
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOOLRM: OUTCOME REWARD MODELS FOR
TOOL-CALLING LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) increasingly interact with external tools, re-
ward modeling for tool use has become a critical yet underexplored area. Ex-
isting reward models, trained primarily on natural language outputs, struggle to
evaluate tool-based reasoning and execution. To quantify this gap, we introduce
FC-RewardBench, the first benchmark designed to systematically evaluate reward
models in tool-calling scenarios. Our analysis shows that current reward models
often miss key signals of effective tool use, highlighting the need for domain-
specific modeling. To address this, we propose a training framework for outcome
reward models using data synthesized from permissively licensed, open-weight
LLMs. We train models ranging from 1.7B to 14B parameters and evaluate them
across seven out-of-domain benchmarks. These reward models consistently out-
perform general-purpose baselines, yielding up to a 25% average improvement in
downstream task performance, enhancing robustness to input noise, and enabling
data-efficient fine-tuning through reward-guided filtering.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (Achiam et al., 2023), Claude, and Gemini (Reid
et al., 2024) have rapidly advanced the field of artificial intelligence (AI), achieving strong perfor-
mance across a wide range of tasks, including complex question answering, code generation, and
multi-step reasoning (Li et al., 2025b). As these models are increasingly deployed in real-world
systems, the need for them to interact with external tools has become critical. Tool calling en-
ables LLMs to invoke external functions such as APIs, databases, calculators, and search engines
(Prabhakar et al., 2025b; Zhang et al., 2024; Abdelaziz et al., 2024; Liu et al., 2024b; Lin et al.,
2024), shifting their role from standalone text generators to orchestrators of complex workflows.
This capability underpins their application in autonomous agents, virtual assistants, and multimodal
systems.

Training these LLMs effectively requires reward models, which are integrated into the learning
pipeline through reinforcement learning (RL), preference optimization (Wang et al., 2023), and re-
jection sampling fine-tuning (Touvron et al., 2023; Team, 2024). Reward models provide learned
signals that estimate output quality, enabling scalable evaluation without requiring human judgment
on every example. Broadly, they fall into two categories: process reward models (PRMs) (Light-
man et al., 2023), which score intermediate reasoning steps, and outcome reward models (ORMs)
(Cobbe et al., 2021), which evaluate only the final answer. PRMs offer finer control over reasoning
but demand costly, fine-grained annotations. ORMs, in contrast, are easier to train and can achieve
comparable performance gains (Uesato et al., 2022).

Despite their successes, current reward models are designed primarily for natural language outputs
(Zhong et al., 2025). Reward modeling for tool calling remains an underexplored area, with two
notable gaps: (a) no dedicated benchmark exists for evaluating reward models in the function-calling
domain1, and (b) existing reward models fail to capture the nuances of tool-based reasoning and
execution. In order to address these gaps, we first introduce FC-RewardBench – a comprehensive
benchmark specifically designed to evaluate reward models on tool-calling tasks. Derived from the
Berkeley Function Calling Leaderboard (BFCL) Version 3 (Patil et al., 2025), the dataset contains

1Tool-use, tool-calling, and function-calling are used interchangeably throughout the paper

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

Schema
Validation
Baseline

ToolRM (Ours)
LLM-as-a-Judge
Reward Model

Figure 1: Performance of ToolRM, top reward models from RewardBench, Tool-augmented RM
(Themis), and leading LLMs-as-judges on FC-RewardBench. Note: Model names are abbreviated
for conciseness (e.g., L3.1-xx, SR-xx, and SC-xx correspond to Llama-3.1-xx, SkyWorks-Reward-
xx, and SkyWorks-Critics-xx, respectively). Full model names are provided in Appendix A.4.

1500 user inputs paired with correct and incorrect function calls. We benchmark several state-
of-the-art general-purpose reward models on FC-RewardBench, and our analysis (Figure 1) shows
that these models often fail to capture key aspects of successful tool use, hence failing to capture the
nuances of tool-based reasoning and execution. To this end, next, we introduce ToolRM, a collection
of specialized ORMs for tool calling. Trained on preference data synthesized from a diverse set of
open-source function-calling models, ToolRM outperforms much larger reward models and LLMs-
as-Judges on FC-RewardBench. In downstream applications, ToolRM demonstrates up to 25%
average improvement across multiple benchmarks in a Best-of-n setting. These models also enable
efficient data filtering, yielding better fine-tuned models with less data.

In summary, our contributions are:

• We introduce FC-RewardBench; the first benchmark to evaluate reward models on a tool
calling setting with strong correlation to downstream task performance.

• We propose a framework for training an ORM for tool-calling use-case using data generated
from permissively-licensed, open-weight LLMs.

• We train multiple reward models (ToolRM) varying in size from 1.7B to 14B in parameters,
and extensively evaluate our proposed models on seven out-of-domain benchmarks.

• We evaluated ToolRM against greedy decoding, majority voting, and rule-based schema
validation in a Best-of-n (n = 32) setting, across diverse tool-calling models of varying
sizes. They yield up to a 25% average benchmark improvement and enable efficient data
filtering for better finetuned models with less data.

2 RELATED WORK

2.1 TOOL CALLING

Tool calling has extended LLMs beyond static knowledge to tasks requiring external retrieval
(Schick et al., 2023), reasoning (He-Yueya et al., 2023), orchestration (Jain et al., 2024), and code
execution (Gao et al., 2023). Early prompting-based approaches such as ReAct (Yao et al., 2023)
inspired refinements for efficiency (Xu et al., 2023), performance (Shinn et al., 2023; Yang et al.,
2023), or balanced trade-offs (Crouse et al., 2023). Recent models now provide built-in tool use
(Reid et al., 2024; CodeGemma Team et al., 2024; CohereForAI, 2024; AI@Meta, 2024; Jiang
et al., 2023) or are fine-tuned for this capability (Qin et al., 2023; Tang et al., 2023; Patil et al.,
2023; Abdelaziz et al., 2024). To assess and enhance these capabilities, benchmarks (Guo et al.,
2024; Patil et al., 2023), curated datasets (Liu et al., 2024b; Qian et al., 2025b), and autonomous
tool construction methods (Qian et al., 2023b;a) have been proposed.

2.2 RL FOR TOOL-USE ALIGNMENT

Reinforcement Learning has become a powerful approach for aligning LLMs with effective tool use.
Search-R1 (Jin et al., 2025) trains LLMs to iteratively refine search queries, showing RL feedback

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

balances exploration and retrieval precision. ToRL (Li et al., 2025a) enables models to discover
tool-use strategies autonomously, with rewards driving emergent behaviors like strategic invocation
and adaptive reasoning mode switching. ReTool (Feng et al., 2025) interleaves code execution with
natural language reasoning, using outcome feedback to guide tool invocation, improving mathemat-
ical problem solving. Several works focus on reward design: ToolRL (Qian et al., 2025a) studies
how reward type, granularity, and temporal dynamics affect alignment; StepTool (Yu et al., 2024)
uses step-level reward shaping and policy-gradient optimization for multi-step tasks; CodeTool (Lu
et al., 2025) combines RL with step-level supervision to encourage reasoning about intermediate
states; SWE-RL (Wei et al., 2025) leverages software evolution data to optimize reasoning over
action sequences, capturing temporal dependencies; and iTool (Zeng et al., 2025) mitigates perfor-
mance decay from synthetic data via iterative reinforced fine-tuning with Monte Carlo Tree Search,
enhancing robustness. Together, these works show RL’s effectiveness in aligning LLMs for general-
purpose tool use, though none explicitly employ an ORM that directly evaluates or optimizes the
overall quality of an entire sequence of tool interactions.

2.3 REWARD MODELING

Reward models (RMs) provide scalar preference signals that guide LLMs through preference op-
timization or RL (Wang et al., 2024). They can be broadly divided into ORMs (outcome reward
models), which only evaluate the final output, and PRMs (process reward models), which score in-
termediate reasoning steps (Zhong et al., 2025). Early verifier-based approaches in the math domain
(Cobbe et al., 2021) laid the foundation for ORMs, while later work explicitly contrasted outcome-
and process-based supervision for math problems (Uesato et al., 2022), and developed PRMs that
reward coherent stepwise reasoning (Lightman et al., 2023). Despite their promise, PRMs often
face robustness and supervision challenges (Zhang et al., 2025), as highlighted by failed attempts
reported by Guo et al. (2025). In contrast, ORMs have proven more scalable (Lin et al., 2025), fo-
cusing on final correctness and generalization, with recent advances such as Skywork-Reward (Liu
et al., 2024a) demonstrating effective recipes for outcome-based training, achieving state-of-the-art
performance on RewardBench (Lambert et al., 2024). Recently, tool-augmented reward models (Li
et al., 2024), which enable reward models to utilize tools to produce a more accurate preference
score, have been introduced. While prior work has studied RMs primarily in free-text reasoning and
math/code domains, to the best of our knowledge, this is the first work introducing ORMs for tool
calling, where a sequence of tool calls defines outcomes.

3 METHODOLOGY

3.1 FC-REWARDBENCH EVALUATION DATASET

While several benchmarks evaluate RMs on tasks involving chat, reasoning, safety (Lambert et al.,
2024); factuality, instruction following, and math (Malik et al., 2025), there remains a notable gap in
the evaluation of RMs for function-calling tasks. To bridge this gap, we propose FC-RewardBench,
a benchmark specifically designed to evaluate RMs on function-calling tasks. This dataset comprises
1500 unique data points, each containing a user query, a tool catalog (tools available to the model to
answer the user query), and the associated correct and incorrect tool calls for a given user query.

To construct FC-RewardBench, we utilize the single-turn splits of the BFCL-v3 dataset (Patil et al.,
2025). The tool catalog, user query, and the correct tool calls in the dataset are directly sourced from
BFCL-v3. Incorrect tool calls are generated using a pool of 25 language models, spanning sizes
from 0.5B to 685B parameters. Each model is prompted to generate a tool call in response to the
user query. The outputs are compared against the ground-truth, and only the incorrect generations
are retained. From this pool, we randomly sample one incorrect call per instance to prevent over-
representation from any single user query. Finally, 1,500 such examples are randomly selected to
form the final dataset.

Table 1 presents a breakdown of error types observed in the dataset. Notably, a majority of the
incorrect calls involve subtle errors such as incorrect parameter values, missing optional parameters,
or an incorrect number of functions, which are non-trivial to detect. These characteristics require the
RM to demonstrate a deeper understanding of the function-calling task, making FC-RewardBench
a challenging and discriminative benchmark. Figure 2 shows a representative example from the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Breakdown of errors in the FC-
RewardBench dataset. The majority of errors
in the dataset are subtle and hard to identify.

Error Type Count
Incorrect Parameter Value 650
Incorrect Function Name 403

Incorrect number of functions 245
Missing Optional Parameter 78
Missing Required Parameter 45

Incorrect Parameter Type 43
Unexpected Parameter 21

Incorrect output format 15

Find a board game with complexity rating under 2.5 and that
supports more than 5 players, as well as a trivia game that
could be played within 60 minutes.

Query

[
{"board_game_search": {

"complexity": 2.5,
"player_count": 6

}},
{"trivia_game_search": {

"duration": 60
}}

]

Correct Tool Call

[
{"board_game_search": {

"complexity": 2.5,
"player_count": 5

}},
{"trivia_game_search": {

"duration": 60.0
}}

]

Incorrect Tool Call

Figure 2: Representative example from FC-
RewardBench the parameter player count
is set to an incorrect value.

dataset, where the incorrect tool call sets the parameter player count to an incorrect value.
Additional details about the benchmark are provided in Appendix A.1.

3.2 REWARD MODELING

For pairwise preference modeling, RMs are commonly formulated using the Bradley–Terry model
(Bradley & Terry, 1952), which defines the probability that output y+ is preferred over y− given an
input x as:

p(y+ ≻ y− | x) = exp(r(x, y+))

exp(r(x, y+)) + exp(r(x, y−))
= σ(r(x, y+)− r(x, y−)) (1)

where r(x, y) is a scalar reward function, and σ is the sigmoid function.

Training requires curating a dataset of pairwise preferences D = {(x, y+, y−) : y+ ≻ y−}, with
preferences obtained through either human annotations (Stiennon et al., 2020; Ouyang et al., 2022)
or synthetic generation methods (Pace et al., 2024; Hosseini et al., 2024). The reward function r is
parameterized by a neural network rθ, typically initialized from a supervised fine-tuned model with
the final layer replaced by a linear head.

The parameters of rθ are estimated from the dataset D using maximum likelihood estimation of the
following objective:

J(r) = max
rθ

E(x,y+,y−)∼D[log(σ(rθ(x, y+)− rθ(x, y−))] (2)

In this work, we use reward centering (Eisenstein et al., 2023) to ensure that rewards are zero-
centered. This is achieved by adding the following regularization term to the optimization objective:

Jreg(r) = J(r) + ηE(x,y+,y−)∼D[(rθ(x, y+) + rθ(x, y−))
2] (3)

where η is a small positive value hyperparameter.

3.3 TOOLRM TRAINING DATA GENERATION

To train ORMs for function-calling tasks, we require data consisting of user queries, tool catalogs,
and the corresponding correct and incorrect tool calls. We construct this data by leveraging a di-
verse set of open-source, permissively licensed language models with function-calling capabilities.
Specifically, we use publicly available function-calling datasets, which provide user queries, tool
catalogs, and ground-truth tool call sequences. For each query, we prompt the models to generate
tool calls using the tools specified in the dataset.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The generated tool calls are then compared against the ground-truth sequences. Outputs that deviate
from the ground truth are retained as incorrect examples, while matching outputs are discarded.This
procedure enables the collection of data that reflects the natural variability and error patterns of real-
world models. It captures not only common mistakes but also subtle and complex failure modes that
are difficult to anticipate or enumerate manually.

4 EXPERIMENTAL SETUP

Training Data: To create training data for the RM, we select open-source datasets that cover
various aspects of function-calling, such as the API-Gen dataset (Liu et al., 2024c) for single-turn
interactions, the Schema-Guided Dialogue (SGD) dataset (Rastogi et al., 2020) for multi-turn inter-
actions with tool invocations and responses, and the xlam-irrelevance2 dataset for cases where the
system lacks sufficient information to respond to a user query.

Since these datasets are common training datasets and our primary focus is to elicit representative
incorrect behavior from the model, we follow Lin et al. (2024) and obfuscate the data samples to
avoid the model regurgitating its training data. We obfuscate the samples by replacing function and
parameter names with randomly generated strings and reordering the keys in the function schema.

We then use a collection of 11 permissively-licensed, open-weight models to generate the training
data. The pool includes both general-purpose instruction-tuned models with function-calling ca-
pabilities and function-calling specific models, with parameter counts ranging from 0.5B to 32B.
Specifically, we use the Qwen2.5-Instruct (Team, 2024) and Granite 3.3-Instruct (Granite Team)
model series, along with Granite-20b-function-calling (Abdelaziz et al., 2024), SmolLM2 (Allal
et al., 2025), Mistral-7b-Instruct-v0.3 and Mistral-Nemo-Instruct-2407.

After generating outputs from the model pool and keeping only the incorrect ones, we subsample one
incorrect output per input user query to prevent over-representation from a user query in the training
data. Overall, this results in 180,000 training data samples divided into 85,000 single and multi-turn
data each, and 10,000 irrelevance data. The full list of models used to generate the training data,
along with a few training data samples, is provided in Appendix A.2.

Model architecture: We use the Qwen-2.5-Instruct models (Team, 2024; Yang et al., 2024) as the
base architecture for our RMs. Specifically, we select the 1.5B, 7B, and 14B parameter variants,
as they are Apache-2.0 licensed and offer a practical balance between size and performance. We
initialize the RMs with the instruction-tuned model weights and replace the final language modeling
head with a linear layer that maps the hidden representation to a scalar reward value.

The RMs accept the specifications of available functions, conversation history, and the generated
tool call as input and produce a scalar reward as output (refer to Appendix A.3 for prompt template).
We train all RMs for 1 epoch with a learning rate set to 1e-6, a cosine learning rate schedule with
warmup set to 3% of total steps, and the reward centering coefficient set to 0.01.

Benchmarks: In addition to FC-RewardBench, we evaluate models on the following commonly
used function-calling benchmarks: Berkeley Function Calling Leaderboard (BFCL) v3 (Patil et al.,
2025), API-Bank (Li et al., 2023), ToolAlpaca (Tang et al., 2023), NexusRaven API Evaluation
3, and SealTools (Wu et al., 2024). For API-Bank, we evaluate on the Call (API-Bank-1) and
Retrieval+Call (API-Bank-2) splits. Table 2 summarizes their key statistics and characteristics.
We highlight that these benchmarks vary in difficulty, encompassing single and multi-turn queries,
nested tool calls, and evaluation sets collected from both real users and synthetically generated.

Baselines: To evaluate performance on FC-RewardBench, we select eight RMs from Reward-
Bench, spanning sizes from 3B to 70B parameters. We chose models that achieved high scores on
RewardBench and support tool use in their chat template, which helps mitigate performance degra-
dation due to prompt variability. In addition to these specialized RMs, we include six LLMs as
judges, ranging from 70B to 685B parameters. See Appendix A.4 for the complete list of models.

For downstream task evaluations, we select the strongest function-calling models – the xLAM-2
series (Prabhakar et al., 2025a) – and the strongest generic instruction-tuned models – the Qwen3

2https://huggingface.co/datasets/MadeAgents/xlam-irrelevance-7.5k
3https://huggingface.co/datasets/Nexusflow/NexusRaven_API_evaluation

5

https://huggingface.co/datasets/MadeAgents/xlam-irrelevance-7.5k
https://huggingface.co/datasets/Nexusflow/NexusRaven_API_evaluation

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Statistics of the evaluation benchmarks. “MT” denotes multi-turn queries.

Dataset # Examples # Tools
(avg./query)

MT
queries

Avg. MT
turns

Nested
calls

Avg. output
tool calls

Data
source

BFCL-v3 4,441 2,631 (3.3) 800 4.2 ✓ 2.4 Real
API-Bank 473 64 (3.4) 397 3.4 x 1.0 Real

ToolAlpaca 100 64 (5.6) 0 – x 1.5 Synthetic
NexusRaven 318 65 (7.4) 0 – x 1.0 Synthetic

SealTools 627 3,036 (9.9) 0 – ✓ 2.9 Synthetic

series (Yang et al., 2025) – from the BFCL-v3 leaderboard. Both of these model series cover a wide
range of sizes (0.6B to 70B), enabling a comprehensive assessment of ToolRM across model scales.

5 RESULTS

We evaluate our proposed RM to answer the following three research questions (RQ):

RQ1: How does ToolRM compare to existing RMs on FC-RewardBench?
RQ2: Can ToolRM improve the performance during inference through Best-of-n sampling? And,
RQ3: Can ToolRM lead to better fine-tuned models through reward-guided data filtering?

5.1 RQ1: FC-REWARDBENCH EVALUATION

We evaluate ToolRM against state-of-the-art RMs from RewardBench (Lambert et al., 2024), Tool-
Augmented RM (Themis) (Li et al., 2024), as well as leading LLMs used in an LLM-as-a-Judge
setting, on the FC-RewardBench dataset.

RMs are evaluated by comparing scores assigned to the correct tool call outputs and incorrect tool
call outputs for the same input. A prediction is counted as correct when the score for the correct tool
call exceeds that of the incorrect one. LLMs-as-Judges are evaluated with a pairwise comparison
prompt, where both candidate tool calls are presented and the model is instructed to select the correct
one. To avoid position bias, the order of candidates is randomized. Experimental details, including
the full prompt template, are provided in Appendix A.4. We show the results in Figure 1 and observe
the following:

• Specialized RMs under-perform on tool-calling tasks. Despite strong performance in non-tool-
calling domains, most specialized RMs fail to generalize effectively to the tool-calling domain.
While some individual variants achieve higher scores, their performance remains inconsistent and
generally below state-of-the-art levels. For example, the Tool-Augmented RM (Themis) attains
only 45% accuracy on FC-RewardBench, highlighting its limited effectiveness in evaluating tool-
calling behavior. Rule-based methods, such as Schema Validation, perform significantly worse
than any learned model, underscoring the subtlety of errors in tool-calling tasks and the need for
a learned reward model.

• LLMs-as-Judges achieve higher accuracy but are computationally expensive. LLMs-as-
Judges attain strong performance on FC-RewardBench (exceeding 80% across all models), but
their large parameter counts impose substantial computational costs.

• ToolRM achieves the highest accuracy on the benchmark while maintaining efficiency with
respect to model size. The ToolRM-14B and ToolRM-7B variants outperform all other generative
and sequential classifier models. Notably, even the ToolRM-1.5B variant surpasses the gpt-oss-
120B model, approaching the performance of substantially larger Llama-4 models.

Correlation with performance on downstream tasks: The primary purpose of FC-
RewardBench is to enable quick evaluation of RMs without having to do computationally expensive
downstream evaluation. It is thus imperative that performance on FC-RewardBench reflects down-
stream task performance. To assess this, we select six generator models (Qwen3-1.7B, 8B, 32B,
and xLAM-1B, 8b, 70B), 11 RMs (eight RMs from RewardBench and three ToolRM variants), and
five benchmarks. For each generator model, RM, and dataset combination, we compute the perfor-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

mance in a Best-of-n (n = 32) setting and compute the Pearson correlation coefficient between the
Best-of-n performance and RM performance on FC-RewardBench. Results are shown in Figure 3.

Overall, we find that FC-RewardBench scores are strongly correlated with downstream task accu-
racy, with an average correlation of 0.84 across benchmarks and generator models. Across generator
models, the average correlation ranges from 0.62 to 0.94, indicating that the alignment between FC-
RewardBench and downstream performance is robust across model families. Importantly, this cor-
relation remains stable even at scale: larger models such as Qwen3-32B and xLAM-2-70B continue
to exhibit strong agreement between FC-RewardBench accuracy and downstream results. Taken
together, these findings confirm that FC-RewardBench provides a reliable and computationally effi-
cient proxy for expensive downstream evaluations.

5.2 RQ2: BEST-OF-n SAMPLING WITH TOOLRM

Qw
en

3-
1.7

B
Qw

en
3-

8B
Qw

en
3-

32
B

xL
AM

-2
-1

b
xL

AM
-2

-8
b

xL
AM

-2
-7

0b
Mo

de
l

 Av
g

Generator models

API-Bank-1

API-Bank-2

Nexus

SealTools

ToolAlpaca

Downstream
 Avg

Do
wn

st
re

am
 ta

sk
s

0.92 0.79 0.71 0.96 0.84 0.57 0.92

0.72 0.79 0.49 0.84 0.59 0.35 0.74

0.95 0.84 0.44 0.91 0.69 0.84 0.92

0.77 0.67 0.61 0.9 0.61 0.77 0.74

0.75 0.36 0.55 0.93 0.64 -0.13 0.87

0.88 0.76 0.62 0.94 0.73 0.79 0.84

Figure 3: Correlation heatmap be-
tween FC-RewardBench performance
and downstream accuracy across gener-
ator models and benchmarks, showing
consistently strong alignment (avg. cor-
relation = 0.84).

In this section, we evaluate ToolRM in a Best-of-n set-
ting across multiple generator models. For each input,
we sample n = 32 independent generations using tem-
perature T = 0.6 from the generator model and use
ToolRM to score and select the highest-ranked genera-
tion as the final output. Intuitively, a stronger RM should
more reliably identify the correct tool call, thereby im-
proving task performance. We compare against three
baselines: Greedy Decoding, Majority Voting – where
the most frequently occurring final answer is selected
as the output, and Schema Validation – where we com-
pare the output against the input tool schema and return
the generation with the highest likelihood that validates
the schema. For non-BFCL benchmarks, we report the
Full Sequence Matching metric (Basu et al., 2025), which
checks whether the predicted tool sequence – including
tool names and argument-value pairs – exactly matches
the gold sequence. For BFCL, we use its native evalua-
tion metrics: AST-based scores for single-turn tasks and
state-based/response-based metrics for multi-turn cases.

Figure 4 reports average performance across five benchmarks (API-Bank-1, API-Bank-2, ToolAl-
paca, NexusRaven, and SealTools), while Table 3 presents results on the BFCL-v3 dataset. We
summarize the key insights below.

Qwen3-0.6B xLAM-2-1b-fc-r xLAM-2-3b-fc-r Qwen3-8B Qwen3-14B Qwen3-32B xLAM-2-70b-fc-r
40

45

50

55

60

65

70

75

39
.5

49
.7

4

59
.6

63
.7 64

.8
8

63
.8

63
.6

43
.9

8

50
.9

6

59
.3

6

65
.7 66

.8
8

65
.6

8

64
.0

4

40
.1

4

48
.7

8

58
.7

6

63
.9

2 66
.2

62
.4

6

62
.4

4

56
.6

4

54
.2

2

61
.5

8 66
.1

6

67
.6

2

67
.3

64
.4

4

61
.6

4

56
.5

6

63
.6

69
.1

4

68
.9

8

69
.0

6

66
.0

4

64
.3

8

57
.1

6

63
.6

4

70
.4

8

70
.6

68
.8

2

66
.3

2

Greedy
Majority Voting
Schema Validation
ToolRM (1.5B)
ToolRM (7B)
ToolRM (14B)

Figure 4: Performance of the Qwen3 series and xLAM-2 series in the Best-of-n (n = 32) setting
across five benchmarks: API-Bank-1, API-Bank-2, NexusRaven, ToolAlpaca, and SealTools.

• Small Language Models (SLMs) benefit the most: Best-of-n sampling with Qwen3-0.6B and
ToolRM-14B as the ranker improves accuracy from 39.5% to 64.38% – a gain of 24.9 points on
non-BFCL benchmarks (Figure 4). This performance surpasses that of Qwen3-32B (63.8%) and
Llama-xLAM-2-70b-fc-r (63.6%) with greedy decoding. On BFCL-v3, xLAM-2-1B-fc-r with
ToolRM-14B improves overall, Non-Live AST, and Live AST accuracies by 3.2, 6.5, and 6.2

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance of the Qwen3 and xLAM-2 series of models in the Best-of-n (n = 32) setting
on BFCL-v3.

Model RM Overall Acc Non-Live AST Live AST Multi-Turn Acc

Qwen3-1.7b

Greedy 55.74 80.23 71.35 10.25
Majority Voting 57.96 83.90 74.24 10.12

Schema Validation 56.34 83.48 72.46 8.25
ToolRM-14B 61.05 89.79 80.01 14.12

Qwen3-8b

Greedy 64.65 88.90 80.09 26.38
Majority Voting 67.96 90.33 81.72 33.13

Schema Validation 67.21 90.58 81.05 32.50
ToolRM-14B 67.14 92.19 82.98 31.50

Qwen3-32b

Greedy 69.19 89.33 82.83 38.25
Majority Voting 73.57 91.38 83.64 46.63

Schema Validation 69.38 89.71 82.61 37.75
ToolRM-14B 70.61 92.31 84.23 39.62

xLAM-2-1b-fc-r

Greedy 54.09 68.98 54.77 35.12
Majority Voting 53.51 69.42 54.92 31.50

Schema Validation 54.21 70 55.51 33.88
ToolRM-14B 57.28 75.50 60.92 34.25

Llama-xLAM-2-8b-fc-r

Greedy 71.14 84.31 67.80 67
Majority Voting 72.39 84.90 67.75 67.75

Schema Validation 70.89 84.79 66.47 65.38
ToolRM-14B 72.52 87.73 72.46 61.62

xLAM-2-32b-fc-r

Greedy 76.34 89.40 75.35 65.25
Majority Voting 76.28 89.38 75.43 64.12

Schema Validation 75.90 89 74.76 64.13
ToolRM-14B 76.54 90.27 77.42 63.25

points, respectively. Qwen3-1.7B achieves even larger improvements of 5.3, 9.6, and 8.7 points
on these metrics (Table 3).

• SLM + RM can match or surpass larger models: Best-of-n sampling with Qwen3-8B and
ToolRM-14B improves non-BFCL benchmark accuracy by 6.8% points to 70.48%, which is 5.6
points higher than the best greedy baseline. On BFCL-v3, the same setup yields gains of 3.3 points
on Non-Live AST and 2.9 points on Live AST, exceeding the performance of Qwen3-32B with
greedy decoding.

• Diminishing returns for very large models: Improvements for large-scale generators (32B+)
are modest. For instance, Llama-xLAM-2-32B-fc-r improves by only 2.1 points on non-BFCL
benchmarks and 2.5 points on BFCL Live AST accuracy, suggesting limited additional utility of
Best-of-n sampling with very strong base models.

We also look at the breakdown of errors with greedy decoding and Best-of-n sampling with ToolRM-
14B, and present the results in Appendix A.5.

Best-of-n sampling improves model robustness: We examine the impact of Best-of-n sampling
on model robustness to noise in the input. We utilize RoTBench (Ye et al., 2024), which comprises of
568 tool specifications and 105 user queries paired with tools with varying levels of noise. The Clean
split contains tool and parameter names that clearly reflect their usage, while the Slight, Medium, and
Heavy splits introduce increasing noise through operations such as character insertion and deletion,
name reversal, and name swapping. The Union split combines all noisy variants and represents
the most challenging setting. Model performance is evaluated across three tasks: Tool Selection,
Parameter Identification, and Content Filling.

Table 4 reports results for greedy decoding and Best-of-n (n = 32) with ToolRM-14B. We highlight
two key findings. First, Best-of-n decoding yields substantial gains across all models and tasks. For

Table 4: Performance of Qwen models on RoTBench with greedy decoding (Clean and Union) and
Best-of-n (n = 32) with ToolRM-14B (Clean@32 and Union@32).

Generator
Model

Tool Selection Parameter Identification Content Filling

Clean Clean@32 Union Union@32 Clean Clean@32 Union Union@32 Clean Clean@32 Union Union@32

Qwen-1.7B 54.3 76.2 47.6 58.1 37.1 55.2 27.6 40.0 27.6 41.0 21.0 30.5
Qwen-8B 52.4 72.4 45.7 66.7 38.1 55.2 30.5 46.7 27.6 42.9 20.0 31.4
Qwen-32B 65.7 76.2 52.4 72.4 38.1 56.2 30.5 44.8 25.7 42.9 21.0 31.4

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

instance, Qwen-8B improves Tool Selection from 52.4 to 72.4 on the Clean split, while performance
on the Union split rises from 45.7 to 66.7. Comparable gains of 15–25 points are observed for Pa-
rameter Identification and Content Filling. Second, Union@32 consistently outperforms the Clean
baseline, despite Union being the more difficult split. For example, Qwen-32B achieves 72.4 on
Tool Selection under Union@32 compared to 65.7 under Clean, showing that Best-of-n decoding
not only mitigates noise but can also exceed performance on noise-free data.

5.3 RQ3: REWARD-GUIDED FINE-TUNING

5.3.1 TOOLRM FOR DATA FILTERING

In this experiment, we assess the effectiveness of using ToolRM as a data filter to construct a high-
quality training dataset for tool-use models. We curate a training corpus comprising both single-turn
and multi-turn examples drawn from APIGen-MT (Liu et al., 2024c), SealTools (Wu et al., 2024),
Glaive V24, and Granite function-calling dataset (Abdelaziz et al., 2024), yielding a total of 16K
samples. We highlight that these datasets have no overlap with ToolRM training data, thus allowing
us to test the generalization capabilities of ToolRM. We select Llama-3.1-8B-Instruct (Grattafiori
et al., 2024) as the base model and performed LoRA-based fine-tuning (Hu et al., 2022) to train each
variant for 1 epoch with a learning rate of 2e-4, a LoRA rank of 16, alpha of 32, a cosine scheduler,
and a warmup ratio of 10%.

Table 5: Finetuning results of Llama-3.1-8B-Instruct on three training subsets: full 16K dataset (FT-
16K), 8K randomly sampled (FT-Random-8K), and top 8K selected by ToolRM-14B (FT-Best-8K).

Llama-3.1-8B-Instruct BFCL V3 ToolAlpaca Nexus API-Bank-1 API-Bank-2 Sealtools AVG

Base 49.6 38.0 64.8 67.9 66.2 37.6 54.0
FT-16K 54.1 43.0 75.5 57.4 63.5 72.7 61.0

FT-Random-8K 55.2 44.0 74.2 49.9 54.1 73.2 58.4
FT-Best-8K 55.4 44.0 72.0 63.7 66.2 73.7 62.5

Table 5 compares the performance of the base model with three fine-tuned variants: (1) trained on
the full 16K dataset (FT-16K), (2) trained on a random 8K subset (FT-Random-8K), and (3) trained
on the top 8K samples as ranked by ToolRM-14B (FT-Best-8K). We highlight the following key
insights from the results.

• Fine-tuning consistently improves performance. All fine-tuned models outperform the base
model, raising average accuracy from 54.0% to 61.0% when trained on the full dataset.

• Naive subsampling degrades performance. Training on a random 8K subset reduces accuracy to
58.4% – 2.6 points below the model fine-tuned on the entire corpus. This performance degradation
reflects the inapplicability of naively subsampling to reduce dataset size since it results in both the
inclusion of low-quality samples and the exclusion of high-quality ones.

• ToolRM based data filtering achieves the best performance. Selecting the top 50% of samples
with ToolRM-14B yields the strongest results at 62.5%, surpassing the full-data model while using
only half the training corpus. This demonstrates that ToolRM can effectively identify high-quality
data, enabling superior performance under tighter data budgets.

These results highlight the importance of data quality in fine-tuning tool-use models and show that
reward-guided filtering of low-quality data can yield superior performance with less training.

5.3.2 POLICY OPTIMIZATION USING TOOLRM

To assess the utility of ToolRM for policy optimization, we follow ToolRL (Qian et al., 2025a)
and train models using Group Relative Policy Optimization (GRPO) (Shao et al., 2024). ToolRL
defines the reward as R = Rformat +Rcorrectness, where Rformat ∈ {0, 1} evaluates whether the output
adheres to the format specified in the prompt, and Rcorrectness measures the correctness of the tool-call
output. We consider three variants of Rcorrectness: (1) Rschema ∈ {−1, 1}, validates the predicted tool
calls against the provided tool specifications, assigning −1 if there are schema violations and +1
otherwise; (2) RToolRL ∈ [−3, 3], follows Qian et al. (2025a) and computes rewards by comparing

4https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

9

https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: BFCL-v3 performance of Llama-3.2-
3B-Instruct and Qwen2.5-3B-Instruct trained
with GRPO under three reward designs.

Model Reward
Variant

Non-Live
AST Acc

Live AST
Acc

Llama-3.2-
3B-Instruct

Base 15.35% 43.82%
RSchema 51.71% 62.25%
RToolRL 75.27% 64.25%
RToolRM 78.40% 64.32%

Qwen2.5-
3B-Instruct

Base 43.06% 55.66%
RSchema 63.17% 66.54%
RToolRL 80.42% 67.21%
RToolRM 79.58% 67.51%

Table 7: Ablation results for ToolRM-1.5B
model on FC-RewardBench dataset.

Model Accuracy
ToolRM-1.5B 81.88%

Hyperparameter Ablation
Without obfuscation 68.25%

High reward centering (η = 0.1) 80.02%
No reward centering (η = 0) 80.32%

Data Ablation
Without API-Gen 65.48%

Without SGD 81.03%

Generator model ablation
Only large (>=12B) models 78.70%
Only small (<=2B) models 81.01%

predicted and ground-truth tool calls; and (3) RToolRM ∈ [−3, 3], scores the tool calls using ToolRM-
14B. Notably, Rschema and RToolRM do not require access to ground-truth tool calls, making them
more appropriate for RL settings, whereas RToolRL requires ground truth, limiting its applicability.

We train Llama-3.2-3B-Instruct and Qwen2.5-3B-Instruct models using the three reward variants
and evaluate them on the BFCL-v3 dataset, with results shown in Table 6. Across both models,
all three reward variants substantially improve performance over the base models. Simple schema-
based rewards provide strong gains without requiring ground-truth supervision, yielding average im-
provements of about 20 points. ToolRM-based rewards achieve the best overall results: for Llama-
3.2-3B-Instruct, RToolRM attains the highest accuracy on both evaluation metrics, and for Qwen2.5-
3B-Instruct, it provides the best Live AST accuracy, surpassing the gold-dependent RToolRL. Overall,
RToolRM consistently matches or exceeds RToolRL despite not requiring access to ground truth, high-
lighting its practicality and effectiveness as a scalable reward signal for reinforcement learning in
the tool-calling setting. Additional experimental details are provided in Appendix A.7.

6 ABLATION ANALYSIS

We conduct an ablation study to assess the contribution of individual components to the overall per-
formance of ToolRM. Specifically, we train ToolRM-1.5B, ablating different hyperparameters, train-
ing datasets, and generator models, and evaluating each variant on the FC-RewardBench dataset.
Table 7 summarizes the results. First, we observe that the full ToolRM-1.5B model, incorporating
all components, achieves the highest performance. Second, removing the API-Gen dataset leads to
a 16.4-point drop in performance, underscoring its significance in training. Finally, obfuscating tool
and parameter names results in a 13.63-point reduction in performance. This suggests that obfus-
cation prevents the model from overfitting to specific tool or parameter names and encourages it to
attend to other parts of the tool specifications, thereby improving robustness and generalization.

7 CONCLUSION

In this paper, we presented a comprehensive framework for reward modeling in tool-calling sce-
narios, addressing a critical gap in current LLM evaluation pipelines. Our benchmark, FC-
RewardBench, enables systematic assessment of reward models on tool-based reasoning. We also
presented a framework for training outcome RMs that outperform existing significantly larger RMs
in the tool calling setting. When used for inference-time scaling, ToolRM improves the perfor-
mance of general-purpose and tool calling models by up to 25% on various tool calling benchmarks.
Looking ahead, we see several promising directions for advancing reward modeling in this domain.
First, moving beyond classification-based RMs to generative verifiers with chain-of-thought reason-
ing could improve robustness and interpretability. Second, incorporating the tool and environment
state into training could help models safely recover from execution failures. Finally, bridging out-
come and process reward modeling may offer a unified framework that balances scalability with
fine-grained control over reasoning quality.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Sadhana Kumaravel, Matthew Stallone,
Rameswar Panda, Yara Rizk, GP Bhargav, Maxwell Crouse, Chulaka Gunasekara, et al. Granite-
function calling model: Introducing function calling abilities via multi-task learning of granular
tasks. arXiv preprint arXiv:2407.00121, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
et al. Smollm2: When smol goes big–data-centric training of a small language model. arXiv
preprint arXiv:2502.02737, 2025.

Kinjal Basu, Ibrahim Abdelaziz, Kiran Kate, Mayank Agarwal, Maxwell Crouse, Yara Rizk, Kelsey
Bradford, Asim Munawar, Sadhana Kumaravel, Saurabh Goyal, Xin Wang, Luis A. Lastras, and
Pavan Kapanipathi. Nestful: A benchmark for evaluating llms on nested sequences of api calls,
2025. URL https://arxiv.org/abs/2409.03797.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

CodeGemma Team, Ale Jakse Hartman, Andrea Hu, Christopher A. Choquette-Choo, Heri Zhao,
Jane Fine, and Hui. Codegemma: Open code models based on gemma. 2024. URL https:
//goo.gle/codegemma.

CohereForAI. C4ai command-r: A 35 billion parameter generative model for reasoning, summariza-
tion, and question answering. Hugging Face Models, 2024. URL https://huggingface.
co/CohereForAI/c4ai-command-r-v01.

Maxwell Crouse, Ibrahim Abdelaziz, Ramon Astudillo, Kinjal Basu, Soham Dan, Sadhana Kumar-
avel, Achille Fokoue, Pavan Kapanipathi, Salim Roukos, and Luis Lastras. Formally specifying
the high-level behavior of llm-based agents. arXiv preprint arXiv:2310.08535, 2023.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herd-
ing? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

IBM Granite Team. Granite 3.0 language models.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2409.03797
https://goo.gle/codegemma
https://goo.gle/codegemma
https://huggingface.co/CohereForAI/c4ai-command-r-v01
https://huggingface.co/CohereForAI/c4ai-command-r-v01

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning
of large language models. arXiv preprint arXiv:2403.07714, 2024.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and Noah D Goodman. Solving math word problems
by combining language models with symbolic solvers. arXiv preprint arXiv:2304.09102, 2023.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron C. Courville, Alessandro Sordoni, and
Rishabh Agarwal. V-star: Training verifiers for self-taught reasoners. ArXiv, abs/2402.06457,
2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Arushi Jain, Shubham Paliwal, Monika Sharma, Lovekesh Vig, and Gautam Shroff. Smartflow:
Robotic process automation using llms. arXiv preprint arXiv:2405.12842, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1:
Training llms to reason and leverage search engines with reinforcement learning. arXiv preprint
arXiv:2503.09516, 2025.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Raghavi
Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating
reward models for language modeling. CoRR, 2024.

Lei Li, Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian, Ningyu Zhang, and Hua Wu. Tool-
augmented reward modeling. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=d94x0gWTUX.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms, 2023.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025a.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025b.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Dahua Lin, Songyang Gao, Kai Chen, Wenwei Zhang, Ziyi Wang, Songyang Zhang, Kuikun Liu,
Jiangning Liu, Hongwei Liu, Junnan Liu, Yuzhe Gu, Chengqi Lyu, Haian Huang, Shuaibin Li,
Qian Zhao, Jianfei Gao, and Weihan Cao. Exploring the limit of outcome reward for learning
mathematical reasoning, 2025. URL https://arxiv.org/abs/2502.06781.

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
Zhou, Cheng Cheng, Yin Zhao, et al. Hammer: Robust function-calling for on-device language
models via function masking. arXiv preprint arXiv:2410.04587, 2024.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024a.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, et al. Toolace: Winning the points of llm function calling.
arXiv preprint arXiv:2409.00920, 2024b.

12

https://openreview.net/forum?id=d94x0gWTUX
https://arxiv.org/abs/2502.06781

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao, Zhiwei Liu,
Yihao Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating verifiable and diverse
function-calling datasets. Advances in Neural Information Processing Systems, 37:54463–54482,
2024c.

Yifei Lu, Fanghua Ye, Jian Li, Qiang Gao, Cheng Liu, Haibo Luo, Nan Du, Xiaolong Li, and
Feiliang Ren. Codetool: Enhancing programmatic tool invocation of llms via process supervision.
arXiv preprint arXiv:2503.20840, 2025.

Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A Smith, Hannaneh Ha-
jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation. arXiv
preprint arXiv:2506.01937, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Alizée Pace, Jonathan Mallinson, Eric Malmi, Sebastian Krause, and Aliaksei Severyn. West-of-n:
Synthetic preferences for self-improving reward models. arXiv e-prints, pp. arXiv–2401, 2024.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (BFCL): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=2GmDdhBdDk.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhi-
wei Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, Shelby Heinecke, Weiran Yao, Huan
Wang, Silvio Savarese, and Caiming Xiong. Apigen-mt: Agentic pipeline for multi-turn data
generation via simulated agent-human interplay, 2025a. URL https://arxiv.org/abs/
2504.03601.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-mt: Agentic pipeline for multi-
turn data generation via simulated agent-human interplay. arXiv preprint arXiv:2504.03601,
2025b.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Tool cre-
ation for disentangling abstract and concrete reasoning of large language models. arXiv preprint
arXiv:2305.14318, 2023a.

Cheng Qian, Chenyan Xiong, Zhenghao Liu, and Zhiyuan Liu. Toolink: Linking toolkit creation and
using through chain-of-solving on open-source model. arXiv preprint arXiv:2310.05155, 2023b.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs, 2025a. URL https://arxiv.
org/abs/2504.13958.

Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi Chen, Avirup Sil, Dilek Hakkani-Tür,
Gokhan Tur, and Heng Ji. Smart: Self-aware agent for tool overuse mitigation. arXiv preprint
arXiv:2502.11435, 2025b.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. Towards
scalable multi-domain conversational agents: The schema-guided dialogue dataset. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 34, pp. 8689–8696, 2020.

13

https://openreview.net/forum?id=2GmDdhBdDk
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2504.13958

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models. arXiv preprint arXiv:2402.03300, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in neural information processing systems, 33:3008–3021, 2020.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. Toolalpaca:
Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
Enyu Zhou, Chenyu Shi, et al. Secrets of rlhf in large language models part ii: Reward modeling.
arXiv preprint arXiv:2401.06080, 2024.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang,
Xin Jiang, and Qun Liu. Aligning large language models with human: A survey. arXiv preprint
arXiv:2307.12966, 2023.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via rein-
forcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan, Xiang Zhang, and Wenliang Chen. Seal-
tools: Self-instruct tool learning dataset for agent tuning and detailed benchmark, 2024. URL
https://arxiv.org/abs/2405.08355.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan Xu.
Rewoo: Decoupling reasoning from observations for efficient augmented language models. arXiv
preprint arXiv:2305.18323, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan

14

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2405.08355

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng
Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for multimodal
reasoning and action. arXiv preprint arXiv:2303.11381, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Junjie Ye, Yilong Wu, Songyang Gao, Caishuang Huang, Sixian Li, Guanyu Li, Xiaoran Fan,
Qi Zhang, Tao Gui, and Xuan-Jing Huang. Rotbench: A multi-level benchmark for evaluating the
robustness of large language models in tool learning. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 313–333, 2024.

Yuanqing Yu, Zhefan Wang, Weizhi Ma, Shuai Wang, Chuhan Wu, Zhiqiang Guo, and Min Zhang.
Steptool: Enhancing multi-step tool usage in llms through step-grained reinforcement learning.
arXiv preprint arXiv:2410.07745, 2024.

Yirong Zeng, Xiao Ding, Yuxian Wang, Weiwen Liu, Wu Ning, Yutai Hou, Xu Huang, Bing Qin,
and Ting Liu. itool: Reinforced fine-tuning with dynamic deficiency calibration for advanced tool
use, 2025. URL https://arxiv.org/abs/2501.09766.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower
ai agent systems. arXiv preprint arXiv:2409.03215, 2024.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei
Zhou, Jinjie Gu, and Lei Zou. A comprehensive survey of reward models: Taxonomy, applica-
tions, challenges, and future. arXiv preprint arXiv:2504.12328, 2025.

15

https://arxiv.org/abs/2501.09766

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 FC-REWARDBENCH BENCHMARK DETAILS

The list of models included in FC-RewardBench, along with the number of incorrect tool call output
samples per model is provided in Table 8.

Model Name Count

Qwen/Qwen2.5-0.5B-Instruct 450
Qwen/Qwen2.5-0.5B-Instruct-FC 237
ibm-granite/granite-20b-functioncalling 112
Qwen/Qwen2.5-1.5B-Instruct 102
BitAgent/BitAgent-8B 74
DeepSeek-R1 64
openbmb/MiniCPM3-4B-FC 59
NovaSky-AI/Sky-T1-32B-Preview 54
Qwen/Qwen2.5-1.5B-Instruct-FC 52
speakleash/Bielik-11B-v2.3-Instruct 41
Qwen/Qwen2.5-14B-Instruct-FC 38
openbmb/MiniCPM3-4B 38
Qwen/Qwen2.5-14B-Instruct 28
Qwen/Qwen2.5-7B-Instruct 23
ZJared/Haha-7B 22
meetkai/functionary-small-v3.1-FC 21
watt-ai/watt-tool-70B 21
Qwen/Qwen2.5-7B-Instruct-FC 18
Qwen/Qwen2.5-32B-Instruct-FC 15
Qwen/Qwen2.5-32B-Instruct 13
meetkai/functionary-medium-v3.1-FC 11
Team-ACE/ToolACE-2-8B 6
Qwen/QwQ-32B-Preview 1

Table 8: Breakdown of errors by models in FC-RewardBench

A.2 TOOLRM TRAINING DATA DETAILS

We use the following models to generate the training data for ToolRM:

• ibm-granite/granite-3.3-2b-instruct

• ibm-granite/granite-3.3-8b-instruct

• ibm-granite/granite-20b-functioncalling

• HuggingFaceTB/SmolLM2-1.7B-Instruct

• Qwen/Qwen2.5-0.5B-Instruct

• Qwen/Qwen2.5-1.5B-Instruct

• Qwen/Qwen2.5-7B-Instruct

• Qwen/Qwen2.5-14B-Instruct

• Qwen/Qwen2.5-32B-Instruct

• mistralai/Mistral-7B-Instruct-v0.3

• mistralai/Mistral-Nemo-Instruct-2407

A few samples from the training data are shown in Figure 5.

A.3 TOOLRM PROMPT

The prompt used to train the ToolRM is shown in Listing 1.

16

https://huggingface.co/ibm-granite/granite-3.3-2b-instruct
https://huggingface.co/ibm-granite/granite-3.3-8b-instruct
https://huggingface.co/ibm-granite/granite-20b-functioncalling
https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Tool Catalog

[
{
"name": "RMof3S1",
"description": "Fetch horoscope information for a

given astrological sign using the Horoscope Astrology
API.",

"parameters": {
"NZImuPDflZg": {
"description": "The astrological sign to fetch

information for. Valid options include 'aries',
'taurus', 'gemini', 'cancer', 'leo', 'virgo', 'libra',
'scorpio', 'sagittarius', 'capricorn', 'aquarius', and
'pisces'.",

"default": "libra",
"type": "str"

}
}

},
{
"name": "6nH2QvU",
"description": "Fetch vehicle information from the

Mexican Vehicle Registry using the provided license
plate number and optional RapidAPI key.",

"parameters": {
"qTVPjX6JtO": {
"default": "Y20BBG",
"description": "The license plate number for

which to retrieve the vehicle information.",
"type": "str"

}
}

}
]

User Query

Fetch the details of a vehicle with license plate number 'XYZ456'. Also,
get the horoscope information for a person born under the Scorpio sign.

Correct Tool Call

[
{
"name": "6nH2QvU",
"arguments": {
"qTVPjX6JtO": "XYZ456"

}
},
{
"name": "RMof3S1",
"arguments": {
"NZImuPDflZg": "scorpio"

}
}

]

Incorrect Tool Call

[
{
"name": "6nH2QvU",
"arguments": {
"qTVPjX6JtO": "XYZ456"

}
}

]

Tool Catalog

[
{

"name": "pmSfQnDtVmP",
"description": "Fetches and returns head-to-

head statistics and previous encounters for the home
and away team of an upcoming match.",

"parameters": {
"iBWXe7XXX": {

"default": "81930",
"type": "int",
"description": "The ID of the match to

get statistics for."
},
"bmjcV0el7qNbk": {

"description": "Limits the search to
only X previous encounters. The default is 10, with a
maximum of 10.",

"type": "int, optional",
"default": "10"

}
}

}
]

User Query

Can you retrieve the last 5 head-to-head encounters for the football match
with ID 345678?

Correct Tool Call

[
{

"name": "pmSfQnDtVmP",
"arguments": {

"bmjcV0el7qNbk": 5,
"iBWXe7XXX": 345678

}
}

]

Incorrect Tool Call

[
{

"name": "pmSfQnDtVmP",
"arguments": {

"iBWXe7XXX": 345678
}

}
]

Figure 5: Data samples from ToolRM training data. Each sample has a tool catalog, a conversation
between the user and assistant, along with the corresponding correct and incorrect tool calls. The
top sample is missing one tool call from the Incorrect version, while the Bottom sample is missing
a parameter from the tool call.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1 <|im start|>system
2 You are provided with a user query, a catalog of tools available to fulfill that user query, and a list

↪→ of tool calls that use tools available in the catalog to fulfill user request.
3 Your job is to assess whether the tool calls adequately fulfill the user request or not.
4
5 You have the following tools available:
6
7 ‘‘‘json
8 [
9 {”name”: ”diabetes prediction”, ”description”: ”Predict the likelihood of diabetes type 2

↪→ based on a person’s weight and height.”, ”parameters”: {”type”: ”dict”, ”
↪→ properties”: {”weight”: {”type”: ”integer”, ”description”: ”Weight of the person
↪→ in lbs.”}, ”height”: {”type”: ”integer”, ”description”: ”Height of the person in
↪→ inches.”}, ”activity level”: {”type”: ”string”, ”enum”: [”sedentary”, ”lightly
↪→ active”, ”moderately active”, ”very active”, ”extra active”], ”description”: ”
↪→ Physical activity level of the person.”}}, ”required”: [”weight”, ”height”, ”
↪→ activity level”]}}

10]
11 ‘‘‘
12
13 <|im end|>
14 <|im start|>user
15 Predict whether a person with weight 150lbs and height 5ft 10in who is lightly active will get type

↪→ 2 diabetes.<|im end|>
16 <|im start|>assistant
17 ‘‘‘json
18 [
19 {”diabetes prediction”: {”weight”: 150, ”height”: 68, ”activity level”: ”lightly active”}}
20]
21 ‘‘‘<|im end|>

Listing 1: ToolRM prompt

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Error type Greedy ToolRM-14B

Incorrect Parameter Value 321 231
Irrelevance error 185 210
Malformed output syntax 86 34
Incorrect function name 62 39
Missing optional parameter 36 26
Incorrect parameter type 31 24
Wrong number of functions 21 9

Total 742 573

Table 9: Breakdown of errors with the Qwen3-1.7B model as generator with Greedy decoding and
Best-of-32 sampling with ToolRM-14B

A.4 FC-REWARDBENCH EXPERIMENT DETAILS

A.4.1 MODEL DETAILS

We include the following models from RewardBench:

• Ray2333/GRM-Llama3.2-3B-rewardmodel-ft

• Skywork/Skywork-Reward-V2-Qwen3-4B

• Skywork/Skywork-Reward-V2-Qwen3-8B

• LxzGordon/URM-LLaMa-3.1-8B

• Skywork/Skywork-Reward-Llama-3.1-8B-v0.2

• nicolinho/QRM-Llama3.1-8B-v2

• infly/INF-ORM-Llama3.1-70B

• Skywork/Skywork-Critic-Llama-3.1-70B

We include the following LLMs as Judges:

• deepseek-ai/DeepSeek-V3

• meta-llama/Llama-3.1-405B-Instruct-FP8

• meta-llama/Llama-3.3-70B-Instruct

• meta-llama/Llama-4-Scout-17B-16E

• meta-llama/Llama-4-Maverick-17B-128E-Instruct

• openai/gpt-oss-120b

Additionally, we include the Tool-Augmented Reward Model (ernie-research/Themis-7b).

A.4.2 LLM-AS-JUDGE PROMPT

The prompt used to evaluate LLMs-as-Judges on FC-RewardBench is shown in Listing 2. The
placeholders {tool-library}, {query}, {response-A}, and {response-B} are replaced
with appropriate values.

A.5 ERROR ANALYSIS

In this experiment, we evaluate the impact of ToolRM-14B on error reduction in the Best-of-n
(n = 32) sampling setting, using the Qwen3-1.7B generator on the single-turn splits of BFCL-v3.
As reported in Table 9, ToolRM-14B decreases the total error count from 742 to 573, corresponding
to a 22.7% relative reduction. The predominant error type, Incorrect Parameter Value, responsible
for nearly 42% of greedy decoding errors, is reduced by 28%, indicating that ToolRM is particu-
larly effective at mitigating semantic mis-specification of parameter values. Moreover, errors such
as Incorrect Function Name and Wrong Number of Functions are reduced by 37% and 57%, respec-
tively. In contrast, Irrelevance Errors increase from 185 to 210, suggesting that ToolRM tends to
favor producing function call outputs even in cases where no valid call can appropriately satisfy the
user query.

19

https://huggingface.co/Ray2333/GRM-Llama3.2-3B-rewardmodel-ft
https://huggingface.co/Skywork/Skywork-Reward-V2-Qwen3-4B
https://huggingface.co/Skywork/Skywork-Reward-V2-Qwen3-8B
https://huggingface.co/LxzGordon/URM-LLaMa-3.1-8B
https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2
https://huggingface.co/nicolinho/QRM-Llama3.1-8B-v2
https://huggingface.co/infly/INF-ORM-Llama3.1-70B
https://huggingface.co/Skywork/Skywork-Critic-Llama-3.1-70B
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct-FP8
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct
https://huggingface.co/openai/gpt-oss-120b
https://huggingface.co/ernie-research/Themis-7b

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1 Please act as an impartial judge and evaluate the quality of the responses provided by two AI
↪→ assistants to the user question displayed below. You should choose the assistant that
↪→ follows the user’s instructions and answers the user’s question best.

2
3 You will be given:
4 − TOOL SPECIFICATIONS: All the tool specifications including parameters and their

↪→ descriptions available to the assistant to answer the query.
5 − CONVERSATION: Conversation between the user and the assistant
6 − ASSISTANT RESPONSES: List of responses from two assistants − [[A]] and [[B]]. Each

↪→ response is a sequence of tool calls needed to answer the question.
7
8 When comparing two tool call sequences for the same user query, carefully evaluate both

↪→ sequences and determine which one better follows the tool specifications and the question
↪→ requirements.

9
10 Consider the following instructions to compare the assistant responses:
11 − Check whether all the tools used are relevant and actually exist.
12 − Verify that the tools are called in a correct and logical order.
13 − Ensure that the correct parameters are used for each tool and that no nonexistent parameters are

↪→ included.
14 − Confirm that parameter values and formats are appropriate based on the question and tool

↪→ specifications.
15 − Make sure all required parameters and data mentioned in the question are included.
16 − Look for any extra tools or parameters that are not needed or mentioned in the question.
17
18 Also, follow these general instructions:
19 − Begin your evaluation by comparing the two responses (i.e., [[A]] and [[B]]) and provide a short

↪→ explanation.
20 − Avoid any position biases and ensure that the order in which the responses were presented does

↪→ not influence your decision.
21 − Do not allow the length of the responses to influence your evaluation.
22 − Do not favor certain names of the assistants.
23 − Be as objective as possible.
24 − After providing your explanation, output your final verdict by strictly following this format: ”[[A

↪→]]” if assistant A’s response is better and ”[[B]]” if assistant B’s response is better.
25 − STRICTLY follow this output format: [EXPLANATION]\n{Short comparison highlighting

↪→ differences and reasoning.}\n\n[VERDICT]\n{[[A]] or [[B]]}. Place your reasoning
↪→ after the [EXPLANATION] tag and your final choice after the [VERDICT] tag.

26
27 # TOOL SPECIFICATIONS
28 {tool−library}
29
30 # CONVERSATION
31 {query}
32
33 # ASSISTANT RESPONSES:
34 [[A]] {response−A}
35 [[B]] {response−B}
36
37 # ANSWER:

Listing 2: LLM-as-Judge Prompt used for FC-RewardBench evaluation

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.6 TOOLRM GENERALIZATION

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

50

100

150

200

250

300

350 Tool similarity
Conv similarity

Figure 6: Histogram of maximum co-
sine similarity between train and test
tools and conversations.

To assess how well ToolRM generalizes to inputs un-
seen during training, we embed each tool and conver-
sation from both the training set and the five non-BFCL
test sets using the all-mpnet-base-v25 embedding
model. We then compute, for each test example, the max-
imum cosine similarity with the training set and plot the
resulting distributions in Figure 6. We observe low sim-
ilarity between training and test examples for both tools
and conversations (median < 0.6 in both cases), indicat-
ing that ToolRM generalizes effectively to novel inputs at
test time.

A.7 GRPO EXPERIMENTAL DETAILS

We utilize the open-source library verl6 and the code
base and dataset provided by ToolRL 7 to train models for
GRPO experiments. The hyperparameters used to train
the model are listed in Table 10, and the prompt used to
train the models is listed in Listing 3.

Hyperparameter Value Hyperparameter Value
Max prompt length 2048 Number of rollouts 4

Max response length 1024 Total epochs 15
Learning rate 1e-6 Train batch size 512

PPO mini batch size 128 Validation batch size 128

Table 10: GRPO Experimental Hyperparameters

5https://huggingface.co/sentence-transformers/all-mpnet-base-v2
6https://github.com/volcengine/verl
7https://github.com/qiancheng0/ToolRL

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1 You are a helpful multi−turn dialogue assistant capable of leveraging tool calls to solve user tasks
↪→ and provide structured chat responses.

2
3 **Available Tools**
4 ‘‘‘json
5 {{TOOLS}}
6 ‘‘‘
7
8 **Steps for Each Turn**
9 1. **Think:** Recall relevant context and analyze the current user goal.

10 2. **Decide on Tool Usage:** If a tool is needed, specify the tool and its parameters.
11 3. **Respond Appropriately:** If a response is needed, generate one while maintaining

↪→ consistency across user queries.
12
13 **Output Format**
14 ‘‘‘plaintext
15 <think> Your thoughts and reasoning </think>
16 <tool call>
17 {”name”: ”Tool name”, ”parameters”: {”Parameter name”: ”Parameter content”, ”... ...”: ”... ...”}}
18 {”name”: ”... ...”, ”parameters”: {”... ...”: ”... ...”, ”... ...”: ”... ...”}}
19 ...
20 </tool call>
21 <response> AI’s final response </response>
22 ‘‘‘
23
24 **Important Notes**
25 1. You must always include the ‘<think>‘ field to outline your reasoning. Provide at least one of

↪→ ‘<tool call>‘ or ‘<response>‘. Decide whether to use ‘<tool call>‘ (possibly multiple
↪→ times), ‘<response>‘, or both.

26 2. You can invoke multiple tool calls simultaneously in the ‘<tool call>‘ fields. Each tool call
↪→ should be a JSON object with a ”name” field and an ”parameters” field containing a
↪→ dictionary of parameters. If no parameters are needed, leave the ”parameters” field an
↪→ empty dictionary.

27 3. Refer to the previous dialogue records in the history, including the user’s queries, previous ‘<
↪→ tool call>‘, ‘<response>‘, and any tool feedback noted as ‘<obs>‘ (if exists).

Listing 3: Prompt used for GRPO training of models

22

	Introduction
	Related Work
	Tool Calling
	RL for Tool-Use Alignment
	Reward Modeling

	Methodology
	FC-RewardBench Evaluation Dataset
	Reward Modeling
	ToolRM Training Data Generation

	Experimental Setup
	Results
	RQ1: FC-RewardBench evaluation
	RQ2: Best-of-n sampling with ToolRM
	RQ3: Reward-guided Fine-Tuning
	 ToolRM for data filtering
	Policy Optimization Using ToolRM

	Ablation Analysis
	Conclusion
	Appendix
	FC-RewardBench benchmark details
	ToolRM Training Data Details
	ToolRM prompt
	FC-RewardBench Experiment Details
	Model Details
	LLM-as-Judge Prompt

	Error Analysis
	ToolRM generalization
	GRPO Experimental Details

