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Abstract
Recent research in federated large language001
models (LLMs) has primarily focused on en-002
abling clients to fine-tune their locally de-003
ployed homogeneous LLMs collaboratively004
or on transferring knowledge from server-005
based LLMs to small language models (SLMs)006
at downstream clients. However, a signif-007
icant gap remains in the simultaneous mu-008
tual enhancement of both the server’s LLM009
and clients’ SLMs. To bridge this gap, we010
propose FedMKT, a parameter-efficient feder-011
ated mutual knowledge transfer framework for012
large and small language models. This frame-013
work is designed to adaptively transfer knowl-014
edge from the server’s LLM to clients’ SLMs015
while concurrently enriching the LLM with016
clients’ unique domain insights. We facilitate017
token alignment using minimum edit distance018
(MinED) and then selective mutual knowledge019
transfer between client-side SLMs and a server-020
side LLM, aiming to collectively enhance their021
performance. Through extensive experiments022
across three distinct scenarios, we evaluate the023
effectiveness of FedMKT using various public024
LLMs and SLMs on a range of NLP text gen-025
eration tasks. Empirical results demonstrate026
that FedMKT simultaneously boosts the perfor-027
mance of both LLMs and SLMs.028

1 Introduction029

Large Language Models (LLMs) have emerged as030

a transformative force in artificial intelligence, pro-031

foundly altering our perception of natural language032

processing capabilities. The advent of cutting-edge033

LLMs like ChatGPT (OpenAI, 2022), and LLaMA034

(Touvron et al., 2023) with their billions of pa-035

rameters, has sparked the imagination of both re-036

searchers and practitioners, owing to their excep-037

tional performance across diverse text generation038

tasks. Despite their widespread success in vari-039

ous general NLP tasks, LLMs face challenges that040

hinder their adoption in domain-specific applica-041

tions (Kang et al., 2023) (Fan et al., 2023). The042

primary challenges include domain-specific knowl- 043

edge Privacy, constrained computing resources, and 044

mutual knowledge transfer between the LLM and 045

SLMs. A significant challenge arises from the in- 046

herent model heterogeneity between the LLM and 047

SLMs, particularly when aligning distributions of 048

output logits. The mismatch between the tokenizers 049

of different LLM and SLMs poses a notable obsta- 050

cle. Furthermore, the mutual transfer of knowledge 051

between the server’s LLM and clients’ SLMs re- 052

mains a largely unexplored area in academic litera- 053

ture, warranting further investigation. 054

To fill these gaps, we propose FedMKT, a novel 055

federated mutual knowledge transfer framework 056

designed to enhance the performance of both large 057

and small language models. By leveraging the 058

complementary strengths of federated learning and 059

knowledge distillation, FedMKT facilitates effec- 060

tive mutual knowledge transfer between clients’ 061

SLMs and the LLM owned by the server. 062

As illustrated in Figure 1, FedMKT deploys an 063

LLM on the server and a set of K heterogeneous 064

SLMs across various clients. The cornerstone of 065

FedMKT lies in its selective mutual knowledge 066

transfer process. During each round of federated 067

learning, the clients transmit the output logits of 068

their updated SLMs on the public dataset to the 069

server. The server then selectively aggregates and 070

distills the knowledge encoded within these SLMs 071

output logits into the server-side LLM. This process 072

allows the server LLM to incorporate the domain- 073

specific knowledge learned by the clients, thereby 074

enhancing its comprehensive capabilities. Simulta- 075

neously, the server-side LLM also selectively dis- 076

tills its knowledge to the clients’ SLMs, which is 077

similar to the knowledge transfer from clients to 078

the server. By leveraging the knowledge of the 079

server LLM, the clients’ SLMs are able to improve 080

their performance and generalize better to unseen 081

data. To address the model heterogeneity between 082

the LLM and SLMs, FedMKT incorporates a token 083
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alignment technique utilizing minimum edit dis-084

tance (MinED) prior to knowledge transfer. This085

alignment ensures seamless integration and effi-086

cient knowledge transfer between LLM and SLMs.087

Our contributions are summarized as follows:088

• Federated Mutual Knowledge Transfer089

Framework. FedMKT introduces a novel090

federated mutual knowledge transfer frame-091

work that enables effective knowledge transfer092

between an LLM deployed on the server and093

SLMs residing on clients. This framework094

fills the gap by simultaneously enhancing both095

the server’s LLM and the clients’ SLMs.096

• Selective Knowledge Transfer and Token097

Alignment. FedMKT implements a selec-098

tive knowledge transfer mechanism that se-099

lectively distills knowledge from the most100

informative SLMs to the server’s LLM and101

vice versa. Furthermore, it incorporates a to-102

ken alignment technique using minimum edit103

distance (MinED) to address model hetero-104

geneity between LLM and SLMs, ensuring105

efficient knowledge transfer.106

• Empirical Evaluation and Performance107

Enhancement. Extensive experiments con-108

ducted based on various publicly available109

LLMs and SLMs demonstrate the competitive110

performance of FedMKT across a wide range111

of NLP text-generation tasks. We evaluate112

FedMKT with heterogeneous, Homogeneous,113

and One-to-One settings. The results show114

that the performance of SLMs can be signif-115

icantly enhanced with the help of the LLM,116

while the LLM can deliver comparable results117

to fine-tuning with all clients’ data centralized.118

2 Related Work119

2.1 Model Heterogeneous Federated Learning120

Model heterogeneous federated learning (MHFL)121

aims to address the challenges associated with het-122

erogeneity in federated learning. Initial research123

in MHFL primarily concentrated on addressing124

heterogeneity in model architectures. Various ap-125

proaches have been proposed to accommodate126

clients with different model architectures partic-127

ipating in a federated learning task. These methods128

typically involve techniques such as knowledge dis-129

tillation (Hinton et al., 2015), mutual learning and130

split learning that can handle heterogeneous mod- 131

els. Knowledge distillation-based MHFL meth- 132

ods, such as FedMD (Li and Wang, 2019) and 133

FedET (Cho et al., 2022), involve the server ag- 134

gregating the output logits of different clients’ het- 135

erogeneous models on a public dataset to construct 136

global logits. Mutual learning-based MHFL, such 137

as Deep Mutual Learning (DML) (Zhang et al., 138

2018), PFML (Yang et al., 2021) and FedLoRA (Yi 139

et al., 2023), design a small homogeneous model 140

and a large heterogeneous model in each client. 141

Split learning-based MHFL approaches, such as 142

FedClassAvg (Jang et al., 2022) and CHFL (Liu 143

et al., 2022), share a homogeneous classifier to im- 144

prove model classification while personalizing the 145

local feature extractor. 146

While previous works have mainly focused on 147

computer vision scenarios, the literature has limit- 148

edly explored MHFL in LLMs. This gap motivates 149

this study, which aims to explore MHFL in the 150

context of LLMs. 151

2.2 Federated Learning for LLMs 152

Parameter-Efficient Fine-Tuning (PEFT) methods 153

(Houlsby et al., 2019; He et al., 2021; Lester et al., 154

2021; Li and Liang, 2021; Hu et al., 2021) offer 155

a direct solution to the issues of communication 156

overhead and fine-tuning costs in federated learn- 157

ing (FL) for LLMs. A number of studies have built 158

upon PEFT methods in the context of FL for LLMs, 159

including FedPETuning (Zhang et al., 2022b), Fed- 160

erated Adapter Tuning (Cai et al., 2022), Federated 161

Prompt Tuning (Zhao et al., 2022), and FATE-LLM 162

(Fan et al., 2023). For example, the FedPETuning 163

(Zhang et al., 2022b) has demonstrated a significant 164

reduction in communication overhead, reducing 1 165

to 2 orders of magnitude compared to full fine- 166

tuning in the FL setting. These findings imply that 167

FL clients, such as devices with limited storage 168

capacity, can greatly benefit from PEFT methods. 169

These methods enable the sharing of LLMs across 170

different tasks while maintaining only a few param- 171

eters for each task, thereby reducing the storage 172

requirement. By leveraging PEFT methods, FL 173

clients can efficiently adapt LLMs to their specific 174

needs while minimizing communication overhead 175

and fine-tuning costs. 176

3 The Proposed FedMKT Method 177

In this section, we introduce FedMKT, an inno- 178

vative and parameter-efficient federated mutual 179

2



Figure 1: Overview of the proposed FedMKT workflow. Each communication round of FedMKT involves 11 steps
to fine-tune the server’ LLM and clients’ SLMs.

knowledge transfer approach for large and small180

language models. The FedMKT primarily com-181

prises two key modules: Bidirectional Token Align-182

ment and Selective Mutual Knowledge Transfer.183

We will elaborate on these two modules in Section184

3.2 and Section 3.3, respectively after we define185

the problem we try to address in Section 3.1.186

3.1 Problem Definition187

We consider the federated learning setting, involv-188

ing one server that owns an LLM fψ parameterized189

by ψ and K clients that each client k has an SLM190

gϕk parameterized by ϕk. Each client owns a local191

private dataset Dk with N training samples, and all192

clients and the server share a public dataset Dp.193

The server and clients aim to collaboratively194

enhance the performance of the LLM and SLMs195

through federated learning without disclosing any196

private data. We assume that the K clients exe-197

cute the same text generation task, but they may198

hold heterogeneous or homogeneous SLM models.199

The collaboration between clients and the server200

involves the following sub-procedures:201

• Each client k trains its SLM gϕk using its pri-202

vate data Dk. The objective is formulated as203

follows:204

min
ϕ1,ϕ2,...,ϕK

L1(ϕ1, ϕ2, ..., ϕK ; {Dk}Kk=1) (1)205

• Each client computes the output logits on Dp206

and securely uploads them to the server. Upon207

receiving output logits of all clients, the server208

computes the distillation loss by comparing 209

these client logits with the output logits pro- 210

duced by its own LLM on Dp. The objective 211

can be formulated as follows: 212

min
ψ
L2(ψ;Dp, ϕ1, ϕ2, ..., ϕK) (2) 213

The server aims to transfer knowledge from 214

the clients’ SLMs gϕk to its owned LLM fψ. 215

• The server dispatches the LLM’s output log- 216

its on Dp to all the clients. Subsequently, the 217

clients compute the distillation loss by com- 218

paring LLM output logits with SLMs’ output 219

logits on Dp. The objective can be formulated 220

as follows: 221

min
ϕ1,ϕ2,...,ϕK

L3(ϕ1, ϕ2, ..., ϕK ;Dp, ψ) (3) 222

The clients aim to transfer knowledge from 223

LLM fψ to enhance their SLMs. 224

We consider the server semi-honest, meaning 225

that the server may try to recover the private data 226

of clients from the information it observes. 227

FedMKT solves the optimization problems for- 228

mulated in Eq.(1), Eq.(2), and Eq.(3) in an efficient 229

and privacy-preserving manner. We illustrate the 230

workflow of FedMKT in Figure 1 and elaborate on 231

the associated training algorithm in Algorithm 1. 232

3.2 Bidirectional Token Alignment 233

A significant challenge in aligning output logits 234

distributions lies in the mismatch between tokeniz- 235

ers of different LLM and SLMs, exemplified by 236
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Algorithm 1 FedMKT
Input:

1: K: number of clients;
2: T : total number of communication rounds;
3: R: local number of rounds in the server;
4: E: local number of rounds in the client;
5: ηω: the learning rate of LLM fψ+ω;
6: ηθ: the learning rate of SLM gϕk+θk .

Output: fψ+ω, gϕ1+θ1 ,gϕ2+θ2 ,...,gϕK+θK .
7: // Server side:
8: for t in communication round T do
9: {Sk}Kk=1← ClientUpdate1(t).

10: Token Alignment from SLMs to LLM.
11: S̃0 ← DualMinCE(Dp, fψ+ω, {Sk}Kk=1).
12: // knowledge transfer based on Dp and S̃0.
13: for each epoch r ∈ [R] do
14: ωt,r+1 ← ωt,r − ηω ▽L2.
15: end for
16: ωt+1 = ωt,R.
17: Compute S0 = {li0, pi0}Ni=1 based on Dp.
18: ClientUpdate2(t,S0).
19: end for
20:

21: ClientUpdate1(t):
22: for each client k (in parallel) do
23: // local fine-tuning based on Dk.
24: for each local epoch e ∈ [E] do
25: θt,e+1

k ← θt,ek − ηθ ▽ ℓTA.
26: end for
27: Compute Sk = {lik, pik}Ni=1 based on Dp.
28: end for
29: Upload {Sk}Kk=1 to the server
30:

31: ClientUpdate2(t,S0):
32: for each client k (in parallel) do
33: Token Alignment from LLM to SLMs.
34: S̃k ← DualMinCE(Dp, gϕk+θk , S0).
35: // knowledge transfer based on Dp and S̃k.
36: for each local epoch e ∈ [E, 2E] do
37: θt,e+1

k ← θt,ek − ηθ ▽L3.
38: end for
39: θt+1

k = θt,2Ek .
40: end for

Bloom and LLaMa. Consider the sentence, "we237

utilize the dynamic programming approach to align238

tokens" as an example. Utilizing the Bloom tok-239

enizer would segment it into the following tokens:240

[’we’, ’utilize’, ’the,’ ’dynamic,’ ’programming,’241

’approach,’ ’to,’ ’align,’ ’tokens’]. However, if242

the LLaMa tokenizer were used, the segmentation243

Algorithm 2 DualMinCE
Input:

1: Dp: the public dataset;
2: h: either the SLM gϕk+θk of client k or the

LLM fψ+ω of the server;
3: Sk = {(lik, pik)}Ni=1, k = 0 or ⌈K⌉: loss-logit

pairs passed from either the server or clients.
Output: S.

4: S̃ ← {} ▷ initialize an empty set of selective
knowledge.

5: for each xi in Dp do
6: lilocal ← h(xi)

7: k∗ =

{
argmin

k
(lik), if k = ⌈K⌉

0, if k = 0

8: S̃ ← S̃ + (xi, pik∗) if lik∗ < lilocal
9: end for

would be: [’we’, ’util’, ’ize’, ’the’, ’dynamic’, ’pro- 244

gramming’, ’approach’, ’to’, ’align’, ’tokens’]. 245

To tackle this issue, we adopt dynamic program- 246

ming techniques to promote robust alignment, as 247

evidenced in studies (Wan et al., 2024; Fu et al., 248

2023). Utilizing LLaMa2 and Bloom as illustrative 249

examples, we establish an optimized vocabulary 250

mapping table based on minimum edit distance 251

(MinED). This mapping table identifies the closest 252

Bloom token for each LLaMa2 token (e.g., ’utilize’ 253

for ’util’). We then tokenize a sentence using both 254

tokenizers and apply a dynamic programming al- 255

gorithm to determine the optimal matching path. 256

When multiple LLaMa2 tokens align to a single 257

Bloom token (e.g., ’util’ and ’ize’ aligning to ’uti- 258

lize’), we handle them according to the mapping 259

table. Please refer to Appendix B for more details. 260

In FedMKT, a bidirectional token alignment pro- 261

cess occurs before knowledge transfer between 262

LLMs and SLMs. One the one hand, when clients 263

transfer knowledge from their SLMs to the server’s 264

LLM, the server aligns SLM tokens to LLM tokens. 265

On the other hand, when the server transfers knowl- 266

edge from its LLM back to clients’ SLMs, each 267

client aligns LLM tokens to its SLM tokens. 268

3.3 Selective Mutual Knowledge Transfer 269

Between LLM and SLMs 270

To transfer knowledge between the server and 271

clients efficiently, we leverage LoRA to fine-tune 272

the server’s LLM and clients’ SLMs. Specifi- 273

cally, each client k inserts a small low-rank adapter 274

parameterized by θk into its local SLM. We de- 275
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note client k local SLM with the added θk as276

gϕk+θk . Likewise, the server inserts a small low-277

rank adapter parameterized by ω into its LLM fψ.278

We denote the server’s LLM fψ with the added279

ω as fψ+ω. During the whole federated learning280

training process, θk, k = 1, ...,K and ω are trained,281

while ϕk, k = 1, ...,K and ψ are frozen.282

Before transferring knowledge to the server, each283

client k trains its LoRA adapter θk using its private284

dataset Dk. Consequently, Eq.(1) can be reformu-285

lated as follows:286

L1(θ1, θ2, ..., θK ; {Dk}Kk=1)

=
1

K

K∑
k=1

E(x,y)∼Dk
ℓTA(gϕk+θk(x), y)

(4)287

where ℓTA is the task loss for training θk of each288

client k. The original model parameter ϕk of client289

k’s SLM is frozen during training.290

Then, both the server and clients fine-tune their291

LoRA adapters based on a shared public dataset292

Dp. We formulate the losses of fine-tuning fψ+ω293

and gϕk+θk (denoted as LfFT and LgFT) as follows:294

LfFT(ω;Dp) = E(x,y)∼Dp
ℓCE(fψ+ω(x), y) (5)295

296
LgFT(θk;Dp) = E(x,y)∼Dp

ℓCE(gϕk+θk(x), y)

(6)297

where ℓCE is the cross-entropy loss; the model pa-298

rameters ψ and ϕk are frozen during fine-tuning.299

Next, the server and clients conduct selective300

knowledge transfer to each other. The motivation301

for applying selective knowledge transfer is that302

some clients’ knowledge may adversely affect the303

performance of LLM on the server and vice versa in304

a heterogeneous environment. Therefore, it is criti-305

cal to guarantee that the knowledge transferred be-306

tween the server and clients is positive to the perfor-307

mance of LLM and SLMs. To this end, we propose308

a selective knowledge transfer strategy on both the309

server and client sides, termed DualMinCE.310

DualMinCE aims to select knowledge that is311

positive to the performance of the server’s LLM312

from clients and vice versa. Specifically, when313

knowledge needs to be transferred from SLMs to314

the LLM, each client k computes a knowledge315

set Sk = {lik, pik}Ni=1 consisting of loss-logit pairs316

through its local model based on the public dataset317

Dp. Then, all K clients send their {Sk}Kk=1 to the318

server. By leveraging DualMinCE (see Algorithm319

2 for detail), the server picks a logit pik∗ with the320

smallest loss from {lik, pik}Kk=1 and adds pik∗ to a321

selective knowledge set S̃0 if the loss lik∗ of pik∗ is 322

smaller than the loss lilocal computed through the 323

server’s local LLM based on xi for each xi in Dp. 324

Next, the server leverages the knowledge distil- 325

lation loss, denoted as LfKD, to fine-tune fψ+ω: 326

LfKD(ω; S̃0) =E(x,p)∼S̃0
ℓCE(fψ+ω(x), p) (7) 327

Likewise, each client k leverages DualMinCE 328

to form its selective knowledge set S̃k from the 329

knowledge S0 sent from the server. Each client k 330

leverages the following knowledge distillation loss 331

to fine-tune its local model gϕk+θk : 332

LgKD(θk; S̃k) =E(x,p)∼S̃k
ℓCE(gϕk+θk(x), p)

(8) 333

Combining Eq.(5) and Eq.(7), we reformulate 334

the knowledge transfer from SLMs to LLM con- 335

ducted on the server to enhance LLM as follows: 336

L2 = λLfFT + (1− λ)LfKD (9) 337

Combining Eq.(6) and Eq.(8), we reformulate 338

the knowledge transfer from LLM to SLMs con- 339

ducted on the clients to enhance SLMs as follows: 340

L3 =
1

K

K∑
k=1

(λLgFT + (1− λ)LgKD) (10) 341

where λ is the hyperparameter that controls the 342

weight of mutual knowledge transfer. 343

4 Experiments 344

4.1 Setup 345

We set up a federated learning scenario involving 346

four clients and one server to evaluate the FedMKT 347

using various publicly available LLMs and SLMs. 348

Models. We evaluate FedMKT on one LLM 349

(LLaMa2-7B (Touvron et al., 2023)) in the server, 350

four SLMs in the clients including GPT-2-xlarge 351

(1.5B) (Radford et al., 2019), OPT-1.3B (Zhang 352

et al., 2022a), Bloom-1.1B (Scao et al., 2022) and 353

LLaMa2-1.3B (Xia et al., 2023). In our exper- 354

iments, we evaluate our framework in three dis- 355

tinct scenarios: Heterogeneous, Homogeneous 356

and One-to-One. Table 1 details the setup for the 357

LLM and SLMs in different settings. 358

Datasets. We evaluate FedMKT comprehen- 359

sively on 6 QA datasets and 2 instruction-following 360

datasets. Specifically, for QA tasks, we use 361

RTE (Wang et al., 2019), WTC (Wang et al., 362

2019), BoolQ (Clark et al., 2019), Common- 363

senseQA(CQA) (Talmor et al., 2018), ARC-E 364
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Setting Server Client-1 Client-2 Client-3 Client-4
Heterogeneous LLaMa2- 7B GPT-2-xlarge(1.5B) OPT-1.3B Bloom-1.1B LLaMa2-1.3B
Homogeneous LLaMa2- 7B LLaMa2-1.3B LLaMa2-1.3B LLaMa2-1.3B LLaMa2-1.3B
Homogeneous LLaMa2- 7B OPT-1.3B OPT-1.3B OPT-1.3B OPT-1.3B
One-to-One LLaMa2- 7B - - - LLaMa2-1.3B
One-to-One LLaMa2- 7B - OPT-1.3B - -

Table 1: The five different settings we utilize to evaluate FedMKT.

Task Method GPT-2-xlarge OPT-1.3B Bloom-1.1B LLaMa2-1.3B LLaMa2-7B

RTE

Centralized - - - - 85.9
Zero-Shot 52.4 52.7 52.7 49.8 63.2
Standalone 65.7 62.5 58.1 55.6 -
FedMKT 70.4 65.7 61.7 58.8 82.3

WIC

Centralized - - - - 70.4
Zero-Shot 49.8 50.8 50 50 50.3
Standalone 59.3 52.2 59.1 50.6 -
FedMKT 63.2 62.2 61.1 51.9 61.3

BoolQ

Centralized - - - - 87.6
Zero-Shot 61.3 58.4 59.0 61.0 70.1
Standalone 71.1 74.1 69.7 69.9 -
FedMKT 75.1 76.8 71.4 75.1 85.0

CQA

Centralized - - - - 69.5
Zero-Shot 36.7 41.9 33.8 30.1 39.5
Standalone 56.0 58.6 44.7 56.7 -
FedMKT 58.3 60.5 50.8 57.0 71.8

ARC-E

Centralized - - - - 76.9
Zero-Shot 58.3 57.0 51.5 53.1 69.3
Standalone 59.3 57.9 56.9 60.4 -
FedMKT 59.8 59.6 57.5 60.8 76.1

ARC-C

Centralized - - - - 48.9
Zero-Shot 25.0 23.4 23.6 26.7 40.0
Standalone 28.2 28.4 24.9 28.5 -
FedMKT 30.2 29.4 26.6 30.0 44.7

S-NI

Centralized - - - - 49.3
Zero-Shot 5.0 5.2 5.1 5.8 12.0
Standalone 27.9 26.1 10.6 33.4 -
FedMKT 34.2 36.0 15.1 37.3 41.4

DialogSum

Centralized - - - - 27.7
Zero-Shot 5.4 6.4 4.9 5.7 8.5
Standalone 22.3 19.8 13.2 21.4 -
FedMKT 23.2 20.9 14.9 21.6 24.2

Table 2: Method Performance Comparison in the Heterogeneous setting. We evaluate FedMKT with 8 different
tasks. In all the 8 tasks, the server is deployed with a LLaMa2-7B model, and the 4 clients are deployed with a
GPT-2-xlarge, a OPT-1.3B, a Bloom-1.1B, and a LLaMa2-1.3B, respectively. The ’-’ indicates a method does not
apply to the corresponding participant (either the server or the client).

(Clark et al., 2018), ARC-C (Clark et al., 2018)365

to evaluate FedMKT. As for instruction-following366

tasks, we evaluate FedMKT on S-NI (Wang et al.,367

2022), DialogSum (Chen et al., 2021). 368

Baselines. We conduct a comparative analysis 369

of FedMKT against the following baselines: 370
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• Centralized, in which the server’s LLM is fine-371

tuned locally using the datasets combining pri-372

vate datasets of involved clients and the public373

dataset. In the One-to-One setting, the data374

of one client and the public data are used to375

fine-tune the server’s LLM, whereas in other376

settings, the data of all four clients and the377

public data are used to fine-tune the LLM;378

• Zero-Shot, representing the zero-shot capabil-379

ities of LLM or SLMs (without fine-tuning);380

• Standalone, in which each client indepen-381

dently fine-tunes its local SLM using its pri-382

vate dataset;383

• FedAvg, representing the standard federated384

averaging algorithm. FedAvg is only used in385

homogeneous settings because it requires all386

clients’ models have the same architecture.387

• LLM2SLM, representing FedMKT involving388

one server with an LLM and one client with389

an SLM. The LLM is not updated and is used390

to transfer knowledge to SLM. LLM2SLM is391

only used in the One-to-One setting.392

Evaluation Metrics. For the QA datasets, we393

primarily use Accuracy as the evaluation metric,394

whereas for the instruction-following datasets, we395

primarily rely on Rouge-L.396

4.2 Evaluation on Heterogeneous Setting397

In the Heterogeneous setting, the server is deployed398

with a LLaMa2-7B model, and the 4 clients are de-399

ployed with a GPT-2-xlarge, a OPT-1.3B, a Bloom-400

1.1B, and a LLaMa2-1.3B, respectively. Table 2401

reports the performance comparisons of FedMKT402

against baselines on 8 tasks.403

Tables 2 show that FedMKT performs supe-404

rior over Zero-Shot and Standalone on all clients’405

SLMs. Take the RTE dataset as an example,406

FedMKT outperforms Zero-Shot by 34% and Stan-407

dalone by 7% on the GPT-2-xlarge SLM; FedMKT408

surpasses Zero-Shot by 25% and Standalone by 5%409

on the OPT-1.3B SLM; FedMKT-SLM achieves a410

17% improvement over Zero-Shot and a 6% im-411

provement over Standalone on the Bloom-1.1B412

SLM; FedMKT-SLM outperforms Zero-Shot by413

18% and Standalone by 6% on the LLaMa2-1.3B414

SLM. These empirical results demonstrate that, by415

leveraging FedMKT, SLMs are able to effectively416

leverage the knowledge transferred from the LLM,417

leading to enhanced model capabilities.418

Table 2 also shows that FedMKT outperforms 419

Zero-Shot and Centralized on the LLaMa2-7B 420

of the server. For instance, on the RTE QA 421

dataset, FedMKT outperforms Zero-Shot by 30% 422

and achieves a performance level that is nearly 423

on par with Centralized, reaching approximately 424

96% of its fine-tuning performance. This signifi- 425

cant achievement signifies that FedMKT effectively 426

facilitates the acquisition of knowledge from all 427

clients by the server. 428

4.3 Evaluation on Homogeneous Setting 429

We conduct experiments with two Homogeneous 430

settings, as shown in Table 1. The first setting 431

(denoted as S1) involves one server-side LLaMa2- 432

7B and four client-side LLaMa2-1.3B. The second 433

setting (denoted as S2) involves one server-side 434

LLaMa2-7B and four client-side OPT-1.3B. 435

Table 3 reports the performance comparisons 436

of FedMKT against baselines in the two Homoge- 437

neous settings. The top sub-table and the bottom 438

sub-table compare the performance of FedMKT 439

against baselines on the server’s LLM and clients’ 440

SLMs, respectively. 441

The top sub-table of Table 3 shows that FedMKT 442

significantly outperforms Zero-Shot on the server’s 443

LLM (i.e., LLaMa2-7B) in the two Homogeneous 444

settings. It also shows that FedMKT achieves com- 445

parable performance of the Centralized scenario, 446

in which the server’ LLM is fine-tuned using all 447

clients’ data and the public data combined. 448

The bottom sub-table of Table 3 shows that 449

FedMTK performs better than the Zero-Shot, Stan- 450

dalone, and FedAvg due to the assistance of the 451

server’s LLM. For example, in the CQA dataset, 452

FedMKT outperforms FedAvg by 4% on the 453

LLaMa2-1.3 SLM and by 5% on the OPT-1.3B 454

SLM, respectively. 455

4.4 Evaluation on One-to-One Setting 456

We evaluate FedMKT using two One-to-One set- 457

tings. The first setting (denoted as S1) involves one 458

server-side LLaMa2-7B LLM and one client-side 459

LLaMa2-1.3B SLM, while the second setting (de- 460

noted as S2) involves one server-side LLaMa2-7B 461

LLM and one client-side OPT-1.3B SLM. 462

Table 4 reports the performance comparisons of 463

FedMKT against baselines in the two One-to-One 464

settings. The top and bottom sub-tables compare 465

the performance of FedMKT against baselines on 466

the server’s LLM and clients’ SLMs, respectively. 467
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Task Method S1: Server
LLaMa2-7B

S2: Server
LLaMa2-7B

CQA
Zero-Shot 39.5 39.5

Centralized 69.5 69.5
FedMKT 68.8 71.3

ARC-C
Zero-Shot 40.0 40.0

Centralized 49.4 49.4
FedMKT 46.2 46.2

ARC-E
Zero-Shot 69.3 69.3

Centralized 75.5 75.5
FedMKT 74.9 74.8

Task Method S1: Clients
LLaMa2-1.3B

S2: Clients
OPT-1.3B

CQA

Zero-Shot 30.1 41.9
Standalone 56.4 58.1

FedAvg 56.4 58.6
FedMKT 58.6 61.5

ARC-C

Zero-Shot 26.7 23.4
Standalone 30.4 28.5

FedAvg 29.7 28.6
FedMKT 31.7 29.9

ARC-E

Zero-Shot 53.1 57.0
Standalone 60.3 57.9

FedAvg 60.6 58.8
FedMKT 61.7 60.1

Table 3: Method Performance Comparison in Homo-
geneous settings. We evaluate FedMKT using two
homogeneous settings. The first setting (denoted as S1)
involves one server-side LLaMa2-7B LLM and four
client-side LLaMa2-1.3B SLMs, while the second set-
ting (denoted as S2) involves one server-side LLaMa2-
7B LLM and four client-side OPT-1.3B SLMs. The
top and bottom sub-tables compare the performance
of FedMKT against baselines on the server’s LLM and
clients’ SLMs, respectively. The results reported in the
bottom sub-table are the average of all clients.

The top sub-table of Table 4 shows that FedMKT468

notably surpasses Zero-Shot and rivals Central-469

ized on the performance of the server’s LLM. The470

bottom sub-table of Table 4 shows that FedMTK471

achieves superior SLM performance over Zero-472

Shot, Standalone, and LLM2SLM due to the as-473

sistance of LLM. These empirical results demon-474

strate the effectiveness of FedMKT in transferring475

knowledge between the LLM and SLMs.476

5 Conclusions477

In this study, we have presented FedMKT, a478

parameter-efficient federated mutual knowledge479

transfer framework tailored for large and small lan-480

Task Method S1: Server
LLaMa2-7B

S2: Server
LLaMa2-7B

CQA
Zero-Shot 39.5 39.5

Centralized 69.0 68.3
FedMKT 69.0 71.0

ARC-C
Zero-Shot 40.0 40.0

Centralized 45.9 48.6
FedMKT 45.9 45.8

ARC-E
Zero-Shot 69.3 69.3

Centralized 74.4 73.6
FedMKT 74.8 74.8

Task Method S1: Clients
LLaMa2-1.3B

S2: Clients
OPT-1.3B

CQA

Zero-Shot 30.1 41.9
Standalone 56.7 58.6
LLM2SLM 56.76 59.1
FedMKT 56.84 60.7

ARC-C

Zero-Shot 26.7 23.4
Standalone 30.3 28.8
LLM2SLM 30.1 29.6
FedMKT 30.8 30.4

ARC-E

Zero-Shot 53.1 57.0
Standalone 57.0 57.9
LLM2SLM 60.7 58.4
FedMKT 60.8 58.5

Table 4: Method Performance Comparison in One-to-
One settings. We evaluate FedMKT using two one-to-
one settings. The first setting (denoted as S1) involves
one server-side LLaMa2-7B LLM and one client-side
LLaMa2-1.3B SLM, while the second setting (denoted
as S2) involves one server-side LLaMa2-7B LLM and
one client-side OPT-1.3B SLM. The top and bottom sub-
tables compare the performance of FedMKT against
baselines on the server’s LLM and a client’s SLM, re-
spectively.

guage models. FedMKT bridges the gap between 481

the server-side LLM and clients’ SLM, enabling se- 482

lective mutual knowledge transfer while preserving 483

data privacy. Through extensive experiments across 484

three distinct scenarios, we have demonstrated that 485

FedMKT simultaneously boosts the performance 486

of both LLMs and SLMs. 487

Limitations 488

In this study, we transfer knowledge between the 489

server and clients using logits of a public dataset, 490

motivated by efficiency and privacy considerations. 491

Although empirical evidence suggests that shar- 492

ing logits of public datasets between the server 493

and clients is more privacy-preserving than shar- 494
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ing model gradients or parameters (Li and Wang,495

2019; Cho et al., 2022), there is no theoretical guar-496

antee that this approach does not compromise the497

privacy of clients’ sensitive data. This issue war-498

rants further investigation. Furthermore, our study499

is limited by computational and storage constraints,500

which preclude the exploration of larger language501

models. This highlights the inherent trade-off be-502

tween utility and efficiency. Our future research503

aims to investigate and optimize this trade-off.504
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A FedMKT Workflow 671

The workflow of FedMKT is outlined as follows: 672

1. In the t-th communication round, the K 673

clients train their respective LoRA adapters 674

using their private data. This step allows the 675

clients to adapt their models to their specific 676

data distributions. 677

2. After local training, each client k computes a 678

knowledge set Sk = {lik, pik}Ni=1 consisting of 679

loss-logit pairs through its local model based 680

on the public dataset. 681

3. Each client k upload Sk to the server. 682

4. On the server side, token alignment is per- 683

formed from the SLMs to the LLM, guaran- 684

teeing compatibility between the SLMs and 685

the LLM. 686

5. On the server side, knowledge is selected from 687

the SLMs to the LLM according to Algorithm 688

2. 689

6. On the server side, knowledge is transferred 690

from the SLMs to the LLM based on the se- 691

lected knowledge. 692

7. Once the knowledge transfer from SLMs 693

to LLM is completed on the server, the 694

server then computes a knowledge set S0 = 695

{li0, pi0}Ni=1 consisting of loss-logit pairs 696

through LLM based on the public dataset. 697

8. The server disseminates S0 to all the clients. 698
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9. On the client side, the token alignment flow699

reverses, and token alignment is performed700

from the LLM to SLMs.701

10. On the client side, knowledge is selected from702

the LLM to each client SLM according to703

Algorithm 2.704

11. On the client side, knowledge is transferred705

from the LLM to each client SLM based on706

the selected knowledge.707

B Implementation Details of Token708

Alignment709

In our work, we engage in a bidirectional token710

alignment procedure, encompassing the alignment711

of SLM tokens with their corresponding LLM to-712

kens, and vice versa. Both alignments adhere to a713

similar methodology. Presently, we shall elaborate714

on the process of aligning LLM tokens with their715

matching SLM tokens. To map the predicted token716

logits from the LLaMa2-7B (LLM) model to the717

Bloom-1.1B (SLM) model, several steps must be718

undertaken. The detailed process is as follows:719

1. Building an Optimal Vocabulary Mapping Ta-720

ble:721

(a) For each token in the LLaMa2 vocabu-722

lary, iterate through the Bloom vocabu-723

lary.724

(b) Use edit distance as a similarity measure725

to find the closest token in the Bloom726

vocabulary to the token in the LLaMa2727

vocabulary.728

(c) If there are multiple token with the same729

minimum edit distance, choose the one730

with the lexicographically smallest order.731

(d) Save this mapping relationship in the op-732

timal vocabulary mapping table.733

2. Tokenization and Alignment:734

(a) Tokenize the sentence "we utilize the dy-735

namic programming approach to align to-736

kens" using both the LLaMa2 and Bloom737

tokenizers.738

(b) To align the two tokenization results and739

determine the optimal matching path,740

we utilize a dynamic programming al-741

gorithm. As an illustration, consider the742

tokenization outputs from LLaMa2 and743

Bloom. LLaMa2’s tokenization yields:744

[’we’, ’util’, ’ize’, ’the’, ’dynamic’, ’pro- 745

gramming’, ’approach’, ’to’, ’align’, ’to- 746

kens’]. In contrast, Bloom’s tokeniza- 747

tion produces: [’we’, ’utilize’, ’the’, ’dy- 748

namic’, ’programming’, ’approach’, ’to’, 749

’align’, ’tokens’]. In this instance, seven 750

terms from LLaMa2 align perfectly with 751

those from Bloom, such as "we" and "dy- 752

namic". Notably, the LLaMa2 tokens 753

’util’ and ’ize’ collectively map to the sin- 754

gle Bloom token ’utilize’. In scenarios 755

where multiple tokens align to one, like 756

the 2-to-1 case of ’util’ and ’ize’ map- 757

ping to ’utilize’, we consider ’utilize’ as 758

a match for ’util’ based on an optimal 759

vocabulary mapping. 760

3. Logits Mapping: 761

(a) Iterate through each token tt in the 762

Bloom tokenization result. 763

(b) For each tt, check if it uniquely matches 764

a token ts in the LLaMa2 tokenization 765

result. 766

(c) If tt uniquely matches ts, then for each 767

token tp in the Top-K predicted token of 768

ts from LLaMa2 and its corresponding 769

logit logitp: Find the position pos in the 770

Bloom vocabulary that corresponds to tp 771

using the optimal vocabulary mapping ta- 772

ble. If pos has not been assigned a value 773

before, copy logitp to the corresponding 774

position in the Bloom logits distribution 775

matrix logitt. 776

(d) If tt does not have a unique match, gen- 777

erate one-hot logits for tt. 778

4. Processing the Results: 779

(a) Ultimately, each token tt in Bloom will 780

have a corresponding logits distribution 781

matrix logitt. 782

(b) These logits can be directly used for sub- 783

sequent training in the Bloom model. 784

C Computation and Communication 785

Complexity 786

One of the key advantages of FedMKT is its compu- 787

tational efficiency. By leveraging PEFT, the frame- 788

work significantly reduces the number of parame- 789

ters that need to be updated during fine-tuning. For 790
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instance, it consumes just 0.12% of the computa-791

tional cost associated with fine-tuning all parame-792

ters in OPT-1.3B when using FedMKT. This leads793

to faster training times and reduced computational794

requirements, making it more feasible to fine-tune795

LLM and SLMs in a federated learning setting.796

In terms of communication complexity,797

FedMKT minimizes the amount of data exchanged798

between clients and the server. Instead of transmit-799

ting entire models(For example, OPT-1.3B is about800

1.3B floating-point numbers), clients only share801

the output logits and corresponding cross-entropy802

losses of the public dataset with the server. Sup-803

pose there are N = 1000 public text samples with804

a text sequence length of S = 512 and a top token805

size of K = 16. The communication cost, denoted806

as Costcom, would be calculated as follows:807

Costcom = N ∗ S ∗K = 1000 ∗ 512 ∗ 16 = 8M808

floating-point numbers. This approach reduces809

communication overhead, allowing for more effi-810

cient data transmission and enhancing scalability811

in federated learning scenarios.812

D More on Experimental Details813

D.1 Hyperparameter Settings814

LoRA Parameters. We utilized the815

PEFT(Mangrulkar et al., 2022) library with816

the following configurations: r=8, lora_alpha=16,817

lora_dropout=0.05.818

Common Parameters for LLM and SLMs.819

We set batch_size=4, used the AdamW optimizer820

with adam_beta1=0.9 and adam_beta2=0.95. The821

warmup_ratio was set to 0.008, the weight_decay822

was 0.1, max_grad_norm was 1.0. The λ was 0.9.823

The number of training rounds for all data is within824

10 and the number of training rounds for different825

datasets may be different.826

LLM Parameters. During distillation, the827

local epoch R was set to 1. The learning rates828

ηω were specified as 3e-5 for the datasets829

RTE/WIC/BoolQ/CQA/ARC-C/DialogSum/S-NI,830

and 2e-5 for ARC-E.831

SLM Parameters. During training for the four832

clients, the local epoch E was set to 1. The learning833

rates ηθ were as follows: for "OPT-1.3b", ηθ=3e-834

5; for "GPT-2-xlarge", ηθ=3e-4; for "Bloom-1b1",835

ηθ=3e-5; and for "LLaMa-2-1.3b", the same learn-836

ing rates as for the LLM were used.837

D.2 Data Splitting 838

For the datasets RTE/WIC/BoolQ/CQA/ARC- 839

E/ARC-C/DialogSum, we randomly split the train- 840

ing data into five equal parts, with one part serving 841

as the public dataset and the remaining four parts 842

as private dataset for the four clients. All these 843

datasets(including train, validate, test) were down- 844

loaded from HuggingFace(Lhoest et al., 2021). For 845

the S-NI dataset, we first processed the data using 846

minillm(Gu et al., 2023) to retain samples with an 847

output length greater than or equal to 11. From this 848

processed data, we randomly selected 300 samples 849

as the evaluation dataset. The remaining data was 850

then split into five equal parts, with one part serv- 851

ing as the public dataset and the other four parts as 852

private data for the four clients. 853

D.3 Dataset Licenses 854

For the datasets RTE/WIC/BoolQ/CQA/ARC- 855

E/ARC-C/DialogSum were downloaded from Hug- 856

gingFace(Lhoest et al., 2021) and under Apache 857

License, Version 2.0. For the S-NI dataset, it was 858

from minillm(Gu et al., 2023) and under MIT Li- 859

cense. 860

D.4 Machine Configuration 861

The experiments were conducted on machines 862

equipped with either 4 Nvidia V100 32G or 8 863

Nvidia V100 32G GPUs. 864
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