83.48 72.46 825
ToolRM-14B 61.05 89.79 80.01 14.12
Greedy 64.65 88.90 80.09 2638
Qwen3-8b Majority Voting 67.96 90.33 81.72 33.13
wen>- Schema Validation 67.21 90.58 81.05 32.50
ToolRM-14B 6714 92.19 82.98 3150
Greedy 69.19 89.33 82.83 3825
Majority Voting 73.57 9138 83.64 46.63
Quwen3-32b Schema Validation 69,38 89.71 82,61 3775
ToolRM-14B 7061 9231 84.23 39.62
Greedy 54.09 68.98 5477 35.12
Majority Voting 5351 69.42 5492 3150
XLAM2-Ib-fe-r gy ona Validation 5421 70 5551 3388
ToolRM-14B 57.28 75.50 60.92 3425

Greedy 71.14 84.31 67.80 67
N Majority Voting 72.39 84.90 67.75 67.75
Llama-xLAM-2-8b-fe-r gy oo Validation 70,89 84.79 66.47 6538
ToolRM-14B 72.52 87.73 72.46 61.62
Greedy 7634 89.40 7535 65.25
Majority Voting 7628 89,38 7543 64.12
XLAM-2-32b-fer g pema Validation 75,90 89 7476 64.13
ToolRM-14B 76.54 90.27 7742 6325

points, respectively. Qwen3-1.7B achieves even larger improvements of 5.3, 9.6, and 8.7 points
on these metrics (Table 3).

* SLM + RM can match or surpass larger models: Best-of-n sampling with Qwen3-8B and
ToolRM-14B improves non-BFCL benchmark accuracy by 6.8% points to 70.48%, which is 5.6
points higher than the best greedy baseline. On BFCL-v3, the same setup yields gains of 3.3 points
on Non-Live AST and 2.9 points on Live AST, exceeding the performance of Qwen3-32B with
greedy decoding.

* Diminishing returns for very large models: Improvements for large-scale generators (32B+)
are modest. For instance, Llama-xLAM-2-32B-fc-r improves by only 2.1 points on non-BFCL
benchmarks and 2.5 points on BFCL Live AST accuracy, suggesting limited additional utility of
Best-of-n sampling with very strong base models.

We also look at the breakdown of errors with greedy decoding and Best-of-n sampling with ToolRM-
14B, and present the results in Appendix [A.5]

Best-of-n sampling improves model robustness: We examine the impact of Best-of-n sampling
on model robustness to noise in the input. We utilize RoTBench (Ye et al.,[2024)), which comprises of
568 tool specifications and 105 user queries paired with tools with varying levels of noise. The Clean
split contains tool and parameter names that clearly reflect their usage, while the Slight, Medium, and
Heavy splits introduce increasing noise through operations such as character insertion and deletion,
name reversal, and name swapping. The Union split combines all noisy variants and represents
the most challenging setting. Model performance is evaluated across three tasks: Tool Selection,
Parameter Identification, and Content Filling.

Table[]reports results for greedy decoding and Best-of-n (n = 32) with ToolRM-14B. We highlight
two key findings. First, Best-of-n decoding yields substantial gains across all models and tasks. For

Table 4: Performance of Qwen models on RoTBench with greedy decoding (Clean and Union) and
Best-of-n (n = 32) with ToolRM-14B (Clean@32 and Union@32).

Generator ‘ Tool Selection ‘ Parameter Identification ‘ Content Filling
Model
‘ Clean Clean@32 Union Union@32 ‘ Clean Clean@32 Union Union@32 ‘ Clean Clean@32 Union Union@32
Qwen-1.7B | 54.3 76.2 47.6 58.1 37.1 55.2 27.6 40.0 27.6 41.0 21.0 30.5
Qwen-8B 524 72.4 45.7 66.7 38.1 55.2 30.5 46.7 27.6 42.9 20.0 314
Qwen-32B | 65.7 76.2 524 72.4 38.1 56.2 30.5 44.8 25.7 429 21.0 314

Under review as a conference paper at ICLR 2026

instance, Qwen-8B improves Tool Selection from 52.4 to 72.4 on the Clean split, while performance
on the Union split rises from 45.7 to 66.7. Comparable gains of 15-25 points are observed for Pa-
rameter Identification and Content Filling. Second, Union@32 consistently outperforms the Clean
baseline, despite Union being the more difficult split. For example, Qwen-32B achieves 72.4 on
Tool Selection under Union@32 compared to 65.7 under Clean, showing that Best-of-n decoding
not only mitigates noise but can also exceed performance on noise-free data.

5.3 RQ3: REWARD-GUIDED FINE-TUNING
5.3.1 TOOLRM FOR DATA FILTERING

In this experiment, we assess the effectiveness of using ToolRM as a data filter to construct a high-
quality training dataset for tool-use models. We curate a training corpus comprising both single-turn
and multi-turn examples drawn from APIGen-MT (Liu et al.| 2024c), SealTools (Wu et al.| [2024)),
Glaive VZH, and Granite function-calling dataset (Abdelaziz et al., 2024), yielding a total of 16K
samples. We highlight that these datasets have no overlap with ToolRM training data, thus allowing
us to test the generalization capabilities of ToolRM. We select Llama-3.1-8B-Instruct (Grattafiori
et al.,|2024) as the base model and performed LoRA-based fine-tuning (Hu et al.,2022) to train each
variant for 1 epoch with a learning rate of 2e-4, a LoRA rank of 16, alpha of 32, a cosine scheduler,
and a warmup ratio of 10%.

Table 5: Finetuning results of Llama-3.1-8B-Instruct on three training subsets: full 16K dataset (FT-
16K), 8K randomly sampled (FT-Random-8K), and top 8K selected by ToolRM-14B (FT-Best-8K).

Llama-3.1-8B-Instruct BFCL V3 ToolAlpaca Nexus API-Bank-1 API-Bank-2 Sealtools AVG

Base 49.6 38.0 64.8 67.9 66.2 37.6 54.0
FT-16K 54.1 43.0 75.5 574 63.5 72.7 61.0
FT-Random-8K 55.2 44.0 74.2 49.9 54.1 73.2 58.4
FT-Best-8K 554 44.0 72.0 63.7 66.2 73.7 62.5

Table [5] compares the performance of the base model with three fine-tuned variants: (1) trained on
the full 16K dataset (FT-16K), (2) trained on a random 8K subset (FT-Random-8K), and (3) trained
on the top 8K samples as ranked by ToolRM-14B (FT-Best-8K). We highlight the following key
insights from the results.

* Fine-tuning consistently improves performance. All fine-tuned models outperform the base
model, raising average accuracy from 54.0% to 61.0% when trained on the full dataset.

* Naive subsampling degrades performance. Training on a random 8K subset reduces accuracy to
58.4% — 2.6 points below the model fine-tuned on the entire corpus. This performance degradation
reflects the inapplicability of naively subsampling to reduce dataset size since it results in both the
inclusion of low-quality samples and the exclusion of high-quality ones.

* ToolRM based data filtering achieves the best performance. Selecting the top 50% of samples
with ToolRM-14B yields the strongest results at 62.5%, surpassing the full-data model while using
only half the training corpus. This demonstrates that ToolRM can effectively identify high-quality
data, enabling superior performance under tighter data budgets.

These results highlight the importance of data quality in fine-tuning tool-use models and show that
reward-guided filtering of low-quality data can yield superior performance with less training.

5.3.2 PoLICY OPTIMIZATION USING TOOLRM

To assess the utility of ToolRM for policy optimization, we follow ToolRL (Qian et al., [2025a)
and train models using Group Relative Policy Optimization (GRPO) (Shao et al., 2024). ToolRL
defines the reward as R = Riormat + Reorrectness» Where Rigmar € {0, 1} evaluates whether the output
adheres to the format specified in the prompt, and Reorrectness measures the correctness of the tool-call
output. We consider three variants of Rcoectness: (1) Rschema € {—1, 1}, validates the predicted tool
calls against the provided tool specifications, assigning —1 if there are schema violations and +1
otherwise; (2) RroorL € [—3, 3], follows Qian et al.| (2025a) and computes rewards by comparing

*nttps://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

Under review as a conference paper at ICLR 2026

Table 6: BFCL-v3 performance of Llama-3.2- Table 7: Ablation results for ToolRM-1.5B
3B-Instruct and Qwen2.5-3B-Instruct trained ~ Model on FC-RewardBench dataset.
with GRPO under three reward designs.

Model Accuracy
Model Reward Non-Live Live AST ToolRM-1.5B 81.88%
ode Variant AST Acc Acc Hyperparameter Ablation
Base 15.35% 43.82% Without obfuscation 68.25%

High reward centering (n = 0.1) 80.02%

Llama-3.2- Rgchema SL71% 62.25% No reward centering (1 = 0) 80.32%

3B-Instruct RyoolrL 75.27% 64.25% Data Ablati
Rroorm 78.40% 64.32% ata Ablation
Without API-Gen 65.48%

Base 43.06% 55.66% Without SGD 81.03%
Qwen2.5- Rschema 63.17% 66.54%

3B-Instruct Rroor. ~ 80.42% 67.21% Only large (>—12B) model 78.70%
nly large (>= models .70%
Rrooirm 79.58% 67.51% Only small (<=2B) models 81.01%

Generator model ablation

predicted and ground-truth tool calls; and (3) RroolrM € [—3, 3], scores the tool calls using ToolRM-
14B. Notably, Rshema and Rroorm do not require access to ground-truth tool calls, making them
more appropriate for RL settings, whereas RroorL requires ground truth, limiting its applicability.

We train Llama-3.2-3B-Instruct and Qwen2.5-3B-Instruct models using the three reward variants
and evaluate them on the BFCL-v3 dataset, with results shown in Table [6] Across both models,
all three reward variants substantially improve performance over the base models. Simple schema-
based rewards provide strong gains without requiring ground-truth supervision, yielding average im-
provements of about 20 points. ToolRM-based rewards achieve the best overall results: for Llama-
3.2-3B-Instruct, Rr,orM attains the highest accuracy on both evaluation metrics, and for Qwen2.5-
3B-Instruct, it provides the best Live AST accuracy, surpassing the gold-dependent Rryoore. Overall,
RroorM consistently matches or exceeds RryoorL despite not requiring access to ground truth, high-
lighting its practicality and effectiveness as a scalable reward signal for reinforcement learning in
the tool-calling setting. Additional experimental details are provided in Appendix

6 ABLATION ANALYSIS

We conduct an ablation study to assess the contribution of individual components to the overall per-
formance of ToolRM. Specifically, we train ToolRM-1.5B, ablating different hyperparameters, train-
ing datasets, and generator models, and evaluating each variant on the FC-RewardBench dataset.
Table [/| summarizes the results. First, we observe that the full ToolRM-1.5B model, incorporating
all components, achieves the highest performance. Second, removing the API-Gen dataset leads to
a 16.4-point drop in performance, underscoring its significance in training. Finally, obfuscating tool
and parameter names results in a 13.63-point reduction in performance. This suggests that obfus-
cation prevents the model from overfitting to specific tool or parameter names and encourages it to
attend to other parts of the tool specifications, thereby improving robustness and generalization.

7 CONCLUSION

In this paper, we presented a comprehensive framework for reward modeling in tool-calling sce-
narios, addressing a critical gap in current LLM evaluation pipelines. Our benchmark, FC-
RewardBench, enables systematic assessment of reward models on tool-based reasoning. We also
presented a framework for training outcome RMs that outperform existing significantly larger RMs
in the tool calling setting. When used for inference-time scaling, ToolRM improves the perfor-
mance of general-purpose and tool calling models by up to 25% on various tool calling benchmarks.
Looking ahead, we see several promising directions for advancing reward modeling in this domain.
First, moving beyond classification-based RMs to generative verifiers with chain-of-thought reason-
ing could improve robustness and interpretability. Second, incorporating the tool and environment
state into training could help models safely recover from execution failures. Finally, bridging out-
come and process reward modeling may offer a unified framework that balances scalability with
fine-grained control over reasoning quality.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Sadhana Kumaravel, Matthew Stallone,
Rameswar Panda, Yara Rizk, GP Bhargav, Maxwell Crouse, Chulaka Gunasekara, et al. Granite-
function calling model: Introducing function calling abilities via multi-task learning of granular
tasks. arXiv preprint arXiv:2407.00121, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martin Blazquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydli¢ek, Agustin Piqueres Lajarin, Vaibhav Srivastav,
et al. Smollm2: When smol goes big—data-centric training of a small language model. arXiv
preprint arXiv:2502.02737, 2025.

Kinjal Basu, Ibrahim Abdelaziz, Kiran Kate, Mayank Agarwal, Maxwell Crouse, Yara Rizk, Kelsey
Bradford, Asim Munawar, Sadhana Kumaravel, Saurabh Goyal, Xin Wang, Luis A. Lastras, and
Pavan Kapanipathi. Nestful: A benchmark for evaluating llms on nested sequences of api calls,
2025. URL https://arxiv.org/abs/2409.03797.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

CodeGemma Team, Ale Jakse Hartman, Andrea Hu, Christopher A. Choquette-Choo, Heri Zhao,
Jane Fine, and Hui. Codegemma: Open code models based on gemma. 2024. URL https:
//goo.gle/codegemmal

CohereForAl. C4ai command-r: A 35 billion parameter generative model for reasoning, summariza-
tion, and question answering. Hugging Face Models, 2024. URL https://huggingface.
co/CohereForAI/c4ai-command-r—-vO01l

Maxwell Crouse, Ibrahim Abdelaziz, Ramon Astudillo, Kinjal Basu, Soham Dan, Sadhana Kumar-
avel, Achille Fokoue, Pavan Kapanipathi, Salim Roukos, and Luis Lastras. Formally specifying
the high-level behavior of 1lm-based agents. arXiv preprint arXiv:2310.08535, 2023.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’ Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herd-
ing? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764-10799. PMLR, 2023.

IBM Granite Team. Granite 3.0 language models.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2409.03797
https://goo.gle/codegemma
https://goo.gle/codegemma
https://huggingface.co/CohereForAI/c4ai-command-r-v01
https://huggingface.co/CohereForAI/c4ai-command-r-v01

Under review as a conference paper at ICLR 2026

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning
of large language models. arXiv preprint arXiv:2403.07714, 2024.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and Noah D Goodman. Solving math word problems
by combining language models with symbolic solvers. arXiv preprint arXiv:2304.09102, 2023.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron C. Courville, Alessandro Sordoni, and
Rishabh Agarwal. V-star: Training verifiers for self-taught reasoners. ArXiv, abs/2402.06457,
2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Arushi Jain, Shubham Paliwal, Monika Sharma, Lovekesh Vig, and Gautam Shroff. Smartflow:
Robotic process automation using llms. arXiv preprint arXiv:2405.12842, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-rl:
Training llms to reason and leverage search engines with reinforcement learning. arXiv preprint
arXiv:2503.09516, 2025.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Raghavi
Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating
reward models for language modeling. CoRR, 2024.

Lei Li, Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian, Ningyu Zhang, and Hua Wu. Tool-
augmented reward modeling. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=d94x0gWTUX.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms, 2023.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025a.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025b.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Dahua Lin, Songyang Gao, Kai Chen, Wenwei Zhang, Ziyi Wang, Songyang Zhang, Kuikun Liu,
Jiangning Liu, Hongwei Liu, Junnan Liu, Yuzhe Gu, Chengqi Lyu, Haian Huang, Shuaibin Li,
Qian Zhao, Jianfei Gao, and Weihan Cao. Exploring the limit of outcome reward for learning
mathematical reasoning, 2025. URL https://arxiv.org/abs/2502.06781l

Qigiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
Zhou, Cheng Cheng, Yin Zhao, et al. Hammer: Robust function-calling for on-device language
models via function masking. arXiv preprint arXiv:2410.04587, 2024.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024a.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan

Gan, Zhengying Liu, Yuanqging Yu, et al. Toolace: Winning the points of llm function calling.
arXiv preprint arXiv:2409.00920, 2024b.

12

https://openreview.net/forum?id=d94x0gWTUX
https://arxiv.org/abs/2502.06781

Under review as a conference paper at ICLR 2026

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao, Zhiwei Liu,
Yihao Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating verifiable and diverse
function-calling datasets. Advances in Neural Information Processing Systems, 37:54463-54482,
2024c.

Yifei Lu, Fanghua Ye, Jian Li, Qiang Gao, Cheng Liu, Haibo Luo, Nan Du, Xiaolong Li, and
Feiliang Ren. Codetool: Enhancing programmatic tool invocation of llms via process supervision.
arXiv preprint arXiv:2503.20840, 2025.

Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A Smith, Hannaneh Ha-
jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation. arXiv
preprint arXiv:2506.01937, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Alizée Pace, Jonathan Mallinson, Eric Malmi, Sebastian Krause, and Aliaksei Severyn. West-of-n:
Synthetic preferences for self-improving reward models. arXiv e-prints, pp. arXiv—2401, 2024.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (BFCL): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=2GmDdhBdDk!

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhi-
wei Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, Shelby Heinecke, Weiran Yao, Huan
Wang, Silvio Savarese, and Caiming Xiong. Apigen-mt: Agentic pipeline for multi-turn data
generation via simulated agent-human interplay, 2025a. URL https://arxiv.org/abs/
2504.03601L

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-mt: Agentic pipeline for multi-
turn data generation via simulated agent-human interplay. arXiv preprint arXiv:2504.03601,
2025b.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Tool cre-
ation for disentangling abstract and concrete reasoning of large language models. arXiv preprint
arXiv:2305.14318, 2023a.

Cheng Qian, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. Toolink: Linking toolkit creation and
using through chain-of-solving on open-source model. arXiv preprint arXiv:2310.05155, 2023b.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tiir, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs, 2025a. URL https://arxiv.
org/abs/2504.13958.

Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi Chen, Avirup Sil, Dilek Hakkani-Tiir,
Gokhan Tur, and Heng Ji. Smart: Self-aware agent for tool overuse mitigation. arXiv preprint
arXiv:2502.11435, 2025b.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. Towards

scalable multi-domain conversational agents: The schema-guided dialogue dataset. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 34, pp. 8689-8696, 2020.

13

https://openreview.net/forum?id=2GmDdhBdDk
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2504.13958

Under review as a conference paper at ICLR 2026

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539—
68551, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models. arXiv preprint arXiv:2402.03300, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634-8652, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in neural information processing systems, 33:3008-3021, 2020.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. Toolalpaca:
Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Qwen Team. Qwen?2.5: A party of foundation models, September 2024. URL https://gwenlm.
github.io/blog/gwen2.5/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
Enyu Zhou, Chenyu Shi, et al. Secrets of rlhf in large language models part ii: Reward modeling.
arXiv preprint arXiv:2401.06080, 2024.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang,
Xin Jiang, and Qun Liu. Aligning large language models with human: A survey. arXiv preprint
arXiv:2307.12966, 2023.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-1l: Advancing llm reasoning via rein-
forcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan, Xiang Zhang, and Wenliang Chen. Seal-
tools: Self-instruct tool learning dataset for agent tuning and detailed benchmark, 2024. URL
https://arxiv.org/abs/2405.08355.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan Xu.
Rewoo: Decoupling reasoning from observations for efficient augmented language models. arXiv
preprint arXiv:2305.18323, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan

14

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2405.08355

Under review as a conference paper at ICLR 2026

Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng
Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for multimodal
reasoning and action. arXiv preprint arXiv:2303.11381, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Junjie Ye, Yilong Wu, Songyang Gao, Caishuang Huang, Sixian Li, Guanyu Li, Xiaoran Fan,
Qi Zhang, Tao Gui, and Xuan-Jing Huang. Rotbench: A multi-level benchmark for evaluating the
robustness of large language models in tool learning. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 313-333, 2024.

Yuanging Yu, Zhefan Wang, Weizhi Ma, Shuai Wang, Chuhan Wu, Zhigiang Guo, and Min Zhang.
Steptool: Enhancing multi-step tool usage in llms through step-grained reinforcement learning.
arXiv preprint arXiv:2410.07745, 2024.

Yirong Zeng, Xiao Ding, Yuxian Wang, Weiwen Liu, Wu Ning, Yutai Hou, Xu Huang, Bing Qin,
and Ting Liu. itool: Reinforced fine-tuning with dynamic deficiency calibration for advanced tool
use, 2025. URL https://arxiv.org/abs/2501.09766.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower
ai agent systems. arXiv preprint arXiv:2409.03215, 2024.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei
Zhou, Jinjie Gu, and Lei Zou. A comprehensive survey of reward models: Taxonomy, applica-
tions, challenges, and future. arXiv preprint arXiv:2504.12328, 2025.

15

https://arxiv.org/abs/2501.09766

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 FC-REWARDBENCH BENCHMARK DETAILS

The list of models included in FC-RewardBench, along with the number of incorrect tool call output
samples per model is provided in Table

Model Name Count
Qwen/Qwen2.5-0.5B-Instruct 450
Qwen/Qwen2.5-0.5B-Instruct-FC 237
ibm-granite/granite-20b-functioncalling 112
Qwen/Qwen2.5-1.5B-Instruct 102
BitAgent/BitAgent-8B 74
DeepSeek-R1 64
openbmb/MiniCPM3-4B-FC 59
NovaSky-Al/Sky-T1-32B-Preview 54
Qwen/Qwen2.5-1.5B-Instruct-FC 52
speakleash/Bielik-11B-v2.3-Instruct 41
Qwen/Qwen2.5-14B-Instruct-FC 38
openbmb/MiniCPM3-4B 38
Qwen/Qwen2.5-14B-Instruct 28
Qwen/Qwen2.5-7B-Instruct 23
ZJared/Haha-7B 22
meetkai/functionary-small-v3.1-FC 21
watt-ai/watt-tool-70B 21
Qwen/Qwen2.5-7B-Instruct-FC 18
Qwen/Qwen2.5-32B-Instruct-FC 15
Qwen/Qwen2.5-32B-Instruct 13
meetkai/functionary-medium-v3.1-FC 11
Team-ACE/ToolACE-2-8B 6
Qwen/QwQ-32B-Preview 1

Table 8: Breakdown of errors by models in FC-RewardBench

A.2 TOOLRM TRAINING DATA DETAILS

We use the following models to generate the training data for ToolRM:

* |ibm-granite/granite-3.3-2b-instruct

* |ibm-granite/granite-3.3-8b-instruct

* |ibm-granite/granite-20b-functioncalling
* HuggingFaceTB/SmolLM2-1.7B-Instruct

* Qwen/Qwen2.5-0.5B-Instruct

* Qwen/Qwen2.5-1.5B-Instruct

¢ Qwen/Qwen2.5-7B-Instruct

* Qwen/Qwenz2.5-14B-Instruct

* Qwen/Qwen2.5-32B-Instruct

e mistralai/Mistral-7B-Instruct-v0.3

e mistralai/Mistral-Nemo-Instruct-2407

A few samples from the training data are shown in Figure 3]

A.3 TOOLRM PROMPT

The prompt used to train the ToolRM is shown in Listing

16

https://huggingface.co/ibm-granite/granite-3.3-2b-instruct
https://huggingface.co/ibm-granite/granite-3.3-8b-instruct
https://huggingface.co/ibm-granite/granite-20b-functioncalling
https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407

Under review as a conference paper at ICLR 2026

Tool Catalog User Quer:
[Fetch the details of a vehicle with license plate number 'XYZ456'. Also,
get the horoscope information for a person born under the Scorpio sign
"name": "RMof3S1",
"description": "Fetch horoscope information for a
given astrological sign using the Horoscope Astrology
APT."
"parameters": {
"NZImuPDf1Zg": §{ Correct Tool Call Incorrect Tool Call
"description": "The astrological sign to fetch
information for. Valid options include 'aries', [[
'taurus', 'gemini', 'cancer', 'leo', 'virgo', 'libra’', i k)
'scorpio', 'sagittarius', 'capricorn', 'aquarius', and "name": "6nH2QvU", “name": "6nH2QvU",
'pisces'.", "arguments": { "arguments": {
"default": "libra", "qTVPjX6Jt0": "XYZ456" "qTVPjX6Jt0": "XYZ456"
"type": "str" 3
I ¥
¥]
3. "name": "RMof3S1",
"arguments": {
“name": "6nH2QvU", "NZImuPDf1Zg": "scorpio"
"description": "Fetch vehicle information from the
Mexican Vehicle Registry using the provided license 1
plate number and optional RapidAPI key.", 1

"parameters": {
"qTVPX6It0": {
"default": "Y20BBG",

"description": "The license plate number for
which to retrieve the vehicle information.",
"type": "str"
¥
i
3
]
Tool Catalog User Quer
[Can you retrieve the last 5 head-to-head encounters for the football match
{ with ID 3456782
"name": "pmSEQnDtVmP",
"description": "Fetches and returns head-to-

head statistics and previous encounters for the home
and away team of an upcoming match.",
"parameters": {

"iBWXe7XXX": { Correct Tool Call Incorrect Tool Call
"default "81930",
: "int", [t
"description": "The ID of the match to i B
get statistics for." "name": "pmSfQnDtvmP", “name": "pmSfQnDtVmP"
, "arguments": { "arguments": {
"bmjcvOel7gNbk": { "bmjcV@el7qgNbk": 5, "iBWXe7XXX": 345678
"description”: "Limits the search to "iBWXe7XXX": 345678 1
only X previous encounters. The default is 10, with a 3 3
maximum of 10.", ¥]

"type": "int, optional", 1
"default": "10"

Figure 5: Data samples from ToolRM training data. Each sample has a tool catalog, a conversation
between the user and assistant, along with the corresponding correct and incorrect tool calls. The
top sample is missing one tool call from the Incorrect version, while the Bottom sample is missing
a parameter from the tool call.

17

[\

O 00NN B~ W

10
11
12
13
14
15

16
17
18
19
20
21

Under review as a conference paper at ICLR 2026

< |im_start|>system

You are provided with a user query, a catalog of tools available to fulfill that user query, and a list
— of tool calls that use tools available in the catalog to fulfill user request.

Your job is to assess whether the tool calls adequately fulfill the user request or not.

You have the following tools available:

““‘json
[
“name”: “diabetes_prediction”, “description”: ”Predict the likelihood of diabetes type 2
< based on a person’s weight and height.”, ”parameters”: {"type”: "dict”, ”
— properties”: {"weight”: {’type”: "integer”, "description”: "Weight of the person
< in1bs.”’}, "height”: {"type”: "integer”, "description”: "Height of the person in
< inches.”}, "activity level”: {’type”: “string”, “enum”: [’sedentary”, "lightly
— active”, “moderately active”, ’very active”, “extra active”], ”description”: ”’
< Physical activity level of the person.”}}, “required”: ["weight”, "height”, ”
— activity_level”]}}
L.
<|im_end|>

<|im_start|>user

Predict whether a person with weight 1501bs and height 5ft 10in who is lightly active will get type
— 2 diabetes.<|im_end|>

<|im_start|>assistant

XX

json

{”diabetes_prediction”: {”weight”: 150, "height”: 68, "activity level”: "lightly active”}}
]

e

<|im_end|>

Listing 1: ToolRM prompt

18

Under review as a conference paper at ICLR 2026

Error type Greedy ToolRM-14B
Incorrect Parameter Value 321 231
Irrelevance error 185 210
Malformed output syntax 86 34
Incorrect function name 62 39
Missing optional parameter 36 26
Incorrect parameter type 31 24
Wrong number of functions 21 9

Total 742 573

Table 9: Breakdown of errors with the Qwen3-1.7B model as generator with Greedy decoding and
Best-of-32 sampling with ToolRM-14B

A.4 FC-REWARDBENCH EXPERIMENT DETAILS

A.4.1 MODEL DETAILS
We include the following models from RewardBench:

* Ray2333/GRM-Llama3.2-3B-rewardmodel-ft

¢ Skywork/Skywork-Reward-V2-Qwen3-4B

e Skywork/Skywork-Reward-V2-Qwen3-8B

* [LxzGordon/URM-LLaMa-3.1-8B

* Skywork/Skywork-Reward-Llama-3.1-8B-v0.2
* nicolinho/QRM-Llama3.1-8B-v2

* infly/INF-ORM-Llama3.1-70B

e Skywork/Skywork-Critic-Llama-3.1-70B

We include the following LLMs as Judges:

deepseek-ai/DeepSeek-V3

meta-llama/Llama-3.1-405B-Instruct-FP8

meta-llama/Llama-3.3-70B-Instruct

meta-llama/Llama-4-Scout-17B-16E

meta-llama/Llama-4-Maverick-17B-128E-Instruct

* lopenai/gpt-0ss-120b

Additionally, we include the Tool-Augmented Reward Model (ernie-research/Themis—-7b).

A.4.2 LLM-AS-JUDGE PROMPT

The prompt used to evaluate LLMs-as-Judges on FC-RewardBench is shown in Listing The
placeholders {tocol-library}, {query}, {response-A}, and {response-B} are replaced
with appropriate values.

A.5 ERROR ANALYSIS

In this experiment, we evaluate the impact of ToolRM-14B on error reduction in the Best-of-n
(n = 32) sampling setting, using the Qwen3-1.7B generator on the single-turn splits of BFCL-v3.
As reported in Table[9] ToolRM-14B decreases the total error count from 742 to 573, corresponding
to a 22.7% relative reduction. The predominant error type, Incorrect Parameter Value, responsible
for nearly 42% of greedy decoding errors, is reduced by 28%, indicating that ToolRM is particu-
larly effective at mitigating semantic mis-specification of parameter values. Moreover, errors such
as Incorrect Function Name and Wrong Number of Functions are reduced by 37% and 57%, respec-
tively. In contrast, Irrelevance Errors increase from 185 to 210, suggesting that ToolRM tends to
favor producing function call outputs even in cases where no valid call can appropriately satisfy the
user query.

19

https://huggingface.co/Ray2333/GRM-Llama3.2-3B-rewardmodel-ft
https://huggingface.co/Skywork/Skywork-Reward-V2-Qwen3-4B
https://huggingface.co/Skywork/Skywork-Reward-V2-Qwen3-8B
https://huggingface.co/LxzGordon/URM-LLaMa-3.1-8B
https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2
https://huggingface.co/nicolinho/QRM-Llama3.1-8B-v2
https://huggingface.co/infly/INF-ORM-Llama3.1-70B
https://huggingface.co/Skywork/Skywork-Critic-Llama-3.1-70B
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct-FP8
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
https://huggingface.co/openai/gpt-oss-120b
https://huggingface.co/ernie-research/Themis-7b

10
11
12
13

14

15
16
17
18
19

20

21
22
23
24

25

26
27
28
29
30
31
32
33

35
36
37

Under review as a conference paper at ICLR 2026

Please act as an impartial judge and evaluate the quality of the responses provided by two Al
— assistants to the user question displayed below. You should choose the assistant that
— follows the user’s instructions and answers the user’s question best.

You will be given:

— TOOL SPECIFICATIONS: All the tool specifications including parameters and their
— descriptions available to the assistant to answer the query.

— CONVERSATION: Conversation between the user and the assistant

— ASSISTANT RESPONSES: List of responses from two assistants — [[A]] and [[B]]. Each
— response is a sequence of tool calls needed to answer the question.

When comparing two tool call sequences for the same user query, carefully evaluate both
— sequences and determine which one better follows the tool specifications and the question
< requirements.

Consider the following instructions to compare the assistant responses:

— Check whether all the tools used are relevant and actually exist.

— Verify that the tools are called in a correct and logical order.

— Ensure that the correct parameters are used for each tool and that no nonexistent parameters are
— included.

— Confirm that parameter values and formats are appropriate based on the question and tool
— specifications.

— Make sure all required parameters and data mentioned in the question are included.

— Look for any extra tools or parameters that are not needed or mentioned in the question.

Also, follow these general instructions:

— Begin your evaluation by comparing the two responses (i.e., [[A]] and [[B]]) and provide a short
— explanation.

— Avoid any position biases and ensure that the order in which the responses were presented does
— not influence your decision.

— Do not allow the length of the responses to influence your evaluation.

— Do not favor certain names of the assistants.

— Be as objective as possible.

— After providing your explanation, output your final verdict by strictly following this format: ”[[A
—]]” if assistant A’s response is better and ”[[B]]” if assistant B’s response is better.

— STRICTLY follow this output format: [EXPLANATION]\n{Short comparison highlighting
< differences and reasoning. }\n\n[VERDICT]\n{[[A]] or [[B]]}. Place your reasoning
— after the [EXPLANATION] tag and your final choice after the [VERDICT] tag.

TOOL SPECIFICATIONS
{tool-library }

CONVERSATION
{query}

ASSISTANT RESPONSES:
[[A]] {response—A}
[[B]] {response-B}

ANSWER:

Listing 2: LLM-as-Judge Prompt used for FC-RewardBench evaluation

20

Under review as a conference paper at ICLR 2026

A.6 TOOLRM GENERALIZATION 350

To assess how well ToolRM generalizes to inputs un- 300
seen during training, we embed each tool and conver-
sation from both the training set and the five non-BFCL ~ 2*°
test sets using the allfmpnetfbaserZE embedding
model. We then compute, for each test example, the max-
imum cosine similarity with the training set and plot the
resulting distributions in Figure[6] We observe low sim-
ilarity between training and test examples for both tools
and conversations (median < 0.6 in both cases), indicat-
ing that ToolRM generalizes effectively to novel inputs at
test time.

A.7 GRPO EXPERIMENTAL DETAILS

|

1

[0 Tool similarity
[Conv similarity

-) Figure 6: Histogram of maximum co-
We utilize the open-source library verlﬂ and the code gine similarity between train and test

base and dataset provided by ToolRL|Z|to train models for tools and conversations.

GRPO experiments. The hyperparameters used to train
the model are listed in Table [T0] and the prompt used to
train the models is listed in Listing[3]

Hyperparameter = Value = Hyperparameter

Value

Max prompt length 2048 Number of rollouts

Max response length 1024 Total epochs
Learning rate le-6 Train batch size

PPO mini batch size 128 Validation batch size

15
512
128

Table 10: GRPO Experimental Hyperparameters

Shttps://huggingface.co/sentence-transformers/all-mpnet-base-v2
Shttps://github.com/volcengine/verl
"https://github.com/qiancheng0/ToolRL

21

—

— OO0 0O Nk W

[N

13
14
15
16
17
18
19
20
21

23
24
25

26

27

Under review as a conference paper at ICLR 2026

You are a helpful multi—turn dialogue assistant capable of leveraging tool calls to solve user tasks
— and provide structured chat responses.

sxAvailable Tools:x

{{ToOLS}}

e

##Steps for Each Turns:

1. #+Think:=x* Recall relevant context and analyze the current user goal.

2. #xDecide on Tool Usage:s: If a tool is needed, specify the tool and its parameters.

3. #xRespond Appropriately:«: If a response is needed, generate one while maintaining
< consistency across user queries.

xxOutput Formats
‘““plaintext
<think> Your thoughts and reasoning </think>
<tool_call>
”name”: Tool name”, parameters”: {”Parameter name”: ”Parameter content”, ”... ...":’} }

39, 9 [LEET)

{"name”: ”... ... , Pparameters”: {”... L L L L L L

</tool_call>
<response> Al’s final response </response>

%3

#x[mportant Notessx*

1. You must always include the ‘<think>‘ field to outline your reasoning. Provide at least one of
— ‘<tool_call>" or ‘<response>‘. Decide whether to use ‘<tool_call>* (possibly multiple
< times), ‘<response>‘, or both.

2. You can invoke multiple tool calls simultaneously in the ‘<tool_call>* fields. Each tool call
— should be a JSON object with a "name” field and an ”parameters” field containing a
— dictionary of parameters. If no parameters are needed, leave the “parameters” field an
— empty dictionary.

3. Refer to the previous dialogue records in the history, including the user’s queries, previous ‘<
— tool_call>*, ‘<response>‘, and any tool feedback noted as ‘<obs>* (if exists).

Listing 3: Prompt used for GRPO training of models

22

	Introduction
	Related Work
	Tool Calling
	RL for Tool-Use Alignment
	Reward Modeling

	Methodology
	FC-RewardBench Evaluation Dataset
	Reward Modeling
	ToolRM Training Data Generation

	Experimental Setup
	Results
	RQ1: FC-RewardBench evaluation
	RQ2: Best-of-n sampling with ToolRM
	RQ3: Reward-guided Fine-Tuning
	 ToolRM for data filtering
	Policy Optimization Using ToolRM

	Ablation Analysis
	Conclusion
	Appendix
	FC-RewardBench benchmark details
	ToolRM Training Data Details
	ToolRM prompt
	FC-RewardBench Experiment Details
	Model Details
	LLM-as-Judge Prompt

	Error Analysis
	ToolRM generalization
	GRPO Experimental Details

