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Abstract

Generating synthetic data, with or without differential privacy, has attracted signifi-1

cant attention as a potential solution to the dilemma between making data easily2

available, and the privacy of data subjects. Several works have shown that consis-3

tency of downstream analyses from synthetic data, including accurate uncertainty4

estimation, requires accounting for the synthetic data generation. There are very5

few methods of doing so, most of them for frequentist analysis. In this paper, we6

study how to perform consistent Bayesian inference from synthetic data. We prove7

that mixing posterior samples obtained separately from multiple large synthetic8

datasets converges to the posterior of the downstream analysis under standard regu-9

larity conditions when the analyst’s model is compatible with the data provider’s10

model. We show experimentally that this works in practice, unlocking consistent11

Bayesian inference from synthetic data while reusing existing downstream analysis12

methods.13

1 Introduction14

Synthetic data has the potential of opening privacy-sensitive datasets for widespread analysis. The15

idea is to train a generative model with real data, and release synthetic data that has been generated16

from the model. The synthetic data does not contain records from real people, and ideally it preserves17

the population-level properties of the real data, making it useful for analysis. Privacy preservation can18

be guaranteed with differential privacy (DP) (Dwork et al. 2006b), which offers provable protection19

of privacy.20

The most convenient and straightforward way for downstream analysts to analyse synthetic data21

is using the same method that would be used with real data. However, ignoring the additional22

stochasticity arising from the synthetic data generation will yield biased results and overconfident23

uncertainty estimates (Raghunathan et al. 2003; Räisä et al. 2023; Wilde et al. 2021). This is especially24

problematic under DP, which requires adding extra noise, which will be ignored if the synthetic data25

is treated like real data. This problem creates the need for noise-aware analyses that account for the26

synthetic data generation.27

When the downstream analysis is frequentist, it is possible to account for the synthetic data generation28

when multiple synthetic datasets are generated and analysed (Raghunathan et al. 2003). Recent work29

has extended this to DP synthetic data (Räisä et al. 2023), which allows generating multiple synthetic30

datasets without compromising on privacy. These methods reuse the analysis method for the real31

data, and only require using simple combining rules to combine the results from the analyses on each32

synthetic dataset, making them simple to apply.33

For Bayesian downstream analyses, Wilde et al. (2021) have shown that the analyst can use additional34

samples of public real data to correct their analysis. However, their method requires targeting a35

generalised notion of the posterior (Bissiri et al. 2016) and needs the additional public data for36

calibration. Ghalebikesabi et al. (2022) propose a correction using importance sampling to avoid the37
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need of public data, but only prove convergence to a generalised posterior and do not clearly address38

the noise-awareness of the method.39

In the context of missing data, Gelman et al. (2014) have proposed inferring the downstream posterior40

of a Bayesian analysis by imputing multiple completed datasets, inferring the analysis posterior for41

each completed dataset separately, and mixing the posteriors together. We study the applicability42

of this method to synthetic data, aiming the bring the simplicity of the frequentist methods using43

multiple synthetic datasets to Bayesian downstream analysis.44

Contributions45

1. We study inferring the downstream analysis posterior by generating multiple synthetic46

datasets, inferring the analysis posterior for each synthetic dataset as if it were the real47

dataset, and mixing the posteriors together. We find that in this setting, the synthetic datasets48

also need to be larger than the original dataset.49

2. We prove that when the Bernstein–von Mises, or a similar theorem, applies, this method50

converges to the true posterior as the number of synthetic datasets and the size of the51

synthetic datasets grow. Under stronger assumptions, we prove a convergence rate for this52

method in the synthetic dataset size, which we expect to match the rate that usually applies in53

the Bernstein–von Mises theorem (Hipp and Michel 1976). These are presented in Section 3.54

3. We evaluate this method with two examples in Section 4: non-private univariate Gaussian55

mean estimation, and differentially private Bayesian logistic regression. In the first example,56

we use the tractability of the model to derive further theoretical properties of the method,57

and in both examples, we verify that the method works in practice through experiments.58

1.1 Related Work59

Generating synthetic data to preserve privacy was, as far as we know, originally proposed by Liew60

et al. (1985). Rubin (1993) proposed accounting for the synthetic data generation in frequentist61

downstream analyses by adapting multiple imputation (Rubin 1987), which involves generating62

multiple synthetic datasets, analysing each of them, and combining the results with so called Rubin’s63

rules (Raghunathan et al. 2003; Reiter 2002). Recently, Räisä et al. (2023) have shown that multiple64

imputation also works when the synthetic data is generated under DP when the data generation65

algorithm is noise-aware in a certain sense.66

Wilde et al. (2021) study downstream Bayesian inference from DP synthetic data by considering67

the analyst’s model to be misspecified, and targeting a generalised notion of the posterior (Bissiri68

et al. 2016) to deal with the misspecification, which makes method their more difficult to apply than69

standard Bayesian inference. They also assume that the analyst has additional public data available to70

calibrate their method.71

Ghalebikesabi et al. (2022) use importance sampling to correct for bias with DP synthetic data,72

and have Bayesian inference as an example application. However, they also target a generalised73

variant (Bissiri et al. 2016) of the posterior instead of the noise-aware posterior we target, and they do74

not evaluate uncertainty estimation, so the noise-awareness of their method is not clear.75

We are not aware of any existing work adapting multiple imputation for Bayesian downstream analysis76

in the synthetic data setting. In the missing data setting without DP, where multiple imputation was77

originally developed (Rubin 1987), Gelman et al. (2014) have proposed sampling the downstream78

posterior by mixing samples of the downstream posteriors from each of the multiple synthetic datasets.79

We find that this is not sufficient in the synthetic data setting, and add one extra component: our80

synthetic datasets are larger than the original dataset. We compare the two cases in more detail in81

Supplemental Section F, and in particular explain why large synthetic datasets are not needed in the82

missing data setting.83

Noise-aware DP Bayesian inference is critical for taking into account the DP noise in synthetic data,84

but only a few works address this even without synthetic data. Bernstein and Sheldon (2018) present85

an inference method for simple exponential family models. Their approach was extended to linear86

models (Bernstein and Sheldon 2019) and generalised linear models (Kulkarni et al. 2021). Recently,87

Ju et al. (2022) developed an MCMC sampler that can sample the noise-aware posterior using a noisy88

summary statistic.89
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2 Background on Bayesian Inference90

Bayesian inference is a paradigm of statistical inference where the data analyst’s uncertainty in a91

quantity Q after observing data X is represented using the posterior distribution p(Q|X) (Gelman92

et al. 2014). The posterior is given by Bayes’ rule:93

p(Q|X) =
p(X|Q)p(Q)R

p(X|Q0)p(Q0) dQ0 , (1)

where p(X|Q) is the likelihood of observing the data X for a given value of Q, and p(Q) is the94

analyst’s prior of Q. Computing the denominator is typically intractable, so analysts often use95

numerical methods to sample p(Q|X) (Gelman et al. 2014).96

Bernstein–von Mises Theorem It turns out that in many typical settings, the prior’s influence on97

the posterior vanishes when the dataset X is large. A basic example of this is the Bernstein–von98

Mises theorem (van der Vaart 1998), which informally states that under some regularity conditions,99

the posterior approaches a Gaussian that does not depend on the prior as the size of the dataset100

increases.101

A crucial component of the theorem, and also our theory, is the notion of total variation distance102

between random variables, which is used to measure the difference between two random variables or103

probability distributions.104

Definition 2.1. The total variation distance between random variables (or distributions) P1 and P2105

is106

TV(P1, P2) = sup
A

|Pr(P1 2 A)� Pr(P2 2 A)|, (2)

where A is any measurable set.107

As a slight abuse of notation, we allow the arguments of TV(·, ·) to be random variables, probability108

distributions, or probability density functions interchangeably. We list some properties of total109

variation distance that we use in Lemma A.1 in the Supplement.110

Now we can state the theorem.111

Theorem 2.2 (Bernstein–von Mises (van der Vaart 1998)). Let n denote the size of the dataset Xn.112

Under regularity conditions stated in Condition A.4 in Supplemental Section A.2, for true parameter113

value Q0, the posterior Q̄(Xn) ⇠ p(Q|Xn) satisfies114

TV
�p

n(Q̄(Xn)�Q0),N (µ(Xn),⌃)
� P�! 0 (3)

as n ! 1 for some µ(Xn) and ⌃, that do not depend on the prior, where the convergence in115

probability is over sampling Xn ⇠ p(Xn|Q0).116

3 Bayesian Inference from Synthetic Data117

When the downstream analysis is Bayesian, and the analyst has access to non-DP synthetic data,118

they would ultimately want to obtain the posterior p(Q|X, IA) of some quantity Q given real data119

X , where IA denotes the background knowledge such as priors of the analyst. In the DP case, the120

exact posterior is unobtainable, so we assume that X is only available through a noisy summary s̃ (Ju121

et al. 2022; Räisä et al. 2023), so the posterior is p(Q|s̃, IA). To unify these notations, we use Z to122

denote the observed values, so Z = X in the non-DP case, Z = s̃ in the DP case, and the posterior123

of interest is p(Q|Z, IA). We summarise these random variables and their dependencies in Figure 1,124

and give an introduction to DP in Supplemental Section A.3.125

In order to introduce the synthetic data into the posterior of interest, we can decompose the posterior126

as127

p(Q|Z, IA) =
Z

p(Q|Z,X⇤
, IA)p(X

⇤|Z, IA) dX⇤
, (4)

where we abuse notation by using X
⇤ as the variable to integrate over, so inside the integral X⇤ is128

not a random variable. The decomposition in (4) means that we could sample p(Q|Z, IA) by first129
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• ✓: data generating model parameters
• X: real data
• X

⇤: hypothetical data
• Z: observed summary of X (Z = X without DP)
• X

Syn: synthetic data, XSyn ⇠ p(X⇤|Z, IS)
• Q: estimated quantity in downstream analysis
• IS : synthetic data generator’s background infor-

mation
• IA: analyst’s background information

✓ Q

X X
⇤

Z

X
Syn

Figure 1: Left: random variables in noise-aware uncertainty estimation from synthetic data. Right: a
Bayesian network describing the dependencies of the random variables.

sampling the synthetic data from the posterior predictive X
Syn ⇠ p(X⇤|Z, IA), and then sampling130

Q ⇠ p(Q|Z,X⇤ = X
Syn

, IA).131

Note that the random variable X⇤ represents a hypothetical real dataset that could be obtained if more132

data was collected, as seen in Figure 1, and it is not the synthetic dataset. The synthetic dataset XSyn133

is a sample from the conditional distribution of X⇤ given Z. For this reason, p(Q|Z,X⇤
, IA) 6=134

p(Q|Z, IA). To make our notation less cluttered, we write p( · |X⇤
, · ) in place of p( · |X⇤ =135

X
Syn

, · ) in probabilities when the meaning is clear.136

There are still two major issues with the decomposition in (4):137

1. Sampling p(Q|Z,X⇤
, IA) requires access to Z, which defeats the purpose of using synthetic138

data.139

2. X
⇤ needs to be sampled conditionally on the analyst’s background information IA, while140

the synthetic data provider could have different background information IS .141

To solve the first issue, in Section 3.2 we show that if we replace p(Q|Z,X⇤
, IA) inside the integral142

of (4) with p(Q|X⇤
, IA), the resulting distribution converges to the desired posterior,143

Z
p(Q|X⇤

, IA)p(X
⇤|Z, IA) dX⇤ ! p(Q|Z, IA) (5)

in total variation distance as the size of each synthetic data set X⇤ grows. It should be noted that144

many such synthetic data sets will be needed to account for the integral over X⇤.145

The second issue is known as congeniality in the multiple imputation literature (Meng 1994; Xie and146

Meng 2016). We look at congeniality in the context of Bayesian inference from synthetic data in147

Section 3.1, and find that we can obtain p(Q|Z, IA) under appropriate assumptions on the relationship148

between IA and IS .149

Exactly sampling the LHS of (5) requires generating a synthetic dataset for each sample of p(Q|Z, IA),150

which is not practical. However, we can perform a Monte-Carlo approximation for p(Q|Z, IA) by151

generating m synthetic datasets XSyn
1 , . . . , X

Syn
m ⇠ p(X⇤|Z, IA), drawing multiple samples from152

each of the p(Q|X⇤ = X
Syn
i , IA), and mixing these samples, which allows us to obtain more than153

one sample of p(Q|Z, IA) per synthetic dataset. We look at some properties of this in Supplemental154

Section E, but we use the integral form in (5) in the rest of our theory.155
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3.1 Congeniality156

In the decomposition (4) of the analyst’s posterior, X⇤ should be sampled conditionally on the157

analyst’s background information IA, while in reality the synthetic data provider could have different158

background information IS .159

A similar distinction has been studied in the context of missing data (Meng 1994; Xie and Meng160

2016), where the imputer of missing data has a similar role as the synthetic data generator. Meng161

(1994) found that Rubin’s rules implicitly assume that the probability models of both parties are162

compatible in a certain sense, which Meng (1994) defined as congeniality.163

As our examples with Gaussian distributions in Section 4.1 and Supplemental Section C.2 show,164

some notion of congeniality is also required in our setting. However, because we study synthetic data165

instead of imputation, and Bayesian instead of frequentist downstream analysis, we need a different166

formal definition. As the analyst only makes inferences on Q, it suffices that both the analyst and167

synthetic data generator make the same inferences of Q:168

Definition 3.1. The background information sets IS and IA are congenial for observation Z if169

p(Q|X⇤
, IS) = p(Q|X⇤

, IA) (6)

for all X⇤ and170

p(Q|Z, IS) = p(Q|Z, IA). (7)

In the non-DP case, (7) is redundant, as it is implied by (6), but in the DP case, both are needed, as171

the parties may draw different conclusions on X given Z = s̃.172

Combining congeniality and (5),173

Z
p(Q|X⇤

, IA)p(X
⇤|Z, IS) dX⇤ =

Z
p(Q|X⇤

, IS)p(X
⇤|Z, IS) dX⇤

! p(Q|Z, IS) = p(Q|Z, IA),
(8)

where the convergence is in total variation distance as the size of X⇤ grows. In the following, we174

assume congeniality, and drop IA and IS from our notation.175

3.2 Consistency Proof176

To recap, we want to prove that the posterior from synthetic data,177

p̄n(Q) =

Z
p(Q|X⇤

n)p(X
⇤
n|Z) dX⇤

n, (9)

converges in total variation distance to p(Q|Z) as the size n of X
⇤
n grows. We prove this in178

Theorem 3.4, which requires that both p(Q|Z,X⇤
n) and p(Q|X⇤

n) approach the same distribution as179

n grows. We formally state this in Condition 3.2. In Lemma 3.3, we show that Condition 3.2 is a180

consequence of the Bernstein–von Mises theorem (Theorem 2.2) under some additional assumptions,181

so we expect it to hold in typical settings.182

To make the notation more compact, let Q̄+
n ⇠ p(Q|Z,X⇤

n), and let Q̄n ⇠ p(Q|X⇤
n).183

Condition 3.2. For all Q there exist distributions Dn such that184

TV
�
Q̄

+
n , Dn

� P�! 0 and TV
�
Q̄n, Dn

� P�! 0 (10)

as n ! 1, where the convergence in probability is over sampling X
⇤
n ⇠ p(X⇤

n|Z,Q).185

Theorem 2.2 implies Condition 3.2 with some additional assumptions:186

Lemma 3.3. If the assumptions of Theorem 2.2 (Condition A.4) and the following assumptions:187

(1) Z and X
⇤ are conditionally independent given Q; and188

(2) p(Z|Q) > 0 for all Q,189

hold for the downstream analysis for all Q0, then Condition 3.2 holds.190
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Proof. The full proof is in Supplemental Section B.1. Proof idea: when Z and X
⇤ are conditionally191

independent given Q,192

p(Q|Z,X⇤) / p(X⇤|Q)p(Z|Q)p(Q) (11)
so p(Q|Z,X⇤) can be equivalently seen as the result of Bayesian inference with observed data193

X
⇤ and prior p(Q|Z). As the only difference to p(Q|X⇤) is the prior, the Bernstein–von Mises194

theorem implies that both p(Q|Z,X⇤) and p(Q|X⇤) converge in total variation distance to the same195

distribution.196

Assumption (1) of Lemma 3.3 will hold if the downstream analysis treats its input data as an i.i.d.197

sample from some distribution. Assumption (2) holds when the likelihood is always positive, and in198

the DP case when the density of the privacy mechanism is positive everywhere, which is the case for199

common DP mechanisms like the Gaussian and Laplace mechanisms (Dwork and Roth 2014).200

Next is the main theorem of this work: (5) holds under Condition 3.2.201

Theorem 3.4. Under congeniality and Condition 3.2, TV (p(Q|Z), p̄n(Q)) ! 0 as n ! 1.202

Proof. The full proof is in Supplemental Section B.1. Proof idea: the proof consists of three steps.203

The first two are in Lemma B.1 and the third is in Lemma B.2 in the Supplement. The first step204

is showing that TV(Q̄n, Q̄
+
n )

P�! 0 when X
⇤
n ⇠ p(X⇤

n|Z,Q) for fixed Z and Q. This is a simple205

consequence of the triangle inequality and Condition 3.2, as total variation distance is a metric. In the206

second step, we show that TV(Q̄n, Q̄
+
n )

P�! 0 also holds when X
⇤
n ⇠ p(X⇤

n|Z). In the final step, we207

show that this implies the claim.208

3.3 Convergence Rate209

Under stronger regularity conditions, we can get a convergence rate for Theorem 3.4. The regularity210

conditions depend on uniform integrability:211

Definition 3.5. A sequence of random variables Xn is uniformly integrable if212

lim
M!1

sup
n

E(|Xn|I|Xn|>M ) = 0 (12)

Now we can state the regularity conditions for a convergence rate O(Rn):213

Condition 3.6. There exist distributions Dn such that for a sequence R1, R2, · · · > 0, Rn ! 0 as214

n ! 1,215
1

Rn
TV

�
Q̄

+
n , Dn

�
and

1

Rn
TV

�
Q̄n, Dn

�
(13)

are uniformly integrable when X
⇤
n ⇠ p(X⇤

n|Z).216

Note that X⇤
n ⇠ p(X⇤

n|Z) conditions on Z, not Q and Z like in Condition 3.2. We prove that217

Condition 3.6 is met in univariate Gaussian mean estimation for Rn = 1p
n

in Theorem D.1 in the218

Supplement. This is the same rate that commonly applies in the Bernstein–von Mises theorem (Hipp219

and Michel 1976).220

Condition 3.6 implies an O(Rn) convergence rate:221

Theorem 3.7. Under congeniality and Condition 3.6, TV (p(Q|Z), p̄n(Q)) = O(Rn).222

Proof. The full proof is in Supplemental Section B.2. Proof idea: first, we prove the uniform223

integrability of 1
Rn

TV(Q̄n, Q̄
+
n ) when X⇤

n ⇠ p(X⇤
n|Z) by using the triangle inequality and properties224

of uniform integrability. Second, we prove that this implies the claimed convergence rate.225

4 Examples226

In this section, we present two examples of downstream inference from synthetic data at a high level.227

First, we demonstrate univariate Gaussian mean estimation. Second, we have logistic regression on228

a toy dataset, with DP synthetic data. In the first example, we use the tractability of the model to229

derive additional theoretical properties, and in both examples, we experimentally verify our theory.230
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Figure 2: Simulation results for the Gaussian mean estimation example, showing that the mixture of
posteriors from synthetic data in green converges. In the left panel, both the analyst and data provider
have the correct known variance. The blue and orange lines overlap, as both parties have the same
p(µ|X). On the right, the analyst’s known variance is too small (�̂2

k = 1
4 �̄

2
k), so congeniality is not

met, but the mixture of posteriors from synthetic data, p̄n(µ), still converges to the data provider’s
posterior. In both panels, m = 400 and nX⇤

nX
= 20.
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Figure 3: Convergence of the mixture of posteriors from synthetic data with different sizes of the
synthetic dataset on Gaussian mean estimation with known variance. nX⇤ = nX is clearly not
enough, but nX⇤ = 20nX is already relatively good.

Supplemental Section C, contains more detailed descriptions of the examples, and some additional231

results. Supplemental Section D proves an O( 1p
n
) convergence rate for Theorem 3.4 in the Gaussian232

mean estimation case. Our code is in the supplementary material.233

4.1 Non-private Gaussian Mean Estimation234

Our first example is very simple: the analyst infers the mean µ of a Gaussian distribution with known235

variance from synthetic data that has been generated from the same model. The posteriors for this236

setting can be found in Supplemental Section A.4. To differentiate the variables for the analyst and237

data provider, we use bars for the data provider (like �̄
2
0) and hats for the analyst (like �̂

2
0).238

When the synthetic data is generated from the known variance model with known variance �̄
2
k, we239

sample from the posterior predictive p(X⇤|X) as240

µ̄|X ⇠ N (µ̄nX , �̄
2
nX

), X
⇤|µ̄ ⇠ NnX⇤ (µ̄, �̄2

k) (14)

µ̄nX =

1
�̄0

2 µ̄0 +
nX

�̄2
k
X̄

1
�̄2
0
+ nX

�̄2
k

,
1

�̄2
nX

=
1

�̄2
0

+
nX

�̄2
k

. (15)

NnX⇤ denotes a Gaussian distribution over nX⇤ i.i.d. samples.241
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When downstream analysis is the model with known variance �̂
2
k, we have242

µ̂|X⇤ ⇠ N (µ̂nX⇤ , �̂
2
nX⇤ ), µ̂nX⇤ =

1
�̂0

2 µ̂0 +
nX⇤
�̂2
k
X̄

⇤

1
�̂2
0
+ nX⇤

�̂2
k

,
1

�̂2
nX⇤

=
1

�̂2
0

+
nX⇤

�̂2
k

. (16)

Now, using µ
⇤ to denote a sample from the mixture of posteriors from synthetic data p̄n(µ) in (9),243

we show in Supplemental Section C.1 that244

E(µ⇤) ! µ̄nX , Var(µ⇤) ! �̄
2
nX

(17)
as nX⇤ ! 1, so µ

⇤ asymptotically has the same mean and variance as the downstream posterior245

distribution p(µ|X) on the real data.246

We test the theory with a numerical simulation in Figure 2. We generated the real data X of size247

nX = 100 by i.i.d. sampling from N (1, 4). Both the analyst and data provider use N (0, 102) as the248

prior. The data provider uses the correct known variance (�̄2
k = 4), and the analyst either uses the249

correct known variance (�̂2
k = 4), or a too small known variance (�̂2

k = 1), which is an example of250

uncongeniality.251

In the congenial case in the left panel of Figure 2, both parties have the same posterior given the real252

data X , and the mixture of posteriors from synthetic data is very close to that. In the uncongenial case253

in the right panel, where the analyst underestimates the variance, the parties have different posteriors254

given X , but the mixture of synthetic data posteriors is still close to the data provider’s posterior.255

In Figure 3, we examine the convergence of the mixture of posteriors from synthetic data under256

congeniality. We see that setting nX⇤ = nX is not enough, as the mixture of posteriors is significantly257

wider than the analyst’s posterior. The synthetic dataset needs to be larger than the original, with258

nX⇤ = 5nX already giving a decent approximation and nX⇤ = 20nX a rather good one. In Figure S1259

in the Supplement, we also examine the effect of m on the mixture of synthetic data posteriors, and260

see that m must also be sufficiently large, otherwise the method produces very jagged posteriors.261

4.2 Differentially Private Logistic Regression262
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Figure 4: Posteriors in the DP logistic regression experiment, where Q are the regression coefficients.
The mixture of posteriors from synthetic data, p̄n(Q), (with nX⇤/nX = 20, m = 400) is very close
the to the private posterior p(Q|s̃) computed using (4). Computing the posterior without synthetic data
with DP-GLM gives a somewhat wider posterior. The true parameter values are highlighted by the
grey dashed lines and shown in the panel titles. The privacy bounds are ✏ = 1, � = n

�2
X = 2.5 · 10�7.

Our second example is logistic regression on a simple 3-d binary toy dataset, (nX = 2000), with DP263

synthetic data, under the same setting as used by Räisä et al. (2023) for frequentist logistic regression.264

We change the downstream task to Bayesian logistic regression to evaluate our theory.265

Under DP, Z is a noisy summary s̃ of the real data. We need synthetic data sampled from the posterior266

predictive p(X⇤|s̃), which is exactly what the NAPSU-MQ algorithm of Räisä et al. (2023) provides.267

In NAPSU-MQ, s̃ is the values of user-selected marginal queries with added Gaussian noise. We used268

the open-source implementation of NAPSU-MQ1 by Räisä et al. (2023), and describe NAPSU-MQ269

in Supplemental Section A.3.270

1https://github.com/DPBayes/NAPSU-MQ-experiments
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Because of the simplicity of this model, it is possible to use the exact posterior decomposition (4)271

as a baseline, by using p(X|s̃) instead of p(X⇤|s̃) to generate synthetic data. We give a detailed272

description of this process in Supplemental Section C.5. We have also included the DP-GLM273

algorithm (Kulkarni et al. 2021) that does not use synthetic data, and the non-DP posterior from the274

real data as baselines. We obtained the code for DP-GLM from Kulkarni et al. (2021) upon request.275

Figure 4 compares the mixture of posteriors from synthetic data from (9) that uses p(Q|X⇤), with276

nX⇤/nX = 20 and m = 400 synthetic datasets, to the baselines. The posterior from (9) is very close277

to the posterior from (4). The DP-GLM posterior that does not use synthetic data is somewhat wider.278

The privacy bounds are ✏ = 1, � = n
�2
X = 2.5 · 10�7.279

We ran the experiment 100 times and also with ✏ = 0.1 and ✏ = 0.5, and plot coverages and widths280

of credible intervals in Figure S4 in the Supplement. With ✏ = 1 and ✏ = 0.5, the coverages are281

accurate and DP-GLM consistently produces wider intervals. With ✏ = 0.1, the mixture of synthetic282

data posteriors likely needs more and larger synthetic datasets to converge, as it produced wider and283

slightly overconfident intervals for one coefficient.284

5 Discussion285

Synthetic data are often considered as a substitute for real data that are sensitive. Since the data286

generation process is based on having access to the Z, one might ask why is the synthetic data needed287

in first place. Why cannot we simply perform the downstream posterior analysis directly using Z?288

Our analysis allows Z to be an arbitrary, even noisy, representation of the data, and it might be289

difficult for the analyst to place a model for such generative process for Q. In most applications, the290

analyst does have a model for Q arising from the data. Therefore using the synthetic data as a proxy291

for the Z allows the analyst to use existing models and inference methods to perform the analysis.292

Limitations A clear limitation of mixing posteriors from multiple synthetic datasets is the compu-293

tational cost of analysing many large synthetic datasets, which may be substantial for more complex294

Bayesian downstream models, where even a single analysis can be computationally expensive. How-295

ever, the separate analyses can be run in parallel. We also expect the downstream posteriors of296

different synthetic datasets to be similar to each other, so it should be possible to use the information297

gained from sampling a few of them to speed up sampling the others.298

Under DP, we need noise-aware synthetic data generation, which limits the settings in which the299

method can currently be applied. However, if new noise-aware methods are developed in the future,300

the method can immediately be used with them.301

To recover the analyst’s posterior, the method requires congeniality, which basically requires the302

analyst’s prior to be compatible with the data provider’s. However, the method was still able to303

recover the data provider’s posterior in the Gaussian example, suggesting that the data provider’s304

prior information overrides the analyst’s prior information. This suggests an interesting area of future305

research: analysis methods that override the data provider’s prior. An importance sampling approach306

similar to that of Ghalebikesabi et al. (2022) could provide one approach. This observation also raises307

interesting questions on whether truly general and objective synthetic data generation is possible.308

Conclusion We considered the problem of consistent Bayesian inference of downstream analyses309

using multiple, potentially DP, synthetic datasets, and studied an inference method that mixes the310

posteriors from multiple large synthetic datasets. We proved, under general and well-understood311

regularity conditions of the Bernstein–von Mises theorem, that the method is asymptotically exact as312

the sizes of the synthetic datasets grow. We also derived a convergence rate under stricter regularity313

conditions. We studied the method in two examples: non-private Gaussian mean estimation and314

DP logistic regression. In the former, we were able to use the analytically tractable structure of the315

setting to derive additional properties of the method, including a convergence rate without additional316

assumptions. In both settings, we experimentally validated our theory, and showed that the method317

works in practice. This fills a major gap in the synthetic data analysis literature, unlocking consistent318

Bayesian inference while reusing existing downstream analysis methods.319
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