
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TWO SPARSE MATRICES ARE BETTER THAN ONE:
SPARSIFYING NEURAL NETWORKS WITH DOUBLE
SPARSE FACTORIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks are often challenging to work with due to their large size and
complexity. To address this, various methods aim to reduce model size by sparsi-
fying or decomposing weight matrices, such as magnitude pruning and low-rank
or block-diagonal factorization. In this work, we present Double Sparse Factor-
ization (DSF), where we factorize each weight matrix into two sparse matrices.
Although solving this problem exactly is computationally infeasible, we propose
an efficient heuristic based on alternating minimization via ADMM that achieves
state-of-the-art results, enabling unprecedented sparsification of neural networks.
For instance, in a one-shot pruning setting, our method can reduce the size of
the LLaMA2-13B model by 50% while maintaining better performance than the
dense LLaMA2-7B model. We also compare favorably with Optimal Brain Com-
pression, the state-of-the-art layer-wise pruning approach for convolutional neural
networks. Furthermore, accuracy improvements of our method persist even after
further model fine-tuning.

1 INTRODUCTION

Sparse neural networks have gained attention due to their potential to reduce computational costs
and memory usage, making them more efficient for deployment on resource-constrained devices
(LeCun et al., 1989; Han et al., 2015; Hoefler et al., 2021). By reducing the number of non-zero
parameters, sparse networks can achieve accuracy similar to dense networks while requiring fewer
operations. Reducing network size also decreases the number of weights that must be loaded into the
processing unit from memory, which is crucial since memory bandwidth often becomes a bottleneck
in neural network deployments, particularly during single-sample LLM inference (Xia et al., 2023).

In this work, we propose an improvement over a typical neural network sparsification. Instead
of replacing each dense weight matrix with a sparse matrix, we replace each dense matrix with
a product of two sparse matrices. We devise a heuristic algorithm for calculating sparse matrix
factorization and achieve significant improvements over a wide range of models, including large
language models and convolutional neural networks.

Summary of contributions. We propose a practical algorithm for factorizing a matrix into two
sparse matrices called Double sparse factorization (DSF). We extend it for the layer-wise pruning
scenario where one wants to preserve layer behavior for a given set of calibration inputs. Our sparse
factorization algorithm is a heuristic based on alternating minimization where each subproblem is
solved using the ADMM algorithm for solving a sparse regression problem (Boža, 2024).

Our algorithm obtains superior results in the layer-wise pruning scenarios, where we fix the number
of non-zero entries in each layer. We compare favorably to Optimal Brain Compression (Frantar &
Alistarh, 2022) for pruning convolutional image models. We also produce state-of-the-art layer-wise
pruning results for large language models, where the larger pruned model is clearly better than the
dense smaller model (as far as we know, this is the first time for the uniform layer-wise pruning).

One could argue that our method requires storing one more pruning mask. We thus evaluate a
scenario where one of the sparse factors mask (weights can be tuned, but nonzeros location is fixed)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

4 6 8 10 12
Number of non-zero parameters (in billions)

5

6

7

8

Pe
rp

le
xi

ty
 o

n
W

ik
ite

xt
-2

LLaMA-7B DSF
LLaMA-13B DSF
LLaMA-7B ADMM
LLaMA-13B ADMM

Figure 1: Comparison of LLaMA2 models pruned either using our Double Sparse Factorization
(DSF) or using previously state-of-the-art ADMM pruning. We prune models using 0, 50, and 60%
sparsities.

is randomly generated and fixed over the whole neural network. Our approach is better even in this
scenario, which has almost the exact storage requirements as regular pruning.

Finally, we also show that our factorized pruning brings benefits even when sparsified models are
further fine-tuned after pruning and achieve competitive results for pruning convolutional networks
on CIFAR and ImageNet datasets.

2 RELATED WORK

Neural network weight pruning and layer-wise one-shot pruning. Post-training network pruning
compresses the already training network by removing redundant weights (LeCun et al., 1989; Han
et al., 2015; Blalock et al., 2020; Liu et al., 2018; Hoefler et al., 2021; Srinivas et al., 2022).

Some approaches focus on splitting the network into individual layer-wise problems, where one
wants to preserve layer behavior over a small set of calibration inputs. Optimal Brain Compression
(OBC) (Frantar & Alistarh, 2022) removes one weight at a time and optimally updates the remain-
ing weights in the layer. However, this approach is not feasible for large language models due to
high computational cost. SparseGPT (Frantar & Alistarh, 2023) uses various approximations and
turns OBC into a more practical algorithm at the expense of higher approximation error. Wanda
(Sun et al., 2023) proposes to skip the weight update and prune weights based on the product of
absolute magnitude and input norm. Finally, Boža (2024) obtains state-of-the-art layer-wise pruning
results using an ADMM-based algorithm, which uses gradual pruning combined with Wanda mask
selection and ADMM (Boyd et al., 2011) weight update.

Compression based on matrix factorization. Instead of turning weight matrices into sparse ma-
trices, one can replace them with a product of multiple smaller matrices. A typical example is a
low-rank factorization (Li & Shi, 2018; Jaderberg et al., 2014) where one turns an n × m matrix
into a product of n× k and k ×m matrices, where k << min(n,m). More complicated examples
include butterfly matrices (Dao et al., 2019) and Monarch matrices (Dao et al., 2022), where indi-
vidual factors have some specific structure. Monarch matrices are the product of block-diagonal,
permutation, and another block-diagonal matrix. The projection of a matrix into a set of monarch
matrices is done by splitting the original matrix into blocks and then running a low-rank decompo-
sition of each block. Another option is to decompose the matrix as a sum of low-rank and sparse
matrix (Nikdan et al., 2024; Yu et al., 2017; Ke & Kanade, 2005; Wright et al., 2009).

Separable convolutions. Convolutional layer can be naturally factorized into depthwise (apply-
ing filter per input channels) and pointwise convolution (mixing multiple channels). The idea was

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

found initially in MobileNets (Howard, 2017; Sandler et al., 2018), but they placed nonlinearity be-
tween the depthwise and pointwise convolutions. However, some works successfully use separable
convolutions without nonlinearity between them (Perešı́ni et al., 2021; Kriman et al., 2020).

Sparse matrix factorization. Factorization of the matrix into (sometimes more than two) sparse
factors has already been studied. It was shown that this problem is NP-hard even when the sparsity
pattern for factors is given (Le et al., 2021). Le Magoarou & Gribonval (2016) provides a heuristic
based on the proximal gradient step called palm4msa, which is then used by Giffon et al. (2021) for
compression of neural networks, but with very limited practical success. In the experiments section,
we compare the quality of our factorization algorithm with palm4msa. There were also works using
sparse matrix factorization for parameter efficient fine-tuning (Chen et al., 2024).

3 PRELIMINARIES

In this work, we work with the post-training neural network sparsification scenario. We are given
an already-trained network, and we will replace each weight matrix with a matrix that can be repre-
sented more efficiently, such as a sparse (Hoefler et al., 2021) or Monarch matrix (Dao et al., 2022).
Usually, the replacement is done by solving the projection problem, where we are looking for a ma-
trix closest (typically using the Frobenius norm) to the original one. For example, when the target
matrix is sparse, solving the projection problem is just the magnitude pruning (Han et al., 2015).

In many cases, the sparsified network is often fine-tuned further. This can be prohibitive in some
applications, especially involving large language models. We often resort to one-shot pruning in
such cases. We capture relevant statistics for each layer and prune them during one forward pass.
This is usually done by solving the layer-wise pruning problem (Frantar & Alistarh, 2022; 2023;
Boža, 2024), where given calibration input X , original matrix W , one looks for sparse matrix Wp,
such that the layer-wise error ||XW −XWp||22 is minimized.

3.1 LAYER-WISE PRUNING VIA ADMM

Boža (2024) solves the layer-wise pruning problem by application of the alternating direction
method of multipliers (Boyd et al., 2011) (ADMM). ADMM solves convex problems of the form:
find minimum of f(x) + g(y), subject to Ax+By = C, using iterations:

xk+1 = argmin
x

f(x) + (ρ/2)||Ax+Bzk − c+ uk||22

zk+1 = argmin
z

g(z) + (ρ/2)||Axk+1 +Bz − c+ uk||22

uk+1 = uk +Axk+1 +Bzk+1 − c

Note that when the pruning mask is fixed, the layer-wise pruning problem is a convex problem (we
have one linear regression for each output with a different set of inputs).

This can solved via ADMM as follows: Given X , W , and pruning mask M , we are looking for Wp

such that (1 −M) ⊙Wp = 0 and layer-wise error is minimized. In ADMM formulation, f(W)
represents the layer-wise error, and g(Z) would be an indicator function, which has a value of 0
when Z has the correct mask and∞ otherwise. Then we can apply following ADMM iterations (ρ
is penalty factor usually set to one, U represents scaled dual variables):

Z0 = M ⊙W

U0 = 0

Ŵ (k+1) = (XTX + ρI)−1(XTXW + ρ(Z(k) − U (k))

Z(k+1) = M ⊙ (Ŵ (k+1) + U (k))

U (k+1) = Uk + Ŵ (k+1) − Z(k+1)

(1)

We will take final Wp = Z(m) as the output.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Boža (2024) then applies the following improvements: Preconditioning is applied first to improve
convergence. All input feature norms are normalized to one (and the matrix W is multiplied by
original input norms), which means that the diagonal of XTX contains only ones.

A pruning mask is found heuristically during the optimization process. During the first iterations,
gradual magnitude pruning (Boža (2024) found that dropping smallest values from W k+1 + Uk is
better than dropping smallest values from current valid solution Zk) with cubic schedule (Zhu &
Gupta, 2018) is applied (in the original paper, cubic prune is applied during the first 15 iterations
out of 20).

4 DOUBLE SPARSE FACTORIZATION

In typical neural network pruning, we replace weight matrix W with matrix Wp which has at most
z nonzeros, i.e. ||Wp||0 ≤ z. Here, we propose to replace weight matrix W with shape n × m
with a product of two sparse matrices AB such that they have at most z nonzeros in total, i.e.
||A||0 + ||B||0 ≤ z. We call this a double sparse factorization. Usually, we assume that A is a
matrix with shape n × n, B is a matrix with shape n × m, and n ≤ m; if not, we transpose the
matrix W .

During neural network inference, we multiply some input X of shape b × n with matrix W . After
our double sparse factorization which replaces W with product AB, we will first multiply X by A
and then by B, i.e. doing (XA)B. Note, that the total number of multiplications is bz, the same as
in typical neural network pruning.

4.1 EXPRESSIVENESS AND EFFICIENCY OF DOUBLE SPARSE FACTORIZATION

Figure 2: Graphical illustration of double sparse factorization. A dense layer is turned into two
sparse layers. With enough weights in sparse matrices, most connections will be covered by a path
through sparse matrices.

Many matrix factorizations mentioned previously in the literature can be (often trivially) rewritten
to double sparse representation with the same number of non-zeros. For example, low-rank factor-
ization commonly done via SVD (Li & Shi, 2018; Stewart, 1993) is already in the double sparse
form. Monarch factorization (Dao et al., 2022), which is a product of block-diagonal, permutation,
and block-diagonal matrices, can represented in double sparse form by fusing a permutation matrix
with one of the block-diagonal matrices. Also, DSF can efficiently represent a matrix that consists
of multiple disjoint low-rank submatrices.

The tricky case is an ordinary sparse matrix Wp. It can be represented in double sparse form as a
product of identity and the original matrix: IWp. However, this comes with the cost of additional
non-zero entries for the identity matrix. Nevertheless, in the experiments, we will show that the
double sparse representation represents the original dense matrix much better than an ordinary sparse
matrix with the same number of non-zeros.

4.2 HEURISTIC ALGORITHM FOR DOUBLE SPARSE FACTORIZATION

First, we look into the projection problem. Given matrix W , we want to replace it with some
compressed matrix Wc, where their difference ||Wc −W ||F is minimized.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In our case, Wc is a product of two sparse matrices A,B. Thus, we are given matrix W and are
looking for matrices A,B such that:

minimize ||AB −W ||F
subject to ||A||0 + ||B||0 ≤ z

This problem is NP-hard even when the sparsity pattern for matrices A and B is given (Le et al.,
2021) thus we solve our problem heuristically.

First, we decide how many nonzeros we allocate for each matrix, so our condition changes to
||A||0 ≤ za, ||B||0 ≤ zb. These allocations were determined manually in our experiments. In
general, we found that it is beneficial to give one of the matrices approximately 1/3 of the nonzeros
and 2/3 to the other one. Then, we continue with an alternating minimization algorithm. We fix the
value of A and find the best possible B, then fix the value of B and try to find the best possible value
of A. We repeat this process multiple times.

One inner step of our algorithm can formalized as: Given W , and B, find A such that:

minimize ||AB −W ||F
subject to ||A||0 ≤ za

This problem is just an L0 constrained linear regression. We solve it using an iterative ADMM solver
Boža (2024) mentioned in preliminaries, which heuristically finds matrix mask and corresponding
values. We also apply the following heuristic1 improvements.

Algorithm 1 Heuristical sparse matrix factorization for solving projection problem. Given matrix
W , number of outer iterations n, number of inner iterations m and number of nonzero elements
za, zb we find A,B such that ||A||0 ≤ za, ||B||0 ≤ zb and AB is as close as possible to W .

Initialize A(0), B(0)

U
(0)
a = 0 ·A,U

(0)
b = 0 ·B

for k = 1..n do
ρ0 = min(1.0, k/(n− 3))3

B(k), U
(k)
b ← solve argmin ||AB −W ||F , st. ||B||0 ≤ zb via m iterations of ADMM

with starting point Bk−1, U
(k−1)
b and starting ρ0

A(k), U
(k)
a ← solve argmin ||AB −W ||F , st. ||A||0 ≤ za via m iterations of ADMM

with starting point Ak−1, U
(k−1)
a and starting ρ0

end for

Warm starting the inner iterations. To improve the convergence of ADMM iteration, we can
warm-start it using the result from the previous step. To do that, we use not only the resulting sparse
matrix but also all the dual variables U from the ADMM algorithm. This allows us to decrease the
number of inner iterations and speed up our algorithm.

Annealing. We found that our algorithm is often quickly stuck in some local optima. To prevent that,
we propose a simple annealing scheme. The first step of ADMM for finding B is Ŵ (1)

b = (ATA+

ρI)−1(ATW + ρ(B(0) − U
(0)
b)). Instead of using ρ in the first iteration, we use smaller ρ0 (we use

default ρ = 1 in the remaining steps of ADMM). This gives lower weight to the previous solution
and allows us to escape from local minima at the first steps of the optimization. We gradually
increase ρ0 from 0 to 1 throughout the optimization; we found that a simple cubic schedule works
best. We also found that using more outer iterations (n) and fewer inner iterations (m) leads to better
results.

Initialization. To run our algorithm, we must assign an appropriate starting values to matrices A
and B. We tested several choices (ablations are provided in the Appendix A.2), including random
initialization and singular value decomposition, but we settled on initializing A as an identity matrix
and B with magnitude pruning of the original input matrix.

1some people call this a dark magic

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.3 APPLICATION OF SPARSE FACTORIZATION TO LAYER-WISE PRUNING

Next, we look into layer-wise pruning problem. In our case of the sparse factorization, we are
given calibration input X , original weight matrix W and are looking for sparse A,B such that the
reconstruction error ||XW −XAB||22 is minimized.

We solve this problem by first running the weight projection algorithm from the previous section.
However, for the pruning of LLMs, we found that it is better to project the weight matrix multiplied
by input feature norms. This was previously done in Wanda pruning algorithm (Sun et al., 2023). We
then scale one of the factors back. More formally we first find A′ and B such that error || ||X||2 ⊙
W −A′B||22 is minimized and then compute A = 1

||X||2 ⊙A′. We do not do this rescaling for vision
models.

We then proceed with the finalization step. We fix all sparsity masks and apply the ADMM algo-
rithm for finding B so that ||XW −XAB||22 is minimized. This is a straightforward modification
of the ADMM algorithm.

However, finding A is tricky and sometimes numerically unstable. In the inner iteration of
ADMM, we need to find A such that (Z,U are other variables from ADMM optimization):
||XW −XAB||22+ρ/2||A−Z+U ||22 is minimized. After taking gradients, we solve the equation:
XTXABBT + ρA = XTXWBT + ρ(Z − U). This is a special type of Sylvester equation Roth
(1952); Jiang & Wei (2003), which can be solved using the eigendecomposition of XTX and BBT .
We provide a solution to this problem in the Appendix A.1. We found that optimizing A is only
helpful for compressing vision models; we do not use it when compressing large language models.

4.4 COMPUTATIONAL CONSIDERATIONS FOR DSF

The obvious drawback of DSF is having two sparse matrices compared to one. Here, we argue that
doing computation with two sparse matrices needs resources comparable to doing computation with
one sparse matrix with the same total number of nonzeros.

Storage requirements. Storing actual non-zero values has the same memory footprint for one
sparse matrix and for DSF. The difference lies in storing nonzero positions (sparsity masks).

If we store sparsity masks as bit vectors, DSF would need to store two masks rather than one. This
leads to a 2x increase in storage costs for square matrices but a smaller increase for rectangular
matrices (for example, in Llama-2-7B, we have matrices with size 4096x11008, which would lead
to a 37% increase in storage cost for masks). Remember that we also store nonzero values (usually
16-bit floats), and they take the majority of the storage costs. Overall, when measured on Llama-2-
7B with 50% density, regular pruning would have a model size of 7.3GiB and DSF 7.7GiB. In the
Appendix A.5, we compare the quality of the pruned LLM with the actual storage size.

The storage requirements will be identical if we store sparsity as positions (e.g., using a compressed
sparse row format). However, this format is preferable only for higher sparsities since storing one
position index usually takes 16 (or more) bits. There are also various other storage formats (e.g.,
delta coding), but they are unexplored in the context of neural network sparsity.

Inference time. One could think that doing two sparse multiplications would be much slower than
doing just one because of the sparse matrix multiplication overhead. However, when looking at
actual benchmarks, we find that in lower sparsity ranges (50-95%), doing two sparse multiplications
is just slightly slower than doing one sparse multiplication with the same number of nonzeros. For
example, Xia et al. (2023) reports in their benchmark, that multiplication with 60% sparsity takes
0.36s and multiplication with 80% sparsity takes 0.21s, which would translate into 0.42s for DSF.
Similar trends can be found for GPU kernels done by Gale et al. (2020). We also tested CPU
inference and found that DSF has similar speed as ordinary sparse multiplication, see Appendix
A.3.

We would like to point out that in the case of single sample LLM inference, the bottleneck is loading
weights from memory to computational unit as reported in (Xia et al., 2023), and the current token
activations can usually reside in the fast cache. Also, one goal of the pruning is to fit the model into
available GPU memory, and in some cases, inference time can be sacrificed.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Perplexity on Wikitext-2 for layer-wise pruning of large language models. Density refers
to the total % of nonzero weights compared to the dense model.

Density Method 1-7B 2-7B 2-13B 2-70B
100% Dense 5.68 5.12 4.57 3.12

Wanda 7.26 6.42 5.56 3.98
ADMM 7.06 6.33 5.52 3.95

50% DSF 6.12 5.58 4.87 3.44
DSF no fin. 6.17 5.61 4.89 3.45
DSF one mask fix 6.57 6.05 5.31 3.67
Wanda 10.66 9.71 7.75 4.98
ADMM 9.22 8.70 7.09 4.81

40% DSF 6.66 6.12 5.22 3.79
DSF no fin. 6.76 6.29 5.32 3.81
DSF one mask fix 7.82 7.47 6.21 4.27

30%

Wanda 80.26 74.41 44.57 10.35
ADMM 18.66 17.51 13.82 7.80
DSF 8.33 8.01 6.43 4.56
DSF no fin. 9.13 10.82 7.5 4.59
DSF one mask fix 15.07 16.49 10.87 5.99

Fine-tuning considerations. Another concern is that during possible fine-tuning of the sparsified
model, we need to store additional intermediate activations (in the middle of the double sparse
factorization). This is true, but we found that with gradient checkpointing turned on and storing
weights in compressed format (not as dense matrices), we can fine-tune on almost similarly sized
sequences with DSF as when using regular pruning. We provide more details in the Appendix A.4

5 EXPERIMENTS

We evaluate our proposed Double Sparse Factorization in multiple settings. First, we test it on layer-
wise pruning of large language models. We compare our algorithms to ADMM pruning (Boža,
2024), which produces high-quality solutions in a reasonable time, even for large-scale models.
Then we test it also on layer-wise pruning of vision models and compare it with Optimal Brain
Compression (Frantar & Alistarh, 2022), state of the art layer-wise pruning algorithm.

We then proceed with the evaluation of the quality of our algorithm on the matrix projection problem.
We compare with various matrix compression algorithms, including palm4msa (Le Magoarou &
Gribonval, 2016), Monarch decomposition (Dao et al., 2022), and SVD. Finally, we also test whether
models compressed with DSF can be successfully fine-tuned.

5.1 LAYER-WISE PRUNING OF LARGE LANGUAGE MODELS

Setup. We follow same setup as in Wanda (Sun et al., 2023) and ADMM pruning (Boža, 2024).
We use 128 calibration samples from the C4 training dataset (Raffel et al., 2020) and prune layers
sequentially in order. We prune LLaMA (Touvron et al., 2023a) and LLaMA-2 (Touvron et al.,
2023b) models. Similarly to previous works, we measure perplexity on held-out Wikitext (Merity
et al., 2016). When factorizing square matrices (mainly in self-attention), we set the sparsity of
one sparse factor to 16%. When factorizing rectangular matrices, the smaller factor will have 25%
sparsity. The number of nonzeros in the other factor is just the target number of nonzeros minus the
number of nonzeros in the first factor.

Compared methods. We compare our Double Sparse Factorization in three settings. The first one
is the default one, solving the layer-wise pruning problem. Then, we disable the finalization step;
thus, we only approximate the original dense matrix scaled by the input feature norms and solve the
matrix projection problem. Finally, we fix one of the sparse masks to a random mask shared across
all layers (but we run the finalization step). We compare our method with two layer-wise pruning
algorithms: Wanda (Sun et al., 2023), which prunes weights with the smallest product of value and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparision of our Double Sparse pruning vs. Optimal Brain Compression on Resnet50
using Imagenet dataset.

Number of nonzeros FLOP reduction Method Test accuracy [%]
25.5M - Dense 76.13

16.8M 2x OBC 75.65
DSF 75.78

12.3M 3x OBC 75.01
DSF 75.56

10.2M 4x OBC 74.05
DSF 74.95

activation norm, and ADMM pruning (Boža, 2024), which also updates weights during the pruning
using alternating direction method of multipliers.

Results. Results are summarized in Tab. 1 and Fig. 1. Our Double Sparse Factorization is superior
to previous layer-wise pruning methods. To our knowledge, this is the first time when a uniformly
layer-wise pruned network has better perplexity than its dense counterpart (compare 50% pruned
LLaMA2-13B with perplexity 4.87 to dense LLaMA2-7B with perplexity 5.12). Even when we
fix one mask (and thus make the total size of the network the same as in regular pruning), our
factorization produces favorable results. We also notice that in the lower sparsities, the finalization
step is not that important but becomes noticeably important at higher sparsities. We also report
additional results with respect to total model size in Appendix A.5.

Pruning speed. We can prune the 7B models in apx. 30 minutes on one Nvidia 4090 GPU (this
includes both forward pass and sparse factorization times). Note that reported total running times
for ADMM pruning and SparseGPT are around 10-15 minutes (Boža, 2024).

5.2 COMPARISON WITH OPTIMAL BRAIN COMPRESSION

Optimal Brain Compression (Frantar & Alistarh, 2022) is a post-training layer-wise pruning algo-
rithm, which prunes each network layer by removing one connection at a time and optimally updat-
ing the remaining weights. Compared to the ADMM update algorithm mentioned in the previous
section, it is much more accurate, but at the expense of much longer running time, unsuitable for
large language models. However, OBC is still usable for moderately sized vision neural networks
like ResNet50 (He et al., 2016).

In this experiment, we evaluate the effectiveness of our Double Sparse Factorization of ResNet50 on
Imagenet (Russakovsky et al., 2015) dataset. We first run the OBC pipeline to determine layer-wise
pruning ratios. Using the same calibration dataset as OBC, we then factorize every convolutional
layer into two sparse matrices with the same number of nonzero weights as the OBC solution. We
treat convolutions as linear layers, where input is processed via the im2col procedure. The sparsity
of the smaller factor is set to max(0.16, s/2) where s is sparsity from OBC. The bigger factor will
get the remaining nonzeros (so the total nonzeros of sparse factors match the number of nonzeros
used by OBC). Results are summarized in Tab. 2. We see that our solution is superior to the solution
found by OBC for every sparsity setting, and the gap grows wider with larger sparsities.

5.3 COMPARISON WITH OTHER MATRIX APPROXIMATION METHODS

Now, we evaluate multiple methods for the weight projection problem. We use weight matrices
from Llama-7B and Resnet-50. We truncate them to square matrices with sizes 64, 256, 1024, or
4096 (to accommodate Monarch factorization without problems). We evaluate our Double Sparse
Factorization, palm4msa from Faust library (Le Magoarou & Gribonval, 2016), which also factories
matrix into two sparse matrices, magnitude pruning, which keeps values with the largest magnitude,
singular value decomposition, which factorizes matrix into two low-rank matrices, and Monarch
decomposition (Dao et al., 2022), which factorizes matrix into block-diagonal, permutation and
block-diagonal matrix. In all cases, we aim for 4x compression, i.e., each method can produce
matrices that contain at most 25% of non-zeros in total compared to the original matrix.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

102 103

Matrix size

0

1

2

3

4

5

6

7

8

Re
co

ns
tru

ct
io

n
er

ro
r d

iv
id

ed
 b

y
m

ag
ni

tu
de

 p
ru

ni
ng

 e
rro

r

palm4msa
DSF
SVD
Monarch

Figure 3: Reconstruction error of various compression methods on various matrix sizes for weight
projection problem. We compress each matrix to 25% of the original size. We normalize error by
error of magnitude pruning. The mean is denoted by a large dot and individual results with smaller
dots.

Table 3: Test accuracy on CIFAR-10 using Resnet-20 with varying width. Density refers to the total
% of nonzero weights compared to the dense model. FT refers to fine-tuning.

Density Method Resnet-20-16 Resnet-20-32
100% Dense 92.2± 0.2 94.0± 0.1

20%

Magnitude w/o FT 70.6± 0.5 86.2± 0.3
Double sparse w/o FT 80.0± 0.9 91.6± 0.1

Magnitude w/ FT 91.2± 0.2 93.5± 0.1
Double sparse w/ FT 91.5± 0.1 93.6± 0.1

10%

Magnitude w/o FT 29.0± 2.9 51.1± 5.2
Double sparse w/o FT 48.9± 2.9 84.1± 0.5

Magnitude w/ FT 89.3± 0.3 92.6± 0.1
Double sparse w/ FT 89.8± 0.2 93.0± 0.2

Results are summarized in Fig. 3. We see that our DSF consistently outperforms other methods.
Interestingly, palm4mse is not better for small matrix sizes than magnitude pruning. Also, Monarch
decomposition seems to be worse than ordinary SVD.

5.4 FINE-TUNING MODELS PRUNED WITH DOUBLE SPARSE FACTORIZATION

Finally, we test whether the Double Sparse Factorization accuracy advantage remains after fine-
tuning a whole model. In this experiment, we only focus on the original matrix projection and do
not perform any input-dependent finalization. We test the pruning of Resnet-20 (He et al., 2016)
with varying starting widths (16 and 32) on the CIFAR-10 (Krizhevsky et al., 2009) dataset. We also
test pruning Resnet-50 on Imagenet dataset (Russakovsky et al., 2015). In all experiments, we use
the same sparsity in all layers. For CIFAR-10 experiments, we first train the dense network using the
procedure from Liu et al. (2022). We train for 160 epochs using SGD with a starting learning rate
of 0.1 and 0.9 momentum. We decay the learning rate by 10 on epochs 80 and 120. We then prune
each layer (except the first and last one) to 10 or 20% of nonzeros using either magnitude pruning

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Test accuracy on Imagenet using Resnet-50. Density refers to the total % of nonzero
weights compared to the dense model. FT refers to fine-tuning.

Density Method Test accuracy [%]
100% Dense 76.13

20%

Magnitude w/o FT 54.43
Double sparse w/o FT 71.85

Magnitude w/ FT 75.43
Cyclical pruning Srinivas et al. (2022) 75.3

Double sparse w/ FT 75.78

10%

Magnitude w/o FT 9.87
Double sparse w/o FT 55.76

Magnitude w/ FT 73.32
Cyclical pruning Srinivas et al. (2022) 73.3

Double sparse w/ FT 74.50

or our double sparse factorization method (on the weight projection problem). Then, we fine-tune
the model for 50 epochs, starting with a learning rate of 0.1 and linearly decay the learning rate to
zero (this was inspired by (Zimmer et al., 2021)). We run each setting 5 times using different seed.
Results are shown in Tab 3.

For the Imagenet experiment, we start with the pre-trained Resnet-50 from Torchvision (maintainers
& contributors, 2016). We then uniformly sparsify every layer except the first and last one and fine-
tune for 20 epochs using SGD, with a linear learning rate decay from 0.01 to zero and momentum
of 0.9. We also compare with results reported by Srinivas et al. (2022), which prunes and fine-tunes
the neural network in multiple cycles with resets (Cyclical pruning). Results are shown in Tab 4.

In all cases, starting test accuracy is higher for double sparse pruning and stays better when fine-
tuned. This is especially evident at higher sparsities.

6 CONCLUSIONS AND FUTURE WORK

In this work, we introduced Double Sparse Factorization (DSF), an approach to decompose weight
matrices into two sparse matrices, enabling more efficient neural networks. By applying DSF, we
significantly improved layer-wise pruning for both large language models (LLMs) and convolutional
neural networks (CNNs). The method effectively reduced the number of parameters without sacri-
ficing model accuracy, achieving state-of-the-art results compared to traditional pruning techniques.
Furthermore, our approach kept its performance gains even after further fine-tuning. Our work is
also one of the first to show that a sparse neural network can achieve more gains by employing a
more complicated technique than just removing weights. One drawback of our solution is that in-
dividual layer-wise sparsities need to be determined manually beforehand (compared to magnitude
pruning, which can work globally and determine sparsity in each layer automatically). Also, it is
unclear how to integrate DSF with gradual pruning with fine-tuning the whole network between
pruning steps. We leave these enhancements for future work.

REFERENCES

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends® in Machine learning, 3(1):1–122, 2011.

Vladimı́r Boža. Fast and effective weight update for pruned large language models. Transactions on
Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/
forum?id=1hcpXd9Jir.

10

https://openreview.net/forum?id=1hcpXd9Jir
https://openreview.net/forum?id=1hcpXd9Jir

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Chen, Ahmed Hassan Awadallah, and Zhangyang
Wang. One is not enough: Parameter-efficient fine-tuning with multiplicative sparse factorization.
IEEE Journal of Selected Topics in Signal Processing, 2024.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms for
linear transforms using butterfly factorizations. In International conference on machine learning,
pp. 1517–1527. PMLR, 2019.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training. In International Conference on Machine Learning, pp. 4690–
4721. PMLR, 2022.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning.
In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14. IEEE, 2020.

Luc Giffon, Stéphane Ayache, Hachem Kadri, Thierry Artières, and Ronan Sicre. Psm-nets: Com-
pressing neural networks with product of sparse matrices. In 2021 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Andrew G Howard. Mobilenets: Efficient convolutional neural networks for mobile vision applica-
tions. arXiv preprint arXiv:1704.04861, 2017.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Tongsong Jiang and Musheng Wei. On solutions of the matrix equations x- axb= c and x- axb= c.
Linear Algebra and its Applications, 367:225–233, 2003.

Qifa Ke and Takeo Kanade. Robust l/sub 1/norm factorization in the presence of outliers and miss-
ing data by alternative convex programming. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), volume 1, pp. 739–746. IEEE, 2005.

Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Oleksii Kuchaiev, Vitaly
Lavrukhin, Ryan Leary, Jason Li, and Yang Zhang. Quartznet: Deep automatic speech recog-
nition with 1d time-channel separable convolutions. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6124–6128. IEEE, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Quoc-Tung Le, Elisa Riccietti, and Rémi Gribonval. Spurious valleys, spurious minima and np-
hardness of sparse matrix factorization with fixed support. arXiv preprint arXiv:2112.00386,
2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Luc Le Magoarou and Rémi Gribonval. Flexible multilayer sparse approximations of matrices and
applications. IEEE Journal of Selected Topics in Signal Processing, 10(4):688–700, 2016.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Chong Li and CJ Shi. Constrained optimization based low-rank approximation of deep neural net-
works. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 732–747,
2018.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang
Wang, and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return
of the most naive baseline for sparse training. arXiv preprint arXiv:2202.02643, 2022.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library. https:
//github.com/pytorch/vision, 2016.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Mahdi Nikdan, Soroush Tabesh, and Dan Alistarh. Rosa: Accurate parameter-efficient fine-tuning
via robust adaptation. arXiv preprint arXiv:2401.04679, 2024.

Peter Perešı́ni, Vladimı́r Boža, Broňa Brejová, and Tomáš Vinař. Nanopore base calling on the edge.
Bioinformatics, 37(24):4661–4667, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

William E Roth. The equations ax-yb= c and ax-xb= c in matrices. Proceedings of the American
Mathematical Society, 3(3):392–396, 1952.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Suraj Srinivas, Andrey Kuzmin, Markus Nagel, Mart van Baalen, Andrii Skliar, and Tijmen
Blankevoort. Cyclical pruning for sparse neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2762–2771, 2022.

Gilbert W Stewart. On the early history of the singular value decomposition. SIAM review, 35(4):
551–566, 1993.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal component
analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Advances in
neural information processing systems, 22, 2009.

12

https://github.com/pytorch/vision
https://github.com/pytorch/vision

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei
Lin, and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large gen-
erative model inference with unstructured sparsity. arXiv preprint arXiv:2309.10285, 2023.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7370–7379, 2017.

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for
model compression. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=Sy1iIDkPM.

Max Zimmer, Christoph Spiegel, and Sebastian Pokutta. How i learned to stop worrying and love
retraining. arXiv preprint arXiv:2111.00843, 2021.

A APPENDIX

A.1 SOLVING FOR A IN THE LAYER-WISE RECONSTRUCTION PROBLEM

Recall that we want to find sparse A such that ||XW−XAB||22 is minimized (where X is calibration
input, W is the original weight matrix, and B is the other sparse factor).

In the inner iteration of the ADMM, we need to find A such that (Z,U are other variables from
ADMM optimization): ||XW −XAB||22 + ρ/2||A− Z + U ||22 is minimized.

After taking gradients, we solve the equation:

XTXABBT + ρA = XTXWBT + ρ(Z − U)

We solve this equation using eigendecomposition and one simple trick. We use following
eigendecompositions:XTX = QDQT , BBT = RERT (where D,E are diagonal matrices and
Q,R are orthonormal).

We then multiply the equation by QT from left and R from right and get:

DQTARE + ρQTAR = QT (XTXWBT + ρ(Z − U))R

We will now use that D,E are diagonal and create an outer product of their diagonals: F = Tr(D)⊗
Tr(E). Now, we can use Hadamard product to get:

F ⊙QTAR+ ρQTAR = QT (XTXWBT + ρ(Z − U))R

And with slight abuse of notation (where F + ρ means adding ρ to every element of F) we get:

QTAR = QT (XTXWBT + ρ(Z − U))R⊘ (F + ρ)

And thus:

A = Q(QT (XTXWBT + ρ(Z − U))R⊘ (Tr(D)⊗ Tr(E) + ρ))RT

A.2 ABLATION OF DSF SETTINGS

We investigate some variations of DSF settings in Fig. 4. As in the experiments section, we target to
have 25% of nonzeros compared to the original matrices. Running shorter iterations, especially our
cubic first iteration weight schedule, benefits the final result. We also provide ablations for varying
size of one factor (Fig. 5), and also for various initializations (Fig 6).

13

https://openreview.net/forum?id=Sy1iIDkPM

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

102 103

Matrix size

0.3

0.4

0.5

0.6

0.7

0.8

Re
co

ns
tru

ct
io

n
er

ro
r d

iv
id

ed
 b

y
m

ag
ni

tu
de

 p
ru

ni
ng

 e
rro

r

Default DSF
DSF 20x10
DSF w/o annealing

Figure 4: Reconstruction error of various settings of DSF. Default DSF used 40 outer and 5 inner
iterations. DSF 20x10 refers to DSF with 20 outer and 10 inner iterations. DSF w/o annealing refers
to DSF where we set first ρ0 = 1.

0.10 0.15 0.20 0.25 0.30
Density of the first factor

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Re
co

ns
tru

ct
io

n
er

ro
r d

iv
id

ed
 b

y
m

ag
ni

tu
de

 p
ru

ni
ng

 e
rro

r

1.self_attn.o_proj
11.self_attn.o_proj
21.self_attn.o_proj
31.self_attn.o_proj

Figure 5: Reconstruction error for various densities of the first factor. We prune output projection
from the attention layer in Llama-1 (matrix size 4096x4096) with a target total density of 40%. We
see that the optimal density of the first factor is slightly less than half of the target total density.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

102 103

Matrix size

0.3

0.4

0.5

0.6

0.7

0.8

Re
co

ns
tru

ct
io

n
er

ro
r d

iv
id

ed
 b

y
m

ag
ni

tu
de

 p
ru

ni
ng

 e
rro

r

Identity init
Random init
Random orthogonal init
SVD init

Figure 6: Reconstruction error for various initialization schemes of the first factor in DSF. We see
that our choice of using identity init outperforms other common choices on all except the smallest
matrices.

Table 5: Single CPU runtime for various number of layers and nonzeros in one layer. Each pair of
rows simulates the comparison of ordinary sparsity vs DSF. Each layer has size of 1024x1024.

Number of layers Nonzeros in one layer Batch size Execution time [s]
48 524288 (50%) 16 2.49
96 262144 (25%) 16 2.40
48 262144 (25%) 16 1.21
96 131072 (12.5%) 16 1.32
48 131072 (25%) 16 0.60
96 65536 (6.25%) 16 0.62
48 524288 (50%) 64 8.46
96 262144 (25%) 64 8.65
48 262144 (25%) 64 4.20
96 131072 (12.5%) 64 4.05
48 131072 (25%) 64 1.95
96 65536 (6.25%) 64 2.03

A.3 SPARSE MATRIX EFFICIENCY ON CPU

We use the following benchmark setup: We create 48 or 96 matrices of size 1024x1024 (the goal
here is that all matrices do not fit into the cache and must be reloaded during inference). We then
benchmark dense and sparse matrix multiplication over varying batch sizes and sparsity. We use
a single-threaded matrix multiplication implementation from Intel MKL 2025.0 and store sparse
layers using CSR format. Results are summarized in Fig. 7 and Table. 5, where we specifically
simulate DSF by doubling the number of matrices and having them half of the nonzeros. We see,
that DSF has comparable runtime to ordinary sparse matrix multiplication.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

50 60 70 80 90
Sparsity [%]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ru
nt

im
e

/ d
en

se
 ru

nt
im

e

Batch size 1
Batch size 4
Batch size 16
Batch size 64
Batch size 256

Figure 7: Singlethread CPU runtime for various sparsities compared to dense runtime. We run a
single batch over 48 matrices with shape 1024x1024. We use latest Intel MKL for benchmarking.

Table 6: Maximum sequence length for various fine-tuning setups for Llama2-7B using A100 with
40GB of memory and batch size 16. We always have gradient checkpointing turned on.

Setup Maximum sequence length
Dense (base Llama2-7B) 1900

50% sparsity 2600
DSF with 50% total density 2400

A.4 EFFECTS OF DSF ON FINETUNING

DSF makes the network deeper, and during fine-tuning, one needs to store more intermediate acti-
vations. Moreover, if DSF results are stored as dense matrices, network size also increases.

We propose a simple storage solution for sparse matrices in Pytorch. We store nonzero values
as parameters and packed masks as an auxiliary parameter. During the forward pass, we unpack
everything into the dense matrix and then process the input. This incurs small time overhead (which
gets smaller the bigger batch becomes). A custom kernel would obviously be a better solution, but
writing custom GPU kernels is not the focus of this paper. This solution also only works if gradient
checkpointing is enabled because otherwise, all of the unpacked dense matrices would be stored
during the forward pass at once.

Here, we search for the maximum sequence length we can fine-tune. We finetune Llama2-7B using
batch 16 on A100 GPU with 40GB of memory. We turn on gradient checkpointing and test dense,
sparse, and DSF representations. As reported in Tab. 6, when using DSF, the maximum fine-tunable
sequence length drops, but it is still higher than when using dense representation.

A.5 STORAGE REQUIREMENTS FOR LLM VS ITS QUALITY

Now, we compare total storage size (nonzero values storage as 16-bit floats + binary mask) vs
Wikitext2 perplexity. We measure various target densities for Llama2-7B. Results are shown in Fig
8. We can see that while DSF needs 0.4 GiB more storage, some same target density, it produces
much better results and this trend is more pronounced at lower densities.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

6.0 6.5 7.0 7.5 8.0 8.5
Model storage size [GiB]

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Pe
rp

le
xi

ty
 o

n
W

ik
ite

xt
-2

35%

40%

45%
50%

55%

40%

45%

50%

55%
60%

DSF
ADMM

Figure 8: Comparison of total model size vs Wikitext2 perplexity for various target densities of
Llama2-7B.

17

	Introduction
	Related Work
	Preliminaries
	Layer-wise Pruning via ADMM

	Double Sparse Factorization
	Expressiveness and Efficiency of Double Sparse Factorization
	Heuristic Algorithm for Double Sparse Factorization
	Application of Sparse Factorization to Layer-wise Pruning
	Computational considerations for DSF

	Experiments
	Layer-wise Pruning of Large Language Models
	Comparison with Optimal Brain Compression
	Comparison with Other Matrix Approximation Methods
	Fine-tuning Models Pruned with Double Sparse Factorization

	Conclusions and Future Work
	Appendix
	Solving for A in the layer-wise reconstruction problem
	Ablation of DSF settings
	Sparse matrix efficiency on CPU
	Effects of DSF on finetuning
	Storage requirements for LLM vs its quality

