Emergence of In-Context Reinforcement Learning from Noise Distillation

Ilya Zisman ' 2*

Abstract

Recently, extensive studies in Reinforcement
Learning have been carried out on the ability of
transformers to adapt in-context to various envi-
ronments and tasks. Current in-context RL. meth-
ods are limited by their strict requirements for
data, which needs to be generated by RL agents
or labeled with actions from an optimal policy.
In order to address this prevalent problem, we
propose AD®, a new data acquisition approach
that enables in-context Reinforcement Learning
from noise-induced curriculum. We show that it
is viable to construct a synthetic noise injection
curriculum which helps to obtain learning histo-
ries. Moreover, we experimentally demonstrate
that it is possible to alleviate the need for gener-
ation using optimal policies, with in-context RL
still able to outperform the best suboptimal policy
in a learning dataset by a 2x margin.

1. Introduction

Reinforcement Learning (RL) has achieved great success
in recent years, from showing superhuman performance
in games (Fuchs et al., 2021; Schrittwieser et al., 2020)
to successfully learning complex real-world tasks (Brohan
et al., 2022; Herzog et al., 2023). At the same time, RL
has a persistent problem of severe sample inefficiency. For
example, in order to learn to match human performance in
StarCraft 2, an agent may need to process tens of billions
of frames for a single game (Vinyals et al., 2019). At the
same time, a trained agent cannot generalize to new tasks,
so mastering another game requires the entire process to be
repeated from scratch. In order to enable fast and reliable

“Work done while at Tinkoff ' AIRI, Moscow, Russia >Skoltech,
Moscow, Russia 3Innopolis University, Kazan, Russia “MIPT,
Moscow, Russia >Tinkoff, Moscow, Russia. Correspondence to:
Ilya Zisman <i.zisman@airi.net>.

Our implementation is available at https://github.com/
corl-team/ad-eps

Proceedings of the 41°° International Conference on Ma-
chine Learning, Vienna, Austria. PMLR 235, 2024. Copyright
2024 by the author(s).

Vladislav Kurenkov '3 Alexander Nikulin'**

Viacheslav Sinii>* Sergey Kolesnikov?

AD

N goals

g
optimal
Tk

N goals

ﬁ optimal

P supervision

780 BN

data __ _e=0.0
Tk =T

Figure 1. Data acquisition for in-context RL training. While other
in-context RL methods either train thousands of single-task RL
algorithms to obtain their learning histories (AD) or pretrain on
optimal actions (DPT), our approach AD? alleviates these prob-
lems introducing synthetic noise injection curriculum by which
learning histories are generated. Algorithms trained on this kind of
data can not only generalize to unseen tasks, but also outperform
the best available policy in data (79%).

generalization and adaptation in RL agents, Meta-RL was
introduced. This framework is designed to teach agents the
process of learning itself, enabling them to learn how to
learn to accomplish unseen tasks (Finn et al., 2017; Duan
et al., 2016; Wang et al., 2016). Recent approaches leverage
specially constructed datasets that enable learning the task
in-context by interacting and adapting to the environment
(Laskin et al., 2022; Lee et al., 2023; Kirsch et al., 2023;
Sinii et al., 2023). These approaches are referred to as
in-context RL.

It is important to note that the construction of curated data
that can enable in-context RL may be considered trouble-
some. Laskin et al. (2022) show that the data must reflect
the process of learning a task, rather than simply presenting

https://github.com/corl-team/ad-eps
https://github.com/corl-team/ad-eps

Emergence of In-Context Reinforcement Learning from Noise Distillation

a sequence of optimal actions. One might view this as the
data containing different policies, which are ordered from
the least to most effective. To make this possible, authors
train numerous (1000+) single-task RL agents to obtain their
learning histories. This poses a challenge in terms of compu-
tational and time constraints, one which can make the task
unfeasible for some problems. At the same time, Lee et al.
(2023) claim that in-context RL can be made possible by
pretraining on random datasets. However, they set a require-
ment for obtaining the optimal policy for the task, which, in
essence, also requires training a multitude of RL agents. If
it were possible to alleviate those problems by generating
learning histories or leveraging suboptimal trajectories that
are commonly available, it would make training in-context
RL algorithms significantly easier.

In our work, we present AD®, a data collection strategy
inspired by Brown et al. (2020) that produces learning his-
tories for any policy by adding noise to it. In doing so, we
ensure that each successive transition in data illustrates a
slightly improved policy than the previous one, resembling
the learning process. Our approach allows in-context RL
to not only learn from the expert policies, but also demon-
strate near-optimal performance from suboptimal policies.
Similarly to Laskin et al. (2022) and Lee et al. (2023), we
tested our approach on grid-world and 3D environments and
achieved more than 2x improvement when compared to the
best policies available in data.

As our core contribution, we show that distilling actual
learning algorithms or possessing the optimal policy is not
required to enable in-context RL. Instead, it is enough to
provide in-context RL agents with a simulated learning
process, eliminating the need for training numerous RL
agents. We summarize our main findings below.

« Distilling noise-induced trajectories of a demonstra-
tor gives rise to in-context reinforcement learning.
We discuss the limitations of current approaches and
propose a new method of data acquisition that enables
in-context RL in Section 2.

Supervised pre-training does not require trajecto-
ries from RL agents or supervision with optimal
actions for emergence of in-context RL. We show
that it is possible to replace actual learning histories
or eliminate the need for the optimal policy without
negatively impacting the performance of in-context RL
algorithms. We illustrate our findings in Figure 2.

It is possible to improve upon suboptimal demon-
strators with pure in-context learning after super-
vised pre-training. We examine the ability of in-
context RL to not only emerge from suboptimal tra-
jectories, but to significantly outperform them. The
results are shown in Figure 4.

2. What Enables In-Context Reinforcement
Learning?

Generally, the training of an in-context RL model consists of
two main parts. The first one is the pre-training of a Trans-
former in a standard supervised learning fashion to predict
the next token in a sequence. The second is a data collection
strategy that actually enables in-context RL. There are two
main approaches to data collection, which are discussed in
the following paragraphs.

Data Collection with RL Algorithms. Laskin et al.
(2022) have proposed training in-context RL on learning
histories of RL algorithms. The authors claim that in order
for in-context RL to successfully emerge, having only ex-
pert demonstrations is insufficient. To enable in-context RL,
the authors supply a Transformer with the histories of how
single-task RL agents learn a task, and then distill the pol-
icy improvement operator that resides between subsequent
transitions in these learning histories. After pre-training on
learning histories, a Transformer is able to explore the envi-
ronment and generalize to unseen tasks entirely in-context
without explicitly updating its weights. The authors call
their method Algorithm Distillation (AD).

More formally, if we assume that a dataset D consists of
learning histories, then

D= {(rf,) ~ (A lg € 0] },

where 77 = (01, a1,71, ..., o, ar, r7) is a trajectory gener-
ated by a source algorithm from A7°“"““ for a goal g from
a set of all possible goals G, and o;, a;, 7; are observations,
actions and rewards respectively.

It is important to note that the above approach makes it
necessary to train thousands of single-task RL algorithms
in order to successfully obtain suitable pre-training data.
This data acquisition process can prove challenging, since
RL algorithms are prone to instability in learning and are
sensitive to hyperparameters.

Data Collection with Optimal Actions. The approach of
Lee et al. (2023) puts forward another idea, called Decision
Pretrained Transformer (DPT). Rather than pre-training a
Transformer on a mixture of expert and non-expert data, the
authors suggest training the model solely on optimal actions.
This method populates the context with various environment
interactions, including random ones. The authors provide
proof demonstrating that pre-training a Transformer in this
manner enables it to perform a Posterior Sampling (PS), an
effective Bayesian algorithm that has been considered com-
putationally infeasible (Osband et al., 2013). This algorithm
is viewed as a generalization of Thompson Sampling for
MDPs.

Emergence of In-Context Reinforcement Learning from Noise Distillation

Dark Room Key-to-Door Watermaze
————————————————— 20 H===amm—t———t——== 1,00 === gomet——————

15
1.5 0.75

£10
= 1.0 0.50

“ 5
0.5 0.25

0

0.0
0 50 100 150 200 250 0

0.
250 500 750 1000 0 50

00
100 150 200

Episodes In-Context

AD®

=== Oracle Return

Figure 2. The performance of AD? on test environments. The agent must find unseen goals by memorizing visited states and rewards.
The main difference from the standard approach used in in-context RL is that we generate learning histories by infusing noise, therefore
eliminating the need of training thousands of single-task RL agents. Here, we demonstrate that our data collection strategy is able to
provide suitable data for training in-context RL models. The mean performance of data generating oracles is shown for comparison. The
performance is averaged across three seeds with the shaded regions of one std.

However, despite the above approach being sound, it neces-
sitates high-quality training data. For certain tasks where
the environment is sufficiently complex, constructing the
optimal policy is intractable. There are often numerous
demonstrations available from suboptimal actors, but such
data cannot be used to pre-train DPT. The authors mention
a potential workaround that involves training single-task RL
agents, but it brings us back to the previously mentioned
challenges associated with large-scale RL training.

In summary, both AD and DPT data acquisition methods
enable in-context RL, but each approach comes with its
own considerations. To achieve success with these methods,
it is necessary to either carefully train a multitude of RL
algorithms or, even more challenging, to obtain the optimal
policy. With this in mind, one might pose the following
question: Is it possible to democratize data acquisition?
In our paper, we demonstrate that generation of learning
histories is not only feasible, but that this data can be created
using suboptimal policies. Moreover, an in-context RL
algorithm pre-trained on suboptimal learning histories is
capable of outperforming even the best available policy in
the dataset.

3. AD*

When observing the trajectories in a learning history buffer,
one can notice that D are subject to a certain order
[R(1:) < R(7;) | i < j], given there are enough parame-
ter updates between 7; and 7;, R(T) = ZiT:O r;. As a
result, we propose constructing a new dataset, D¢, by infus-
ing random noise into the given policy, thus generating new

trajectories that resemble learning histories. Specifically, we
run a policy in an environment where, at each step, it takes
a random action with a probability of ¢, or it adheres to its
action with a probability of 1 — e. A critical aspect to note
is that we schedule ¢ in such a way that, at the onset of the
trajectory, the demonstrator executes only random actions
(éstart = 1), while at the end, it performs actions without
randomness (e.ng = 0). Our approach is hugely inspired by
Brown et al. (2020), where they employ similar methods
of policy ordering in the Imitation Learning setting. How-
ever, we do not learn any reward models or RL algorithms
explicitly, leaving the Transformer to do in-context policy
distillation.

To test our approach, we take Algorithm Distillation (Laskin
et al., 2022) approach as the base that learns from the data
produced by synthetic noise injecting curriculum. Through-
out our work, we refer to it as AD®.

4. Experimental Setup
4.1. Model

We use the GPT-2 causal architecture (Radford et al., 2019)
from the CORL package (Tarasov et al., 2022) as the back-
bone. For the input, we merge multiple episodes together
to form a multi-episodic memory. We use states, actions,
rewards triplets as the model input. Note that we cannot
put full multi-episodic sequences into memory, since Trans-
formers have quadratic requirements for sequence length.
Instead, we subsample sequences into smaller parts. We
also concatenate the embeddings of states, actions and re-
wards, inflating sequence length by a factor of 3. To avoid

Emergence of In-Context Reinforcement Learning from Noise Distillation

confusion, we report sequence length before the concatena-
tion of embeddings. As the order of transitions matters, we
apply positional encoding to the input sequences. The exact
hyperparameters of the model can be found in Appendix F.

4.2. Generation of Learning Histories

Optimal Policy. As previously discussed in Section 3, we
infuse random noise to the given policy. Before starting, we
set ¢ = 1.0, as if the agent is not familiar with the environ-
ment and acts completely on random. After that, we start
generating data by running agents in the environment with
different goals. At each time step, we generate a random
number w from a uniform distribution, w ~ u[0,1]- Then,
if w < ¢, the agent takes a random action from the action
space that is taken to the environment. Otherwise, it ex-
ecutes an action according to its policy. After the action
selection phase, we decrease ¢ according to its schedule
and then repeat the process until enough trajectories are col-
lected. Note that we decrease ¢ after each action, not once
per fully completed episode. We collect the last 10% of the
data with € = 0 (the best available policy), as it improves
the stability of the training process.

Suboptimal Policy. We employ a similar approach in or-
der to simulate a suboptimal policy. The key distinction is
that, while € is scheduled to decrease from 1 to 0 in the opti-
mal scenario, in case of suboptimal policy, we do not reduce
¢ entirely to zero. This ensures that even the best policy
available in the data still contains a predefined amount of
noise, and is therefore not optimal. The exact values of ¢
that correspond to a certain level of performance differ for
each environment and are discussed separately in the next
subsection.

Learning Pace. The proposed data collection strategy
makes it possible to have a high degree of control over the
learning pace, i.e., how fast ¢ decays through the trajec-
tory. Shi et al. (2023) showed that the granularity of the
task-difficulty learning curriculum can affect the in-context
learning ability. We speculate that regulating the perfor-
mance schedule in learning histories is also crucial, a factor
yet to be fully explored in previous studies. This may be
due to the fact that exerting fine control when training RL
agents is a complex challenge. Regardless, this feature has
a direct impact on the learning abilities of in-context agents.

We compute the decay rate by regulating how many histo-
ries (full trajectories until termination) are generated for a
single goal. The exact number of histories is reported in
Appendix G.

4.3. Environments

To demonstrate in-context learning abilities, we choose en-
vironments that cannot be solved zero-shot after pretraining
(Laskin et al., 2022; Lee et al., 2023). This can only be
achieved in environments with many tasks where it is pos-
sible to specify a set of training goals, leaving the rest for
the test time. An additional consideration is that the episode
length must be of an appropriate size so that a multi-episodic
training sequence can be formed.

Dark Room. 2D POMDP with discrete state and action
spaces (Laskin et al., 2022). The grid size is 9 x 9, where
an agent has 5 possible actions: up, down, left, right and
do nothing. The goal is to find a target cell, the location of
which is not known to the agent in advance. The episode
length is fixed at 20 time steps, after which the agent is
reset to the middle of the grid. The reward r = 1 is given
for every time step the agent is on the goal grid, otherwise
r = 0. The agent does not know the position of the goal,
hence it is driven to explore the grid. In total, there are 81
goals, of which we use 65 for training and 16 for evaluation.

Key-to-Door. Similar to Dark Room, but it first requires an
agent to find an invisible key and then the door. Without
a key, the door will not open. The reward is given when
the key is found (r = 1) and once the door is opened (also
r = 1), after which the game terminates. The agent then
resets to a random grid. The maximum episode length is 40,
and since we can control the location of the key and door,
there are around 6.5k possible tasks.

Figure 3. Examples of Watermaze input images.

Watermaze. 3D POMDP with a continuous state space and
a discrete action space. An agent is placed in a playground
similar to DarkRoom, where it searches for an invisible
platform (Morris, 1981). When found, the platform rises
and the agent receives r = 1, then the agent is reset to the
middle. The episode length is 50, and the observation size
is 3 x 72 x 96. To navigate, the agent uses the walls of the
playground, painted in different colors. There are a total
of 8 available actions. The goal space is continuous. More
details on implementation of this environment can be found
in Appendix D.

4.4. Evaluation

After pre-training, we evaluate the in-context reinforcement
learning ability of the agent. The evaluation process resem-

Emergence of In-Context Reinforcement Learning from Noise Distillation

Dark Room Key-to-Door Watermaze
————————————————— 20 m==m=mmmmtm——tm—== 1,00 mm=mmom— et m—— o
15
1.5 0.75
€10
£ 1.0 0.50
o
5 0.5 Wm 0.25
A Lot g UM
0.0 0.00
0 50 100 150 200 250 0 250 500 750 1000 0 50 100 150 200

Episodes In-Context

AD# === Oracle Return

Demonstrator Return — BC

Figure 4. The performance of AD® pretrained on the data generated by suboptimal policies. We show that in-context agents can outperform
even the best policy available in the data by a large margin, which highlights the ability of in-context RL agents to learn without pretraining
on optimal actions. In these experiments, we use a generating policy that is 40% (for Dark Room) and 50% (for Dark Key-to-Door
and Watermaze) of the optimal performance in the environment. Its mean performance is shown in a blue dashed line. We observe a
substantial improvement when compared to the suboptimal policy: +120% (6.36 — 14.08) in Dark Room, +74% (1.0 — 1.74) in Dark
Key-to-Door, +76% (0.52 — 0.92) in Watermaze. For further comparison, we show Behavior Cloning that is unable to generalize to
unseen tasks. The mean performance of the best policy available in the data is shown in light blue. The performance is averaged across 3

seeds with the shaded regions of one std.

bles the standard in-weight learning, with the key difference
being that the learning itself happens during evaluation.
When interacting with the environment, the agent populates
the Transformer’s context with the latest observations. At
the start of the evaluation, the context is empty. Note that the
agent’s context is cross-episodic, which makes it possible
for the agent to access transitions in previous episodes. We
report the cumulative reward that the agent achieved during
fixed in-context episodes. We employ Giain, Geval, Grest task
split, Girainy Geval during the pre-training phase to select the
best model, G5 during evaluation. For evaluation, we take
200 tasks for Dark Key-to-Door and Watermaze. For Dark
Room, there are only 16 unseen tasks left, so we do not split
them into test and eval and simply take the last checkpoint
for reporting. We evaluate Dark Room for 250 episodes,
Dark Key-to-Door for 1000 episodes, and Watermaze for
200 episodes. Average performance is calculated across 3
seeds with the shaded regions of one standard deviation.

5. Experiments

In our experiments, we first show that it is possible to distill
the generalized optimal policy from noise, thus making it
possible to replace learning histories from RL agents with
generated ones. Then we move on to the experiments with
suboptimal policies, showing that in-context reinforcement
learning is able to outperform them even without the optimal
policy. We also test our method on a pixel-based domain
and show that it is still able to sustain its abilities despite

the more challenging environment. Lastly, we perform an
analysis of two factors, (1) what the minimum policy per-
formance should be to enable in-context RL, and (2) the
influence of learning pace in data on the final in-context
learning performance.

Can in-context reinforcement learning emerge from
noise-generated trajectories? To generate noise-induced
trajectories, we need to obtain the generating policies. For
Dark Room and Dark Key-to-Door, we use oracles that
know the goal location and navigate there. We run these
policies in the environment, then add noise as described in
Section 4.2.

Figure 2 shows the emergence of in-context generalization
from noise. For illustrative purposes, we also present the
mean performance of the optimal policies on the same tasks
in the environment. The in-context agent can generalize to
unseen goals both in Dark Room and Key-to-Door. This em-
phasizes that the learning histories that are generated from
noise can successfully acquire essential properties required
for in-context reinforcement learning. Thus, it is indeed
possible to enable in-context RL from noise distillation.

Is in-context reinforcement learning capable of leverag-
ing suboptimal trajectories and outperforming them?
The demonstrations can often be suboptimal, same as the
policies extracted from them. Is it possible to learn an in-
context algorithm if we run AD® on suboptimal policies? To
show that it is possible, we first obtain suboptimal policies

Emergence of In-Context Reinforcement Learning from Noise Distillation

by employing slightly different approaches from Section 4.2.
Unlike with optimal policies, where we schedule ¢ from
Estart = 1 t0 €eng = 0 and thus arrive at an ideal policy, here,
we deliberately set e¢ng 7 0. This makes it so that there is
noise remaining in the data, and therefore the behavior of
the policy in the data cannot be considered optimal. We de-
termine the value of .,q by examining the maximum return
that the policy can achieve relative to the optimal policy.
The exact values can be found in Appendix G.

In Figure 4, the in-context learner significantly outperforms
the best policy available in the data. In the Dark Room
environment, the performance increase is +120% (6.36 —
14.08), and for Key-to-Door, we observe a +74% gain (1.0
— 1.74). Interestingly, in the Key-to-Door environment, a
suboptimal demonstration policy rarely visits a door with
a key. However, the in-context agent still manages to learn
how to explore the grid and find a door.

For comparison purposes, we included the mean return
achieved by the generating policies as well as by the Behav-
ior Cloning algorithm.

Is it possible for an in-context agent to learn from noise
in pixel-based environments? To verify the effectiveness
of our method, we tested it in Watermaze, a complex 3D
environment with a continuous task set. This environment
presents a considerable challenge due to the navigational
difficulties caused by the first-person view that significantly
limits the agent’s field of view. Furthermore, the agent is
required to learn to explore a continuous space rather than a
grid. To obtain the policies for Watermaze, we train PPO-
LSTM agents from stable-baselines3 (Raffin et al., 2021).
The rest of the data collection procedure remains the same
for optimal and suboptimal experiments.

In Figure 2, we show that the in-context agent can success-
fully be trained on noise-induced data from images. More-
over, when the generating policies are suboptimal, there
is a performance boost of +76% (0.52 — 0.92), meaning
that the agent can successfully improve upon suboptimal
policies and is able to learn a multi-task policy. We illustrate
the results of training on suboptimal data in Figure 4.

To what degree can a policy be suboptimal, and still
allow in-context reinforcement learning to emerge? To
identify the extent of suboptimality that can still enable in-
context RL, we fix the total amount of data, goals and the
pace of learning to be the same, allowing variation only in
the performance of the final policy. Since it is possible to
regulate the suboptimality by tweaking e.,q, We obtained
three policies with 50%, 30% and 15% from an optimal
policy’s maximum performance. We chose Key-to-Door
as an environment because of its rich structure of subgoals.
Namely, an agent needs to find several grids, rather than

learning to find a single spot.

Figure 5 illustrates the varying performance of the gener-
ating policy in the Key-to-Door environment, testing the
limits of the in-context agent to generalize on non-perfect
data. The average return for generating policies is shown
in dashed lines. One can observe that the further the policy
deviates from optimality, the poorer the performance of the
in-context agent becomes. We hypothesize that in order
for the learning of a generalized policy to be effective, it
is crucial for the dataset to include a significant number of
instances where each subgoal is achieved. Consider the case
with max_perf = 0.15, where the agent has learned only to
collect the key, but fails to learn the task of finding the door.
The issue here may be that there are not enough examples of
the agent actually reaching the door, given that the mean pol-
icy return is 0.3. This could mean that the in-context agent
did not have sufficient data to learn how to successfully
reach the door. It is worth noting that, even with severely
suboptimal policies (max_perf = 0.3), the in-context abil-
ity still arises, and the agent shows an improvement when
compared to the suboptimal policy.

How does the learning pace in data affect the in-context
learning ability? To identify a pattern, we set the num-
ber of data samples and goals to be the same as in the best
suboptimal runs with max_perf = 0.5 in the Key-to-Door
environment. We modify the decay rate of € by changing
the number of full trajectories (i.e., transitions until termina-
tion) that are collected per goal. As a result, we arrive at a
different learning pace in the generated data.

Figure 6 shows that the learning pace has an ideal value.
With a fast schedule, where ¢ decays with the rate of only
7 x 107° (200 episodes), the in-context agent is still able to
learn and generalize, outperforming the generating policy.
However, the margin of improvement increases and peaks
with a decay of 7 x 1076 (2000 episodes), after which
the performance improvement starts decaying again. This
leads us to assume that there may be not enough explo-
ration within the data at a fast decay rate, since it quickly
converges to the generating policy without showing much
variability. The opposite is the case for slow decay rates
(3.5x107%; 1.4 x 10~ (4k and 10k histories, respectively).
If we slow down the improvements in data too much, this
may obscure them, making distillation significantly more
difficult. It is also important to consider the limitations of
sequence length size, as improvement might not be identifi-
able at slower decay rates if the sequence length is short.

6. Related Work

Transformers in Reinforcement Learning. Our work
draws heavily on the application of the Transformer archi-
tecture (Vaswani et al., 2017) in Reinforcement Learning.

Emergence of In-Context Reinforcement Learning from Noise Distillation

max_perf = 0.5

max_perf = 0.3

max_perf = 0.15

2 2 2
I B 1 1
0 0~
500 1000 0 500 1000 0 500 1000
Episodes In-Context
(a) (b) (c)

Figure 5. The performance of AD® for different suboptimal generating policies in the Key-to-Door environment with the following two
subgoals: find a key, open a door using the key. To test the limits of in-context agents, we generated three datasets, each representing
different performance relative to the maximum reward. This was made possible by scheduling € to a non-zero number, so that the mean
performance of generating policies is bound by max_perf. As one can observe in (b), the in-context agent manages to outperform even a
significantly suboptimal policy used for data generation. However, it is important to point out that, in order for the in-context agent to
successfully learn and achieve both subgoals (locating a key and door), the data must contain sufficient examples of both tasks. In the
case of (b), the mean reward of the data-generating trajectories is 0.6, indicating that the agent generating the data rarely encounters a
door. As a result, the in-context learner also struggles to learn the task of finding the door. Similarly, in (c), the in-context agent fails
to learn effectively due to the same lack of diverse examples in the training data. We plot the mean returns of generating policies in a
greenish-gray dashed line. The AD® performance is averaged across three seeds + 1 std.

As Agarwal et al. (2023) state in their survey, Transformers
are an increasingly popular approach to solving RL tasks,
including world models (Micheli et al., 2023), offline RL
(Yamagata et al., 2022), and building general multi-task and
multi-modal models (Reed et al., 2022). In this paper, we
take a close look at the latter, exploring the capabilities of
Transformers for one-shot generalization. The rise of Trans-
formers in RL and decision-making can be attributed to the
works of Chen et al. (2021) and Janner et al. (2021). The
Trajectory Transformer focuses primarily on learning the dy-
namics of the environment, while the Decision Transformer
formulates the problem as next-token prediction based on
the previous interactions with the environment. Although
both models are suitable for single-task environments, they
cannot generalize to unseen tasks. Later research addressed
the problem of multitasking and proposed improvements
to these methods. Lee et al. (2022) suggested pretraining
Transformers on Atari games, and later fine-tuning them for
unseen games to achieve near-human performance. Another
study by Lin et al. (2022) proposed training various compo-
nents within a single Transformer to predict rewards-to-go
as well as the next states and actions when given observa-
tions and task identifiers. However, both approaches still
require fine-tuning for unseen tasks and have not demon-
strated one-shot generalization capabilities. The pursuit of
creating a generalist multi-task RL agent capable of adapt-
ing and learning while interacting with the environment has
led to the emergence of in-context RL, which is closely

related to Meta-Reinforcement Learning.

Meta-Reinforcement Learning. Meta-Reinforcement
Learning is a family of RL methods aimed at learning gener-
alized and sample-efficient algorithms on top of inefficient
and single-task common RL agents. A trained meta-RL
model is one that has learned how to learn. In other words,
this model is able to explore an environment and can adapt to
new goals. Gradient-based approaches make this possible by
training a meta-agent using gradients of many on-policy RL
algorithms (Finn et al., 2017). Memory-based approaches
leverage the hidden structure of RNNs (Hochreiter et al.,
2001; Duan et al., 2016; Wang et al., 2016) to train a gener-
alized algorithm using online data produced by multiple RL
algorithms interacting within the environment, each with a
different goal.

In-Context Reinforcement Learning. In-context RL is
another approach to building generalist agents. Recent
works use the in-context learning ability of Transformers
(Von Oswald et al., 2023; Dai et al., 2022; Wei et al., 2022)
that has to do with Bayesian inference (Muller et al., 2021;
Xie et al., 2021). It should be noted that in-context RL
research places particular emphasis on data manipulation.
Laskin et al. (2022) enables in-context learning by deploying
RL agents in various environments to record their learning
histories, which are then used to distill the policy improve-
ment operator. In contrast, Lee et al. (2023) concentrates

Emergence of In-Context Reinforcement Learning from Noise Distillation

Return

7x107°

7%x107° 3.5x 107 1.4x 107

Decay Rate

Figure 6. AD® with different decay values of ¢ during data gen-
eration. The performance of a generating policy is fixed at 50%
from the optimal policy in the Key-to-Door environment. The
decay rate is controlled by changing the number of full episodes
for a single goal. From our results, one can observe a clear pat-
tern where the learning pace has an ideal value around a specific
decay rate. When the decay rate is too fast, there are not enough
explorative actions in the data, since the trajectories start to match
the best available policy too soon. However, the slower the decay,
the more obfuscated the policy improvement becomes, making
the in-context agent unable to fully capture it and thus resulting in
worse performance. We report the mean returns across three seeds,
for each of the decay values. The generating policy mean return is
shown by a dashed line.

on pre-training a Transformer with optimal actions, using
the surrounding context to infer the dynamics of the en-
vironment. Unlike traditional meta-RL, these approaches
focus on in-context learning. Instead of updating the model
weights for new tasks by fine-tuning them, these methods
allow the Transformer to perform internal gradient descent,
enabling zero-shot generalization to unseen tasks.

At the same time, in-context learning has its limitations,
with the most notable one being the substantial data require-
ments. In order to efficiently generalize on a set of tasks,
it needs large and diverse datasets of learning histories that
consist of different tasks for downstream RL algorithms
to be trained on. On top of that, the data must contain a
sequential improvement from one transition to the other in
order to enable the model’s ability to explore. To address the
above problems, researchers have proposed an approach that
involves reusing existing trajectories by ranking them ac-
cording to inherent metrics of quality, specifically rewards
(Liu & Abbeel, 2023). This method has the potential to
produce an order similar to the one in learning histories.
However, a flaw in the evaluation protocol employed by the
authors was found (Zisman, 2024), leaving the efficacy of
this method in reutilizing existing demonstrations an unre-
solved question. Other methods exist that aim to address the

problems of in-context learning by generating a few learn-
ing histories and augmenting them with random projections
to achieve diverse data for in-context pretraining (Kirsch
et al., 2023; 2022). While our work follows a similar ap-
proach, we create learning histories instead of working with
pre-existing ones. The key contribution of AD? is its ability
to address the challenges of in-context learning by gener-
ating appropriate data without needing to acquire learning
histories of a multitude RL agents.

The ability of in-context RL to distill different types of algo-
rithms (Wang et al., 2024) opens up new perspectives on its
applicability, namely, learning near-optimal policies from
suboptimal data. This problem has been vastly studied in
Imitation Learning setup, but yet to be fully discovered for
in-context RL. The approach we have our inspiration from,
proposed by Brown et al. (2020), offers to inject noise to the
suboptimal policy extracted from data in order to obtain an
ordering from the worst policy to the best. Then, a reward
function is learned from this synthetic ordering that is later
used for a standard RL training. In our approach, we do
not explicitly learn neither reward function nor downstream
RL agents, rather we employ the noise injection curricu-
lum to construct learning histories. There also exists a
theoretical result for in-context learning discovered by Jeon
et al. (2024), which states that the misspecification error
of Bayesian predictors trained on optimal and suboptimal
data approaches zero, provided that the number of tasks and
the sequence length tend toward infinity. In our paper, we
provide indirect corroboration of this implication from a par-
allel research field, demonstrating that it is indeed possible
for in-context RL agents to learn a policy that outperforms
the demonstrator.

7. Conclusion

In this work, we addressed the limitations of current in-
context RL research, namely, the problems faced by large-
scale training of single-task RL agents (Laskin et al., 2022),
and having to obtain the optimal policy for efficient in-
context pretraining (Lee et al., 2023). Through experiments
using our approach AD®, we illustrate that it is possible
to enable in-context RL using a synthetic noise injection
curriculum that makes it possible to generate learning his-
tories. We also showed that it is possible to efficiently
train in-context agents even with suboptimal policies. This
possibility has been predicted theoretically for in-context
learning in a recent study by Jeon et al. (2024). In addition,
we showed that the pace of policy improvement in data di-
rectly affects the performance of an in-context RL agent. As
a result, we believe that our work is a valuable step in the
direction of democratizing the data requirements needed for
in-context RL to emerge.

Although we have attempted to address one of the limita-

Emergence of In-Context Reinforcement Learning from Noise Distillation

tions of AD and DPT, there are others that remain. It can
be insightful to try in-context learning in more diverse envi-
ronments, such as Crafter (Hafner, 2021), XLand-MiniGrid
(Nikulin et al., 2023) or NetHack Learning Environment
(Kiittler et al., 2020; Hambro et al., 2022; Kurenkov et al.,
2023).

Acknowledges

We are grateful to Ilya’s spouse, Margarita, for her great
mental support and graphic advice.

Impact Statement

The work presented in this paper is aimed at advancing the
field of Machine Learning. There can be many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.

References

Agarwal, P., Rahman, A. A., St-Charles, P.-L., Prince, S.
J. D., and Kahou, S. E. Transformers in reinforcement
learning: A survey. arXiv preprint arXiv: 2307.05979,
2023.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-
wright, M., Kiittler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., Schrittwieser, J., Anderson, K., York, S.,
Cant, M., Cain, A., Bolton, A., Gaffney, S., King, H.,
Hassabis, D., Legg, S., and Petersen, S. Deepmind lab.
arXiv preprint arXiv: 1612.03801, 2016.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis,
J., Finn, C., Gopalakrishnan, K., Hausman, K., Herzog,
A., Hsu, J., Ibarz, J., Ichter, B., Irpan, A., Jackson, T,
Jesmonth, S., Joshi, N. J., Julian, R. C., Kalashnikov, D.,
Kuang, Y., Leal, I, Lee, K.-H., Levine, S., Lu, Y., Malla,
U., Manjunath, D., Mordatch, 1., Nachum, O., Parada, C.,
Peralta, J., Perez, E., Pertsch, K., Quiambao, J., Rao, K.,
Ryoo, M., Salazar, G., Sanketi, P., Sayed, K., Singh, J.,
Sontakke, S., Stone, A., Tan, C., Tran, H., Vanhoucke,
V., Vega, S., Vuong, Q., Xia, F.,, Xiao, T., Xu, P., Xu,
S., Yu, T., and Zitkovich, B. Rt-1: Robotics transformer
for real-world control at scale. Robotics: Science and
Systems, 2022. doi: 10.48550/arXiv.2212.06817.

Brown, D. S., Goo, W., and Niekum, S. Better-than-
demonstrator imitation learning via automatically-ranked
demonstrations. In Conference on robot learning, pp.
330-359. PMLR, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Neural Information Processing Systems, 2021.

Dai, D., Sun, Y., Dong, L., Hao, Y., Sui, Z., and Wei, F. Why
can gpt learn in-context? language models secretly per-
form gradient descent as meta optimizers. arXiv preprint
arXiv:2212.10559, 2022.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I, and Abbeel, P. RI2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Finn, C., Abbeel, P.,, and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126—1135.
PMLR, 2017.

Fuchs, F., Song, Y., Kaufmann, E., Scaramuzza, D., and
Diirr, P. Super-human performance in gran turismo sport
using deep reinforcement learning. IEEE Robotics and
Automation Letters, 6(3):4257-4264, 2021.

Hafner, D. Benchmarking the spectrum of agent capabilities.
arXiv preprint arXiv: 2109.06780, 2021. URL https:
//arxiv.org/abs/2109.06780v2.

Hambro, E., Raileanu, R., Rothermel, D., Mella, V.,
Rocktischel, T., Kiittler, H., and Murray, N. Dungeons
and data: A large-scale nethack dataset. arXiv preprint
arXiv: 2211.00539, 2022.

Herzog, A., Rao, K., Hausman, K., Lu, Y., Wohlhart, P.,
Yan, M., Lin, J., Arenas, M. G., Xiao, T., Kappler, D., Ho,
D., Rettinghouse, J., Chebotar, Y., Lee, K.-H., Gopalakr-
ishnan, K., Julian, R., Li, A., Fu, C. K., Wei, B., Ramesh,
S., Holden, K., Kleiven, K., Rendleman, D., Kirmani,
S., Bingham, J., Weisz, J., Xu, Y., Lu, W., Bennice, M.,
Fong, C., Do, D., Lam, J., Bai, Y., Holson, B., Quinlan,
M., Brown, N., Kalakrishnan, M., Ibarz, J., Pastor, P., and
Levine, S. Deep 1l at scale: Sorting waste in office build-
ings with a fleet of mobile manipulators. arXiv preprint
arXiv: 2305.03270, 2023.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning
to learn using gradient descent. In Artificial Neural Net-
works—ICANN 2001 : International Conference Vienna,
Austria, August 21-25, 2001 Proceedings 11, pp. 87-94.
Springer, 2001.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. In Ad-
vances in Neural Information Processing Systems, 2021.

Jeon, H. J,, Lee, J. D, Lei, Q., and Roy, B. V. An
information-theoretic analysis of in-context learning.
arXiv preprint arXiv: 2401.15530, 2024.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L.
General-purpose in-context learning by meta-learning
transformers. arXiv preprint arXiv: 2212.04458,

https://arxiv.org/abs/2109.06780v2
https://arxiv.org/abs/2109.06780v2

Emergence of In-Context Reinforcement Learning from Noise Distillation

2022. URL https://arxiv.org/abs/2212.
04458v2.

Kirsch, L., Harrison, J., Freeman, C. D., Sohl-Dickstein, J.,
and Schmidhuber, J. Towards general-purpose in-context
learning agents. In NeurIPS 2023 Workshop on Distri-
bution Shifts: New Frontiers with Foundation Models,
2023.

Kurenkov, V., Nikulin, A., Tarasov, D., and Kolesnikov,
S. Katakomba: Tools and benchmarks for data-driven
nethack. NEURIPS, 2023.

Kiittler, H., Nardelli, N., Miller, A. H., Raileanu, R., Sel-
vatici, M., Grefenstette, E., and Rocktischel, T. The
nethack learning environment. arXiv preprint arXiv:
2006.13760, 2020.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,
Steigerwald, R., Strouse, D., Hansen, S., Filos, A.,
Brooks, E., et al. In-context reinforcement learning with
algorithm distillation. arXiv preprint arXiv:2210.14215,
2022.

Lee, J. N., Xie, A., Pacchiano, A., Chandak, Y., Finn, C.,
Nachum, O., and Brunskill, E. Supervised pretraining can
learn in-context reinforcement learning. arXiv preprint
arXiv:2306.14892, 2023.

Lee, K.-H., Nachum, O., Yang, M. S., Lee, L., Free-
man, D., Guadarrama, S., Fischer, 1., Xu, W., Jang, E.,
Michalewski, H., et al. Multi-game decision transformers.
Advances in Neural Information Processing Systems, 35:

27921-27936, 2022.

Lin, Q., Liu, H., and Sengupta, B. Switch trajectory
transformer with distributional value approximation for
multi-task reinforcement learning. arXiv preprint arXiv:
2203.07413, 2022.

Liu, H. and Abbeel, P. Emergent agentic transformer from
chain of hindsight experience. International Conference
On Machine Learning, 2023. doi: 10.48550/arXiv.2305.
16554.

Micheli, V., Alonso, E., and Fleuret, F. Transformers
are sample-efficient world models. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=vhFulAcbOxb.

Morris, R. G. Spatial localization does not require the
presence of local cues. Learning and motivation, 12(2):
239-260, 1981.

10

Muller, S., Hollmann, N., Arango, S. P., Grabocka, J.,
and Hutter, F. Transformers can do bayesian infer-
ence. International Conference on Learning Represen-
tations, 2021. URL https://arxiv.org/abs/
2112.10510v6.

Nikulin, A., Kurenkov, V., Zisman, 1., Agarkov, A., Sinii,
V., and Kolesnikov, S. Xland-minigrid: Scalable meta-
reinforcement learning environments in jax. arXiv
preprint arXiv: 2312.12044, 2023.

Osband, 1., Russo, D., and Van Roy, B. (more) efficient re-
inforcement learning via posterior sampling. Advances in
Neural Information Processing Systems, 26, 2013. URL
https://arxiv.org/abs/1306.0940v5.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1-8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J.,
Razavi, A., Edwards, A., Heess, N., Chen, Y., Hadsell, R.,
Vinyals, O., Bordbar, M., and de Freitas, N. A generalist
agent. arXiv preprint arXiv: 2205.06175, 2022.

Schrittwieser, J., Antonoglou, 1., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604-609, 2020.

Shi, L. X., Jiang, Y., Grigsby, J., Fan, L. J., and Zhu,
Y. Cross-episodic curriculum for transformer agents.
NEURIPS, 2023.

Sinii, V., Nikulin, A., Kurenkov, V., Zisman, I., and
Kolesnikov, S. In-context reinforcement learning for
variable action spaces. arXiv preprint arXiv:2312.13327,
2023.

Tai, J. J., Towers, M., and Tower, E. Shimmy: Gymna-
sium and PettingZoo Wrappers for Commonly Used En-
vironments, June 2023. URL https://doi.org/10.
5281/zenodo.8140744.

Tarasov, D., Nikulin, A., Akimov, D., Kurenkov, V., and
Kolesnikov, S. Corl: Research-oriented deep offline re-
inforcement learning library. In 3rd Offline RL Work-
shop: Offline RL as a ”Launchpad”, 2022. URL https:
//openreview.net/forum?id=SyAS49bBcv.

https://arxiv.org/abs/2212.04458v2
https://arxiv.org/abs/2212.04458v2
https://openreview.net/forum?id=vhFu1Acb0xb
https://openreview.net/forum?id=vhFu1Acb0xb
https://arxiv.org/abs/2112.10510v6
https://arxiv.org/abs/2112.10510v6
https://arxiv.org/abs/1306.0940v5
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.5281/zenodo.8140744
https://doi.org/10.5281/zenodo.8140744
https://openreview.net/forum?id=SyAS49bBcv
https://openreview.net/forum?id=SyAS49bBcv

Emergence of In-Context Reinforcement Learning from Noise Distillation

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii

using multi-agent reinforcement learning. Nature, 575
(7782):350-354, 2019.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.

In International Conference on Machine Learning, pp.
35151-35174. PMLR, 2023.

Wang, J., Blaser, E., Daneshmand, H., and Zhang, S. Trans-
formers learn temporal difference methods for in-context
reinforcement learning, 2024.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. International Conference on Learning Repre-
sentations, 2021. URL https://arxiv.org/abs/
2111.02080v6.

Yamagata, T., Khalil, A., and Santos-Rodriguez, R. Q-
learning decision transformer: Leveraging dynamic pro-
gramming for conditional sequence modelling in offline
tl. International Conference on Machine Learning, 2022.
doi: 10.48550/arXiv.2209.03993.

Zisman, 1. suessmann/agentic-transformer-pytorch: v1.0,
2024. URL https://zenodo.org/doi/10.
5281/zenodo.10577992.

11

https://arxiv.org/abs/2111.02080v6
https://arxiv.org/abs/2111.02080v6
https://zenodo.org/doi/10.5281/zenodo.10577992
https://zenodo.org/doi/10.5281/zenodo.10577992

Emergence of In-Context Reinforcement Learning from Noise Distillation

A. Comparison with AD and ED

We also conducted additional experiments comparing our method with the original data collection strategy from Laskin et al.
(2022) for Dark Room and Key-to-Door environments. In order to cover all AD’s benchmarks, the Expert Distillation (ED)

is also included for comparison.

Dark Room Key-to-Door
H= == e ———— 2.0 ff———Tf———f——Ff=—=+
15
c 1.5
=10
2 1.0
& 5
0.5
0 0.0
0 50 100 150 200 250 0 250 500 750 1000

Episodes In-Context

ADé? —— AD ED —== QOracle Return

Figure 7. AD® acts on par with AD and significantly outperforms expert distillation (ED).

As it could be seen in fig, out method enables in-context learning ability in transformer, thus acting on par with AD. At the
same time, learning only from expert trajectories does not benefit for the in-context learning ability.

B. Learning from extracted policy

In the main text we introduce noise into the oracle policy to generate suboptimal data. In this section we conduct additional
experiments when the generating policy is truly suboptimal to more closely simulate real-world policy acquisition. Instead
of using the optimal policy for the noising process, we did the following: we trained a behavior cloning agent on the policy
that had been injected with noise in advance, up to 50% performance from the optimal policy. Then, we used this BC agent
to produce learning histories data according to the our protocol with the epsilon curriculum. We compare this method with
the one from the main text and see that both of them perform on the same level.

Key-to-Door

15

Return
=
o

0.5

0.0
0 250 500 750 1000

Episodes In-Context
AD? from Oracle = Demonstrator Return
—— AD*? from BC —=—= Oracle Return

Figure 8. AD® can learn from a BC extracted policy as well as from the oracle.

12

Emergence of In-Context Reinforcement Learning from Noise Distillation

C. Decreasing starting noise

One could argue that starting with 4« = 1 can lead agents into a collapse they cannot escape from (i.e. robots, self-driving
cars). To show that our method is applicable in different settings, we do and experiment with e,y = 0.5. Fig shows there is
no difference between these two approaches.

Key-to-Door
2.0 mmmmm e m e
1.5
£
£1.0
o
0.5
0.0
0 250 500 750 1000
Episodes In-Context
AD?; Egtar=1.0 —== Oracle Return —— AD?; €2t =0.5

Figure 9. Different values of £gar for AD? are also suitable for data generation.

D. More on Watermaze Setup

Watermaze is build upon the DMLab engine (Beattie et al, 2016), we use a predefined level
contributed/dmlab30/rooms_watermaze. To make interaction with the environment more convenient,
we used the Shimmy package (Tai et al., 2023) that provides a gym-like API for DMLab. We set 1 FPS for rendering the
environment. We discretize continuous actions in the following manner: the agent’s = position can be changed by going
forward, backward with full speed or no-op: [0, 1, -1],same fory position. The angle which camera turns is set for
12 pixels, that is enough to rotate the camera around the agent in 5 moves. The action space is gym.Discrete with 8
actions in total, 6 single actions: forwards, backwards, left, right, camera rotation to the left, to the right. And 2 combined
actions: forwards + left rotation, forwards + right rotation. Other actions, such as jump, crouch or fire are not used. Also, we
exclude goals in 200-unit radius, since they can be accessed in 10 or less actions.

E. Additional Figure for Decay Rate Analysis

13

Emergence of In-Context Reinforcement Learning from Noise Distillation

Figure 10. In-context learning plot for different decay rates. The in-context agent is still quite stable and able to learn despite different

decay rates.

2.0

F. Model Hyperparameters

500
Episodes In-Context

e 1.4 x 107® history
w7 X 1075 history

e 3.5 x 107® history
7 % 107° history

1000

Param Dark Room Dark Key-to-Door Watermaze
embedding_dim 64 64 64
hidden_dim 512 512 1024
num_layers 4 4 8
num_heads 4 4 4
seq-len 80 160 250
attention_dropout 0.5 0.5 0.5
residual _dropout 0.1 0.1 0.1
embedding_dropout 0.3 0.3 0.3
learning_rate 3e-4 3e-4 3e-4
betas 0.9,0.99 0.9,0.99 0.9, 0.99
clip_grad 1.0 1.0 1.0
batch_size 512 512 64
num_updates 300k 300k 200k
optimizer Adam

Table 1. Transformer hyperparameters.

G. Data Hyperparameters

14

Emergence of In-Context Reinforcement Learning from Noise Distillation

Dark Room Dark Key-to-Door Watermaze

Max. Performance 1.0 0.5 1.0 0.5 1.0 0.5
Max Steps 20 40 50
Train Goals 65 1000 1056
Learning Histories 25000 2000 500
per Goal

Max ¢ 0.0 0.5 0.0 0.75 0.0 0.7

Table 2. Env and data generation hyperparameters.

H. Data Generation Algorithm

Algorithm 1 Data Generation

Input: number of learning histories num_hi st, number of goals n_goals, acting policy 74, action space A

Initialize e = 1.0

Initialize eps_diff = num{fist
repeat
for i = 1 to num_hist do
repeat
W = U[0,1]
if w < ¢ then
Sample an act ion uniformly from A
else
Sample an act ion from 74t
end if

Observe state, reward, done by acting with action in the environment
Save state, action, reward
Set ¢ = max(e — eps_diff, 0)
until done is true
end for
until all n_goals are collected

15

