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ABSTRACT

Accurate time series forecasting, predicting future values based on past data, is
crucial for diverse industries. Many current time series methods decompose time
series into multiple sub-series, applying different model architectures and training
with an end-to-end overall loss for forecasting. However, this raises a question:
does this overall loss prioritize the importance of critical sub-series within the de-
composition for the better performance? To investigate this, we conduct a study
on the impact of overall loss on existing time series methods with sequence de-
composition. Our findings reveal that overall loss may introduce bias in model
learning, hindering the learning of the prioritization of more significant sub-series
and limiting the forecasting performance. To address this, we propose a hybrid
loss framework combining the global and component errors. This framework in-
troduces component losses for each sub-series alongside the original overall loss.
It employs a dual min-max algorithm to dynamically adjust weights between the
overall loss and component losses, and within component losses. This enables the
model to achieve better performance of current time series methods by focusing on
more critical sub-series while still maintaining a low overall loss. We integrate our
loss framework into several time series methods and evaluate the performance on
multiple datasets. Results show an average improvement of 0.5-2% over existing
methods without any modifications to the model architectures.

1 INTRODUCTION

Time series analysis is a powerful tool for understanding and forecasting sequential data points typ-
ically measured over time. It finds applications across various domains such as climate science (Wu
et al., [2023), transportation (Yin et al.l [2021)), and energy (Qian et al., 2019b)), where recognizing
patterns and predicting future values are crucial.

Remarkably, deep learning methods have proven highly effective in time series forecasting by pro-
viding robust backbones/model architectures like Multilayer Perceptrons (MLPs) (Zhang et al.,
2022b; |Chen et al.| 2023), Transformers (Vaswani, 2017), and even Large Language Models
(LLMs) (Jin et al.} |2023} (OpenAll [2023)), which are adept at learning complex patterns from large
datasets (Godahewa et al.| [2021). However, besides the improvement of the model architectures,
most of these methods also rely on time series decomposition(Cleveland et al., [1990; |Qian et al.,
2019a) to better capture various features. Among these, sliding-window decomposition is the most
common method, which forms the basis of all model architectures discussed previously (Wu et al.,
2021} [Zhou et al., 2022} [Nie et al. 2022; Zeng et al., [2023). It decomposes a raw time series
into seasonal and trend sub-series, representing high-frequency feature (detailed changes) and low-
frequency feature (overall trend changes), respectively (Faltermeier et al., 2010). However, although
many methods utilize these sub-series, they still employ an end-to-end overall loss function. This
loss function computes the difference between the final combined sub-series and the true series. This
raises the question: Does optimizing this overall loss guarantee that the features of each sub-series
are equally well-learned? Or, could an optimal overall loss fail to optimize the performance of the
decomposition-based deep learning model?
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To further investigate this, we conduct additional statistical analysis and case studies. Our statistical
findings reveal that deep learning methods employing time series decomposition often exhibit sig-
nificant discrepancies in losses across different sub-series on various datasets. Specifically, the loss
on the seasonal sub-series is frequently one to two times smaller than the loss on the trend sub-series,
which represents the overall movement of the time series. This disparity in losses suggests that the
worse trend component may lead to substantial deviations in the overall trend of the forecast. We
further illustrate this issue with a detailed case study.

To address this challenge, we propose a hybrid loss framework combining the global (the overall
loss) and component error (the sub-series losses). Inspired by the principles of distributionally ro-
bust optimization (DRO) (Wiesemann et al., 2014} Namkoong & Duchi, 2016;|Duchi & Namkoong,
2019), we formulate this loss framework as a dual min-max problem. First, we construct a global
min-max problem to balance the overall loss and the losses across all sub-series, ensuring that while
minimizing the overall loss, the model also dynamically attends to the overall sub-series loss. Fur-
thermore, recognizing that the overall sub-series loss is composed of individual sub-series losses, we
formulate a second min-max problem to encourage the model to dynamically focus on potentially
higher-loss components during training, thus prioritizing the optimization of critical components
like the trend sub-series. We evaluate our loss framework on multiple datasets using existing model
architectures and demonstrate an average performance improvement of 0.5-2% without requiring
any modifications to the underlying model structures.

In this paper, we make the following contributions:

* Qur investigation reveals that the end-to-end overall loss function commonly used in deep
learning for time series forecasting may not lead to optimal model performance. Sub-series
critical to the overall forecasting might not be sufficiently optimized under the overall loss.

* We propose a novel hybrid loss framework that balances global and component errors to
improve time series forecasting by dual min-max.

* The experiments demonstrate the effectiveness of our loss across diverse time series
datasets, varying in both length and size, as well as across different models.

2 PRELIMINARY EXPERIMENTS

In this section, we explore a potential unifying issue among various deep learning approaches em-
ploying time series decomposition when trained under the current loss function. We illustrate this
issue through statistical analysis of an experiment and by presenting several intuitive cases.

Experiment Settings. To investigate potential shortcomings of existing methods, we reproduce
these decomposition-based deep learning methods and, beyond evaluating their overall performance,
specifically analyze their performance on each decomposed sub-series. In our experiments,

* For methods, we select DLinear (Zeng et al., 2023), FEDformer (Zhou et al} [2022), and
PatchTST (Nie et al,2022) as representative methods. These methods all employ sliding-
window-based time series decomposition (decompose to Seasonal sub-series and Trend
sub-series), differing primarily in their backbone architectures: DLinear uses the MLP,
while FEDformer and PatchTST utilize transformers. We employe the original loss func-
tion of these methods, which computes the Mean Squared Error (MSE) between the com-
bined forecasting of the decomposed sub-series and the ground truth. Notably, these meth-
ods also represent the current state-of-the-art in time series forecasting in many benchmarks
(Woo et al.,|2022; [Wang et al., |2024).

* For datasets, our experiments were conducted on four commonly used benchmark datasets:
ETThl1, ETTh2 from ETTh (Zhou et al.| [2021a)), and ETTm1, ETTm2 from ETTm (Zhou
et al.,|2021b). All datasets are split into training, validation, and testing sets with the 7:1:2
ratio.

* For metrics, performance is evaluated using the standard metrics of Mean Squared Error
(MSE) and Mean Absolute Error (MAE).

We show the results of this experiment in Table[T} With these results, we can find that for deep learn-
ing methods employing sliding-window-based time series decomposition, significant discrepancies
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in forecasting performance across individual sub-series, when trained under the overall loss, may
contribute to mainly inaccuracies in the final combined forecasting. Across the ETTh2, ETTml,
and ETTm?2 datasets, the performance on the Trend sub-series is consistently 2 to 5 times worse
than the performance on the Seasonal sub-series for all models. Conversely, on the ETTh1 dataset,
the Seasonal sub-series performs approximately 2 times worse than the Trend sub-series. Further-
more, comparing the poorly predicted sub-series to the overall forecasting, it accounts for roughly
80% of the overall error. This indicates that a overall loss may not ensure consistent predictive per-
formance across individual sub-series for these decomposition-based methods, suggesting a biased
learning towards certain components of sub-series. More importantly, this bias appears to be a major
contributor to the overall forecasting error of these methods.

Table 1: Multivariate time series forecasting results on four datasets with sliding-window-based
deep learning methods. The results are based on the average of prediction lengths {96, 192,
336, 720} with input length 96. A lower MSE and MAE indicates better performance. The
“Global/Components” column indicates whether the reported results represent the overall forecast-
ing performance or the performance on each individual decomposed sub-series.

ETThl ETTh2 ETTml ETTm2

Models Global/Componets ~MSE MAE MSE MAE MSE MAE MSE MAE
Overall 0.4588 0.4519 0.4981 04792 0.4061 04102 0.3102 0.3670

Dlinear Seasonal 0.2965 0.3604 0.0888 0.2071 0.0969 0.2115 0.0486 0.1467
Trend 0.1716 03146 04144 04264 03192 03726 0.2661 0.3371

Overall 0.4394 0.4581 0.4429 04549 04441 04543 0.3031 0.3493

FEDformer Seasonal 0.2793 0.3703 0.0866 0.2102 0.1010 0.2116 0.0446 0.1381
Trend 0.1678 03172 0.3551 0.4048 0.3249 0.3979 0.2595 0.3133

Overall 0.4506 0.4411 0.3658 0.3945 0.3838 0.3954 0.2821 0.3261

Patchtst Seasonal 0.3031 0.3656 0.0835 0.1971 0.1319 0.2378 0.0490 0.1436
Trend 0.1566 0.2935 0.2710 0.3277 0.3198 0.3641 0.2328 0.2846

To further explore the practical impact of this bias and provide a visual illustration, we conduct the
case studies for each method across the different datasets, as shown in Figure We can find that
sub-series with larger losses, especially the Trend sub-series, does have a greater impact on the
overall forecasting. In Figure(l|(a) and (b), the models accurately predict the Seasonal sub-series,
but fail to capture the increasing trend in the Trend sub-series. This leads to a visually apparent
underestimation of the overall forecasting compared to the ground truth. In contrast, for Figure
(c), the primary error occurs in the middle-early part, where both sub-series have significant errors.
Although the Seasonal sub-series exhibits larger errors in the later part, the more accurate Trend
sub-series forecasting results also can make a smaller overall error. Therefore, this further confirms
that the overall loss may not effectively optimize for the sub-series that contribute significantly to
the overall forecasting.
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(a) FEDformer on ETThI. (b) Patchtst on ETTh2. (c) Dlinear on ETTm1.

Figure 1: The case study of time series forecasting. The results show the prediction-length-96 part
(input length is 96) for different methods on different datasets. Each sub figure presents the single-
variate (last variate) overall forecasting part and the forecasting part of the individual sub-series.

"More cases can be found in Appendix@
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3 METHOD

As revealed in the previous section, a overall loss indeed introduces bias when training deep learning
methods on decomposed sub-series, potentially leading to significant errors, particularly in the Trend
sub-series. To address this issue, we propose a hybrid loss framework in this section, which incor-
porates component-specific (sub-series) losses alongside the overall loss, and dynamically adjusts
their weights to improve the overall and sub-series forecasting.

Specifically, we define the overall loss as Lossg (compute the MSE on the final results), the com-
ponent loss as Lossc, which is the sum of Lossg and Losst for Seasonal and Trend sub-series
(compute the MSE on the Seasonal sub-series and Trend sub-series results), respectively. We use a
dual min-max problem to first balance the losses of Lossg and Lossc, and then balance the losses
of Lossg and Lossy. This aims to maintain the overall forecasting performance while also focusing
on and dynamically balancing the forecasting of sub-series with larger errors.

3.1 OPTIMIZATION OBJECTIVE

Drawing inspiration from distributionally robust optimization (DRO), our previous goal is to achieve
optimal forecasting for the max loss part in our hybrid loss framework by adjusting the losses of
Lossg and Lossc, and the losses of Lossg and Losst through dual min-max weighting. We
define the first (min-max) optimization objective as follows:

min max wy Lossg + woLossc, (D
0 witwe=1,w;>0
where 6 means the parameters of the deep learning method, w; and w, mean the weights for the
overall loss Lossg and the component loss Lossc respectively, and the Loss¢ is associated with
the second (min-max) optimization objective:

Lossc = min max aLoss Loss 2
c in | omax s+ B T, 2

where o and 5 mean the weights for the Seasonal loss Lossg and the Trend loss Losst respectively.

Therefore, the Equationﬂ]means that when the component loss exceeds the overall loss, we need the
model to prioritize the forecasting performance of sub-series rather than solely focusing on the final
forecasting, and the Equation [2{ means that when optimizing for sub-series, we need the model to
prioritize these with larger losses, as they are often the primary contributors to errors in the overall
forecasting. We can combine these two optimization objectives as follows:

min max w1 Lossg + wa(aLosss + Lossr). 3)
9 witwg=1,w;>0
a+B=1,a,820

3.2 IMPLEMENTATION

To solve this optimization problem Equation [3} we also need to optimize the parameters w1, wa, «
and . Instead of applying the gradient descent method, we use estimation technique as the mirror
descent method from DRO (Zhang et al.| 2022a)) to update as follows:

wi" exp(A1 Losse)

cur — , 4
! wi" exp(A\1 Lossg) + wh" exp(A1 Lossc) @

wh" exp(A1 Lossc)

&)

Y2 exp(A Lossg) + wh ™ exp(\ Lossc)’

cur aP™® exp(AgLossg) ©)
« =
aPre exp(AyLossg) + BPre exp(Ag Losst)’

geur _ BPT¢ exp(Aa LossT) o
~ arreexp(AgLossg) + BPre exp(AyLossT)’
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where pre denotes the previous update step, cur denotes the current update step. The ); is a hy-
perparameter that balances the importance of the weighting term. Its value is often determined by
the properties of the deep learning method being used. We initialize wy, we, o, 8 = % in the initial
iteration of our experiments.

The optimization process then becomes: for each optimization step, we first compute the weights of
the individual losses using the equations above, resulting in the combined loss

Loss = w1 Lossg + we(aLosss + BLosst), 8)

which is then used to update the model parameters Gﬂ

Table 2: Multivariate time series forecasting results on deep learning methods with/without hybrid
loss framework. The “Loss” indicates what kind of the loss does the methods use.

Models Dlinear FEDformer Patchtst
Loss  Original Hybrid Loss Original Hybrid Loss  Original Hybrid Loss

MSE  0.4588 0.4579 0.4394 0.4380 0.4506 0.4502
ETThl MAE 04519 0.4511 0.4581 0.4573 0.4411 0.4402

MSE  0.4981 0.4974 0.4429 0.4417 0.3658 0.3639
ETTh2 MAE 04792 0.4785 0.4549 0.4539 0.3945 0.3929

MSE  0.4061 0.4060 0.4441 0.4424 0.3838 0.3813
ETTml MAE  0.4102 0.4102 0.4543 0.4535 0.3954 0.3943

MSE 03102 0.3100 0.3031 0.3021 0.2821 0.2790
ETTm2 MAE  0.3670 0.3667 0.3493 0.3480 0.3261 0.3247

o MSE 0.2095 0.2093 0.2141 0.2224 0.1951 0.1955
Electricity ~ MAE 0.2956 0.2955 0.3261 0.3334 0.2794 0.2796

MSE 0.3357 0.3307 0.5017 0.5201 0.3517 0.3531
Exchange  MAE 0.3948 0.3947 0.4908 0.5025 0.3963 0.3966

) MSE 2.3465 2.3452 2.7893 2.4759 1.6318 1.5197
illness MAE  1.0883 1.0892 1.1200 1.0974 0.8616 0.8279

MSE 0.2670 0.2638 0.3128 0.3112 0.2598 0.2605
Weather MAE  0.3174 0.3076 0.3609 0.3589 0.2816 0.2798

Datasets

4 EXPERIMENT

In this section, we aim to validate the effectiveness of our proposed hybrid loss framework for
both overall and sub-series forecasting performance across multiple datasets. We also conduct the
ablation studies to analyze the contribution of each component of our loss framework.

4.1 EXPERIMENTAL SETUP

Datasets. For the time series forecasting tasks, in addition to ETTh1, ETTh2, ETTml, and ETTm2
datasets used in our preliminary experiments, we incorporate 4 more commonly used datasets:
Electricity (Trindade, [2015), Exchange-rate (Exchange) (Lai et al.| 2018)), National-illness (illness)
(Zhou et al.| 2021b), and Weathe to demonstrate the broader applicability of our loss framework.
These 4 datasets split into training, validation, and testing sets with the 3:1:1 ratio.

Baseline. Given that the models used in our preliminary experiments, DLinear (Zeng et al., 2023),
Fedformer (Zhou et al.,[2022), and PatchTST (Nie et al.| 2022)), are already among the most promi-
nent and effective, covering both MLP and transformer backbones, as well as point and patch em-

The effectiveness and convergence of this optimization process are supported by prior work (Duchi &
Namkoong} 2019).
“https://www.bgc-jena.mpg.de/wetter/
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bedding variants, we retain these models as baselines. Our method directly replaces the original loss
function of these baselines with our proposed hybrid loss framework during training

Implementation details. In our experiments, except the nation-illness dataset, all the input lengths
are 96, and prediction lengths are {96, 192, 336, 720}, respectively. For nation-illness dataset, the
input length is 104 and prediction lengths are {24, 36, 48, 60}, respectively. To conserve space,
the results presented in this section are averaged across all these prediction lengthsE] Based on our
validation set performance, we set A\; = 0.9 and Ay = 0.1 for our hybrid loss framework across
all models and datasets. All experiments were conducted on a system with two NVIDIA V100 32G
GPUs and an Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz with 128GB of RAM.

Metrics. We use the standard metrics of Mean Squared Error (MSE) and Mean Absolute Error
(MAE) after the data normalization. A lower MSE and MAE indicates better performanceE]

4.2 MAIN RESULTS

QOur hybrid loss framework effectively improves the final performance of existing methods
across a wide range of datasets. Table [2] presents the overall forecasting performance of these
methods using both the original loss and our proposed hybrid loss framework. We observe improve-
ments across most datasets. The magnitude of improvement is generally around 0.5-2%, with a
notable exception on the illness dataset where our method boosts the performance of FEDformer by
nearly 10% on MSE. This demonstrates that the dynamic focus on sub-series losses introduced by
our hybrid loss framework is indeed effective and ultimately leads to improved overall performance.

We further investigate the reasons for the worse performance of FEDformer and PatchTST with our
hybrid loss framework on the Electricity and Exchange-rate datasets. We find that the time series
in these datasets lack readily discernible patterns and exhibit numerous abrupt changes. Conse-
quently, incorporating sub-series losses reinforces the tendency to learn a smoother, low-frequency
representation for each sub-series, which leads to less accurate forecasting in the final results.

Table 3: Multivariate time series forecasting overall and subseries results on deep learning methods
with/without hybrid loss framework. The “Global/Components” column indicates whether the re-
ported results represent the overall forecasting performance or the performance on each individual
decomposed sub-series. The “Loss” column indicates what kind of the loss does the methods use.

ETThl ETTh2 ETTml ETTm2
Models Loss Global/Componets ~ MSE MAE MSE MAE MSE MAE MSE MAE
Overall 0.4588 0.4519 0.4981 0.4792 0.4061 04102 03102 0.3670

Original Seasonal 0.2965 0.3604 0.0888 0.2071 0.0969 0.2115 0.0486 0.1467

Trend 0.1716 03146 0.4144 04264 03192 03726 0.2661 0.3371

Dlinear Overall 0.4579 0.4521 0.4974 0.4785 04060 04102 0.3100 0.3667
Hybrid Seasonal 0.2923 03556 0.0819 0.1959 0.0961 0.2106 0.0435 0.1323

Trend 0.1686 03122 0.4038 0.4203 0.3189 0.3724 02611 0.3299

Overall 0.4394 0.4581 0.4429 04549 04441 04543 03031 0.3493

Original Seasonal 0.2793 03703 0.0866 02102 0.1010 02116 0.0446 0.1381

Trend 0.1678 03172 03551 0.4048 0.3249 0.3979 0.2595 0.3133

FEDformer Overall 04380 04573 04417 04539 04424 04535 03021 0.3480
Hybrid Seasonal 0.2786 0.3697 0.0826 0.2021 0.0944 0.2038 0.0415 0.1300

Trend 0.1649 03144 03409 04010 03187 0.3933 0.2570 0.3095

Overall 0.4506 0.4411 03658 0.3945 0.3838 0.3954 0.2821 0.3261

Original Seasonal 03031 03656 0.0835 0.1971 0.1319 0.2378 0.0490 0.1436

Trend 0.1566 0.2935 02710 0.3277 03198 0.3641 0.2328 0.2846

Patchtst Overall 0.4502 0.4402 03699 0.3989 0.3813 0.3963 0.2790 0.3247
Hybrid Seasonal 03008 03643 0.1116 0.1689 0.0880 0.1997 0.0451 0.1361

Trend 0.1521 02900 0.3020 0.3250 0.2746 0.3315 0.2304 0.2811

Our hybrid loss framework significantly enhances the forecasting performance of individual
sub-series, particularly the Trend sub-series. Since our hybrid loss framework aims to improve

*We also provide a comparison with a wider range of models in Appendix demonstrating that models
utilizing our hybrid loss framework still achieve state-of-the-art performance in a broader comparison.

SMore detailed results of each prediction length are provided in Appendix

SMore details of this section can be found in Appendix
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overall performance by enhancing the forecasting of individual sub-series, we conduct additional
experiments on the four datasets used in our preliminary experiments to compare the performance
of our hybrid loss framework against the original loss, shown in Table [3] These results clearly
demonstrate a significant reduction in the forecasting error of individual sub-series when using our
hybrid loss framework. This improvement is particularly pronounced for the Trend sub-series, often
exceeding a 2% reduction in error. Given that most datasets exhibit greater forecasting deficiencies
in the Trend component, and considering the importance of the Trend sub-series in representing
the overall series trajectory, we believe our hybrid loss framework effectively addresses a common
weakness in current decomposition-based deep learning methods.

Overall Overall 0 Overall
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(a) FEDformer on ETThI. (b) Patchtst on ETTh2. (c) Dlinear on ETTml1.

Figure 2: The case study of time series forecasting results with our hybrid loss framework. The
settings are the same as Figure/[l}

We also perform the case study, using the same setup as in the preliminary experiments, to visually
analyze the effects of our hybrid loss framework, as shown in Figure Comparing Figure |1| with
Figure [2] we observe a clear visual improvement in the forecasting of sub-series, particularly the
Trend sub-series in Figure [2| (a) and (b). These now capture the upward trend, leading to better
overall forecasting. DLinear on ETTm1 also shows a visually perceptible improvement in overall
performance, despite some residual high-frequency errors in the Seasonal sub-series. Therefore, we
believe learning the Trend sub-series may be a promising area for future research discovered by this
work, and there is still room for further improvement even with the hybrid loss framework.

4.3 ABLATION STUDY

To further explore our hybrid loss framework, we conduct two ablation studies: one to analyze the
effectiveness of different components/variants, and another to assess the impact of varying initial
hyperparameter settings.

Table 4: The ablation study of multivariate time series forecasting results on deep learning methods
with our hybrid loss framework or its variants. The “Loss” indicates what kind of the loss does the
methods use.

ETThl ETTh2 ETTml1 ETTm2
Models Loss MSE MAE MSE MAE MSE MAE MSE MAE

Hybrid 0.4579 0.4521 0.4974 0.4785 0.4060 0.4102 0.3100 0.3667
Dlinear Componet  0.4593  0.4539 0.5603 0.5150 0.3978 0.4101 0.3239 0.3767
Fix weight 0.4596 0.4533 0.4993 0.4788 0.4079 0.4122 0.3164 0.3678

Hybrid 0.4380 0.4573 0.4417 0.4539 0.4424 0.4535 0.3021 0.3480
FEDformer Componet 0.4879 0.4858 0.4574 0.4651 0.4778 0.4698 0.3251 0.3722
Fix weight 0.4414 0.4600 0.4456 0.4568 0.4670 0.4637 0.3055 0.3511

Hybrid 0.4502 0.4402 0.3699 0.3989 0.3813 0.3963 0.2790 0.3247
Patchtst Componet  0.4620 0.4498 0.3691 0.3966 0.3917 0.4001 0.2801 0.3240
Fix weight 0.4586 0.4871 0.3742 0.4031 0.3900 0.3985 0.2792 0.3267

For the first ablation study, we compare two variants of our hybrid loss framework in the datasets
used in our preliminary experiments. The first variant, denoted as "Component”, uses only the

"More cases can be found in Appendix@
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sub-series loss, corresponding to loss function Equation 2] The second variant, denoted as “Fixed
Weight”, uses fixed weights wy,ws, «, 5, all set to 0.5, during model training. The results of this
ablation study are presented in Table []

Using only the sub-series loss is insufficient, and dynamically updating the weights during
training is crucial. In Table {] our hybrid loss framework achieves the best performance in most
cases, often outperforming the "Component” variant (using only sub-series loss with min-max) by
over 3% and the “Fixed Weight” variant by 1-2%. This demonstrates that solely focusing on the
sub-series loss is insufficient; while the model may learn to predict sub-series well, the combined
forecasting remains inaccurate. Furthermore, it highlights the dynamic nature of the balance be-
tween overall and sub-series losses during training, emphasizing that neither the overall loss nor any
single sub-series consistently dominates the optimization process.

For the second ablation study, we compare the impact of different initial weights wy, wo, a, 5, to
explore the influence of initial bias towards specific components of loss. As established in Section
3.1} w1 +ws = 1 and v+ 8 = 1. Therefore, we test the following combinations: w; = 0.1, = 0.1
or 0.9; w; = 0.5, = 0.5; and wy; = 0.9, = 0.1 or 0.9. We used all datasets from the preliminary
experiments and the DLinear and PatchTST modelsﬂ The results of this ablation study are presented
in Table

For most datasets, uniform initial weights (0.5) provide good performance, while excessive bias
in the initial weights may lead to performance degradation. As shown in Table [5] drastically
altering the initial weights can still impact the final performance. The uniform initial weights (0.5)
generally maintain stable performance and, in many cases, outperform initializations with 0.1 or 0.9
by approximately 1%. This suggests that, in the absence of prior knowledge about the data, using
a balanced set of initial weights (e.g., 0.5) for the our hybrid loss framework allows the model to
learn and adjust these weights during training, leading to more reliable final performance compared
to aggressively setting the initial weights.

Table 5: The ablation study of multivariate time series forecasting results on our hybrid loss frame-
work with different initial weights. As w; + we = 1 and o + = 1, we only specify the initial
values of wy and « in the table.

ETThl ETTh2 ETTm1 ETTm2
Models w; « MSE MAE MSE MAE MSE MAE MSE MAE

0.1 0459 0.4524 0.4939 0.4779 0.4091 04142 0.3064 0.3638
0.1 09 04610 04541 04978 04791 0.4047 04097 03091 0.3658

05 05 04579 04511 04974 04785 0.4060 0.4102 0.3100 0.3667

Dlinear
0.1 04589 0.4519 0.4982 04793 0.4050 0.4103 0.3102 0.3670
09 09 04589 04519 04983 04793 04050 0.4103 0.3102 0.3670
0.1 0.4554 0.4451 0.3651 0.3940 0.3836 0.3975 0.2802 0.3200
0.1 09 04518 04412 03650 0.3937 0.3828 0.3973 0.2800 0.3254
Patchtst 0.5 0.5 04502 0.4402 0.3639 0.3929 0.3813 0.3943 0.2790 0.3247

0.1 0.4493 0.4393 03642 0.3935 0.3821 0.3960 0.2792 0.3247
0.9 09 04492 04391 03642 03934 03821 03935 0.2792 0.3248

5 RELATED WORKS

The deep learning backbones in time series forecasting. Deep learning dominates time series
forecasting in recent years. These methods leverage different powerful neural network architectures
as backbones, adapting them to capture the characteristics of time series and learn effective predic-
tive patterns from large datasets. For example, Prior to the rise of transformers, CNNs (Hewage
et al. 2020) and RNNs (Lai et al., [2018) demonstrated the potential of deep learning to surpass
traditional forecasting methods. Subsequently, transformers became the prevalent backbone, with
models like Informer (Zhou et al.| 2021b), Autoformer (Wu et al., [2021)), Fedformer (Zhou et al.,

8We also conduct this ablation study on FEDformer using the ETTh1 and ETTh2 datasets, presented in
Appendix[C]
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2022), iTransformer (Liu et al., 2023)), and PatchTST (Nie et al., 2022)) specifically designed to ex-
ploit the sequential nature of time series. However, recent work suggests that simpler architectures,
like MLP-based models such as DLinear (Zeng et al.l |2023), TimeMixer (Wang et al., 2024), and
TimesNet (Wu et al.| [2022), can also achieve comparable or even superior performance. Further-
more, the impressive reasoning and generalization abilities of recent large language models (LLMs)
(Jin et al., 2023)) have spurred exploration of their potential for zero-shot time series forecasting (Jin
et al., 2023} |Das et al., 2023). While these backbone architectures constitute the majority of time se-
ries forecasting research, many of them still employ time series decomposition techniques to better
capture temporal dynamics by learning representations for individual sub-series. Furthermore, these
models still rely on end-to-end overall loss functions(Jadon et al.| [2024), leaving the relationship
between the loss and the effectiveness of the learning of sub-series unexplored.

The times series decomposition in time series forecasting. Time series decomposition is a crucial
component in many contemporary time series forecasting models, employed across various back-
bone architectures (Wu et al., 2021; Zhou et al., |2022; |Nie et al., [2022} Zeng et al., [2023)). Its core
principle involves decomposing a raw time series into two or more sub-series, each representing spe-
cific characteristics of the original series. For example, the widely used sliding window approach
(Faltermeier et al., 2010) decomposes a time series into seasonal and trend components, capturing
the local fluctuations and overall trajectory, respectively. Other models explore alternative decom-
position methods based on mathematical principles. Fedformer (Zhou et al., 2022) builds upon the
sliding window approach by further decomposing sub-series using Fourier transforms, focusing on
dominant frequencies. TimeMixer (Wang et al.| 2024) utilizes a multi-scale decomposition to cap-
ture information at different granularities. In this work, we specifically investigate how to enhance
the learning of decomposed sub-series, particularly focusing on the commonly used sliding window
decomposition method.

6 CONCLUSION

We explore the potential shortcomings of existing deep learning time series forecasting methods
that incorporate time series decomposition. We find that the end-to-end overall loss employed by
these methods may hinder the effective learning of decomposed sub-series, ultimately impacting the
final performance. Therefore, we propose a novel hybrid loss framework designed to address this
balance between different sub-series and the overall series in time series forecasting. By employing
a dual min-max loss framework, our approach dynamically emphasizes both the overall series and
the sub-series that require enhanced learning. This avoids the bias that occurs when focusing solely
on overall loss, which may lead to suboptimal model performance. Our framework achieves state-
of-the-art performance across a wide range of datasets and experiments demonstrate that this loss
framework can yield an average improvement of 0.5-2% across existing time series models.

LIMITATIONS AND FUTURE WORK

Despite the work presented in this study, from problem identification to solution development for
decomposition-based deep learning methods in time series forecasting, our work has some limita-
tions that we hope to address in future work.

First, although the investigated time series forecasting methods represent the current state-of-the-art,
they all rely on sliding window decomposition. While alternative decomposition methods are less
common, their performance under our loss framework may also need further investigation.

Second, due to computational constraints associated with averaging results across multiple predic-
tion lengths for each datasets, the datasets used in our preliminary and ablation experiments could be
expanded further to provide more comprehensive validation of our loss framework’s effectiveness.

REPRODUCIBILITY

The code for our hybird loss framework is available in the Supplementary Material we submitted. It
is designed as a plug-and-play module readily applicable to existing time series forecasting methods
utilizing sliding window decomposition.
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A  MORE DETAILS

We show more details of datasets, evaluation metrics, experiments in this section.

Datasets details. We evaluate the performance the methods on 8 commonly used datasets: ETTh1
(Zhou et al., 2021a), ETTh2 (Zhou et al., 2021a), ETTm1 (Zhou et al., 2021b), ETTm2 (Zhou
et al., 2021b), Electricity (Trindade, 2015), Exchange-rate (Exchange) (Lai et al., [2018]), National-
illness (illness) (Zhou et al., [2021b), and Weathelﬂ Following the standard settings of the existing
benchmarks (Zeng et al.,2023; Zhou et al.| |2022; |Nie et al.,[2022), except the nation-illness dataset,
all the input lengths are 96, and prediction lengths are {96, 192, 336, 720}, respectively. For nation-
illness dataset, the input length is 104 and prediction lengths are {24, 36, 48, 60}, respectively.
The first 4 datasets split into training, validation, and testing sets with the 7:1:2 ratio, and the last 4
datasets split into training, validation, and testing sets with the 3:1:1 ratio. The detailed descriptions
of these datasets in Table

Table 6: Dataset detailed descriptions. The dataset size is organized in (Train, Validation, Test). The
“Dim” means the dimensions of the multivariate in the dataset.

Dataset | Dim | Input Length | Prediction Length | Dataset Size | Frequency | Information
| | | 96 | (8449,2785,2785) | |
\ \ \ 192 | (8353,2689,2689) | \

ETThl ‘ 7 ‘ 96 ‘ 336 ‘ (8209, 2545, 2545) ‘ Hourly ‘ Temperature
\ \ \ 720 | (7825,2161,2161) | \
\ \ \ 96 | (8449,2785,2785) | \
| | | 192 | (8353,2689,2689) | |

ETTh2 ‘ 7 ‘ 96 ‘ 336 ‘ (8209, 2545’ 2545) ‘ Hourly ‘ Temperature
\ \ \ 720 | (7825,2161,2161) | |
| | | 96 | (34369, 11425, 11425) | |
| | | 192 | (34273, 11329, 11329) | |

ETTml ‘ 7 ‘ 96 ‘ 336 ‘ (34129, 11185, 11185) ‘ 15 mins ‘ Temperature
| | | 720 | (33745, 10801, 10801) | |
| | | 96 | (34369, 11425, 11425) | |
\ \ \ 192 | (34273, 11329, 11329) | \

ETTm2 ‘ 7 ‘ 96 ‘ 336 ‘ (34129, 11185, 11185) ‘ 15 mins ‘ Temperature
\ \ \ 720 | (33745, 10801, 10801) | \
\ \ \ 96 | (18221,2537,5165) | \
| | | 192 | (18125,2441,5069) | |

Electricity ‘ 321 ‘ 96 ‘ 336 ‘ (17981, 2297, 4925) ‘ Hourly ‘ Electricity
| | | 720 | (17597,1913,4541) | |
| | | 96 | (5120,665,1422) | |
| | | 192 | (5024,569,1326) | |
Exchange_rate ‘ 8 ‘ 96 ‘ 336 ‘ (4880, 425, 1182) ‘ Day ‘ Exchange rates

| | | 720 | (4496, 41, 798) | |
| | | 24 | (549, 74, 170) | |
\ \ \ 36 \ (537, 62, 158) \ \

illness ‘ 7 ‘ 104 ‘ 48 ‘ (525, 50, 146) ‘ Week ‘ National illness
\ \ \ 60 \ (513, 38, 134) \ \
\ \ \ 96 | (36696, 5175, 10444) | \
| | | 192 | (36600, 5079, 10348) | |

‘Weather ‘ 21 ‘ 96 ‘ 336 ‘ (36456, 4935, 10204) ‘ 10min ‘ Weather
| | | 720 | (36072,4551,9820) | |

*https://www.bgc-jena.mpg.de/wetter/

12
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Metric details. We utilize the mean square error (MSE) and mean absolute error (MAE) for time
series forecasting. The calculations of these metrics are:

L L
MSE = (3 (Y; - Yy)?)%, MAE=) [Y;- Y],

=0 =1

where Y, Y € RL*C are the ground-truth and the forecasting results with L time points and C'
dimensions of multivariate, respectively. Y; means the ith future time point.

Experiment details. Since we only modify the loss function, whose configuration is detailed in
the main text, all other training parameters, including learning rate, batch size, epochs, and model-
specific hyperparameters, are left at their default settings for each respective method. The original
code for these methods is fully open-sourced in their respective original publications (we summarize
the URL links of these models used in our paper in Table[7)), allowing for straightforward reproduc-
tion.

Table 7: The URL links of the models we used in this paper.

Model | Backbone | URL Link
TimeMixer | MLP | https://github.com/kwuking/TimeMixer.git
TimesNet | MLP | https://github.com/thuml/TimesNet.git
Autoforemer | Transformer | https://github.com/thuml/Autoformer.git
Crossformer ‘ Transformer ‘ https://github.com/Thinklab-SJTU/Crossformer.git
iTransformer ‘ Transformer ‘ https://github.com/thuml/iTransformer.git
GPT2 | LLM (Transformer) | https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All.git
TimesFM | LLM (Transformer) | https://github.com/google-research/timesfm.git
Dlinear | MLP | https://github.com/cure-lab/LTSF-Linear.git
FEDformer | Transformer | https://github.com/MAZiging/FEDformer.git
PatchTST ‘ Transformer ‘ https://github.com/yuginie98/PatchTST.qgit

B MORE RESULTS OF MAIN EXPERIENTS

B.1 MORE MODELS

In addition to the 3 models compared in the main text, we include 7 more models for a broader
comparison. These include two MLP-based models: TimeMixer (Wang et al.| |2024) and TimesNet
(Wu et al.l [2022); three Transformer-based models: Autoformer (Wu et al., 2021)), Crossformer
(Zhang & Yan|, 2023)), and iTransformer (Liu et al.| [2023)); and two recent LLM-based models:
GPT?2 (Zhou et al.,|2023)) and TimesFM (Das et al.,[2023)). The results are presented in Table@

Table 8: Multivariate time series forecasting results on more deep learning methods with/without
hybrid loss framework.

Models ~ Metrics  Ti i TimesNet  Autof Crossformer  iTransformer ~GPT2  TimesFM Dlinear Dlinear FEDformer ~FEDformer PatchTST  PatchTST
(Hybrid (Hybrid (Hybrid
Loss) Loss) Loss)
MSE 0.4512 0.4609 0.4738 0.5987 0.4570 0.4681 0.5406 0.4588 0.4579 0.4394 0.4380 0.4506 0.4502
ETThl MAE 0.4405 0.4551 0.4733 0.5586 0.4492 0.4558 0.4446 0.4519 0.4511 0.4581 0.4573 0.4411 0.4402
MSE 0.3849 0.4074 0.4258 0.5662 0.3837 0.3792 0.3127 0.4981 0.4974 0.4429 0.4417 0.3658 0.3639
ETTh2 MAE 0.4061 0.4211 0.4447 0.5451 0.4069 0.4054 0.3748 0.4792 0.4785 0.4549 0.4539 0.3945 0.3929
MSE 0.3908 0.4101 0.5502 0.5065 0.4076 0.3875 0.5240 0.4061 0.4060 0.4441 0.4424 0.3838 0.3813
ETTml1 MAE 0.4023 0.4177 0.5024 0.5030 0.4118 0.4020 0.4577 0.4102 0.4102 0.4543 0.4535 0.3954 0.3943
MSE 0.2767 0.2950 0.3251 1.5484 0.2922 0.2852 0.3390 0.3102 0.3100 0.3031 0.3021 0.2821 0.2790
ETTm2 MAE 0.3232 0.3317 0.3637 0.7716 0.3358 0.3287 0.3586 0.3670 0.3667 0.3493 0.3480 0.3261 0.3247
- MSE 0.1818 0.1941 0.2370 0.3065 0.1756 0.1626 0.1860 0.2095 0.2093 0.2141 0.2224 0.1951 0.1955
Electricity  MAE 0.2722 0.2956 0.3436 0.3583 0.2666 0.2558 0.2667 0.2956 0.2955 0.3261 0.3334 0.2794 0.2796
MSE 0.4356 0.4093 0.4901 0.9711 0.3642 0.3624 0.2313 0.3357 0.3307 0.5017 0.5201 0.3517 0.3531
Exchange  MAE 0.4298 0.4403 0.4929 0.7315 0.4069 0.4065 0.3328 0.3948 0.3947 0.4908 0.5025 0.3963 0.3966
) MSE 1.7500 2.2410 3.0330 3.7904 2.1360 1.9338 2.8652 2.3465 2.3452 2.7893 2.4759 1.6318 1.5197
illness MAE 0.8706 0.9234 1.2053 1.2825 1.0075 0.9016 1.1173 1.0883 1.0892 1.1200 1.0974 0.8616 0.8279
MSE 0.2459 0.2588 0.3366 0.2638 0.2598 0.2548 0.2750 0.2670 0.2638 0.3128 0.3112 0.2598 0.2605
Weather MAE 0.2750 0.2857 0.3825 0.3229 0.2805 0.2780 0.2788 0.3174 0.3076 0.3609 0.3589 0.2816 0.2798
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Even with the increasing prevalence of LLM-based time series forecasting methods, our hybrid
loss framework still enables existing models to achieve state-of-the-art performance in most
cases. The results in Table [§] demonstrate that, across 8 datasets, methods using our hybrid loss
framework achieve state-of-the-art performance on 3 datasets, matching the number achieved by
LLM-based methods and tying for the overall lead. This highlights the significant improvements
provided by our hybrid loss framework for existing non-LLM methods and further suggests that
there is still room for improvement in these methods.

B.2 RESULTS OF EACH PREDICTION LENGTH
Here, we present the results for each prediction length in our main experiment.

Table 9: Multivariate time series forecasting results on deep learning methods with/without hybrid
loss framework (prediction length is 96).

Models Dlinear FEDformer Patchtst

Datasets Loss  Original Hybrid Loss Original Hybrid Loss  Original Hybrid Loss

MSE  0.3829 0.3779 0.3771 0.3770 0.3935 0.3924
ETThl MAE  0.3959 0.3960 0.4185 0.4184 0.4080 0.4061

MSE  0.3290 0.3279 0.3508 0.3481 0.2938 0.2927
ETTh2 MAE  0.3804 0.3795 0.3918 0.3902 0.3427 0.3415

MSE 0.3458 0.3457 0.3669 0.3628 0.3211 0.3183

ETTml MAE  0.3737 0.3737 04122 0.4097 0.3596 0.3572
MSE  0.1869 0.1869 0.1918 0.1908 0.1776 0.1758

ETTm?2 MAE  0.2811 0.2810 0.2812 0.2801 0.2599 0.2586
N MSE  0.1946 0.1944 0.1884 0.1950 0.1718 0.1664
Electricity  MAE  0.2774 0.2773 0.3036 0.3095 0.2573 0.2332
MSE  0.0782 0.0779 0.1447 0.16653 0.0806 0.0805

Exchange  MAE  0.1985 0.1977 0.2736 0.2942 0.1973 0.1965
_ MSE  2.2795 2.2794 3.2211 2.7505 1.7609 1.4334
illness MAE  1.0601 1.0622 1.2420 1.1599 0.9018 0.8020

MSE 0.1969 0.1968 0.2231 0.2232 0.1816 0.1769
Weather MAE 0.2551 0.2550 0.3051 0.3061 0.2219 0.2157

C MORE RESULTS OF ABLATION STUDY

Due to the high computational cost of the Fourier transform in FEDformer, the second ablation study
as described in the main text is conducted only on the ETTh1 and ETTh2 datasets for FEDformer.
Results are shown in Table[I3] The results further corroborate the conclusions presented in the main
paper, which confirm that uniform initial weights (set to 0.5) is an effective initialization strategy,
allowing the model to subsequently and efficiently adjust the individual loss weights.

D MORE SHOWCASES

This section presents additional cases using the original overall loss and our hybrid loss framework,
as illustrated in Figure[3] Figure[d] and Figure[5] Notably, we show the results of the forecasting part
with the settings of the input length 96 and prediction length 96 in the main text. Therefore, we show
the results of the forecasting part with the settings of the input length 96 and prediction length {192,
336, 720} here, respectively. These results further support our conclusions from the main text: the
original overall loss may lead to large errors in individual sub-series, further hindering overall
forecasting performance, and our hybrid loss framework effectively mitigates this issue.
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Table 10: Multivariate time series forecasting results on deep learning methods with/without hybrid
loss framework (prediction length is 192).

Models Dlinear FEDformer Patchtst
Datasets Loss  Original Hybrid Loss Original Hybrid Loss Original Hybrid Loss
MSE 0.4327 0.4327 0.4200 0.4198 0.4453 0.4464

ETThl MAE  0.4258 0.4258 0.4441 0.4439 0.4342 0.4338

MSE  0.4313 0.4333 0.4420 0.4407 0.3769 0.3744
ETTh2 MAE  0.4432 0.4446 0.4498 0.4482 0.3930 0.3913

MSE  0.3826 0.3825 0.4360 0.4345 0.3652 0.3625
ETTm]l MAE  0.3929 0.3928 0.4465 0.4453 0.3820 0.3828

MSE  0.2720 0.2712 0.2637 0.2636 0.2487 0.2408
ETTm2 MAE  0.3486 0.3477 0.3255 0.3252 0.3064 0.3023

N MSE  0.1939 0.1939 0.1964 0.2023 0.1789 0.1824
Electricity MAE ~ 0.2804 0.2804 0.3109 0.3156 0.2647 0.2685

MSE  0.1559 0.1562 0.2648 0.2706 0.1710 0.1704

Exchange MAE  0.2921 0.2926 0.3745 0.3812 0.2931 0.2920
, MSE 22350 22323 2.5884 23293 1.4001 1.5344
illness MAE  1.0580 1.0586 1.1204 1.0973 0.8616 0.8279
MSE  0.2392 0.2265 0.2847 0.2782 0.2271 0.2275

Weather  MAE  0.2971 0.2582 0.3547 0.3454 0.2601 0.2582

Table 11: Multivariate time series forecasting results on deep learning methods with/without hybrid
loss framework (prediction length is 336).

Models Dlinear FEDformer Patchtst

Datasets Loss  Original Hybrid Loss Original Hybrid Loss  Original Hybrid Loss

MSE  0.4913 0.4912 0.4581 0.4577 0.4838 0.4843
ETThl MAE 04673 0.4671 0.4664 0.4659 0.4515 0.4511

MSE  0.4586 0.4604 0.4985 0.4982 0.3806 0.3800
ETTh2 MAE  0.4618 0.4633 0.4905 0.4902 0.4089 0.4091

MSE  0.4165 0.4165 0.4666 0.4659 0.3933 0.3910
ETTml MAE 04175 0.4175 0.4699 0.4702 0.4039 0.4052

MSE 03434 0.3433 0.3306 0.3267 0.3033 0.3027
ETTm?2 MAE  0.3945 0.3945 0.3674 0.3637 0.3411 0.3423

o MSE 0.2069 0.2069 0.2076 0.2289 0.1946 0.1975
Electricity ~ MAE 0.2963 0.2963 0.3231 0.3420 0.2811 0.2893

MSE 0.3269 0.3071 0.4437 0.4740 0.3188 0.3202

Exchange  MAE 0.4192 0.4194 0.4923 0.5049 0.4070 0.4078
) MSE 2.2983 2.2925 2.5682 2.3153 1.6891 1.5918
illness MAE 1.0788 1.0773 1.0591 1.0161 0.8431 0.8649

MSE 0.2835 0.2834 0.3277 0.3112 0.2792 0.2817
Weather MAE 0.3324 0.3323 0.3651 0.3589 0.2983 0.2981
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Table 12: Multivariate time series forecasting results on deep learning methods with/without hybrid
loss framework (prediction length is 720).

Models Dlinear FEDformer Patchtst
Loss  Original Hybrid Loss Original Hybrid Loss Original Hybrid Loss

MSE  0.5284 0.5296 0.5022 0.5053 0.4798 0.4778
ETThl MAE  0.5185 0.5193 0.5032 0.5050 0.4707 0.4697

MSE  0.7736 0.7719 0.4804 0.4798 0.4118 0.4102
ETTh2 MAE  0.6313 0.6306 0.4873 0.4870 0.4334 0.4325

MSE  0.4794 0.4792 0.5068 0.5065 0.4556 0.4535
ETTml MAE 04567 0.4566 0.4887 0.4887 0.4359 0.4401

Datasets

MSE  0.4385 0.4383 0.4263 0.4252 0.3986 0.3968

ETTm2 MAE  0.4439 0.4437 0.4229 0.4221 0.3969 0.3954
N MSE  0.2425 0.2425 0.2639 0.2634 0.2349 0.2357
Electricity MAE  0.3283 0.3283 0.3669 0.3664 0.3146 0.3274
MSE  0.7816 0.7815 1.1535 1.1708 0.8363 0.8411

Exchange  MAE  0.6692 0.6690 0.8227 0.8304 0.6879 0.6898
, MSE  2.5735 2.5765 2.7804 2.5085 1.6775 1.5200
illness MAE  1.1578 1.1591 1.1323 1.1163 0.8754 0.8052

MSE 0.3484 0.3483 0.3721 0.3848 0.3514 0.3557
Weather MAE 0.3849 0.3848 0.4187 0.3589 0.3461 0.3473

Table 13: The ablation study of multivariate time series forecasting results on our hybrid loss frame-
work with different initial weights. As w; + ws = 1 and o + 8 = 1, we only specify the initial
values of w; and « in the table.

ETThl ETTh2 ETTml ETTm?2
Models wy o MSE MAE MSE MAE MSE MAE MSE MAE

0.1 0459 0.4524 04939 04779 04091 04142 0.3064 0.3638
0.1 09 04610 04541 0.4978 0.4791 0.4047 0.4097 03091 0.3658

05 05 04579 04511 04974 04785 0.4060 0.4102 0.3100 0.3667

Dlinear
0.1 04589 0.4519 0.4982 04793 0.4050 0.4103 0.3102 0.3670
09 09 04589 04519 04983 0.4793 04050 0.4103 03102 0.3670
0.1 0.4554 0.4451 0.3651 0.3940 0.3836 0.3975 0.2802 0.3200
0.1 09 04518 04412 03650 0.3937 0.3828 0.3973 0.2800 0.3254
Patchtst 0.5 0.5 04502 04402 0.3639 0.3929 0.3813 0.3943 0.2790 0.3247

0.1 04493 04393 0.3642 03935 0.3821 0.3960 0.2792 0.3247
0.9 09 04492 04391 03642 03934 03821 03935 02792 0.3248

0.1 04428 0.4601 04432 04549  — — — —
0.1 09 04421 04596 04441 04556  — — — —

FEDformer 05 0.5 04380 04573 04417 0.4539 — — — _

0.1 04394 04581 04430 04548  — — — —
09 09 04394 04581 04430 04549  — — — —
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(d) FEDformer with our hybrid
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Figure 3: The case study of time series forecasting. The results show the prediction-length-192 part
(input length is 96) for different methods on different datasets. Each sub figure presents the single-
variate (last variate) overall forecasting part and the forecasting part of the individual sub-series.
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Figure 4: The case study of time series forecasting. The results show the prediction-length-336 part
(input length is 96) for different methods on different datasets. Each sub figure presents the single-
variate (last variate) overall forecasting part and the forecasting part of the individual sub-series.
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Figure 5: The case study of time series forecasting. The results show the prediction-length-720 part

(input length is 96) for different methods on different datasets. Each sub figure presents the single-
variate (last variate) overall forecasting part and the forecasting part of the individual sub-series.
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